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ISOPERIMETRIC STRUCTURE OF ASYMPTOTICALLY

CONICAL MANIFOLDS

Otis Chodosh, Michael Eichmair & Alexander Volkmann

Abstract

We study the isoperimetric structure of Riemannian manifolds
that are asymptotic to cones with non-negative Ricci curvature.
Specifically, we generalize to this setting the seminal results of G.
Huisken and S.-T. Yau [23] on the existence of a canonical foliation
by volume-preserving stable constant mean curvature surfaces at
infinity of asymptotically flat manifolds as well as the results of the
second-named author with S. Brendle [6] and J. Metzger [14, 15]
on the isoperimetric structure of asymptotically flat manifolds.
We also include an observation on the isoperimetric cone angle of
such manifolds. This result is a natural analogue of the positive
mass theorem in this setting.

1. Introduction

The seminal results of G. Huisken and S.-T. Yau [23] on the exis-
tence of a canonical foliation at infinity of asymptotically flat manifolds
and the uniqueness of the leaves of this foliation (which were refined by
J. Qing and G. Tian [31]) has had considerable repercussions on the
study of such manifolds, both from a physical and a geometric point
of view. We refer the reader to the introductions of [20, 13, 14, 15]
for recent accounts of these developments. The goal of this paper is to
extend many of these results to certain asymptotically conical manifolds.

Let m ≥ 2 be an integer and (L, gL) be a connected closed Rie-
mannian manifold of dimension m − 1. If (M,g) is an m-dimensional
Riemannian manifold such that there exists a compact set K ⊂M and
a diffeomorphism

M \K ∼= (1,∞)× L,

with

g = dr ⊗ dr + r2gL + o(1) as r →∞,(1)

then we say that (M,g) is asymptotically conical with link (L, gL).
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If k ≥ 0 is an integer, we say that the expansion (1) holds in Ck if

k∑
�=0

r�|∇�(g − gC)| = o(1) as r→∞.

Here, ∇ is the Levi-Civita connection of the cone (C, gC ) where

C = (0,∞)× L and gC = dr ⊗ dr + r2gL

and norms are computed with respect to gC . Similarly, given α ∈ (0, 1),
we say the expansion holds in Ck,α if the weighted Ck,α norms of g−gC
tend to zero as r →∞.

Given r > 1, we denote by Br the region inM consisting of K and the
diffeomorphic image of the set (1, r) × L. It is convenient to introduce
a smooth positive function | · | : M → R that extends the coordinate
function r on M \B2r to all of M .

In this paper, we study the isoperimetric structure of asymptotically
conical manifolds (M,g) of dimension m whose link (L, gL) satisfies the
conditions

RicL ≥ (m− 2)gL,(2)

area(L, gL) < ωm−1,(3)

where ωm−1 is the volume of the unit sphere. In view of (2) and R.
Bishop’s theorem, (3) is equivalent to the requirement that (L, gL) is
not isometric to the (m− 1)-dimensional unit sphere. Our results show
that conditions (2) and (3) are in many ways analogous to positivity
of mass and non-negativity of scalar curvature for asymptotically flat
manifolds.

The existence of a foliation through volume-preserving stable CMC
surfaces asserted in our first result below follows from the inverse func-
tion theorem, cf. [42]. An analogous result in the asymptotically flat
setting was first proven by G. Huisken and S.-T. Yau in [23] using
volume-preserving mean curvature flow.

Theorem 1 (Canonical foliation by CMC surfaces). Let (M,g) be an
asymptotically conical manifold of dimension m such that the expansion
(1) holds in C2,α and with

λ1(−ΔL) > (m− 1).

There are δ > 0 and V0 > 0 such that the following hold. Let V > V0.
Let r > 1 be such that Lm(Br) = V . There is exactly one uV ∈ C2,α(L)
with

−δ ≤ uV ≤ δ,

such that
ΣV = {(r(1 + uV (x)), x) : x ∈ L}
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is a CMC surface that encloses volume V . Moreover, ΣV is volume-
preserving stable, the surfaces

{ΣV }V >V0
,

form a foliation of the complement of a compact subset of M , and the
C2,α norms of uV tend to zero as V →∞.

