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NULL MEAN CURVATURE FLOW AND OUTERMOST
MOTS

Theodora Bourni & Kristen Moore

Abstract

We study the evolution of hypersurfaces in spacetime initial
data sets by their null mean curvature. A theory of weak solu-
tions is developed using the level-set approach. Starting from an
arbitrary mean convex, outer untapped hypersurface ∂Ω, we show
that there exists a weak solution to the null mean curvature flow,
given as a limit of approximate solutions that are defined using the
ε-regularization method. We show that the approximate solutions
blow up on the outermost MOTS and the weak solution converges
(as boundaries of finite perimeter sets) to a generalized MOTS.
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1. Introduction

We consider the evolution of hypersurfaces in an initial data set
(Mn+1, g,K) that arises as a spacelike hypersurface Mn+1 in a Lorentz
spacetime, (Ln+2, h), with induced metric g and second fundamental
form K. Let ~n denote the future directed timelike unit normal vector
field of M ⊂ L, and consider a 2-sided closed and bounded hypersurface
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Σn ⊂ Mn+1 with globally defined outer unit normal vector field ν in
M . Given a smooth hypersurface immersion F0 : Σ→M , the evolution
of Σ0 := F0(Σ) by null mean curvature is the one-parameter family of
smooth immersions F : Σ× [0, T )→M satisfying

(∗)


∂F

∂t
(x, t) = −(H + P )(x, t)ν(x, t), x ∈ Σ, t ≥ 0,

F (x, 0) = F0(x), x ∈ Σ,

where H := divΣt(ν) denotes the mean curvature of Σt := F (Σ, t) in M
and P := trΣtK is the trace of K over the tangent space of Σt. The
quantity H+P corresponds to the null expansion or null mean curvature
θ+

Σt
of Σt with respect to its future directed outward null vector field

l+ := ν + ~n,

θ+
Σt

:= 〈 ~HΣt , l
+〉h = H + P,

where ~HΣt , the mean curvature vector of Σt inside the spacetime L, is
given by

~HΣt := Hν − P~n.
We will also assume that (H + P )|Σ0

> 0 so that the hypersurface Σt

contracts under the flow. We will see below that null mean curvature
flow arises as the steepest descent flow of “area plus bulk energy P”
with respect to the L2-norm on the hypersurface. It is a generalization
of mean curvature flow in that the latter corresponds to the special
time-symmetric case of (∗), where K ≡ 0.

The motivation for studying this particular generalization of mean
curvature flow follows from the study of black holes in general relativity.
Physically, the outward null mean curvature θ+

Σ measures the divergence

of the outward directed light rays emanating from Σ. If θ+
Σ vanishes on

all of Σ, then Σ is called a marginally outer trapped hypersurface, or
MOTS for short. MOTS play the role of apparent horizons or quasi-
local black hole boundaries in general relativity, and are particularly
useful for numerically modeling the dynamics and evolution of black
holes. For a more detailed discussion and further references see [3, 4, 5].

From a mathematical point of view, MOTS are the Lorentz analogue
of minimal hypersurfaces. However, since MOTS are not stationary
solutions of an elliptic variational problem, the direct method of the
calculus of variations is not a viable approach to the existence theory. A
successful approach to proving existence of MOTS comes from studying
the blow-up set of solutions of Jang’s equation

(1)

(
gij − ∇

iw∇jw
|∇w|2 + 1

)(
∇i∇jw√
|∇w|2 + 1

+Kij

)
= 0,

for the height function w of a hypersurface. This was an essential in-
gredient in the Schoen–Yau proof of the positive mass theorem [27].
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In their analysis, Schoen and Yau showed that the boundary of the
blow-up set of Jang’s equation consists of marginally trapped hypersur-
faces. Building upon this work, existence of MOTS in compact data sets
with two boundary components, such that the inner boundary is (outer)
trapped and the outer boundary is (outer) untrapped, was pointed out
by Schoen [26], with proofs given by Andersson and Metzger [4], and
subsequently by Eichmair [10] using a different approach.

Jang’s equation also featured in the second author’s study of weak so-
lutions to the evolution by inverse null mean curvature flow [24], where
it was proven that the weak solution starting from any outer trapped
initial hypersurface ∂Ω0 will instantly jump to a MOTS in M \Ω̄0. Sim-
ilarly, we see below that Jang’s equation plays a key role in the existence
theory for weak solutions to (∗), as well as the ensuing application of
locating MOTS in space-time initial data sets.

The idea of using geometric evolution equations to find apparent hori-
zons dates back to the work of Tod [32], who suggested using mean cur-
vature flow to find MOTS in time symmetric slices where K = 0 (and
MOTS are minimal hypersurfaces). White [35] showed that if the ini-
tial hypersurface encloses a minimal hypersurface, the outermost such
minimal hypersurface will be the stable limit of mean curvature flow.
In the same paper [32], Tod also proposed using null mean curvature
flow in the non-time-symmetric setting. Numerical results by Bernstein
[7], Shoemaker et al. [29] and Pasch [25] show convergence of the null
mean curvature flow to a MOTS. This paper provides a mathematical
justification of these numerical results.

We remark here that various different algorithms and codes have been
developed to locate (the outermost) MOTS. Null mean curvature flow
falls in the category of ‘flow algorithms’, which are based on defining an
evolution of surfaces such that the MOTS is the limit, as time goes to
infinity, of a suitable starting surface. Flow algorithms are the only truly
‘global’ algorithms, meaning that their convergence does not depend
on having a good initial guess on the location of the MOTS. ‘Local’
algorithms include minimization and elliptic-PDE algorithms, which,
loosely speaking, are based on developing numerical methods to find
surfaces that either minimize a scalar norm defined on θ+ or to find
solutions of a boundary value PDE derived from the equation θ+ =
0. For a detailed description of the various algorithms, we refer the
interested reader to the survey article [31, Section 7].

Analogous to the behavior of solutions to mean curvature flow, in
general it is expected that the null mean curvature of solutions of (∗)
will tend to infinity at some points, and that singularities will develop.
This motivates our development of a theory of weak solutions to the
classical flow (∗) in this paper, which we implement to investigate the
limit of a hypersurface moving under null mean curvature flow. To
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develop the weak formulation for the classical evolution (∗), we use the
level-set method and assume the evolving hypersurfaces are given by
the level sets,

(2) Σt = ∂{x ∈M
∣∣ u(x) > t},

of a scalar function u : M → R. Then, whenever u is smooth and
∇u 6= 0, the hypersurface flow equation (∗) is equivalent to the following
degenerate elliptic scalar PDE

(∗∗) divM

(
∇u
|∇u|

)
−
(
gij − ∇

iu∇ju
|∇u|2

)
Kij =

−1

|∇u|
.

We employ the method of elliptic regularization to solve (∗∗), and
study solutions, uε, of the following strictly elliptic equation

(∗ε) divM

(
∇uε√

|∇uε|2 + ε2

)
−
(
gij − ∇

iuε∇juε
|∇uε|2 + ε2

)
Kij

= − 1√
|∇uε|2 + ε2

.

A notable feature of elliptic regularization is that the downward trans-
lating graph

(3) Σ̃ε
t := graph

(uε
ε
− t

ε

)
solves the classical evolution (∗) in the product manifold (M × R, ḡ :=
g ⊕ dz2), where we extend the given data K to be parallel in the z-
direction. Furthermore, this elliptic regularization problem sheds new
light on the study of Jang’s equation (1), since the rescaled function
ûε := uε

ε solves

(∗ε̂) div

(
∇ûε√
|∇ûε|2 + 1

)
−
(
gij − ∇

iûε∇j ûε
|ûε|2 + 1

)
Kij = − 1

ε
√
|∇ûε|2 + 1

,

which can be interpreted as equation (1) with a gradient regularization
term. Analogous to the situation for Jang’s equation, the scalar term
gijKij obstructs the existence of a supremum estimate for a solution of
(∗ε̂). In order to overcome this problem, we introduce the capillarity
regularization term studied by Schoen and Yau in [27]. Subsequently,
we find that when taking the limit of this capillarity regularization term,
the solution ûε of (∗ε̂) blows up to infinity over a MOTS.

The main results of this work are summarized in the following theo-
rem.

Theorem 1. Let (Mn+1, g,K) be an initial data set for a space-time,
and let also ∂Ωout = Σout denote the outermost MOTS in M . Let Ω be
a smooth domain in M with Ωout ⊂ Ω, and whose boundary, ∂Ω, is a
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mean convex closed and bounded outer untrapped embedded hypersurface
in M . Then for 2 ≤ n ≤ 6 the following hold:

(i) Let λ = maxi{|λi|, λi eigenvalue of K}. Then, for any 0 < ε ≤
min

{
1

(n+1)λ ,
1
2

}
there exists a solution ûε ∈ C∞(Ω \ Ωout) of the

equation (∗ε̂) that is zero on ∂Ω and blows up to infinity over Σout,
that is limx→x0 ûε(x) =∞ for any x0 ∈ Σout.

(ii) There exists a sequence of ûεk as in (i) with εk ↓ 0 such that
uεk → u in C0(Ω1∪∂Ω), where u ∈ C0,1(Ω1∪∂Ω) and Ω1 ⊂ Ω\Ωout

is such that ∂Ω ⊂ ∂Ω1 and ∂∗(Ω\Ω1) is a generalized MOTS (see
Definition 4 and Remark 5).

Remark 2. We will call a function u as in (ii) of Theorem 1 a weak
solution of (∗∗) and its level sets (Σt = {u = t})t≥0 a weak solution of (∗)
(see Definition 19). Theorem 1 (ii) then states that there exists a weak
solution of (∗) with initial condition Σ0 = ∂Ω, (Σt)t≥0, that converges
to a generalized MOTS that lies outside the outermost MOTS. Note
also that the fact that the outermost MOTS has the form Σ∞ = ∂Ω∞,
where Ω∞ is an open set, is not an assumption—this is always the case
with Ω∞ being the union of all weakly outer trapped sets in M , that is
open sets with weakly outer trapped boundary (i.e., satisfying θ+ ≤ 0),
as is shown in [4].

Remark 3. In case ∂Ωout = ∅, then Theorem 1 still holds with the
functions ûε, as in (i), being defined over all of Ω (see Theorem 11 (iii)).

Definition 4. Let E ⊂M be a finite perimeter set. We will say that
the reduced boundary of E, ∂∗E, is a generalized MOTS if the following
hold

• µE = Hn ∂∗E carries a generalized mean curvature vector ~H and
• For Hn-a.e. point on ∂∗E

~H + Pν = 0 , where P = νiνjKij ,

and ν is the measure theoretic outer pointing unit normal to ∂∗E.

(See [30, Definition 16.5 and §14] for precise definitions of ∂∗E, ~H and
ν).

Remark 5 (on Definition 4). If ∂∗E is a generalized MOTS, then by
Allard’s regularity theorem [1] (see also [33]) we infer that, away from
a set of Hn-measure zero, ∂∗E is a C1,α hypersurface for any α ∈ (0, 1).
This implies that locally (away from a set of Hn-measure zero) it is
the graph of a function that satisfies equation (1) weakly, and using
standard PDE methods we obtain that ∂∗E is smooth, and, thus, a
MOTS in the classical sense, away from a set of Hn-measure zero.

Furthermore, since the mean curvature is bounded on the reduced
boundary, we also have that if ∂∗E is a generalized MOTS thenHn(∂E\
∂∗E) = 0.
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Remark 6. The proof of the main theorem, Theorem 1, is given in
Theorems 11, 15, 20 and 39.

In Section 8, we give various properties for the graphs of the functions
ûε, û, the most important being a minimizing property (see Lemmas 28,
34). Furthermore, in addition to (locally) uniform convergence of the
functions ûε to û, we obtain convergence, in the sense of varifolds, of
their graphs (see Theorem 37).

Remarks on further directions. We believe that weak solutions
(Σt)t≥0 (as in Remark 2) actually converge to the outermost MOTS.
However, as our proof yields only weak convergence of the Σt’s as t→∞,
we can only deduce that the limit is a generalized MOTS. If the gen-
eralized limit can be shown to be regular, then, as it lies outside the
outermost MOTS, the two must coincide. We believe that it should be
possible to adapt techniques from [35] to show that the level sets Σt

have a better minimization property (than the one-sided minimization
property of Lemma 34) and, thus, obtain better regularity for the limit.
At the end of Section 8 we discuss this in greater detail.

Acknowledgments. We are indebted to Felix Schulze for detailed con-
versations on his papers [28, 23] (the second co-authored with Jan Met-
zger), which were crucial for Sections 5 and 8 of our work and also to
Jan Metzger who pointed to us the barrier constructions in his paper
[4] (co-authored with Lars Andersson) that inspired our barrier con-
struction in Section 6. We would also like to thank Klaus Ecker, Ger-
hard Huisken, Mat Langford, Ulrich Menne, Oliver Schnürer, Alexander
Volkmann and Brian White for very useful and inspiring discussions on
mean curvature flow, measure theory and parabolic PDEs.

2. The smooth flow

This work focuses on the development of a theory of weak solutions to
null mean curvature flow, and in this sense does not provide a classical,
PDE analysis of (∗), except for the following remarks laid out here.

Direct calculation reveals that the null mean curvature flow (∗) can be
expressed in terms of the Laplace–Beltrami operator ∆g(t) with respect
to the metric g(t) as follows

∂F

∂t
(x, t) = ∆g(t)F (x, t)− g(t)ijKij .

Null mean curvature flow is, therefore, a quasi-linear, weakly parabolic
system which inherits many properties from and, indeed, formally re-
sembles the standard heat equation (plus a lower order term). It arises
as the steepest descent flow of area plus bulk energy P , since

d

dt

(
|Σt|+

∫
Vt

PdV

)
= −

∫
Σt

H(H + P ) + P (H + P )dµ
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= −
∫

Σt

(H + P )2dµ,

where Vt denotes the volume traced out by the family of hypersurfaces
over the time period [0, t].

The reaction-diffusion system governing the null mean curvature of
Σt is given by

∂

∂t
(H + P ) =∆(H + P ) + (H + P )(|A|2 + Ric(ν, ν))

− (H + P )(∇νtrMK − (∇νK)(ν, ν))− 2Di(H + P )Kiν .

(4)

If, for example, Σ0 is closed, the cubic reaction term on the right-hand
side guarantees singularity formation in finite time, analogous to the
situation for mean curvature flow. This motivates the development of
a weak solution to extend the evolution beyond the classical singular
time.

Monotonicity formula. We do not study the classification of singu-
larities of the evolution by null mean curvature in this paper, however,
it is interesting to point out that the heat kernel monotonicity formula
for mean curvature flow, proven by Huisken in [18], generalizes to the
null mean curvature flow. By the work of Hamilton [17], it is known
that Huisken’s monotonicity formula generalizes to mean curvature flow
on a manifold. The monotonicity formula we present here is very close
to that of Hamilton’s [17], with the extra complication that one needs
to estimate the extra P -term (coming from the speed being here H +P
instead of H). We remark that such an estimate has been carried out
also in [34] for the case of mean curvature flow with additional forces
in Euclidean space.

Let ψ : M × [0, T ), for T > 0 be a positive solution of the backward
heat equation on M × [0, T )

∂ψ

∂t
= −∆ψ.

We prove a monotonicity formula for the integral of the function

φ := (4π(T − t))
1
2ψ.