Remark 2. If (L, gL) satisfies conditions (2) and (3), then

λ1(−ΔL) > m− 1

by eigenvalue estimate [9, Theorem 9 of Chapter III] of A. Lichnerowicz.

Theorem 3 (Existence and uniqueness of large isoperimetric re-
gions). Let (M,g) be an asymptotically conical Riemannian manifold
of dimension m whose link (L, gL) satisfies conditions (2) and (3) and
such that (1) holds in C1,α. There is V0 > 0 with the following property.
For every V > V0 there is an isoperimetric region of volume V . Every
such region ΩV is regular and close to Br where r > 1 is such that

Lm
g (Br) = V.

If the expansion (1) holds in C2,α, then

∂ΩV = ΣV ,

where ΣV is as in Theorem 1. In particular, ΩV is the unique isoperi-
metric region of volume V .

Remark 4. In Appendix B we show that condition (2) in Theorem 3
may be replaced by a weaker, purely isoperimetric condition on the link
(L, gL).

An analogous result in the asymptotically flat setting was proven by
the second-named author and J. Metzger [14, 15]. Their contribution
builds on ideas of H. Bray [4] who characterized isoperimetric regions
in spatial Schwarzschild. Subsequently, the first-named author [10] es-
tablished related results for asymptotically hyperbolic three-manifolds.
The proof of Theorem 3 is modeled on these results and uses the clas-
sification [28] due to F. Morgan and M. Ritoré of isoperimetric regions
of cones whose link satisfies (2) and (3).

Definition 5. Let (M,g) be asymptotically conical. Given a subset
S ⊂M , we let

r(S) = sup{r > 1 : Br ∩ S = ∅}

and
r(S) = inf{r > 1 : S ⊂ Br}.

The following theorem is the analogue for asymptotically conical man-
ifolds of the uniqueness results for volume-preserving stable constant
mean curvature surfaces in asymptotically flat manifolds due G. Huisken
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and S.-T. Yau [23] (and refined by J. Qing and G. Tian [31]) as well as
the results of the second-named author with S. Brendle [6] and with J.
Metzger [13].

Theorem 6 (Uniqueness of large closed volume-preserving stable
CMC surfaces). Let (M,g) be an asymptotically conical Riemannian 3-
manifold with link (L, gL) such that the expansion (1) holds in C2,α and
such that the scalar curvature R of (M,g) satisfies the estimate

R ≥ −O(r−2−ε),

for some ε > 0. We also assume that

KL > 1,

on a dense set of L, where KL is the Gaussian curvature of the link.
There are α, β > 0 with the following property. Let Σ be a connected
closed volume-preserving stable CMC surface in (M,g) with r(Σ) > α.
We have the following dichotomy. If

r(Σ)H(Σ) > β,

then Σ is close to an outlying geodesic sphere of radius 2/H(Σ). If

r(Σ)H(Σ) ≤ β,

then Σ is part of the canonical foliation {ΣV }V >V0
of Theorem 1.

Remark 7. The assumption on the Gaussian curvature of the link
here is equivalent to requiring that the exact cone (C, gC ) contains no
flat regions. This hypothesis is clearly necessary. The a priori assump-
tion that r(Σ) ≥ α may be relaxed to the assumption

r(Σ) ≥ α,

if (M,g) has non-negative scalar curvature. This is because the estimate
(11) in the proof of Theorem 6 follows directly from Lemma 23 in this
case. If the scalar curvature of (M,g) is positive, the condition r(Σ) ≥ α
may be relaxed to the assumption

area(Σ) ≥ α.

This follows from the monotonicity formula and (7). We can allow
immersed surfaces in Theorem 6 if, in the latter alternative of the con-
clusion, we include the possibility that the immersion is a cover of the
leaf.

Remark 8. The Alexandrov theorem classifying closed embedded
CMC hypersurfaces in space forms (with no stability assumption) was
extended to a large class of rotationally symmetric metrics by S. Bren-
dle [5].
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Theorem 9 (Non-existence of unbounded complete stable minimal
immersions). Let (M,g) be an asymptotically conical 3-manifold such
that the expansion (1) holds in C2 and whose link satisfies KL > 1.
There is no complete stable minimal immersion into (M,g) that has
unbounded trace.

Remark 10. In fact, we can rule out minimal immersions with finite
index and unbounded trace. The reason is that such an immersion is
stable outside a compact set. The proof goes through without change.

Building on ideas of R. Schoen and S.-T. Yau in their proof of the
positive mass theorem [38], analogous results in the asymptotically flat
setting were obtained by the second-named author and J. Metzger [13],
by A. Carlotto [7], and by A. Carlotto and the first- and second-named
authors [8]. Analogous results in the asymptotically flat free boundary
setting were obtained by the third-named author [41]. The condition
that KL > 1 in Theorem 9 takes the role of the assumptions that the
scalar curvature (the mean curvature of the support surface in the free
boundary setting) is strictly positive or that the mass (the extrinsic
mass in the free boundary setting) is — in a certain sense — distributed
uniformly at infinity. It is remarkable that no additional condition such
as a sign on the scalar curvature of (M,g) is required in Theorem 9.
This is in strong contrast with existing results in the asymptotically flat
and the free boundary settings.

Our final result on the isoperimetric structure of asymptotically con-
ical manifolds here is an observation related to G. Huisken’s concept of
the isoperimetric cone angle.

Definition 11 (G. Huisken [21, 22]). The isoperimetric cone angle
ciso(M,g) of a non-compactm-dimensional Riemannian manifold (M,g)
is defined as

(4) inf

{
Hm−1

g (∂Ω)m

mm−1ωm−1Lm
g (Ω)m−1

:
∅ = Ω � M open with C2

outward minimizing boundary

}
.

Remark 12. G. Huisken’s original definition differs from (4) by a
positive power depending on m.

The following rigidity result for the isoperimetric cone angle is in
some form analogous to the positive mass theorem.

Theorem 13. Let (M,g) be an asymptotically conical Riemannian
manifold of dimension m ≥ 2 with non-negative Ricci curvature. Then

ciso(M,g) ≤ 1,

with equality if and only if (M,g) is isometric to Euclidean space.

Finally, we mention the following remarkable characterization of the
isoperimetric cone angle.
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Theorem 14 (G. Huisken [21, 22]). Let (M,g) be a complete non-
compact Riemannian 3-manifold with positive Ricci curvature. Then

ciso(M,g) = inf

{
1

16π

∫
∂Ω

H2 : ∅ = Ω � M open with C2

outward minimizing boundary

}
.(5)

If the infimum in either (4) or (5) is attained by a non-empty, open
subset Ω � M with C2 outward minimizing boundary, then (M \ Ω, g)
is isometrically contained in a cone.

Remark 15. It was shown by F. Morgan and M. Ritoré in [28]
that centered coordinate balls are uniquely isoperimetric in cones whose
link satisfies conditions (2) and (3). Analogous results for cones over
certain two- and three-dimensional tori were established by F. Morgan
[27].

F. Duzaar and K. Steffen showed that the large isoperimetric regions
of the product

(R× L, dt⊗ dt+ gL)

are slabs [12, Proposition 2.11] when (L, gL) is a connected closed Rie-
mannian manifold. M. Ritoré and E. Vernadakis [34] and J.G. Pérez
[30] extended this characterization of large isoperimetric regions to Rie-
mannian products of (L, gL) with R

k for any k ≥ 1. The optimizers are
of the form D×L where D ⊂ R

k is a ball. M. Ritoré and E. Vernadakis
[33, 35] studied relative isoperimetric regions in convex regions that
are asymptotically conical, and in convex cylinders and cylindrically
bounded convex bodies.

A. Mondino and S. Nardulli [25] proved the existence of isoperi-
metric regions of all volumes in Riemannian manifolds that satisfy a
lower Ricci curvature bound and whose geometry at infinity is suitably
tame.
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2. Preliminary lemmas

Let (M,g) be a homogeneously regular Riemannian manifold of di-
mension m. Given V > 0 smaller than the volume of the manifold, we
let

A(V ) = inf

{
Hm−1

g (∂∗Ω) :
Ω ⊂M a bounded open
region with Lm

g (Ω) = V

}
.