We have that

d

dt
dµt = − ~H( ~H + ~P )dµt = −H(H + P )dµt,

and
dψ

dt
=
∂ψ

∂t
−∇ψ · ( ~H + ~P ) = −∆ψ −∇⊥ψ · ( ~H + ~P ),

where ∇⊥ = ∇ψ · ν, ~H = Hν and ~P = Pν. Hence,
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d

dt

∫
Σt

φdµt = (4π(T − t))
1
2

∫
Σt

(
− ψ

2(T − t)
− ψ ~H · ( ~H + ~P )

−∆ψ −∇⊥ψ · ( ~H + ~P )

)
dµt.

Since

∆Σtψ = divΣt(∇Σtψ) = divΣt(∇ψ)− divΣt(∇⊥ψ)

= divΣt(∇ψ)−∇⊥ψ · ~H = ∆ψ −D2ψ(ν, ν)−∇⊥ψ · ~H,

we find that

d

dt

∫
Σt

φdµt

= (4π(T − t))
1
2

∫
Σt

(
− ψ

2(T − t)
− ψ ~H( ~H + ~P )−∆Σtψ

−D2ψ(ν, ν)− 2∇⊥ψ · ~H −∇⊥ψ · ~P
)
dµt

= (4π(T − t))
1
2

∫
Σt

(
−ψ

∣∣∣∣ ~H + ~P +
∇⊥ψ
ψ

∣∣∣∣2 + ψ ~P ·
(
~H + ~P +

∇⊥ψ
ψ

)
− ψ

2(T − t)
−∆Σtψ −D2ψ(ν, ν) +

|∇⊥ψ|2

ψ

)
dµt.

Define now

Q(ψ) =
ψ

2(T − t)
+D2ψ(ν, ν)− |∇

⊥ψ|2

ψ
,

and let P0 = supM |P |. Noticing that
∫

Σt
∆Σtψ dµt = 0 and applying

the Cauchy–Schwarz inequality, we obtain

d

dt

∫
Σt

φdµt ≤
1

2

∫
Σt

−φ
∣∣∣∣ ~H + ~P +

∇⊥ψ
ψ

∣∣∣∣2 dµt
− (4π(T − t))

1
2

∫
Σt

Q(ψ) dµt +
P 2

0

2

∫
Σt

φdµt.

Note that Q(ψ) is the quantity that appears in Hamilton’s Harnack
matrix inequality [16], and in the special case where ∇Ric = 0 and the
sectional curvatures of M are non-negative, this implies that Q(ψ) ≥ 0.
In general, we find that there exist constants B,C depending only on
M such that

−Q(ψ) ≤ Cψ

(
1 + log

(
B

(T − t)
n+1

2 ψ

))
.

Using the inequality x(1 + log(y/x)) ≤ 1 + x log y (see [17]) we obtain

−Q(ψ) ≤ C(1 + ψ log(B(T − t)−
n+1

2 )),
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and, thus,

d

dt

∫
Σt

φdµt ≤
P 2

0

2

∫
Σt

φdµt + C log

(
B

(T − t)
n+1

2

)∫
Σt

φdµt

+ C(4π(T − t))
1
2 |Σt|.

Setting

ζ(t) = (T − t)

(
P 2

0

2
+ C

n+ 1

2
+ C log

(
B

(T − t)
n+1

2

))
,

we observe that

dζ

dt
= −P

2
0

2
− C log

(
B

(T − t)
n+1

2

)
,

and, thus,
d

dt

(
eζ(t)

∫
φdµt

)
≤ C(4π(T − t))

1
2 |Σt|.

3. Level-set description and elliptic regularization

In this section, we employ the level-set approach, which transforms
the hypersurface evolution equation (∗) into a degenerate elliptic equa-
tion for a scalar level-set function. We then define the elliptic regularized
problem that we will use to prove existence of weak solutions in a later
section.

Level-set formulation. Assume that the evolving hypersurfaces are
given by the level sets of a scalar function u : M → R via

Et := {x : u(x) > t}, Σt := ∂Et,

where E0 = Ω and ∂Ω is an outer untrapped closed and bounded mean
convex hypersurface, so that (H + P )|∂Ω > 0 and H∂Ω > 0. Then,
wherever u is smooth and ∇u 6= 0, the (outward) normal vector to Σt

is given by ν = − ∇u
|∇u|

and the boundary value problem

(∗∗)


div

(
∇u
|∇u|

)
−
(
gij − ∇

iu∇ju
|∇u|2

)
Kij = − 1

|∇u|
,

u
∣∣∣
∂Ω

= 0

describes the evolution of the level sets of u by null mean curvature. In
particular, the left-hand side represents the negative null mean curva-
ture of Σt and the right-hand side is the speed of the family of level sets
in the outward unit normal direction ν.

Elliptic regularization. As a first step towards establishing existence
of weak solutions to the degenerate elliptic problem (∗∗), we study so-
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lutions of the following strictly elliptic equation, for ε > 0
(∗ε)div

(
∇uε√

|∇uε|2 + ε2

)
−
(
gij − ∇

iuε∇juε
|∇uε|2 + ε2

)
Kij = − 1√

|∇uε|2 + ε2
,

uε
∣∣
∂Ω

= 0.

Then, rescaling (∗ε) via uε := εûε, we obtain
(∗ε̂)

div

(
∇ûε√
|∇ûε|2 + 1

)
−
(
gij − ∇

iûε∇j ûε
|∇ûε|2 + 1

)
Kij = − 1

ε
√
|∇ûε|2 + 1

.

Here we interpret the left-hand side as the negative null mean curvature
−(H + P ) of the hypersurface graph ûε in the product manifold

(5) (Mn+1 × R, ḡ), ḡ := g ⊕ dz2,

with respect to the upward pointing unit normal ν̂ε :=
(−∇ûε, 1)√
1 + |∇ûε|2

of the graph, where we extend the given data K to be constant in the
z-direction. We also extend the unit normal ν̂ε so that it is constant in
the z-direction. On the right-hand side of (∗ε̂) we have

(6) − 1

ε
√
|∇ûε|2 + 1

= −1

ε
〈τn+2, ν̂ε〉,

where τn+2 is the unit vector in the z-direction. Thus, (∗ε) has the
geometric interpretation that the downward translating graph

(7) Σ̃ε
t := graph

(
ûε −

t

ε

)
solves (∗) smoothly in Ω× R. This is equivalent to the statement that
the function

Uε(x, z) := uε(x)− εz, (x, z) ∈ Ω× R
solves (∗∗) in Ω × R, since Uε is the time-of-arrival function for the

solution Σ̃ε
t , that is

(8) Σ̃ε
t = {Uε = t}.

We conclude that elliptic regularization allows one to approximate so-
lutions of (∗∗) by smooth, noncompact, translating solutions of (∗) one
dimension higher.

4. Elliptic regularization and Jang’s equation

In fact, (∗ε̂) has the further interpretation as Jang’s equation (1) with
the gradient regularization term given by (6). Equation (1) was intro-
duced by Jang in [21] to generalize Geroch’s [13] approach to proving
the positive mass theorem from the time symmetric case to the general
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case. Jang noted, however, that the equation cannot be solved in gen-
eral, leaving the question of existence and regularity of solutions open.
The analytical difficulty is the lack of an a-priori estimate for supΩ |u|
due to the presence of the zero order term trM (K). For this reason, it
is necessary to introduce a regularization term to (1) in order to prove
existence of solutions.

In [27], Schoen and Yau introduce a positive capillarity regulariza-
tion term that provides a direct supremum estimate via the maximum
principle, and study existence of solutions to the following regularized
Jang’s equation(

gij − ∇
iuκ∇juκ
|∇uκ|2 + 1

)(
∇i∇juκ√
|∇uκ|2 + 1

+Kij

)
= κuκ on M,(9)

uκ → 0 as |x| → ∞.

It is interesting to compare the following three approaches to regulariz-
ing Jang’s equation:

(i) A capillarity regularization term as in (9) above.
(ii) The gradient regularization term −1

ε
√

1+|∇ûε|2
in (∗ε̂), the (rescaled)

elliptic regularization problem for null mean curvature flow in this
work.

(iii) The gradient regularization term ε
√

1 + |∇ûε|2, which appears in
the (rescaled) elliptic regularization problem for the evolution by
inverse null mean curvature, studied in [24].

In particular, the gradient function
√

1 + |∇ûε|2 appearing in cases (ii)
and (iii) is related to the vertical component of the upward pointing
unit normal ν̂ε of graph ûε via

(10) 〈τn+2, ν̂ε〉 =
1√

1 + |∇ûε|2
.

This means that the graphs Σε
t := graph

(
ûε −

t

ε

)
of the function ûε

solving the regularized Jang’s equations described by cases (ii) and
(iii) above have the additional property of being smooth, translating
solutions—one dimension higher, in Mn × R—of the evolution by null
mean curvature, and inverse null mean curvature, respectively.

In this way, (9) can be viewed as a static, elliptic PDE approach to
studying solutions to Jang’s equation, as opposed to the evolutionary,
parabolic PDE approach as given by the elliptic regularized equation
for null mean curvature flow in this work, and the evolution by inverse
null mean curvature in [24]. The advantage of a parabolic approach is
that it not only proves existence of MOTS, but also gives a good idea of



202 T. BOURNI & K. MOORE

what they actually look like—in particular, by providing a constructive
method for the numerical modeling of solutions.

It turns out, however, that the gradient regularization terms in (ii)
and (iii) are not sufficient on their own to overcome the problem associ-
ated with the zero order term trM (K) = gijKij in Jang’s equation. For
the evolution by inverse null mean curvature, as in case (iii), the term
trM (K) obstructs the existence of a lower barrier at the inner boundary,
and it is necessary to restrict to space time initial data sets (M, g,K)
such that trM (K) ≥ 0 in order to prove existence of solutions to the
regularized Jang’s equation. In the case of null mean curvature flow
studied here, we introduce the capillarity regularization term of Schoen
and Yau in order to obtain the required supremum estimate to solve
(∗ε̂).

Adding a capilarity regularization term. As discussed above, in
order to overcome the difficulties associated with the zero order term
gijKij , we add the capillarity regularization term to (∗ε̂) and study
solutions û = ûε,κ,s of the following problem
(∗ε̂,κ,s)div

(
∇û√
|∇û|2 + 1

)
−s
(
gij − ∇

iû∇j û
|∇û|2 + 1

)
Kij =

−s
ε
√
|∇û|2 + 1

+ κû,

û
∣∣
∂Ω

= 0,

for ε > 0, κ > 0, s ∈ [0, 1] and Ω an open and bounded set in M . The
parameter s has been added here to simplify the proof of existence using
the implicit function theorem in Lemma 10 below. Once existence of
solutions of (∗ε̂,κ,s) has been established, we may fix s = 1 and take the
limit as κ goes to zero to obtain existence of solutions to (∗ε̂). In the
study of the regularized Jang’s equation (9) in [27], the supremum and
gradient estimates blow up when κ → 0, and Harnack-type estimates
imply that the boundary of the blowup set is a MOTS in (M, g). We
will observe below that the same blow-up behavior arises for solutions
of (∗ε̂).

We now derive the required a-priori estimates for (∗ε̂,κ,s).

Lemma 7 (Supremum estimate). For any ε ≤ 1
(n+1)λ , where λ =

maxi{|λi|, λi eigenvalue of K}, solutions û of (∗ε̂,κ,s) satisfy the esti-
mate

0 ≤ û ≤ 2

εκ
.

Proof. Since û|∂Ω = 0, either û ≤ 0 or û has an interior maximum.
At an interior maximum point we have

max
Ω

κû = gij ûij − sgijKij +
s

ε
≤ (n+ 1)λ+

1

ε
.
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Since, for ε ≤ 1
(n+1)λ , zero is a subsolution of (∗ε̂,κ,s) we find

0 ≤ û ≤ (n+ 1)λ

κ
+

1

εκ
≤ 2

εκ
. q.e.d.

Lemma 8 (Gradient estimate). For any ε ≤ 1
2 solutions û of (∗ε̂,κ,s)

satisfy the estimate

sup
Ω
|∇û| ≤ exp(η sup

Ω
û) · sup

∂Ω

(
1

ε
+
√

1 + |∇û|2
)
,

where η is a constant that depends only on the initial data, in fact,
η = η(n,Ric, ‖K‖C1).

Proof. For the gradient function v(x, f(x)) :=
√

1 + |∇f(x)|2 of a
hypersurface N give as the graph of f we have

(11) ∆Nv =
2

v
|∇Nv|2 − v2ḡ(∇NH, τ) + v|A|2 + v

(
1− 1

v2

)
Ric(γ, γ),

where τ = ∂
∂z is the unit vector pointing in the upward, R, direction

of M × R, ν is the upward pointing unit normal to N = graph f , H
and A are the mean curvature and the second fundamental form of N ,
γ := prTMν

|prTMν|
in case ν 6= τ and zero otherwise, and Ric = RicM is the

Ricci curvature of M . For details of the derivation of (11) see [28, (13)].
Recall also that ḡ is the metric in the product manifold M×R as defined
in (5). We follow the general approach in [28, Lemma 3.2] to show that
we can obtain a gradient bound given an a-priori height bound and
compute ∆N (wv), where w(x, z) := exp(−ηz), for (x, z) ∈ M × R and
η > 0 a constant to be chosen later. For the function w we have

∇Nw = −ηw
(
τ − 1

v
ν

)
and ∆Nw = η2

(
1− 1

v2

)
w + η

H

v
w,

and combining these with (11), we obtain

∆N (wv) =
2

v
ḡ(∇v,∇(wv)) + wv

(
|A|2 +

(
1− 1

v2

)
Ric(γ, γ)

+ η2

(
1− 1

v2

)
+ η

H

v
− vḡ(∇NH, τ)

)
.

(12)

In order to obtain a contradiction, define C1 := sup∂Ω ε
√

1 + |∇û|2 and
assume

(13) sup
Ω

(exp(−ηû)ε
√

1 + |∇û|2) > max{C1, 1},
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which must be attained at an interior point x0. Letting N = graph û,
equation (∗ε̂,κ,s) implies that

(14) H + sP =
s

εv
− κû,

where H+P is the null mean curvature of N . Now, using the expression
for ∇Nw, we find

wv2ḡ(∇NH, τ) =− s

ε
ḡ(∇N (wv), τ) +

sv

ε
ḡ(∇Nw, τ)− wv2sḡ(∇NP, τ)

− wv2κḡ(∇N û, τ)

=− s

ε
ḡ(∇N (wv), τ)− s

ε
ηwv

(
1− 1

v2

)
− wv2sḡ(∇NP, τ)

− wv2κḡ(∇N û, τ).

Note that ∇NP = ∇P − ḡ(∇P, ν)ν (where ∇ = ∇M×R), K (as well
as ν) is extended trivially in the τ direction so that ḡ(∇P, τ) = 0, and
ḡ(τ, ν) = 1

v . Using these, we obtain

vsḡ(∇NP, τ) = −sḡ(∇P, ν) ≥ −c(1 + |A|),

vκḡ(∇N û, τ) = −κḡ(∇û, ν) =
κ|∇û|2

v
≥ 0,

(15)

where c = c(n, ‖K‖C1) ≥ 1, so that, using the Cauchy–Schwarz inequal-
ity, we have

wv2ḡ(∇NH, τ) ≤ −s
ε
ḡ(∇N (wv), τ)(16)

− s

ε
ηwv

(
1− 1

v2

)
+ 2c2wv + wv

|A|2

2
.

At a maximum point x0, where ∆N (wv) ≤ 0 and ∇N (wv) = 0, (12)
becomes

0 ≥|A|2 +

(
1− 1

v2

)
Ric(γ, γ) + η2

(
1− 1

v2

)
+ η

H

v
− vḡ(∇NH, τ),

where the constant c = c(n, ‖K‖C1) is the constant from (15). Using
(14), (16) and Lemma 7, we obtain

0 ≥ |A|
2

2
+

(
1− 1

v2

)(
Ric(γ, γ) +

sη

ε
+ η2

)
+

sη

εv2
− η‖K‖C0

v
− 2η

εv
− 2c2.

By the assumption (13), we find that v(x0) > 1
ε and, thus, (1− 1

v2 ) > 1
2

when ε ≤ 1
2 . Then, the above becomes

0 ≥ η2

2
− 1

2
|Ric(γ, γ)| − 2c2 − η

(
1

2
‖K‖C0 + 2

)
,
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where the constant c = c(n, ‖K‖C1) is the constant from (15), and
setting the constant η = η(n,Ric, ‖K‖C1) large enough so that the
right-hand side is strictly positive leads to a contradiction and, thus,
hypothesis (13) is false. q.e.d.

Lemma 9 (Boundary gradient estimate). Assume that ∂Ω is smooth,
strictly mean convex and outer untrapped with respect to the outward
pointing unit normal. Then, solutions û of (∗ε̂,κ,s) satisfy the estimate

sup
∂Ω
|∇û| ≤ C(‖K‖C0 , ε, θ

+
∂Ω),

where we recall that θ+
∂Ω is the null mean curvature of ∂Ω with respect

to its future directed outward pointing null vector field.

Proof. Since ∂Ω is strictly mean convex and outer untrapped with
respect to the outward pointing unit normal (so that on ∂Ω H+sP > 0
for s ∈ [0, 1]) we can use the classical barrier construction of Serrin,
as presented in [14, Theorem 14.6], to obtain the desired boundary
gradient estimate. Since equation (∗ε̂,κ,s) is expressed in terms of the
geometry of graph û, in order to utilize the outer untrapped condition
of the boundary ∂Ω, we re-write it instead in terms of the geometry
of the individual level sets of û. To this end, we multiply (∗ε̂,κ,s) by

v3 =
√

1 + |∇û|23
to obtain

Q(û) :=(1 + |∇û|2)

(
gij − ∇

iû∇j û
|∇û|2 + 1

)
∇ij û

− s
√

1 + |∇û|2
3
(
gij − ∇

iû∇j û
|∇û|2 + 1

)
Kij

+
s

ε
(1 + |∇û|2)− κû

√
1 + |∇û|2

3
,

and decompose it, as in [14, (14.43)], into the following coefficients

Q(û) = (Λaij∞ + aij0 )∇ij û+ |∇û|Λb∞ + b0 = 0,(17)

where

aij∞(x, z, p) = aij∞

(
x,

p

|p|

)
=

(
gij − pipj

|p|2

)
, aij0 =

pipj

|p|2
, Λ = 1 + |p|2,

b∞(x, z, p) = b∞

(
x, z,

p

|p|

)
= −sKij

(
gij − pipj

|p|2

)
− κz,

and

b0 = −κz Λ

Λ1/2 + |p|
− sKij

(
gij

Λ

Λ1/2 + |p|
+
pipj

|p|
Λ1/2

Λ1/2 + |p|

)
+
s

ε
Λ.

Then

aij∞

(
x,
∇û
|∇û|

)
∇ij û
|∇û|

+ bij∞

(
x, u,

∇û
|∇û|

)
= −(H + sP )− κû,
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where here H + P is the null mean curvature of the level sets of û with
respect to the outward pointing unit normal. We see that b∞ is non-
increasing in z, and also that the correction terms a0 and b0, that arise
when considering the curvature of the level sets instead of the graph,
are of the order required by the structure condition (14.50) (see also

(14.59)) of [14, Theorem 14.6]. That is, aij0 = o(Λ) and b0 = o(|p|Λ)
as |p| → ∞. Furthermore, since ∂Ω is outer untrapped, we see that
the boundary curvature condition (14.51) of [14, Theorem 14.6] is also
satisfied since H − b∞ = H + sP > 0 at all points on the boundary ∂Ω.
[14, Theorem 14.6] can then be applied, which implies the existence of
an upper barrier at any boundary point, and which depends on the mean
curvature of the boundary, K and the supremum bound of û (given in
Lemma 7). This finishes the proof of the lemma. q.e.d.

Lemma 10 (Existence for (∗ε̂,κ,s)). Let (Mn+1, g,K) be an initial
data set, let ∂Ω be a smooth, strictly mean convex and outer untrapped
hypersurface in M and, finally, let λ = maxi{|λi|, λi eigenvalue of K}.
Then, for any ε ≤ min

{
1

(n+1)λ ,
1
2

}
, κ > 0, s ∈ [0, 1] and α ∈ (0, 1)

there exists a solution û ∈ C2,α(Ω) of (∗ε̂,κ,s).

Proof. The proof follows that of [27, Lemma 3]. The idea is to apply
the method of continuity to the equation (∗ε̂,κ,s). To this end, fix ε ≤
min

{
1

(n+1)λ ,
1
2

}
and κ > 0, and define

F s(w) := div

(
∇w√
|∇w|2 + 1

)
− s

(
gij − ∇

iw∇jw
|∇w|2 + 1

)
Kij

+
s

ε
√
|∇w|2 + 1

− κw.

For any α ∈ (0, 1), the map

F : C2,α
0 (Ω̄)× [0, 1]→ Cα(Ω̄)

given by F (w, s) := F s(w) has the solution F (0, 0) = 0. Let I be the
set of s such that (∗ε,κ,s) has a solution in C2,α(Ω̄) or equivalently the

set of s for which there exists w ∈ C2,α
0 (Ω̄) such that F (w, s) = 0. Then

0 ∈ I and we will show that I is an open and closed subset of [0, 1],
which implies that I = [0, 1], thus, proving the lemma. To show that I
is closed one uses the a-priori estimates in Lemmas 7, 8 and 10, standard
PDE estimates (which imply ‘higher’ a-priori estimates for a solution;
in particular, C2,α for any α ∈ (0, 1)) and the Arzela–Ascoli theorem.
To show that I is open, one has to linearize F s at a solution f0 and
apply the inverse function theorem for Banach spaces. For the details
of these two claims we refer the reader to [27, Lemmas 2 and 3] where
the arguments on the fact that I is both open and closed are carried out
in detail. We remark that the only difference between our case and [27,
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Lemma 3] is that one has to add the factor − ∇if0

ε(|∇f0|2+1)
3
2

in the term

Bi that appears in the linearization of F s at a solution f0 (the notation
being here as in [27, Lemma 3]). q.e.d.

5. Existence of solutions to (∗ε)

We now consider a fixed ε ≤ min
{

1
(n+1)λ ,

1
2

}
, where, as usual, the

constant λ is given by λ = maxi{|λi|, λi eigenvalue of K}, set s = 1 in
(∗ε̂,κ,s) and analyze the limit as κ → 0 of the graphs Nκ = graph ûε,κ,
where ûε,κ is a solution of the regularized Jang’s equation (∗ε̂,κ,1) (which
we denote from now on by (∗ε̂,κ)), so that

(∗ε̂,κ)

div

(
∇ûε,κ√
|∇ûε,κ|2 + 1

)
=

(
gij − ∇

iûε,κ∇j ûε,κ
|∇ûε,κ|2 + 1

)
Kij

− 1

ε
√
|∇ûε,κ|2 + 1

+ κûε,κ.

This equation, along with the bound for |κûε,κ| provided by Lemma 7,
shows that the mean curvature ofNκ is uniformly bounded by a constant
C = C(ε) independent of κ.

In the language of currents or of finite perimeter sets (codimension
1), the bound on the mean curvature implies that Nκ is a C-minimizing
current (see [9]) or a (C, 1)-minimal set (see [22]), i.e., that

M(Nκ) ≤M(Nκ + ∂Q) + CM(Q), ∀(n+ 1)-current Q.

Such currents or finite perimeter sets have been extensively studied in
[9] and [22], where, among other things, it is shown that they have
compactness and regularity properties similar to those of area minimiz-
ing currents. The results in [9, 22] are stated for currents (or sets) in
Euclidean space, but the codimension 1 results (the case which is of
interest to us here) extend to general Riemannian ambient manifolds,
see [33]. Applying these results in our case yields the following. For
a sequence κi → 0 the sequence {Nκi}i∈N has a subsequence which
converges (in the sense of currents but also as Radon measures) to a
C-minimizing current N . Furthermore, in dimensions n ≤ 6, N (and
any C-minimizing current) has no singular set, i.e., it is a C1 manifold.
We can now prove that the graphs of the sequence {Nκi} have locally
uniformly bounded C1,α norm and, thus, the convergence Nκi → N is
actually a C1,α convergence, for any α ∈ (0, 1). This is the result of a
standard application of Allard’s regularity theorem [1] on rescalings of
Nκi (see [9, 22, 33]). The uniform C1,α estimates and standard PDE
theory (since the mean curvature of Nκi is expressed in terms of |∇uε̂,κi |,
see [14]), imply now that we have locally uniform C∞ estimates for the
graphs Nκi and, as a consequence, the convergence Nκi → N is smooth.
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We now claim that, as a consequence of the Hopf maximum principle,
the components of the limit N are embedded graphs. To see this, we
rework the Jacobi equation (11) to express it instead in terms of the
vertical component 1

v of the upper unit normal vector ν to Nκ, which
yields

∆Nκ

(
1

v

)
+

1

v

(
|A|2 +

(
1− 1

v2

)
Ric(γ, γ)− vḡ

(
∇NκH, τ

))
= 0.

Then, using the equation (∗ε̂,κ) to write H = P − 1
εv + κûε,κ, where

P = (gij − νiνj)Kij , along with the estimate

|A|2 +

(
1− 1

v2

)
Ric(γ, γ)− vḡ

(
∇Nκ(κûε,κ + P ), τ

)
≥ κ|∇Nκ ûε,κ|2

v
− β ≥ −β,

for some constant β ≥ 0 depending on the size of the Ricci tensor
and ‖K‖C1 (see (15)), we see that the vertical component of the graph
satisfies

(18) ∆Nκ

(
1

v

)
− 1

ε
ḡ

(
∇Nκ

(
1

v

)
, τ

)
≤ β

v
.

The fact that the supremum and gradient estimates for ûε,κ (Lemmas 7
and 8) blow up as κ→ 0, together with equation (18), then leads to the
following classification of the components of the limit N of Nκ. This
blowup analysis follows as in [27, Proposition 4] (see also [10]).

Theorem 11. Assume that 2 ≤ n ≤ 6 and let (Mn+1, g,K) be an
initial data set and let ∂Ω be a smooth, strictly mean convex and outer

untrapped hypersurface in M . Then, for ε ≤ min
{

1
(n+1)λ ,

1
2

}
, where

λ = maxi{|λi|, λi eigenvalue of K}, there exists a sequence {κi}i∈N with
κi ↓ 0, together with an open and connected set Ωε such that if ûε,κi
solves (∗ε̂,κi) the following hold.

(i) The sequence {ûε,κi}i∈N converges uniformly to +∞ on ∂Ωε \ ∂Ω,
and ûε,κi converges locally smoothly to ûε in Ωε, where ûε is a smooth
function that satisfies (∗ε̂) in Ωε.

(ii) Each boundary component Σε of ∂Ωε \∂Ω is an embedded MOTS
satisfying

θ+
Σε

= HΣε + trΣεK = 0,

where HΣε is the mean curvature of Σε taken with respect to the inward
pointing unit normal to Ωε.

(iii) If Ω does not contain a closed MOTS in its interior, ûε,κi con-
verges to a smooth solution ûε of (∗ε̂) defined on all of Ω̄.

Proof. As we explained before the statement of the theorem, using
standard results of (C, 1)-minimal sets (see [22]), we have that the
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graphs Nκi of the functions ûε,κi converge locally smoothly to a smooth
embedded hypersurface N in Ω̄×R. Moreover, since N inherits its ori-
entation from Nκi , it follows that 1

vκi
= (
√

1 + |∇ûε,κi |2)−1 converges

(smoothly) to the vertical component, 1
v , of the unit normal vector of

N . In view of (18), this limit satisfies ∆N
(

1
v

)
− 1
ε ḡ
(
∇N

(
1
v

)
, τ
)
− β

v ≤ 0.
The Hopf maximum principle then says that on each connected compo-
nent of N , we have that 1

v either vanishes identically—and the connected
component is cylindrical—or else is everywhere positive—and the con-
nected component is a graph. Note that here no component can be a
cylinder, since the functions ûε,κi are non-negative. Furthermore, the
boundary gradient estimates given in Lemma 9 ensures that the graphs
Nκi must remain bounded near ∂Ω, and, thus, the limit N is a graph
near ∂Ω. Therefore, N is the graph of a function, which we call ûε,
defined on an open (non-empty) subset of Ω, which we call Ωε. The
locally smooth convergence ûε,κi → ûε then immediately yields that ûε
satisfies (∗ε̂) in Ωε and diverges to infinity on approach to ∂Ωε \ ∂Ω.
This finishes the proof of (i).

To prove (ii), we need to show that the set Σε = ∂Ωε \ ∂Ω, where the
function ûε tends to infinity, is a MOTS (note Σε as defined here might
have more than one connected component). Since N = graph ûε over
Ωε and ûε satisfies (∗ε̂), we have that H + P = 1

ε
√

1+|∇uε̂|2
= 1

εν
n+2,

where H = H(x) is the mean curvature of N at (x, ûε(x)), P = P (ν) =
(gij − νiνj)Kij , ν = ν(x) is the upward pointing unit normal to N
at (x, ûε(x)) and νn+2 is its vertical component. We consider vertical
translations, Nαi = N − αi, of N for a sequence {αi}i∈N ⊂ R with
ai ↑ ∞. Nαi have uniformly bounded mean curvature and, thus, are
(C, 1)-minimal sets. Therefore, we can argue as with the convergence
Nκi → N , using the results of [9, 22], to conclude that, after passing to

a subsequence, Nαi → Ñ locally smoothly (note again that the mean
curvature of Nαi can be expressed in terms of its normal). Since we also

have that Nαi → Σε×R locally uniformly, we conclude that Ñ = Σε×R.
The locally smooth convergence Nαi → Σε×R, along with the fact that
for N = graph ûε we have H+P = 1

εν
n+2, implies that the limit Σε×R

is a MOTS.
Finally, we note that if Ω does not contain a closed MOTS in its

interior, then Σε = ∅ and, therefore, (iii) holds. q.e.d.

Remark 12. It is interesting to observe that the elliptic regulariza-
tion problem (∗ε̂) provides a new way to locate MOTS in space-time
initial data sets with a mean convex, outer-untrapped hypersurface. In
the following section we will show that the hypersurfaces Σε are not
only MOTS but they are, indeed, the outermost MOTS and, thus, this
is actually a way to locate the outermost MOTS.
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6. Convergence to the outermost MOTS

In this section, we will show that the set where the functions ûε blow
up—that is, the inner boundary of the set Ωε as defined in Theorem 11—
is not only a MOTS but it is actually the outermost MOTS. We will do
this by modifying the initial data K inside the outermost MOTS.