A bounded open region Ω ⊂M with

Lm
g (Ω) = V and Hm−1

g (∂∗Ω) = A(V )

is called an isoperimetric region. The reduced boundary of an isoperi-
metric region is a regular hypersurface that is relatively open in its
closure and whose complement in its closure has Hausdorff dimension
at most m− 8 in (M,g).

The lemma below follows from the general existence result [29]. We
briefly sketch the proof, following the adaptation to the asymptotically
flat setting in [14, Proposition 4.2] and [15, Appendix E] of [32, Theo-
rem 2.1] and of [28, Theorems 2.1 and 2.2].

Lemma 16. Let (M,g) be an asymptotically conical Riemannian
manifold of dimension m. Let V > 0. There is ρ > 0 and an isoperi-
metric region Ω ⊂M such that the following hold:

(i) ωm−1ρ
m/m+ Lm

g (Ω) = V ;

(ii) ωm−1ρ
m−1 +Hm−1

g (∂∗Ω) = A(V ).

Proof. The idea is to consider a minimizing sequence {Ωi}
∞
i=1 for the

isoperimetric problem of volume V . Let

V0 = lim
r→∞

lim inf
i→∞

Lm
g (Ωi ∩Br).

Standard arguments from geometric measure theory show that there is
an isoperimetric region Ω in (M,g) of volume V0. Let ρ ≥ 0 be such
that

ωm−1ρ
m/m = V − V0.

Using cut and paste arguments we may replace the original minimizing
sequence for volume V by a sequence of the form {Ω ∪ Ri}

∞
i=1 where

Ri ⊂ M are regular regions of volume ωm−1ρ
m/m which diverge to

infinity. Using [28, Theorems 2.1 and 2.2] and a scaling argument, we
conclude that

lim
i→∞

Hm−1
g (∂Ri) = ωm−1ρ

m−1. q.e.d.

Lemma 17 ([28, Corollary 3.9]). Assume that the link (L, gL) sat-
isfies conditions (2) and (3). Let r > 0. The set (0, r) × L uniquely
minimizes perimeter for its volume in the cone (C, gC).
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J. Barbosa and M. do Carmo [1] classified closed volume-preserving
stable CMC immersions in Euclidean space; they are spheres. The
following lemma describes an extension of their result to the case where
the target manifold is a cone with non-negative Ricci curvature.

Lemma 18 (Essentially [28, Theorem 3.6]). Let (L, gL) be a con-
nected closed Riemannian manifold of dimension m− 1 such that

RicL > (m− 2)gL,(6)

on a dense set. Let

C = (0,∞)× L and gC = dr ⊗ dr + r2gL

be the cone on (L, gL). We consider an immersion of a connected
(m− 1)-dimensional manifold S without boundary into (C, gC ) with the
following properties:

(i) The immersion is complete away from the tip of the cone.
(ii) The immersion has finite area.
(iii) The immersion is two-sided.
(iv) The immersion has constant non-zero mean curvature.
(v) The immersion is volume-preserving stable in the sense that∫

S
|∇f |2 ≥

∫
S
(|h|2 +Ric(ν, ν))f2,

for all f ∈ C∞c (S) with ∫
S
f = 0.

Here, ν is a unit normal field along the immersion.

Such an immersion is a covering of {r} × L for some r > 0.

Proof. The proof is almost exactly the same as for embedded sur-
faces in [28, Theorem 3.6]. One uses volume-preserving variations ob-
tained from unit normal perturbation and homothetic rescaling to con-
clude from stability that the immersion is totally umbilical and that
Ric(ν, ν) = 0. The “logarithmic cut-off trick” is used to deal with the
cone point. For the characterization of totally umbilical immersions
in (C, gC ), we present an argument slightly different from [28, Lemma
3.8]. The discussion in Appendix A shows that the normal direction is
radial at points along the immersion where (6) is strict. Such points lie
dense in the open subset of S where the immersion is transverse to the
radial direction. Finally, note that the immersion cannot be everywhere
tangent to the radial direction since this would entail that its trace con-
tains an entire ray, implying that the immersion has infinite area by the
monotonicity formula. q.e.d.
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Lemma 19 (Essentially [36, Theorem 18]). Let (M,g) be a homo-
geneously regular Riemannian 3-manifold. Every immersed complete
volume-preserving stable CMC surface of sufficiently large mean curva-
ture is a perturbation of a geodesic sphere.