There is a notion of stability for MOTS analogous to the notion of
stability for minimal hypersurfaces (see [3]) which allows for many re-
sults from the case of stable minimal hypersurfaces to be generalized in
the case of stable MOTS, even though the stability operator in the case
of MOTS is not self-adjoint. It is known that the outermost MOTS,
Σout = ∂Ωout, is stable (see [4]), something that was used in the proof
of [4, Theorem 5.1] to show that one can change the initial data K in
Ωout, so that there exists a smooth outer trapped hypersurface Σ− (i.e.,
satisfying θ+(Σ−) = H + P < 0) inside Σout (i.e., Σ− ⊂ Ωout).

In order to prove that the functions ûε (as defined in Theorem 11)
blow up over the outermost MOTS, we show that they satisfy ûε ≥ δ−1

over Σ− (with Σ− as above) for any constant δ > 0. To do this we
will flow Σ− by smooth null mean curvature flow, as defined in (∗),
in order to create lower barriers for the solutions ûε of the equations
(∗ε̂) which are greater than δ−1 over (and inside) Σ−. Before we make
this rigorous, we recall the construction of Σ− in [4, Theorem 5.1] as we
would like to make some minor modifications. Let ψ > 0 be the principal
eigenfunction of the stability operator (which is derived by the variation
of θ+, see [3, 4]) and extend the vector field ψν to a neighborhood of
Σout, where ν is the outward pointing unit normal to Σout. By flowing
Σout in the direction −ψν, we construct, for some σ > 0, a foliation
{Σout,t}t∈(−4σ,0] of a neighborhood of Σout, such that Σout,0 = Σout,
Σout,t lies inside Σout (i.e., Σout,t ⊂ Ωout) for all t ∈ (−4σ, 0) and

(19)
∂

∂t

∣∣∣∣
t=0

θ+(Σout,t) = 0.

We define then the new data by

(20) K ′ = K − 1

n
φ(t)g,

where φ : R → R will be chosen momentarily. Then, with respect
to the new data, the null mean curvature of the hypersurfaces Σout,t,
θ+
K′(Σout,t), is given by

θ+
K′(Σout,t) = (H + P )(Σout,t) = div νt + (gij − νitν

j
t )K

′
ij

= div νt + (gij − νitν
j
t )

(
Kij −

1

n
φ(t)gij

)
= θ+(Σout,t)− φ(t).

We now choose φ to be such that φ(t) = 0 for t > 0 so that K ′ = K
outside Σout. Moreover, since θ+(Σout,t) vanishes to first order in t at
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t = 0 by (19), φ can be chosen so that it is C1,1, θ+
K′(Σout,t) < 0 for

all t ∈ (−4σ, 0) and ‖K ′‖C1 ≤ 2‖K‖C1 . In fact, we can also choose
φ so that the eigenvalues of K ′ are controlled in the region foliated by
{Σout,t}t∈(−4σ,−2σ], by paying with the fact that ‖K ′‖C1 will now depend
not only on ‖K‖C1 , but also on σ: Setting U2σ = {Σout,t}t∈(−4σ,−2σ],
we choose φ so that the new data have the additional property that for
any v ∈ Rn+1

(21) vivjK ′ij = vivjKij −
φ

n
|v|2 ≤

(
λmax −

φ

n

)
|v|2 ≤ 0 in U2σ,

where λmax = maxi{λi, λi eigenvalue of K}. The new data now satisfies
K ′ = K outside Σout and ‖K ′‖C1 ≤ C(‖K‖C1 , σ).

Henceforth, we take Σ− to be one of the leaves Σout,t for some t ∈
(−4σ,−3σ) so that

(22) (H + P )(Σ−) = div ν + (gij − νiνj)K ′ij < 0,

where ν denotes the outward pointing unit normal to Σ−.

Remark 13. Let Σ− be as above, satisfying (22). We then have
short time existence of a (smooth) solution of the equation

(23)


∂F−

∂t
(x, t) = −(H + P )(x, t)ν(x, t), x ∈ Σ−, t ≥ 0,

F−(Σ−, 0) = Σ−,

where H +P is defined using the new data K ′ as in (20) and satisfying
also (21) (see, for example, [6, 20]). That is, there exists T > 0 and a
smooth solution F− : Σ−× [0, T )→M of (23). The evolution equation
of H + P (given in (4)) along with the maximum principle and (22),
implies that Σ− flows towards Σout and F−(Σ−, t1) ∩ F−(Σ−, t2) = ∅
for any t1 6= t2. For τ = min{T/2, σ}, we let

Uτ :=
⋃

0<t<τ

F−(Σ−, t) ⊂M,

and let u− : Uτ → R be defined by u−(p) = t ⇔ p ∈ F−(Σ−, t). Then,
we have that u− is a smooth solution of the following equation over U τ

(24) div

(
∇u−

|∇u−|

)
+

(
gij − ∇

iu−∇ju−

|∇u−|2

)
K ′ij =

−1

|∇u−|

(cf. (∗∗) and note the change of sign in front of the K ′-term on the
left-hand side), such that u− = 0 on Σ− and u− = τ on ∂Uτ \ Σ− =
F−(Σ−, τ). Furthermore, there exists some constant C0 ≥ 1 such that

(25)
1

C0
≤ |∇u−| ≤ C0 , |∇2u−| ≤ C0 in U τ .
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We will show that, for an appropriately chosen ψ and with u− as in
Remark 13, the function ψ ◦u− is a lower barrier for solutions ûε of the
equation (∗ε̂). The idea of bending the (short time) smooth solution to
get boundary barriers for the approximating solutions is applied in [28],
where in [28, Lemma 4.2] such a construction was used for the mean
curvature flow.

Lemma 14. Let Σ−, τ , Uτ , u− and C0 be as in Remark 13. Let U ⊂
M be such that Uτ ⊂ U and ∂U = ∂Uτ \ Σ− = F−(Σ−, τ), and extend
u− in U so that it is zero in U \ Uτ . Then, for any δ > 0 there exists
a C2 function ψ : R → R such that the following holds. The function
v = ψ ◦ u− : U → R is a C2 function such that ∀ε ≤ ε1 = ε1(C0, τ) (a
constant that depends only on C0 and τ)

Mε(v) :=

(
gij − ∇

iv∇jv
|∇v|2 + 1

)
∇ijv

−
(
gij − ∇

iv∇jv
|∇v|2 + 1

)
K ′ij
√
|∇v|2 + 1 +

1

ε
≥ 0,

and

v = 0 on ∂U,

v ≥ 1

δ
in U \ Uτ .

Proof. Omitting the “−” superscript for simplicity, thus, writing u =
u−, we set v = ψ(u), where ψ : [0, τ ] → R is a C2 function. Provided
that v ∈ C2(U), we then have

M(v) :=
1

|∇v|

(
gij − ∇

iv∇jv
|∇v|2

)
∇ijv +

(
gij − ∇

iv∇jv
|∇v|2

)
K ′ij +

1

|∇v|

=
1

ψ′|∇u|

(
gij − (ψ′)2∇iu∇ju

(ψ′)2|∇u|2

)
(ψ′∇iju+ ψ′′∇iu∇ju)

+

(
gij − (ψ′)2∇iu∇ju

(ψ′)2|∇u|2

)
K ′ij +

1

|∇v|

=M(u)− 1

|∇u|
+

1

|∇v|
=

1− ψ′

|∇v|
,

(26)

where we have used (24) which implies thatM(u) = 0 (note that in the
above calculation, the terms involving ψ′′ cancel). We now compute

Mε(v) =|∇v|M(v)− 1 +
1

ε
+

(
∇iv∇jv
|∇v|2

− ∇
iv∇jv

|∇v|2 + 1

)
∇ijv(27)

− |∇v|
(
gij − ∇

iv∇jv
|∇v|2

)
K ′ij
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−
(
gij − ∇

iv∇jv
|∇v|2 + 1

)
K ′ij
√
|∇v|2 + 1

=− ψ′ + 1

ε
+

∇iu∇ju
|∇u|2(1 + |∇v|2)

(ψ′∇iju+ ψ′′∇iu∇ju)

− |∇v|
(
gij − ∇

iv∇jv
|∇v|2

)
K ′ij

−
(
gij − ∇

iv∇jv
|∇v|2 + 1

)
K ′ij
√
|∇v|2 + 1.

We estimate the terms on the right-hand side of (27), using the estimates
(25) and the property of K ′ (21), as follows.

∇iu∇ju
|∇u|2(1 + |∇v|2)

(ψ′∇iju+ ψ′′∇iu∇ju)(28)

≥ −|ψ
′′||∇u|2 + C0|ψ′|
1 + (ψ′)2|∇u|2

≥ −
(
C0 + min

{
C2

0 |ψ′′|,
|ψ′′|
(ψ′)2

})
,

and

−|∇v|
(
gij − ∇

iv∇jv
|∇v|2

)
K ′ij −

(
gij − ∇

iv∇jv
|∇v|2 + 1

)
K ′ij
√
|∇v|2 + 1

≥(|∇v|+
√
|∇v|2 + 1)

(
− trK ′ + λ′min

)
≥ 0,

(29)

where λ′min = mini{λ′i, λ′i eigenvalue of K ′}. We claim now that there
exists a C2 function ψ : [0, τ ] → R such that v = ψ ◦ u ∈ C2(U) and
such that

v(x) = ψ(u(x)) =

{
ψ(τ) = 0 on ∂U,

ψ(0) ≥ 1
δ in U \ Uτ ,

and

(30) − ψ′ −min

{
C2

0 |ψ′′|,
|ψ′′|
(ψ′)2

}
≥ −C = −C(τ, C0).

The existence of such a function ψ implies then, after using the estimates
(28), (29) and (30) in (27),

Mε(v) ≥ 1

ε
− C0 − C,

where C = C(τ, C0) is the constant from the estimate (30), and, thus,
choosing the constant ε1 so that ε1 = ε1(C0, τ) = (C0 + C)−1 we have
that for all ε ≤ ε1

Mε(v) ≥ 0.

This concludes the proof of the lemma, provided that there exists a
function ψ as we claimed above and which we now construct.
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For any δ ∈ (0, 1], we define ζ : [0, 2]→ R by

ζ(t) =


log
(
t
δ + 1

)
for t ∈ [0, 1] ,

c1 + c0 (t− 1)− c20
2 (t− 1)2

+
2c20−3c0

3 (t− 1)3 +
−c20+2c0

4 (t− 1)4 for t ∈ [1, 2] ,

where c1 = log
(

1
δ + 1

)
and c0 = 1

1+δ . Note first that

ζ(t) =

{
0 for t = 0,

c1 + c0
2 −

c20
12 ≥ c1 = log

(
1
δ + 1

)
for t = 2.

For the derivatives of ζ, we have

ζ ′(t) =



1
t+δ for t ∈ (0, 1] ,

1
1+δ = c0 for t = 1,

c0 − c2
0 (t− 1) + (2c2

0 − 3c0) (t− 1)2 ,

+(−c2
0 + 2c0) (t− 1)3 for t ∈ [1, 2] ,

0 for t = 2,

and

ζ ′′(t) =



− 1
(t+δ)2 for t ∈ (0, 1] ,

− 1
(1+δ)2 = −c2

0 for t = 1,

−c2
0 + (4c2

0 − 6c0) (t− 1)

+(−3c2
0 + 6c0) (t− 1)2 for t ∈ [1, 2] ,

0 for t = 2,

where of course here at t = 2 we mean the left derivatives, and, therefore,
ζ is a C2 function. We further note that

ζ ′ −min

{
|ζ ′′|, |ζ

′′|
(ζ ′)2

}
≥

{
ζ ′ − |ζ′′|

(ζ′)2 ≥ −1 for t ∈ (0, 1] ,

ζ ′ − |ζ ′′| ≥ −20c0 ≥ −20 for t ∈ [1, 2] .

We now define the function ψ : [0, τ ]→ R by

ψ(t) = ζ

(
2

τ
(τ − t)

)
,

and claim that this is the desired function. Note first that ψ ∈ C2((0, τ))
and for the (right) derivatives at zero we have

ψ′(0) = −2

τ
ζ ′(2) = 0 , ψ′′(0) =

4

τ2
ζ ′′(2) = 0.

Hence, the function v = ψ ◦ u is also C2 and satisfies

v(x) = ψ(u(x)) =

{
ψ(τ) = ζ(0) = 0 on ∂U,

ψ(0) = ζ(2) ≥ c1 = log
(

1
δ + 1

)
in U \ Uτ .
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Finally, we have

−ψ′(t)−min

{
C2

0 |ψ′′|,
|ψ′′|
(ψ′)2

}
=

2

τ
ζ ′
(

2

τ
(τ − t)

)
−min

{
4C2

0

τ2
|ζ ′′|, |ζ

′′|
(ζ ′)2

}
≥ −20

4C2
0

τ2
.

Therefore, the function ψ as defined above has all the required proper-
ties, after replacing δ by (e1/δ − 1)−1. q.e.d.

As a direct consequence of Lemma 14 and the comparison principle
we obtain the following.

Theorem 15. There exists an ε0 depending only on the initial data,
such that for any ε ≤ ε0 the following holds. There exists a solution
ûε ∈ C∞(Ω0) of the equation (∗ε̂), where Ω0 = Ω \ Ω∞, such that
ûε blows up over the inner boundary ∂Ω0 \ ∂Ω = Σout (the outermost
MOTS) and is zero over the outer boundary ∂Ω.

Consequently, the function uε = εûε is then a smooth solution of (∗ε)
in Ω0 that blows up over the inner boundary Σout (the outermost MOTS)
and is zero over the outer boundary ∂Ω.

Remark 16. The small constant ε0 of the above theorem is given

by ε0 = min
{

1
2 ,

1
(n+1)λ′ , ε1

}
, where λ′ = maxi{|λ′i|, λi eigenvalue of K ′}

and ε1 = ε1(C0, τ), C0 and τ are as in Lemma 14. The reason for the
dependence of ε0 on K ′, instead of K, is that we want Theorem 11 to
hold with K replaced by the new data K ′.

Proof of Theorem 15. We will make use of the new data K ′ as in
(20), which also satisfy (21). Let (∗ε̂,κ)’ and (∗ε̂)’ denote the equa-
tions (∗ε̂,κ) and (∗ε̂) after we have replaced K by K ′. Note first that
we can repeat the estimates of Sections 4 and 5 with the new data K ′

(in the place of K) and, thus, Theorem 11 holds with K replaced by
K ′ and equations (∗ε̂,κ) and (∗ε̂) replaced by (∗ε̂,κ)’ and (∗ε̂)’. The-

orem 11 (i) then implies that for any ε ≤ min
{

1
2 ,

1
(n+1)λ′

}
, where

λ′ = maxi{|λ′i|, λi eigenvalue of K ′}, there exists an open and connected
set Ωε ⊂ Ω and a solution ûε ∈ C∞(Ωε) of (∗ε̂)’, with ûε = 0 on
∂Ω ⊂ ∂Ωε and ûε blowing up on the other boundary components. Fur-
thermore, by Theorem 11 (ii), we have that ∂Ωε \ ∂Ω is a MOTS.