Lemma 20 (Essentially [13, Proposition 2.2]). Let (M,g) be a ho-
mogeneously regular Riemannian 3-manifold. For every α > 0 there
is β > 0 such that the principal curvatures of every immersed complete
volume-preserving stable CMC surface whose mean curvature is bounded
in absolute value by α are bounded by β.

Remark 21. The thresholds and estimates in Lemmas 19 and 20 only
depend on the injectivity radius and curvature bounds for the ambient
manifold (M,g).

Lemma 22 (Essentially [13, Proposition 2.3]). Let (M,g) be an
asymptotically conical Riemannian 3-manifold such that the expansion
(1) holds in C2. For every α > 0 and r0 > 0 there is β > 0 such that
for every connected complete volume-preserving stable CMC immersion
ϕ : Σ → (M,g) whose mean curvature is bounded in absolute value by
α and whose trace intersects Br0 we have the estimate

sup
x∈Σ

|ϕ(x)||h(x)| ≤ β.

Lemma 23 ([11, (4)]). Let (M,g) be a Riemannian 3-manifold.
Then ∫

Σ
H2 + 2|h|2 + 2(R ◦ ϕ) ≤ 64π,(7)

for every connected closed volume-preserving stable CMC immersion ϕ :
Σ→ (M,g). Here, R is the scalar curvature of (M,g) and H and h are,
respectively, the scalar mean curvature and the second fundamental form
of the immersion. The bound on the right hand side may be lowered to
48π when the genus of Σ is zero.

Lemma 24 (Essentially [23, (5.6), (5.7)]). Let (M,g) be an asymp-
totically conical Riemannian 3-manifold such that the expansion (1)
holds in C1 and such that

R ≥ −O(r−2−ε),

for some ε > 0 where R is the scalar curvature of (M,g). There exists
a constant γ > 0 such that ∫

Σ
|h|2 ≤ γ,

for every connected closed volume-preserving stable CMC surface Σ in
(M,g) provided that r(Σ) > 1 is sufficiently large.
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Remark 25. The assumption on the scalar curvature is satisfied
when KL > 1 and (1) holds in C2. Recall that KL is the Gaussian
curvature of the link. It is also satisfied when KL ≥ 1 and when

g = gC + o(r−ε),

in C2 as r →∞.

Remark 26. The arguments in [13] show that

r(Σ)→∞ as area(Σ)→∞,

when the scalar curvature of (M,g) is positive.

Proof. The vector field

r∂r ∈ X(C),

in (C, gC ) shares all the properties of the position vector field of Eu-
clidean space that are needed in the derivation of (5.6) in [23]. The
idea is then to combine (7) with the estimate

r(Σ)ε
∫
Σ
r−2−ε �

∫
Σ
H2,

which is valid provided that r(Σ) > 1 is sufficiently large. q.e.d.

Lemma 27 (Essentially [19] and [16]). Let (L, gL) be a 2-dimensional
Riemannian manifold with Gaussian curvature

KL ≥ 1.

Let (C, gC ) be the 3-dimensional Riemannian cone on (L, gL). Thus

C = (0,∞) × L and gC = dr ⊗ dr + r2gL.

Consider a stable minimal immersion of a connected two-dimensional
manifold S into (C, gC ) that is complete away from the tip of the cone.
Then S with its induced metric is conformally equivalent to either the
cylinder or the plane. Moreover, the immersion is totally geodesic and

Ric(ν, ν) = 0,

where Ric is the Ricci tensor of (C, gC ) and ν is a unit normal field
along the immersion.

Proof. The condition on the Gaussian curvature of the link (L, gL)
implies that

Ric ≥ 0.