Let now Σ−, U , and v be as in Lemma 14 for some δ > 0. Then, for

taking ε such that ε ≤ min
{

1
2 ,

1
(n+1)λ , ε1

}
(where ε1 is as in Lemma 14),

by the comparison principle we have that v ≤ ûε over U and, thus, 1
δ ≤

ûε over Σ−. Since this is true for any δ > 0 we obtain that the MOTS
∂Ωε \Ω must lie outside Σ−. Recall now that by the construction of the
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new dataK ′ (in the beginning of this section) the region between Σ− and
the outermost MOTS, Σout, is foliated by outer trapped hypersurfaces
Σout,t. The maximum principle then implies that the MOTS ∂Ωε \ Ω
cannot enter the open region between Σ− and the outermost MOTS
and, therefore, it must coincide with the outermost MOTS, Σout. q.e.d.

7. The limit of solutions to (∗ε)

In Sections 5 and 6, we established existence of solutions uε = εûε
to the null mean curvature flow elliptic regularization problem (∗ε) in
Ω0 ⊂ Ω for ε ≤ ε0 (a constant that depends only on the initial data),
where Ω0 is as in Theorem 15, so that ∂Ω0 \ ∂Ω = Σ∞, the outermost
MOTS. We want to send ε→ 0 to obtain a weak solution to (∗∗). How-
ever, the interior and boundary gradient estimates for (∗ε̂,κ,s) derived in
Lemmas 8 and 9 both rely on the supremum estimate for ûε,κ. Since the
supremum bound of Lemma 7 blows up when we take the limit κ→ 0,
these a-priori estimates do not hold in the limit κ→ 0, and, thus, they
are of no use in extracting the limit for ε→ 0 of the solution uε to (∗ε).
Therefore, we must derive new interior and boundary gradient estimates
for (∗ε) that are uniform in ε.

Lemma 17 (Uniform Gradient Estimate). Let ε ≤ 1
2 and uε ∈

C∞(Ω0) be a solution of (∗ε) as in Theorem 15. Then, uε satisfies
the estimate

sup
ΩT/2

|∇uε| ≤
2

ηT
exp(ηT ) · sup

∂Ω
(1 +

√
ε2 + |∇u2

ε|),

where η is a constant that depends only on the initial data, in fact,
η = η(n,Ric, ‖K‖C1), and ΩT = {x ∈ Ω̄0 : uε(x) ≤ T}.

Proof. We take a similar approach to that of the proof of Lemma 8.
Let N = graph ûε and v =

√
1 + |∇ûε|2, where recall that uε = εûε is a

solution of (∗ε̂). We define also w(x, z) := exp(−εηz) for (x, z) ∈M×R
and w0 = exp(−ηT ), so that w − w0 = 0 when z = ε−1T . We compute
∆N ((w − w0)v) on N , similarly to (12) in the proof of Lemma 8, as
follows. We first note that

∇Nw = −εηw
(
τ − 1

v
ν

)
, ∆Nw = ε2η2

(
1− 1

v2

)
w + εη

H

v
w,

where the notation here and throughout this proof is as in the proof of
Lemma 8. Thus, (using (11) from the proof of Lemma 8) we obtain

∆N ((w − w0)v) =
2

v
ḡ(∇Nv,∇N ((w − w0)v))(31)

+ (w − w0)v

(
|A|2 +

(
1− 1

v2

)
Ric(γ, γ)
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+ (εη)2

(
1− 1

v2

)
+ εη

H

v
− vḡ(∇NH, τ)

)

+ w0v

(
(εη)2

(
1− 1

v2

)
+ εη

H

v

)
.

To argue by contradiction, define C1 := sup∂Ω ε
√

1 + |∇ûε|2 and assume

(32) sup
ΩT

((exp(−ηεû)− exp(−ηT ))ε
√

1 + |∇ûε|2) > max{C1, 1},

which must be attained at an interior point x0. Since N = graph ûε,
equation (∗ε̂) implies that

(33) H + P =
1

εv
,

where H+P is the null mean curvature of N . Proceeding as in Lemma 8,
analogous to (16) (using also (15) and the expression for |∇Nw|), we
obtain the following estimate

(w − w0)v2ḡ(∇NH, τ) =− 1

ε
ḡ(∇N ((w − w0)v), τ)

− ηwv
(

1− 1

v2

)
− (w − w0)v2g(∇NP, τ)

≤− 1

ε
ḡ(∇N ((w − w0)v), τ)

− (w − w0)v

(
η

(
1− 1

v2

)
− 2c2 − |A|

2

2

)
− w0vη

(
1− 1

v2

)
,

where c = c(n, ‖K‖C1) is the constant from (15). At a point x0, where
the maximum occurs, we have that ∆((w − w0)v) ≤ 0 and ∇((w −
w0)v) = 0, and, thus, (31) reduces to

0 ≥ (w − w0)v

(
|A|2 +

(
1− 1

v2

)
Ric(γ, γ)

+ (εη)2

(
1− 1

v2

)
+ εη

H

v
− vḡ(∇NH, τ)

)

+ w0v

(
(εη)2

(
1− 1

v2

)
+ εη

H

v

)
.

After implementing the above estimates and also using (33), this be-
comes

0 ≥ (w − w0)v

(
|A|2

2
+

(
1− 1

v2

)(
Ric(γ, γ) + η + (εη)2

)
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+
η

v2
− εη‖K‖C0

v
− 2c2

)

+ w0v

(
(η + (εη)2)

(
1− 1

v2

)
+

η

v2
− εη‖K‖C0

v

)
.

By the contradiction hypothesis (32), we find that v(x0) > 1
ε and, thus,

(1 − 1
v2 ) > 1

2 , provided that ε ≤ 1
2 . Therefore, after discarding some

positive terms from the right-hand side, we obtain

0 ≥ (w − w0)v

((
1− 1

v2

)(
η + Ric(γ, γ)− 4c2

)
+ ε2η

(η
2
− ‖K‖C0

))
+ w0ε

2η
(η

2
− ‖K‖C0

)
,

where the constant c = c(n, ‖K‖C1) is the constant from (15). For
η = η(n,Ric, ‖K‖C1) large enough the right-hand side of the above
expression becomes strictly positive, leading to a contradiction. In other
words, (32) cannot be true and, therefore, we have

sup
ΩT

((exp(−ηεûε)− exp(−ηT ))ε
√

1 + |∇ûε|2) ≤ max{C1, 1}.

For uε = εûε we then have

sup
ΩT

((exp(−ηuε)− exp(−ηT ))
√
ε2 + |∇uε|2) ≤ max{C1, 1}

≤ sup
∂Ω

(1 +
√
ε2 + |∇uε|2).

Restricting now to the region ΩT/2, where

exp(−ηuε)− exp(−ηT ) ≥ exp(−ηT/2)− exp(−ηT ) ≥ ηT

2
exp(−ηT ),

we obtain the required estimate. q.e.d.

Lemma 18 (Uniform boundary gradient estimate). There exist con-
stants C and ε0, depending only on the initial data, such that for any
ε ≤ ε0 and any solution uε ∈ C∞(Ω0) of (∗ε), as in Theorem 15, the
following estimate holds

sup
∂Ω
|∇uε| ≤ C.

Proof. The idea of the proof is to create an upper barrier for the
functions uε at the boundary ∂Ω, by bending the (short time) smooth
solution of (∗) with initial data ∂Ω. This construction is similar to that
in [28, Lemma 4.2] with the extra complication that here we do not have
a supremum estimate for the solutions uε (a construction of a barrier
using the smooth solution was also used in Lemma 14).

Let F (·, t) : ∂Ω×[0, T )→M be the unique solution to (∗), with initial
condition F (·, 0) = Id∂Ω→∂Ω and let Σt = F (∂Ω, t) (see Remark 13 for
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the existence of F ). Since the null mean curvature of the hypersurfaces
remains positive (see Remark 13), we obtain that Σt1 ∩ Σt2 = ∅ for
t1 6= t2. For any τ ∈ (0, T ) we define

Ωτ =
⋃

0<t<τ

Σt ⊂ Ω,

and let u : Ωτ → R+ be defined by u(p) = t ⇔ p ∈ Σt. Then, we
have that u is a smooth solution of (∗∗) over Ωτ and, furthermore, there
exists some constant C0 > 1 such that

(34)
1

C0
≤ |∇u| ≤ C0 , |∇2u| ≤ C0 in Ωτ .

We choose 0 < τ < T such that τ < 1
2 and bend the smooth solution

u of (∗∗) to construct a supersolution of (∗ε) that is zero on ∂Ω and
goes to infinity on the inner boundary Στ of Ωτ . To this end, we define
ψ : [0, τ)→ R+ to be the following smooth increasing function

(35) ψ(t) = 2t+
1

τ − t
− 1

τ
.

Then ψ(0) = 0, limt→τ ψ(t) = +∞ and, furthermore, we have

(36) ψ′(t) = 2 +
1

(τ − t)2
, ψ′′(t) =

2

(τ − t)3
.

We will show that the function

v(x) = ψ(u(x))

is a super solution of (∗ε) in Ωτ for sufficiently small ε. Since uε solves
(∗ε) with uε = 0 on ∂Ω, this would then imply that uε ≤ v on Ω̄τ and

sup
∂Ω
|∇uε| ≤ sup

∂Ω
|∇v| ≤

(
2 +

1

τ2

)
C0,

which proves the lemma with C = (2 + τ−2)C0. Hence, it suffices to
show that there exists ε0, depending only on the initial data, such that
v is a super solution of (∗ε) for all ε ≤ ε0. We first compute, similar to
(26) of the proof of Lemma 14,

M(v) : =
1

|∇v|

(
gij − ∇

iv∇jv
|∇v|2

)
∇ijv −

(
gij − ∇

iv∇jv
|∇v|2

)
K ′ij +

1

|∇v|

=M(u)− 1

|∇u|
+

1

|∇v|
=

1− ψ′

|∇v|
.

Hence, v is a super solution of (∗∗) if ψ′ ≥ 1. We now relate the level
set equation (∗∗) to the elliptic regularized problem (∗ε) as follows (cf.
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(27) in the proof of Lemma 14)

Mε(v) :=

(
gij − ∇iv∇jv

|∇v|2 + ε2

)
∇ijv(37)

−
(
gij − ∇iv∇jv

|∇v|2 + ε2

)
Kij

√
|∇v|2 + ε2 + 1

=|∇v|M(v) +

(
∇iv∇jv
|∇v|2

− ∇iv∇jv
|∇v|2 + ε2

)
∇ijv

+

(
gij

−ε2

|∇v|+
√
|∇v|2 + ε2

+∇iv∇jv

(
1√

|∇v|2 + ε2
− 1

|∇v|

))
Kij .

Next, we want to bound the last two terms on the right hand side of
(37). The first of these terms is estimated as follows.

ε2∇iv∇jv
|∇v|2(|∇v|2 + ε2)

∇ijv ≤
ε2

(ψ′)2|∇u|2 + ε2
(ψ′|∇2u|+ ψ′′|∇u|2)

≤ ε2 ψ′′

(ψ′)2
+ C0

ε2ψ′

(ψ′)2C−2
0

≤ ε2 ψ′′

(ψ′)2
+ C3

0

ε2

ψ′
,

where we have used (34). Our choice of ψ, see (35), together with the
fact that τ < 1

2 , implies

(38)
ψ′′

(ψ′)2
≤ 2(τ − t) ≤ 2τ ≤ 1 and

1

ψ′
≤ (τ − t)2 ≤ 1.

Considering now ε such that ε ≤ C−2
0 , we obtain the bound(

∇iv∇jv
|∇v|2

− ∇iv∇jv
|∇v|2 + ε2

)
∇ijv ≤

1

C4
0

+
1

C0
≤ 1

2
.

We now bound the second term on the right-hand side of (37) (using
again (38))(
gij

−ε2

|∇u|ψ′ +
√

(ψ′)2|∇u|2 + ε2

+ (ψ′)2∇iu∇ju

(
1√

(ψ′)2|∇u|2 + ε2
− 1

ψ′|∇u|

))
Kij

≤ (n+ 1)λ

(
ε+ |∇u|2(ψ′)2

√
(ψ′)2|∇u|2 + ε2 − ψ′|∇u|
ψ′|∇u|

√
(ψ′)2|∇u|2 + ε2

)

= (n+ 1)λ

(
ε+ |∇u|ψ′ ε2√

(ψ′)2|∇u|2 + ε2(
√

(ψ′)2|∇u|2 + ε2 + ψ′|∇u|)

)
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≤ (n+ 1)λ

(
ε+

ε2√
(ψ′)2|∇u|2 + ε2

)
≤ 2ε(n+ 1)λ ≤ 1

2
,

with the last inequality being true provided that ε ≤ (4(n+ 1)λ)−1 and
where recall that λ = maxi{|λi|, λi eigenvalue of K}. Putting every-
thing together and using these estimates back in (37), we find that for
ε ≤ ε0, where ε0 = min{(4(n+ 1)λ)−1, C−2

0 }, we obtain the estimate

Mε(v) ≤ 1− ψ′ + 1,

which due to (36) implies

Mε(v) ≤ 1−
(

2 +
1

(τ − t)2

)
+ 1 ≤ − 1

(τ − t)2
< 0,

so that v is a super solution and, thus, uε ≤ v for all ε ≤ ε0. q.e.d.

We now return to the original elliptic regularization problem (∗ε),
and note that the a-priori estimates for uε given in Lemmas 17 and 18
are uniform in ε. We can, therefore, use the Arzela–Ascoli theorem to
extract a limit as ε → 0. In particular, there exists u ∈ C0,1(Ω1 ∪ ∂Ω)
and a sequence εk ↓ 0 such that

(39) uεk → u in C0(Ω1 ∪ ∂Ω),

where Ω1

open
⊂ Ω0 is such that ∂Ω1 ⊃ ∂Ω. In particular, with Ω2 =

∩t∪k {uεk > t}, we have Ω1 = Ω0 \Ω2 and, thus, Lemma 18 implies that
Ω1 6= ∅. Furthermore, since the functions uεk tend to +∞ on approach
to ∂Ω0 \ ∂Ω, the limit function u also tends to +∞ on approach to
∂Ω1 \ ∂Ω. With the convergence ‘in C0(Ω1 ∪ ∂Ω)’ above we mean that
uεk → u uniformly in any compact subset of Ω1 ∪ ∂Ω. Similarly, with
‘u ∈ C0,1(Ω1 ∪ ∂Ω)’ we mean that u is Lipschitz in any compact subset
of Ω1 ∪ ∂Ω. Furthermore, Lemma 17, along with the Banach–Alaoglu
theorem, implies that

(40)

∫
Ω1

∇uεk · fdH
n →

∫
Ω1

∇u · fdHn , ∀f ∈ L1
c(Ω1 ∪ ∂Ω;Rn+1),

where L1
c(Ω1∪∂Ω;Rn+1) denotes all the functions in L1(Ω1;Rn+1) with

support in a compact subset of Ω1 ∪ ∂Ω.

Definition 19. A function u ∈ C0,1(Ω1) defined as the limit of a
sequence {uεk} of solutions to (∗εk), with εk ↓ 0, as in (39) will be
called a weak solution of (∗∗).

We have, therefore, established the following.

Theorem 20. There exists u ∈ C0,1(Ω1∪∂Ω) a weak solution of (∗∗),
as in Definition 19, where Ω1

open
⊂ (Ω \Ωout) and ∂Ω1 ⊃ ∂Ω (recall that

Ωout is such that ∂Ωout = Σout, the outermost MOTS). Furthermore,
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any weak solution satisfies u|∂Ω = 0 and limx→x0 u(x) = +∞ for any
x0 ∈ ∂Ω1 \ ∂Ω.

8. Properties of weak solutions

In this section, we study a weak solution u ∈ C0,1(Ω1) of (∗∗) (see
Definition 19, Theorem 20), using a sequence {uεk} of solutions to the
problems (∗εk) such that

uεk → u in C0(Ω1 ∪ ∂Ω).

We will show a minimization property for the graphs of the functions
uεk (Lemma 28) and show that this property passes to the limit, i.e.,
it passes to graphu (Lemma 34). We will also examine in more detail
the convergence uεk → u (Lemma 36) in order to study the part of the
boundary of Ω1 where u blows up, as our goal is to show that it is a
generalized MOTS. Many of the arguments in this section follow those of
[23] and [28], where the corresponding results are proven for the mean
curvature flow and in [28] also for general speeds given by powers of the
mean curvature (the Hk-flow). In [23] and [28] the ambient space where
the flows are considered is the Euclidean space (in [28] manifolds that do
not contain closed minimal surfaces are also considered), therefore, the
corresponding ‘approximating’ functions uε are bounded. In our case,
the functions uε have a ‘blow up’ set which causes an extra complication.

We first prove a uniform integral estimate for the right-hand side of
the equation (∗ε).

Lemma 21. Let uε ∈ C∞(Ω0) be a solution of (∗ε) as in Theorem 15.
Then

(41)

∫
Ω0

1√
ε2 + |∇uε|2

dx ≤ |∂Ω0|+ (n+ 2)λ|Ω|,

where λ = maxi{|λi|, λi eigenvalue of K}.

Remark 22. Note that |∂Ω0| = |∂Ω| + |Σout|, where Σout is the
outermost MOTS. In [4] an estimate, in terms of the initial data, on
|Σ∞| is derived and, therefore, |∂Ω0| depends only on the initial data
and Ω.

Proof of Lemma 21. This follows as in [23, Lemma 2.1], keeping track
of the extra “P -term”. Let ψ be a smooth function such that 0 ≤ ψ ≤ 1,
ψ = 0 on ∂Ω, ψ = 1 on Ωδ := {x ∈ Ω0|dist(x, ∂Ω0) > δ}and |Dψ| ≤ γ/δ
for some γ > 1, δ > 0. Multiplying (∗ε) by ψ and integrating by parts
we find∫

Ωδ

1√
ε2 + |∇uε|2

dx ≤
∫

Ω0\Ωδ

∇ψ · ∇uε√
ε2 + |∇uε|2

dx+

∫
Ω0

P (uε)ψdx,
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where P (uε) =
(
gij − ∇iuε∇juε|∇uε|2+ε2

)
Kij . Since |P (uε)| ≤ (n+2)λ, we have∫

Ωδ

1√
ε2 + |∇uε|2

dx ≤ γ

δ
|Ω0 \ Ωδ|+ (n+ 2)λ|Ω|,

and after letting δ → 0 and then γ → 1 we obtain the result. q.e.d.

Lemma 21 and the convergence of ∇uεk given in (40), along with [12,
Theorems 3.1, 3.2 and 3.3], yield the following.

Lemma 23. Let u ∈ C0,1(Ω1) be a weak solution of (∗∗) and {uεk}
be a sequence of solutions to the problems (∗εk) such that uεk → u in
C0(Ω1 ∪ ∂Ω), as in Definition 19. Then, the following convergences are
true.

(i)
∫

Ω1
|∇uεk |fdHn →

∫
Ω1
|∇u|fdHn , ∀f ∈ L1

c(Ω1 ∪ ∂Ω),

(ii)
∇uεk√

ε2k+|∇uεk |2
→ ∇u
|∇u| strongly in L2

loc(Ω1 ∩ {|∇u| 6= 0};Rn+1).

Proof. The proof is exactly the same as that of [12, Theorems 3.1, 3.2
and 3.3], with the difference that here we should substitute the domain
of definition of all the functions (which is Rn in [12]) with Ω1 ⊂ M .
This change leaves the proof unaltered, provided that the test functions
used are taken to be in C∞c (Ω1 ∪ ∂Ω), instead of C∞c (Rn). We also
point out that hypothesis (3.2) used in [12] should be replaced here
with the convergence uεk → u in C0(Ω1∪∂Ω) and that of ∇uεk given in
(40), and hypothesis (3.5) used in [12] is still true in our case because
of Lemma 21, equation (∗εk) and the fact that P is bounded. Finally,
we remark that the result in [12, Theorem 3.2] is an intermediate step
towards proving [12, Theorem 3.3] (which corresponds to (ii) here),

which in our case is replaced by
∫

Ω1

∇uεk√
ε2k+|∇uεk |2

·fdHn →
∫

Ω1

∇u
|∇u| ·fdH

n

for all f ∈ L1(Ω1;Rn+1) with compact support in (Ω1∪∂Ω)∩{|∇u| > 0}.
q.e.d.

Using now Lemma 21, together with the convergence (i) of Lemma 23,
yields the following.

Lemma 24. Let u ∈ C0,1(Ω1) be a weak solution of (∗∗), as in
Definition 19, then Hn+1({x ∈ Ω1||∇u| = 0}) = 0.

Proof. The proof is exactly the same as that of [23, Lemma 2.3],
replacing εi and Ω with εk and Ω1 ⊂M respectively and the set A with
A ∩W = {x ∈ Ω1 ∩W : Du(x) = 0} for any W ⊂⊂ Ω1 ∪ ∂Ω. By the
proof of [23, Lemma 2.3], we then obtain that Hn+1(A ∩W ) = 0 for
any W ⊂⊂ Ω1 ∪ ∂Ω and, thus, the result follows. q.e.d.

Remark 25. Lemma 24 and Lemma 23 (ii) imply that
∇uεk√

ε2k+|∇uεk |2
→

∇u
|∇u| strongly in L2

loc(Ω1;Rn).
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Definition 26. For a solution uε ∈ C∞(Ω0) of equation (∗ε) we
define the function Uε : Ω0 × R → R by Uε(x, z) = uε(x) − εz and we
let

Ẽεt = {(x, z) ∈ Ω0 × R : Uε(x, z) > t},
and

Σ̃ε
t = {(x, z) ∈ Ω0 × R : Uε(x, z) = t} = graph

(
uε
ε
− t

ε

)
,

the latter being the hypersurfaces given by the level sets of Uε.

As mentioned in the introduction (see (3)), Σ̃ε
t are smooth translating

solutions of the null mean curvature flow (∗). We also note that, by

equation (∗ε̂), the mean curvature of Σ̃ε
t is given by

(42) Hε
t = div νε = −P (uε) +

1√
|∇uε|2 + ε2

,

where P (uε) =
(
gij − ∇iuε∇juε|∇uε|2+ε2

)
Kij and νε is the upward pointing unit

normal to Σ̃ε
t . Note that P (uε) =

(
gij − νiεν

j
ε

)
Kij , and, thus, we will

also express this quantity as P (νε). Recall that K and νε are always
extended in M ×R so that they are independent of the vertical compo-
nent.

Lemma 27. For any solution uε ∈ C∞(Ω0) of (∗ε), any t ∈ R and

any interval I = [a, b] ⊂ R the graph Σ̃ε
t = graph

(
uε
ε −

t
ε

)
satisfies∫ ∞

0

∫
Σ̃εt∩(Ω0×I)

|Hε
t + P (νε)|2dHn+1dt ≤ (b− a) (|∂Ω0|+ (n+ 2)λ|Ω|) ,

where λ = maxi{|λi|, λi eigenvalue of K} and the rest of the notation
is as in Definition 26 and equation (42).

Proof. Using the coarea formula and the expression of Hε
t given in

(42), we have∫
Ω0×I

1

|∇Uε|
dx =

∫
Ω0×I

1

|∇Uε|2
|∇Uε|dx

=

∫ ∞
0

∫
{(x,z):Uε(x,z)=t}∩(Ω0×I)

1

|∇Uε|2
dHn+1dt

=

∫ ∞
0

∫
Σ̃εt∩(Ω0×I)

|Hε
t + P (νε)|2dHn+1dt,

where ∇ = ∇M×R. The result now follows by Lemma 21. q.e.d.

Next we will show that the sets Ẽεt = {Uε > t} (as in Definition 26)
minimize area plus bulk energy P on the outside in Ω0×R. More specif-
ically, we have the following.



NULL MEAN CURVATURE FLOW AND OUTERMOST MOTS 225

Lemma 28. For any solution uε ∈ C∞(Ω0) of (∗ε) and any t ∈ R
the set Ẽεt = {Uε > t} satisfies the following minimization property.

|∂∗Ẽεt ∩W |+
∫
W∩Ẽεt

P (νk)dHn+2 ≤ |∂∗F ∩W |+
∫
W∩F

P (νε)dHn+2,

for any compact set W ⊂ Ω0 × R and any finite perimeter set F with

Ẽεt ⊂ F and F \ Ẽεt ⊂ W . Here, again we use the notation in Defini-
tion 26 and equation (42).

Proof. Let W and F be as in the statement of the lemma and note

that F \ Ẽεt ⊂ Ω0 × R. By (∗ε̂) (see also (42)), we have that

div νε = −P (νε) +
1

|∇Uε|
.

The divergence theorem, using νε as a calibration, yields∫
F\Ẽεt

−P (νε) +
1

|∇Uε|
dHn+2 =−

∫
∂∗Ẽεt∩W

νε · ν∂∗Ẽεt dH
n+1

+

∫
∂∗F∩W

νε · ν∂∗FdHn+1

≤ −|∂∗Ẽεt ∩W |+ |∂∗F ∩W |,

where ν
∂∗Ẽεt

and ν∂∗F denote the outward pointing unit normals to ∂∗Ẽεt

and ∂∗F respectively. Using this, along with the fact that 1
|DUε| > 0,

we have

|∂∗Ẽεt ∩W |+
∫
W∩Ẽεt

P (νε)dHn+2 =|∂∗Ẽεt ∩W | −
∫
F\Ẽεt

P (νε)dHn+2

+

∫
W∩F

P (νε)dHn+2

≤|∂∗F ∩W |+
∫
W∩F

P (νε)dHn+2.

q.e.d.

Remark 29. Lemma 28 provides a local uniform area bound for

∂∗Ẽεt = Σ̃ε
t in Ω× R (since K, and, thus, P , is bounded).

Remark 30. Arguing similarly to the proof of Lemma 28, it is not

hard to show that the sets Ẽεt actually minimize (not only on the out-
side) the following

|∂∗Ẽεt ∩W |+
∫
W∩Ẽεt

P (νε)−
1

|∇Uε|
dHn+2.

However, this will not be needed in this paper.

We will now focus on a sequence of solutions to the problems (∗εk)
that converge to a weak solution of (∗∗).
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Definition 31. Let u ∈ C0,1(Ω1) be a weak solution of (∗∗) and
{uεk} ⊂ C∞(Ω0) be a sequence of solutions to the problems (∗εk) such
that uεk → u in C0(Ω1∪∂Ω), as in Definition 19 (see also Theorem 20).
We define the function U : Ω1 × R→ R by

U(x, z) = u(x).

Note that U ∈ C0,1(Ω1×R) and Uεk → U in C0((Ω1 ∪ ∂Ω)×R), where
the functions Uεk are as in Definition 26. We, furthermore, set

Ẽt = {(x, z) ∈ Ω1×R : U(x, z) > t} = Et×R , Et = {x ∈ Ω1 : u(x) > t},
and

Σ̃t = ∂Ẽt = Σt × R , Σt = ∂Et.

Finally, for notational simplicity, the sets Ẽεkt and Σ̃εk
t , as defined in

Definition 26, will be denoted by Ẽkt and Σ̃k
t respectively. Moreover,

the upward pointing unit normal to Σ̃k
t and its mean curvature will be

denoted by νk and Hk
t respectively, so that equation (42) now reads

(43) Hk
t = div νk = −P (uεk) +

1√
|∇uεk |2 + ε2

k

,

where recall that P (uεk) = P (νk) = (gij − νikν
j
k)Kij .

We next want to show that the minimizing property of Ẽkt , described

in Lemma 28, is also true for the limit Ẽt. We first show that a weak

solution u is non-fattening, which will in turn imply that Ekt → Ẽt in L1
loc

for all t > 0 (the convergence here should be understood as convergence
in L1

loc(Ω1 × R) of the corresponding characteristic functions). More
specifically, we have the following.

Lemma 32. Let u ∈ C0,1(Ω1) be a weak solution of (∗∗). Then, for
all t > 0 Hn+1({u = t}) = 0.

Proof. The proof is exactly as that of [28, Lemma 5.5], where the
same result is proven in the case P = 0. We repeat the main step here
and sketch the rest of the proof, using the notation of Definition 31. Let
0 < t1 < t2 and Ω′1 = Ω1 × I for some interval I = (a, b). By using the
coarea formula, (43), Hölder’s inequality, Remark 29, and Lemma 27,
we obtain

|Hn+2(Ẽkt1 ∩ Ω′1)−Hn+2(Ẽkt2 ∩ Ω′1)| =
∫ t2

t1

∫
Σ̃kt ∩Ω′1

|Hk
t + P (νk)|

≤ C|t2 − t1|
1
2 ,

where C is a constant independent on k.
Let now S = {t > 0 : Hn+2{U = t} > 0} = {t > 0 : Hn+1{u = t} >

0} and note that for any t /∈ S Ẽkt → Ẽt in L1
loc (in the sense that their

characteristic functions converge in L1
loc(Ω1 × R)), because of the local
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uniform convergence Uεk → U in Ω1 ×R. Thus, for t1, t2 /∈ S, the limit
of the above estimate yields

|Hn+2(Ẽt1 ∩ Ω′1)−Hn+2(Ẽt2 ∩ Ω′1)| ≤ C|t2 − t1|
1
2 .

For any t ∈ S (a countable set) we can now pick two sequences of times

tj1 < t < tj2 for which the above is true and such that both sequences
tend to t. This then implies that Hn+2{U = t} = 0. q.e.d.

Remark 33. Lemma 32, along with the uniform convergence Uεk →
U , implies that Ẽkt → Ẽt in L1

loc(Ω1 × R) (that is, the corresponding
characteristic functions converge in L1

loc(Ω1 × R), see also proof of [28,
Lemma 5.5]).

We are ready now to show that the minimizing property of Ẽkt , as
presented in Lemma 28, passes to the limit. More specifically, we show

that the sets Ẽt minimize area plus bulk energy P on the outside in
Ω1 × R. The same is then also true for the sets Et in Ω1.

Lemma 34. For any weak solution u ∈ C0,1(Ω1) of (∗∗) and any

t ∈ R the set Ẽt = {U > t} satisfies the following minimization property.

|∂∗Ẽt ∩W |+
∫
W∩Ẽt

P (ν)dHn+2 ≤ |∂∗F ∩W |+
∫
W∩F

P (ν)dHn+2,

for any compact set W ⊂ Ω1 × R and any finite perimeter set F with

Ẽt ⊂ F and F \ Ẽt ⊂W . Here, P (ν) =
(
gij − νiνj

)
Kij and the normal

ν is independent of the vertical component with ν(x, z) = ν(x) = Du
|Du|(x)

Hn+1-a.e. on Ω1, and we use the notation in Definition 31.
Furthermore, the same minimizing property is satisfied by Et in Ω1,

that is

|∂∗Et ∩W |+
∫
W∩Et

P (ν)dHn+1 ≤ |∂∗F ∩W |+
∫
W∩F

P (ν)dHn+1,

for any compact set W ⊂ Ω1 and any finite perimeter set F with Et ⊂ F
and F \ Et ⊂W .