Following an idea of R. Gulliver and B. Lawson [19], we consider the
conformally related cylindrical metric

g̃C = r−2gC = (d log r)2 + gC .
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The scalar curvature of g̃C is positive. Moreover, the immersion is com-
plete with respect to this metric. A computation using the stability of
the immersion with respect to gC , the Gauss equation, and the identity

∇(r∂r) = id,

in (C, gC ) leads to the estimate

−Δ̃− K̃ ≥ 0,

where Δ̃ and K̃ are the (non-positive) Laplace–Beltrami operator and
the Gaussian curvature of the immersion with respect to g̃C . The results
of D. Fischer-Colbrie and R. Schoen [16, Theorem 3] imply that S is
conformally equivalent to either the cylinder or the plane. Either way,
as in [16], we may find a sequence fj ∈ C∞c (S) that converges to 1
pointwise as j →∞ while their Dirichlet energies tend to 0. Using these
test functions in the stability inequality for the original immersion and
passing to the limit, we obtain that∫

S
|h|2 +Ric(ν, ν) ≤ 0. q.e.d.

The following result is an immediate consequence of the characteri-
zation of Ricci curvature bounds via optimal transport, cf. [24, 39, 40].
We include an elementary and essentially well-known proof for conve-
nient reference. We are grateful to A. Petrunin and G. Wei for valuable
discussions related to this result.

Lemma 28. Let g, g1, g2, . . . be Riemannian metrics on a manifold
M such that gi → g in C0. If each gi has non-negative Ricci curvature,
then so does g.

Proof. Fix p ∈M . By the Laplacian comparison theorem,

Δgi distgi(p, ·) ≤
m− 1

distgi(p, ·)

holds weakly on M \ {p} where m is the dimension of M . These in-
equalities pass to the limit

Δg distg(p, ·) ≤
m− 1

distg(p, ·)
,(8)

as i → ∞. Conversely, recall that Δg distg(p, ·) is the mean curvature
of the geodesic sphere Sr(p) for r > 0 sufficiently small. The expansion
of this mean curvature at q = exp r θ ∈ Sr(p) where θ is a unit tangent
vector at p is given by

m− 1

r
−

r

3
Ric(θ, θ) +O(r2),

as r↘ 0, cf. [37, p. 211]. It follows that Ric ≥ 0. q.e.d.
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3. Proofs

Proof of Theorem 1. We consider the continuously differentiable map
that takes a (small) function u ∈ C2,α(L) to the mean curvature

H(g, u) ∈ C0,α(L),

of the graph

{(1 + u(x), x) : x ∈ L} ⊂ (0,∞)× L,

with respect to a C2,α metric g on (0,∞)×L. The (partial) linearization
of this operator at the metric g = dr⊗dr+gL and at u = 0 with respect
to u is the linear map C2,α(L)→ C0,α(L) given by

v �→ −ΔLv − (m− 1)v.

This operator is invertible. In fact, its lowest eigenvalue is −(m − 1)
with eigenspace given by the constant functions. The next eigenvalue is

λ1(−ΔL)− (m− 1) > 0.

By the implicit function theorem, there is σ > 0 so that for all g close
to gC and constant functions H close to (m − 1), the prescribed mean
curvature equation

H(g, u) = H(9)

has a unique solution u ∈ C2,α(L) with ||u||2,α < σ. Let H1,H2 be two
constant functions with H2 < H1 that are close to (m−1) and let u1, u2
be the corresponding solutions of (9). Standard analysis of the linear
equation satisfied by their difference u2 − u1 gives that

u1 < u2.

Conversely, by the maximum principle and standard estimates (e.g., [17,
Corollary 16.7]), there is δ > 0 such that every solution u ∈ C2,α(L) of

H(g, u) = constant,

with |u| < δ and g sufficiently close to gC satisfies

||u||2,α < σ.

The theorem follows from this and a scaling argument. q.e.d.