Proof. The proof follows that of [28, Lemma 5.6, Corollary 5.7],
where the same statements are proven in the case when P = 0. Let W ,

F be as in the statement of the lemma and note that F \ Ẽt ⊂ Ω1 ×R.
First, note that arguing exactly as in [28, Lemma 5.6], we can as-
sume, by passing to a slightly larger compact set if necessary, that
for W the following is true. The boundary ∂W is smooth, |∂∗(F ∪
Ẽkt ) ∩ ∂W | = |∂∗(F ∩ Ẽkt ) ∩ ∂W | = |∂∗Ẽkt ∩ ∂W | = 0 for all k and
limk→∞

∫
∂W |φ

−
F∪Ẽkt

− φ+

Ẽkt
|dHn+1 = 0, where φ−

F∪Ẽkt
and φ+

Ẽkt
are the

inner and outer trace of F ∪ Ẽkt and Ẽkt on ∂W (see [15, Chapter 2]
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and [33, Section 2.4] for definitions of the traces and note that here we

also use Remark 33). Let now F k = Ẽkt ∪ (F ∩W ). We then have

|∂∗F k ∩W | =
∫
∂W
|φ−
F∪Ẽkt

− φ+

Ẽkt
|dHn+1 + |∂∗(F ∪ Ẽkt ) ∩W |

=

∫
∂W
|φ−
F∪Ẽkt

− φ+

Ẽkt
|dHn+1 + |∂∗Ẽkt ∩W |

+ |∂∗F ∩W | − |∂∗(F ∩ Ẽkt ) ∩W |,
where the second equality above is justified by arguing as in [28, (36) of

proof Lemma 5.6]. By the minimizing property of Ẽkt (since F k ⊃ Ẽkt ),
we have

|∂∗Ẽkt ∩W | −
∫
W∩(Fk\Ẽkt )

P (νk)dHn+2 ≤ |∂∗F k ∩W |,

and, thus, we obtain

|∂∗F ∩W | ≥|∂∗(F ∩ Ẽkt ) ∩W | −
∫
W∩(Fk\Ẽkt )

P (νk)dHn+2

−
∫
∂W
|φ−
F∪Ẽkt

− φ+

Ẽkt
|dHn+1.

Since the last term on the right-hand side vanishes as k →∞ and

|∂∗Ẽt ∩W | = |∂∗(F ∩ Ẽt) ∩W | ≤ lim
k→∞

|∂∗(F ∩ Ẽkt ) ∩W |

(by Remark 33 and the lower semi-continuity, see [15, Theorem 1.9] and
[33, Theorem 2.38]), it suffices to show that∫

W∩(Fk\Ẽkt )
P (νk)dHn+2 k→∞−→

∫
W∩(F\Ẽt)

P (ν)dHn+2,

where ν is as in the statement of the lemma. To see this, we note that

W ∩ (F k \ Ẽkt ) = (F ∩W ) \ Ẽkt and W ∩ (F \ Ẽt) = (F ∩W ) \ Ẽt,
and we write∫

W∩(Fk\Ẽkt )
P (νk)dHn+2 −

∫
W∩(F\Ẽt)

P (ν)dHn+2

=

∫
W∩F∩(Ẽt\Ẽkt )

P (νk)dHn+2 −
∫
W∩F∩(Ẽkt \Ẽt)

P (νk)dHn+2

+

∫
W∩(F\Ẽt)

P (νk)− P (ν)dHn+2.

We can see now that the right-hand side of the above equality tends to
0, as k → ∞, because of the fact that P is bounded, Remark 33 and
Lemma 23. More specifically, we have the following two observations.
First, by Remark 33, we have

Hn+2(W ∩ (Ẽt \ Ẽkt )) , Hn+2(W ∩ (Ẽkt \ Ẽt))
k→∞−→ 0,
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which implies that the first two terms tend to zero. Second, by Lemma 23
(see also Remark 25), we have∫

W∩(F\Ẽt)
νik − νidHn+2 ≤ C(W )‖νk − ν‖L2(W )

k→∞−→ 0,

and, thus, by writing νikν
j
k − ν

iνj = νik(ν
j
k − ν

j) + νj(νik − νi), we have∫
W∩(F\Ẽt)

νikν
j
k − ν

iνjdHn+2 k→∞−→ 0.

Since P (νk)− P (ν) = (νikν
j
k − ν

iνj)Kij , this implies that the last term
also tends to zero.

Finally, one can easily see that the same minimization property holds
for Et in Ω1 as follows (cf. [28, Corollary 5.7]). Let W ⊂ Ω1 be a
compact set and let F be a finite perimeter set such that Et ⊂ F and

F \ Et ⊂ W . Given any ` > 0, let F̃ = (F × (−`, `)) ∪ Ẽt. Using the

minimization property of Ẽt, we have

|∂∗Ẽt ∩ W̃ |+
∫
W̃∩Ẽt

P (ν)dHn+2 ≤ |∂∗F̃ ∩ W̃ |+
∫
W̃∩F̃

P (ν)dHn+2,

where W̃ = W × [−2`, 2`]. This then yields

2`|∂∗Et ∩W |+ 2`

∫
W∩Et

P (ν)dHn+1 ≤2`|∂∗F ∩W |+ 2Hn+1(F \ Et)

+ 2`

∫
W∩F

P (ν)dHn+1.

Dividing by ` and letting `→∞ provides the required property. q.e.d.

We now define the measures

µkt = Hn+1 Σ̃k
t and µt = Hn+1 ∂∗Ẽt,

where recall that Σ̃k
t = ∂({(x, z) : Uεk(x, z) > t}) = graph

(
uεk
εk
− t

εk

)
(see Definition 31). Our goal is to show that µkt → µt as Radon mea-
sures. This is done following the steps in [28, Section 5]. We first show
that the sets ∂∗Et ⊂ Σt := ∂Et ⊂ {x ∈ Ω1 : u(x) = t} are equal up to a
set of Hn-measure zero.

Lemma 35. Let u ∈ C0,1(Ω1) be a weak solution of (∗∗). Then, for
a.e. t ∈ [0,∞), Hn({u = t} \ ∂∗{u > t}) = 0

Proof. This is proven exactly as [28, Lemma 5.9]. Since u ∈ C0,1(Ω) ⊂
BV(Ω) we can compare the coarea formula for BV-functions and Lips-
chitz functions to obtain∫ T

0
Hn(∂∗Et)dt =

∫
Ω1∩{u<T}

|∇u|dHn+1 =

∫ T

0
Hn({u = t})dt,
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for any T > 0, and, thus,∫ T

0
Hn({u = t} \ ∂∗Et)dt = 0,

which yields that Hn({u = t} \ ∂∗Et) = 0 for a.e. t ∈ [0, T ]. Since this
is true for all T > 0, we obtain the result. q.e.d.

We are now ready to prove the measure convergence.

Lemma 36. Let µkt = Hn+1 Σ̃k
t and µt = Hn+1 ∂∗Ẽt (where we

use the notation of Definition 31). Then, for a.e t > 0 µkt
k→∞−→ µt as

Radon measures.

Proof. The proof is almost identical to that of [28, Proposition 5.10].
We go through the proof here pointing out the differences in our case.
To fit our notation, one has to replace i, εi, Ω, Eit , N

i
t , E

′
t and Γt of [28,

Proposition 5.10] by k, εk, Ω0, Ẽkt , Ẽt, Σ̃k
t and Σt respectively. Note

first that, by Lemma 35, for almost every t µt = Hn+1 Σ̃t, where recall

that Σ̃t = ∂Ẽt = Σt × R = ∂Et × R. Fix a t > 0, so that the above

is true. By the minimizing property (Lemma 28, Remark 29), |Σ̃k
t | are

locally uniformly bounded and, thus, after passing to a subsequence,

µkt
k→∞−→ µ, where µ is a Radon measure in Ω0 × R (note that here we

keep the same notation for the subsequence, whereas in [28, Proposition

5.10] the subsequence is denoted by {µijt }j ⊂ {µit}i, so to fit our notation
one has to further replace ij of [28, Proposition 5.10] by k).

Claim 1. sptµ ⊂ {u = t} × R.

The proof of Claim 1 is identical to that of [28, Claim 1 of proof of
Proposition 5.10].

Claim 2. For Bρ(x) ⊂⊂ Ω0 × R

µ(Bρ(x)) ≤ Hn+1(∂Bρ(x)) + C(K)Hn+2(Bρ(x)).

The proof of Claim 2 is the same as that of [28, Claim 2 of proof of
Proposition 5.10], with the only difference being the bound for

µkt (Bρ(x)) = Hn+1(∂∗Ẽkt ∩Bρ(x)). In particular, here using Lemma 28

with F = Ẽkt ∪Bρ(x), we obtain

µkt (Bρ(x)) +

∫
Ẽkt ∩Bρ(x)

P (νk)dHn+2

≤ Hn+1(∂Bρ(x)) +

∫
Bρ(x)

P (νk)dHn+2,

which yields

µkt (Bρ(x)) ≤ Hn+1(∂Bρ(x)) + C(K)Hn+2(Bρ(x)).
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We have then, as in [28, Claim 2 of proof of Proposition 5.10], that
µ is absolutely continuous with respect to the Hn+1-measure (since
the Hn+2-measure is absolutely continuous with respect to the Hn+1-
measure). Thus, by the Radon–Nikodym theorem, Claim 1, and also
Lemma 35, we obtain that there exists a function θ ∈ L∞(Σt×R,Hn+1)
such that

(44) µ = (Hn+1 (∂∗Et × R)) θ = µt θ,

where recall that Σt = ∂Et.

Claim 3. θ ≥ 1 Hn+1-a.e. on Σt × R.

The proof of Claim 3 is identical to that of [28, Claim 3 of proof of
Proposition 5.10].

Claim 4. θ ≤ 1 Hn+1-a.e. on ∂∗Ẽt.

The proof of Claim 4 is the same as that of [28, Claim 4 of proof
of Proposition 5.10] with the only difference being the way we obtain

the bound for µkλ(B1) = λ−(n+2)µkt (λB1) (denoted as µ
ij
λ in [28, line 20,

page 221]). In particular, here, one has to use the minimizing property
of Ekt given in Lemma 28 (whereas in [28] Ekt are minimizing area
on the outside). This, however, does not change the argument as it
only changes the bound by a term of order ε. More specifically, the
term supS2ε∩B1

|P (νk)||S2ε ∩ B1| should be added to the bound. Here,

P (νκ) is the term appearing in Lemma 28 and S2ε = {x ∈ Rn+2 :
|xn+2| ≤ 2ε} as in [28]. We remark also that in the proof of this
claim, one uses “rescalings” of sets in M×R and of the measures µkt , µt,
which are defined via the exponential map. In particular, one makes
the identifications

(Bρ(x), g) ' (Bρ(~0), exp∗x g) ' (Bρ(0), ĝφij)

as Riemannian manifolds, where (Bρ(x), φ) are the geodesic normal co-
ordinates that correspond to the identification (TpM, g(p)) '
(Rn+2, 〈·, ·〉) as Hilbert spaces and ĝφij = gφij ◦ φ−1, where ĝφij are the
components of g in geodesic normal coordinates. These identifications
allow us to reduce the proof to the case that M = Rn+1. We remark
also that, since exp−1 is an isometry, the minimizing property given in
Lemma 28 and Claim 2 (both of which are used in the proof of this
claim) are preserved under these identifications. For a detailed discus-
sion and proofs of these facts see [33].

Finally, Claim 3 and Claim 4 imply that θ(x) = 1 Hn+1-a.e. on
Σt×R. Thus, the limit measure µ does not depend on the subsequence
and, thus, the whole sequence converges µkt → µt. q.e.d.

Having established the measure convergence µkt
k→∞−→ µt, or

Hn+1 Σ̃k
t → Hn+1 ∂∗Ẽt = Hn+1 (Σt × R),
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in Lemma 36, we would like to study now the limit of the measures
µt = Hn+1 Σt × R as t→∞.

By Lemma 27, we have the interval I0 = (−1, 1) ⊂ R

(45)

∫ ∞
0

∫
Σ̃kt ∩(Ω0×I0)

|Hk
t + P (νk)|2dHn+1dt ≤ C(Ω,Ω0,K, n),

where Hk
t is the mean curvature of Σ̃k

t , P (νk) =
(
gij − νikν

j
k

)
Kij and

νk is the upward pointing unit normal to Σ̃k
t , as in Definition 31. Hence,

by Fatou’s lemma, for almost every t ∈ [0,∞)

lim inf
k

∫
Σ̃kt ∩(Ω0×I0)

|Hk
t + P (νk)|2dHn+1

= lim inf
k

∫
Ω0×I0

|Hk
t + P (νk)|2dµkt <∞.

Considering such a t, we conclude that there exists a subsequence {ki}i
(depending on t) such that

(46) sup
i≥0

∫
Ω0×I0

|Hki
t + P (νki)|

2dµkit ≤ C.

By (46) and the triangle inequality, we obtain that for all i ∈ N and any
compact subset W ⊂ Ω0 × I0

(47)

∫
(Ω0×I0)∩W

|Hki
t |2dµ

ki
t ≤ C(Ω,K, n,W ),

where we have also used that |P (νki)| is bounded and that, by Re-

mark 29, the graphs Σ̃ki
t have uniformly bounded area in W so that∫

(Ω0×I0)∩W dµkit ≤ C = C(|Ω|, |∂Ω|, λ), where as usual λ is defined by

λ = maxi{|λi|, λi eigenvalue of K}.
We have shown, thus, that Σ̃ki

t have locally uniformly bounded in
L2 first variation in Ω0 × I0, and since they also have locally uniformly
bounded area, we can apply the varifold compactness theorem of Allard

[1], which yields that, after passing to a further subsequence, Σ̃ki
t con-

verge in the varifold sense to an (n + 1)-dimensional integral varifold.
Since, by Lemma 36, µkt → µt = Hn+1 (Σt × R), we obtain that for
a.e. t > 0

(48) Σ̃ki
t → Σt × I0 = Σt × (−1, 1) in Ω0 × I0 = Ω0 × (−1, 1),

in the sense of varifolds, where Σt × I0 is an (n + 1)-dimensional rec-
tifiable unit density varifold. The varifold convergence and (47) im-

plies that Σt × I0 carries a generalized mean curvature vector ~Ht and

µkit Hki
t νki → µt ~Ht as vector valued Radon measures. By the lower
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semicontinuity of the first variation and (47), we have
(49)∫

Ω0×I0
| ~Ht|2dµt ≤ lim inf

i

∫
Ω0×I0

|Hki
t |2dµ

ki
t ≤ C = C(Ω,Ω0,K, n).

Since Σt × I0 is a rectifiable unit density varifold, ~Ht is perpendicular
to Σt × I0 Hn+1-a.e. (see [8, Chapter 5]).

We further have that Ẽkit → Ẽt as finite perimeter sets (see Re-

mark 33), and recall that ∂Ẽkit = ∂∗Ẽkit = Σ̃ki
t and Hn+1((Σt × R) \

∂∗Ẽt) = 0 (Lemma 35). This implies that µkit νki → µt ν as vec-
tor valued Radon measures, where ν is the measure theoretic outer

pointing unit normal to Ẽt. Recall now that u ∈ C0,1(Ω1) and by
Lemma 24, Lemma 35 and the coarea formula for Lipschitz functions
(which imply that for a.e. t ≥ 0 |∇u| 6= 0 Hn+1-a.e. on Σt × R) we

have that for almost every t ≥ 0 ν = ν(x, z) = ∇u(x)
|∇u(x)| H

n+1-a.e. on

Σt × R (cf. Lemma 23). Note also that for the generalized mean cur-

vature vector ~Ht, as above, we obtain ~Ht = Htν Hn+1-a.e. on Σt × I0.
The convergence µkit νki → µt ν, along with the measure conver-

gence µkit → µt (Lemma 36 or (48)), implies, using the Reshetnyak

continuity [2, Theorem 2.39], that µkit P (νki)νki → µt P (ν)ν as vec-
tor valued Radon measures. Finally, this last convergence, along with

µkit Hki
t νki → µt ~Ht = µt Htν, and using the lower semicontinuity,

yields ∫
Ω0×I0

|Ht + P (ν)|dµt ≤ lim inf
i

∫
Ω0×I0

|Hki
t + P (νki)|dµ

ki
t .(50)

Recall that this holds for a.e. t ∈ [0,+∞). Hence, using (50), Fatou’s
lemma, (45) and the uniform area bounds of Remark 29, we obtain∫ ∞

0

∫
Ω0×I0

|Ht + P (ν)|dµtdt ≤ C(Ω,Ω0,K, n).

Putting everything together we have the following (cf. [28, Theorem
5.11])

Theorem 37. Let µkt = Hn+1 Σ̃k
t and µt = Hn+1 ∂∗Ẽt (where we

use the notation of Definition 31). Then, for a.e t ≥ 0 there exists a
subsequence {ki}i (depending on t) such that

Σ̃ki
t → Σt × (−1, 1) in Ω0 × (−1, 1),

as varifolds, where Σt × (−1, 1) is a rectifiable unit density varifold

that carries a generalized mean curvature vector ~Ht = Htν, where ν =

ν(x, z) = ∇u(x)
|∇u(x)| H

n+1-a.e. on Σt×(−1, 1) (and recall that u ∈ C0,1(Ω1)
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is the weak solution of (∗∗) as in Definition 31). Furthermore, we have∫
Ω0×(−1,1)

|Ht|2dµt ≤ C(Ω,Ω0,K, n),

and ∫ ∞
0

∫
Ω0×(−1,1)

|Ht + P (ν)|dµtdt ≤ C(Ω,Ω0,K, n),

where P (ν) = (gij − νiνj)Kij.

We note that, because of the product structure of the varifold Σt ×
(−1, 1) in Theorem 37, for the n-dimensional rectifiable unit density
varifolds Σt we have

∫ ∞
0

∫
Ω
|Ht + P (ν)|dµtdt =

∫ ∞
0

∫
Ω0

|Ht + P (ν)|dµtdt ≤ C(Ω,Ω0,K, n),∫
Ω0

|Ht|2dµt ≤ C(Ω,Ω0,K, n),

(51)

where now µt = Hn Σt, ~Ht = Htν is the generalized mean curvature
vector of Σt and for almost every t ≥ 0 ν = ν(x) = ∇u

|∇u|(x) Hn-a.e. on

Σt. (We keep the same notation, as from now on we will concentrate
only on M and forget about the product structure M×R, and, therefore,
there will not be any confusion). We now want to study Σt as t → ∞
and show that they converge, as finite perimeter sets, to a generalized
MOTS, as in Definition 4.

Estimate (51) allows us to pick a sequence of times ti ↑ ∞ such that

(52) lim
i→∞

∫
Ω
|Hti + P (ν)|dµti = 0.

By the minimizing property, Lemma 34 (see also Remark 29), |Σti | are
uniformly bounded (recall that Hn(Σti \∂∗Eti) = 0 by Lemma 35) and,
thus, after passing to a subsequence, µti → µ∞, where µ∞ is a Radon
measure in Ω. Furthermore, considering Eti as finite perimeter sets and
using the compactness for such sets, we obtain that, passing to a fur-
ther subsequence, Eti → E∞ (that is χEti → χE∞ with respect to the

L1(Ω) norm), where E∞ is a finite perimeter set in Ω. Moreover, since
DχE∞ = (Hn ∂∗E∞) ν∞ as vector valued measures, where ν∞ is the
measure theoretic outer pointing unit normal to E∞ (see, for example,
[11, Section 5.7]), we have the convergence µti ν → (Hn ∂∗E∞) ν∞.
(The definitions and the theorems used in relation with the finite perime-
ter sets can be found, for example, in [15, Chapters 1 and 3], see also
[33] for the extensions of these results for finite perimeter sets in a man-
ifold). We claim now that one can argue as in Lemma 36 to show that
µ∞ ∂∗E∞ = Hn ∂∗E∞. In particular, we have the following



NULL MEAN CURVATURE FLOW AND OUTERMOST MOTS 235

Lemma 38. Assume that µti = Hn Σti → µ∞ as Radon measures
and Eti → E∞ as finite perimeter sets (where we use the notation of
Definition 31). Then

(53) µ∞ ∂∗E∞ = Hn ∂∗E∞.

Proof. The proof is exactly as in Claims 2–4 of the proof of Lemma 36,
using now the measures Hn ∂∗E∞ and µ∞ ∂∗E∞ (instead of µt and
µ, see (44)) and, therefore, we will not repeat it here. We point out that,

to fit the notation of this lemma, one has to replace Ω0, µ
k
t , Ẽ

k
t and νk

(of Lemma 36) by Ω, µti , Eti and ν respectively and also replace both

Σt and ∂∗Ẽt by ∂∗E∞. We also remark that in the proof here we need
to use Lemma 34 instead of Lemma 28 (or rather its corollary given in
Remark 30) and the lower semicontinuity of finite perimeter sets (lower
semicontinuity of BV functions) instead of that for Radon measures for
the convergence Eti → E∞. q.e.d.

We claim now that Hn ∂∗E∞ has a generalized mean curvature
~H∞ = H∞ν∞ and it, furthermore, satisfies H∞ + P (ν∞) = 0, where
recall that ν∞ is the measure theoretic outer pointing unit normal to
E∞. This will then imply that ∂∗E∞ is a generalized MOTS in the
sense of Definition 4. To this aim we will argue as with the convergence

in (48) replacing now Σ̃ki
t by Σti .

By the structure theorem for finite perimeter sets (see, for example,
[11, Section 5.7]), we know that for Hn-a.e. x ∈ ∂∗E∞ there exists
Br(x) ⊂M so that E∞ ∩Br(x) is C1, that is

(54) ∂∗E∞ ∩Br(x) = ∂E∞ ∩Br(x) is a C1 manifold.

Furthermore, as mentioned before, we have ‖DχE∞‖ = Hn ∂∗E∞.
Note now, that (51), implies that

(55) sup
i≥0

∫
Ω
|Hti |2dµti ≤ C.

(55) shows that Σti have uniformly bounded in L2 first variation in Ω,
and since they also have uniformly bounded area, we can apply the
varifold compactness theorem of Allard [1]. Therefore, after passing
to a subsequence, Σti → Σ∞ in Ω in the sense of varifolds, where Σ∞
is an integral n-dimensional varifold in Ω which carries a weak mean

curvature ~H∞ for which the bound (55) still holds. Furthermore, ~H∞
is perpendicular to Σ∞ Hn-a.e. (see [8, Chapter 5]) and µt (Htiν) →
µ∞ ~H∞, where µ∞ is the weight measure of Σ∞. We can now relate
the varifold limit Σ∞ with ∂∗E∞ (the limit of finite perimeter sets or
currents) by using [36]. In particular, by [36, Theorem 1.2], Σ∞ and
∂∗E∞ are compatible, that is Σ∞ = v(∂∗E∞) + 2V , where V is some
integral varifold in Ω and v(∂∗E∞) is the varifold determined by ∂∗E∞
(see [30, §27]). Using this, (54) (that is the structure theorem for sets of
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finite perimeter) and Lemma 38, we conclude that forHn-a.e. x ∈ ∂∗E∞
there exists Br(x) ⊂ M so that ∂∗E∞ ∩ Br(x) = ∂E∞ ∩ Br(x) is C1

and, furthermore, Σ∞ = ∂E∞ as varifolds in Br(x) (where in this last
equality ∂E∞ is seen as a unit density varifold, the support of which is
a C1 manifold).

For the generalized mean curvature of Σ∞ in Br(x) we then have

that ~H∞ = H∞ν∞ and µt (Htiν) → µ∞ H∞ν∞. Using this, the
measure convergence (Lemma 38) and the convergence µti ν →
(Hn ∂∗E∞) ν∞, we can argue as in (50), using again the Reshetnyak
continuity and the lower semicontinuity, to conclude that∫

∂∗E∞∩Br(x)
|H∞ + P (ν∞)|dHn ≤ lim inf

i

∫
Br(x)

|Hti + P (ν)|dµti .

Finally, using (52) we obtain∫
∂∗E∞∩Br(x)

|H∞ + P (ν∞)|dHn = 0,

which implies that H∞(y)+P (ν∞(y)) = 0 forHn-a.e. y ∈ ∂∗E∞∩Br(x).
Recalling the definition of a weak solution (Definition 19) and that

for the domain Ω1 ((39), see also Lemma 35), we have, therefore, shown
the following.

Theorem 39. Let u ∈ C0,1(Ω1) be a weak solution of (∗∗) (as in
Definition 19). Then ∂∗(Ω \ Ω1) is a generalized MOTS, as in Defini-
tion 4.

8.1. Remarks on further directions. Having established the proof
of the main theorem, Theorem 1, in this subsection we discuss in more
detail some further directions as briefly mentioned at the end of the
introduction.

As seen in Section 8, the level sets ∂∗Et, where Et = {u > t}, of a
weak solution u of (∗) converge as finite perimeter sets to a generalized
MOTS ∂∗E∞. In proving this, we have also showed that the level sets
Σt = {u = t} converge also in the sense of varifolds, with their limit
being the integral varifold Σ∞ = v(∂∗E∞)+2V , where V is some integral
varifold in Ω and v(∂∗E∞) is the varifold determined by ∂∗E∞. Note
that, even though we know that Σ∞ has a generalized mean curvature,
we can only make sense of the quantity H + P in the ‘v(∂∗E∞)’ part,
as a notion of an outward pointing unit normal is required. We believe
that V = 0 and ∂∗E∞ = ∂E∞ is actually a MOTS in the classical sense
and, therefore, as it lies outside the outermost MOTS, it is, indeed, the
outermost MOTS. Such a result would be concluded if we had some
control over the singular set of null mean curvature flow, similar to that
in [35] for mean curvature flow. We explain the relation between the
size of the singular set and the convergence to a MOTS below.
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In Lemma 34 we have showed that the level sets ∂∗Et satisfy a one-
sided minimizing property, namely that of minimizing area plus bulk
energy P. This property is inherited from the level sets {Uε = t} (Lemma
28). The level sets {Uε = t} not only minimize “area +

∫
P” on the

outside, but they also minimize (not only one-sided) “area +
∫

(P −
1

|∇Uε|
)” (Remark 30). The latter minimizing property would pass to the

limit if we additionally have that |∇Uε|−1dHn+1 → |∇U |−1dHn+1 as
radon measures. This is, indeed, true in the case of mean curvature flow
in Rn as proved in [23] and we believe that it also true in our case. Now,
if this convergence is true, and, thus, the level sets {u = t} minimize
“area +

∫
(P − 1

|∇u|)”, we can use the L1-finiteness of |∇u|−1 (Lemma

21) to conclude that as t → ∞ the limit minimizes “area+
∫
P” and,

therefore, is a MOTS, with the regularity of the limit coming from the
fact that it is a C-minimizing current as defined in Section 5. Therefore,
the question is how can we show the above convergence. It is not hard to
check that the arguments from [23] apply in our case, provided that the
regularity theory of White [35] for the mean curvature flow is also true
in our case. In particular, we would like to have the following: There
exists a singular set S ⊂ graphu of parabolic Hausdorff dimension at
most n−1 outside of which the sets {u = t} are a smooth level set flow.

Finally, we would like to remark that if the level set {u = t}minimizes
the quantity “area +

∫
(P − 1

|∇u|)” then we can define a weak solution

of (∗) using this minimization property, as was done in [23] for the
mean curvature flow (see also [19, 24] for the inverse mean curvature
flow and the inverse null mean curvature flow). In [23], this definition
was used to show that the level set flow is unique and it is not hard to
check that the methods from [23] can be applied to our case to show
uniqueness.
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many, 1997).

[26] Richard Schoen. Talk given at the Miami Waves conference (January 2004).

[27] Richard Schoen and Shing Tung Yau. Proof of the positive mass theorem. II.
Comm. Math. Phys., 79(2):231–260, 1981. MR612249, Zbl 0494.53028.

[28] Felix Schulze. Nonlinear evolution by mean curvature and isoperimetric inequal-
ities. J. Differential Geom., 79(2):197–241, 2008. MR2420018, Zbl1202.53066.

[29] Deirdre M. Shoemaker, Mijan F. Huq, and Richard A. Matzner. Generic tracking
of multiple apparent horizons with level flow. Phys. Rev. D (3), 62(12):124005,
12, 2000. MR1813876.

[30] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings
of the Centre for Mathematical Analysis, Australian National University. Aus-
tralian National University, Centre for Mathematical Analysis, Canberra, 1983.
MR756417, Zbl 0546.49019.

[31] Jonathan Thornburg. Event and apparent horizon finders for 3 + 1 numerical
relativity. Living Rev. Relativ., 10:68, 2007. Zbl 1116.83001.

[32] Paul K. Tod. Looking for marginally trapped surfaces. Classical Quantum Grav-
ity, 8(5):L115–L118, 1991. MR1104751, Zbl 0724.53039.

[33] Alexander Volkmann. Regularity of isoperimetric hypersurfaces with obstacles
in Riemannian manifolds. Diploma thesis, Albert Ludwigs University Freiburg,
2010.

[34] Brian White. Stratification of minimal surfaces, mean curvature flows, and
harmonic maps. J. Reine Angew. Math., 488:1–35, 1997. MR1465365, Zbl
0874.58007.

[35] Brian White. The size of the singular set in mean curvature flow of mean-convex
sets. J. Amer. Math. Soc., 13(3):665–695, 2000. MR1758759, Zbl 0961.53039.

[36] Brian White. Currents and flat chains associated to varifolds, with an application
to mean curvature flow. Duke Math. J., 148(1):41–62, 2009. MR2515099, Zbl
1161.49043.

Department of Mathematics
University of Tennessee

Knoxville, TN 37916
USA

E-mail address: tbourni@utk.edu

Department of Mathematics
University of Tennessee

Knoxville, TN 37916
USA

E-mail address: kristen.l.moore@gmail.com


	1. Introduction
	2. The smooth flow
	3. Level-set description and elliptic regularization
	4. Elliptic regularization and Jang's equation
	5. Existence of solutions to (*)
	6. Convergence to the outermost MOTS
	7. The limit of solutions to (*)
	8. Properties of weak solutions
	8.1. Remarks on further directions

	References