Proof of Theorem 3. Let Vi →∞. Using Lemma 16, we find ρi > 0 and
Ωi ⊂M isoperimetric such that

ωm−1ρ
m
i /m+ Lm

g (Ωi) = Vi

and

ωm−1ρ
m−1
i +Hm−1

g (∂∗Ωi) = A(Vi).

We may think of Ωi \ B2 as a region in (1,∞) × L ⊂ C. We take the
union of Ωi with B2 and a far out geodesic ball of volume ωm−1ρ

m
i /m
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to account for the stray volume. Upon scaling down homothetically by
a factor close to

ri = ((mVi)/area(L, gL))
1/m,

we obtain a minimizing sequence Ω̃i in (C, gC ) for the isoperimetric
problem of volume

area(L, gL)/m.

By Lemma 17, the unique solution of this problem is given by (0, 1) ×
L. It follows that the stray volumes ωm−1ρ

m
i /m are negligible when

compared to Vi as i→∞, i.e., that

ρi � ri.(10)

Standard compactness arguments for isoperimetric boundaries show that
the reduced boundaries of the regions Ω̃i converge to the cross-section

{1} × L,

locally as measures in C. Allard’s regularity theorem shows that this
convergence is in fact in C1,α. A hole filling argument as in [14, p.

175] gives that Ω̃i has no other boundary than that near {1} × L for
i sufficiently large. These results can now be lifted to Ωi. Finally, if
ρi > 0 for large i, an argument using the first variation of area shows
that the mean curvature of ∂Ωi ∼ (m − 1)/ri is equal to (m − 1)/ρi.
This contradicts (10). q.e.d.

Proof of Theorem 6. Let Σk be a connected closed volume-preserving
stable CMC surface in (M,g) with r(Σk) ≥ k. We homothetically
rescale

Σk \ B̄2 to Sk

and

(M \ B̄2
∼= (2,∞) × L, g) to (Mk

∼= (2/r(Σk),∞)× L, gk),

so that
r(Sk) = 1,

in (Mk, gk). Note that

(Mk, gk)→ (C, gC ),

locally in C2,α. The maximum principle shows that

Hk ≥ 2− o(1),

as k → ∞ where Hk is the mean curvature of Sk in (Mk, gk). The
estimate ∫

Sk

|hk|
2 ≤ γ(11)

follows from scaling and Lemma 24. Using also the lower bound on
the mean curvature, we see that the area of Sk is a priori bounded.
There is β > 0 depending only on (C, gC) such that if Hk > β and k
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is sufficiently large, then Sk is close to a geodesic coordinate sphere in
(C, gC ) by Lemma 19 (or rather its proof). Assume that Hk ≤ β for all
large k. By Lemma 22, we have bounds

sup
k≥1

sup
x∈Sk

|x||hk(x)| <∞,

for the second fundamental form. Using the geometric version of the
Arzelà–Ascoli theorem, we may extract a subsequential limit immersion
S of Sk in (C, gC) that satisfies the conditions of Lemma 18. The trace
of this immersion is equal to {1}×L. It follows that Σk is close in scale
to a centered sphere in (M,g) for all k sufficiently large. The assertion
follows from the uniqueness part of Theorem 1. q.e.d.

Proof of Theorem 9. We argue by contradiction. Let Σ be as in the
statement of the theorem. We may assume that Σ is connected. As in
the proof of Theorem 6 above, we homothetically rescale with respect to
points whose images in M diverge and then pass to a non-trivial stable
minimal limiting immersion ϕ : S → (C, gC ) that is complete away from
the tip of the cone. Lemma 27 implies that the Ricci tensor of (C, gC )
vanishes in the normal direction along this immersion. Using this, our
assumption that KL > 1, and the discussion in Appendix A, we see ν is
radial. Hence the trace of the limiting immersion must be a slice in the
cone. This contradicts the minimality of the limiting immersion. q.e.d.

Proof of Theorem 13. By Lemma 28, the asymptotic cone (C, gC) of
(M,g) has non-negative Ricci curvature. This is equivalent to the es-
timate RicL ≥ (m − 2)gL for the link (L, gL) of (C, gC ). By Bishop’s
theorem, area (L, gL) ≤ ωm−1 with equality only for the unit sphere.
The characterization of isoperimetric regions of (C, gC) in Lemma 17
gives that

ciso(C, gC) = area(L, gL)/ωm−1.

In fact, the infimum in (4) is achieved by slabs (0, r)×L for every r > 0.
Together with a comparison argument for slabs of large volume, we
obtain that ciso(M,g) ≤ ciso(C, gC ). Assume now that ciso(M,g) = 1.
It follows that (L, gL) is the unit sphere so that (M,g) is asymptotically
flat. A standard application of Bishop’s theorem gives that (M,g) is
isometric to Euclidean space. q.e.d.

Appendix A. Geometry of cones

Let (L, gL) be an (m − 1)-dimensional Riemannian manifold. We
consider the Riemannian cone (C, gC ) where

C = (0,∞)× L and gC = dr ⊗ dr + r2gC .

For every r > 0, the slice

{r} × L
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is umbilical with constant mean curvature (m− 1)/r. We have that

∇Y (r∂r) = Y,

for all Y ∈ X(C) where ∇ is the Levi-Civita connection of (C, gC ). We
have that

RicC(∂r, ∂r) = 0,

RicC(∂r,X) = 0,

RicC(X,X) = (RicL−(m− 2)gL)(X,X),

for all X ∈ X(C) that are tangent to L. The condition

RicL ≥ (m− 2)gL,(12)

on the link implies that (C, gC) has non-negative Ricci curvature, and
conversely. At points where (12) is strict, the radial direction is the
unique eigendirection of the Ricci tensor of (C, gC ) with vanishing eigen-
value.

Appendix B. A remark on conditions (2) and (3)

In this section, we observe that Theorem 3 holds in a much broader
class of cones than just those whose link (L, gL) satisfies (2) and (3).
To this end, we define the isoperimetric profile of a closed (m − 1)-
dimensional Riemannian manifold (L, gL) as follows. Given β ∈ (0, 1),
we let

I(L,gL)(β) = inf

{
Hm−2

gL (∂∗Ω)

Lm−1
gL (L)

:
Ω open with finite perimeter
and Lm−1

gL (Ω) = βLm−1
gL (L)

}
.

Note that I(L,gL) is symmetric with respect to 1/2. It is convenient to
set I(L,gL)(0) = I(L,gL)(1) = 0.

Lemma 29 (Levy–Gromov [18, p. 518]). Let (L, gL) be a closed
Riemannian manifold of dimension m− 1. If

RicL ≥ (m− 2)gL

and (L, gL) is not the unit sphere, then

I(L,gL)(β) > I(Sm−1,g
Sm−1)(β),

for all β ∈ (0, 1).

As such, the condition

(13) I(L,gL)(β) > I(Sm−1,g
Sm−1)(β) for all β ∈ (0, 1)

is a generalization of conditions (2) and (3).
Note that

I(L,ρ2gL)(β) = ρ−1I(L,gL)(β),
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for every ρ > 0. Recall that up to fudge factors, the Euclidean isoperi-
metric inequality holds for small volumes in every homogeneously reg-
ular Riemannian manifold. It follows that there exists ρ0 = ρ0(L) > 0
so that

(L, ρ2gL)

satisfies (13) for all ρ ∈ (0, ρ0). The analogous statement for conditions
(2) and (3) clearly fails. An estimate for the largest possible ρ0 is given
in terms of a (possibly negative) lower bound for the Ricci curvature
and the diameter of (L, gL) in [2].

In the following lemma, we record the observation of F. Morgan [26,
Section 3.2] that the isoperimetric product theorem [36, Proposition 8]
of A. Ros also holds in warped products.

Lemma 30 ([26, 36]). Suppose that (13) holds and let r > 0. Then
(0, r) × L is the unique isoperimetric region of its volume in the cone
(C, gC ) with link (L, gL).

The following generalization of A. Lichnerowicz’ eigenvalue estimate
is due to P. Bérard and D. Meyer [3].

Lemma 31 ([3]). If (13) holds, then λ1(L, gL) > m− 1.

From this, it is easy to see that in Theorem 3 conditions (2) and (3)
may be replaced by (13).
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