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TWO CLOSED GEODESICS ON COMPACT
SIMPLY CONNECTED BUMPY FINSLER MANIFOLDS

Huagui Duan, Yiming Long & Wei Wang

Abstract

We prove the existence of at least two distinct closed geodesics
on a compact simply connected manifold M with a bumpy and
irreversible Finsler metric, when H∗(M ;Q) ∼= Td,h+1(x) for some
integer h ≥ 2 and even integer d ≥ 2. Consequently, together with
earlier results on Sn, it implies the existence of at least two distinct
closed geodesics on every compact simply connected manifold M
with a bumpy irreversible Finsler metric.

1. Introduction and main results

A famous long-standing conjecture in Riemannian geometry that
claims the existence of infinitely many distinct closed geodesics on ev-
ery compact Riemannian manifold is still open, although it has been
proved for many cases. It was quite surprising when A. Katok [Kat]
in 1973 constructed irreversible Finsler metrics on spheres with only
finitely many closed geodesics and that all these closed geodesics were
non-degenerate. This paper is devoted to finding a lower bound on the
number of closed geodesics on compact simply connected bumpy Finsler
manifolds.

A closed curve on a Finsler manifold is a closed geodesic if it is locally
the shortest path connecting any two nearby points on this curve (cf.
[She]). As usual, on a Finsler manifold (M,F ), the mth iterate cm of
a closed curve c : S1 = R/Z → M is defined by cm(t) = c(mt). A
closed geodesic c is prime if it is not a multiple covering (i.e., iterate)
of any other closed geodesics. The inverse curve c−1 of c is defined by
c−1(t) = c(1 − t) for t ∈ R. Note that unlike the case of a Riemannian
manifold, the inverse curve c−1 of a closed geodesic c on a irreversible
Finsler manifold needs not be a geodesic. We call two prime closed
geodesics c and d distinct if there is no θ ∈ (0, 1) such that c(t) = d(t+θ)
for all t ∈ R. We shall omit the word distinct when we talk about more
than one prime closed geodesic. On a reversible Finsler (or Riemannian)
manifold, two closed geodesics c and d are called geometrically distinct if
c(S1) �= d(S1) in M . For a closed geodesic c on (M,F ) with n = dimM ,
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denote by Pc the linearized Poincaré map of c. Then Pc ∈ Sp(2n − 2)
is symplectic. A closed geodesic c is called non-degenerate if 1 is not an
eigenvalue of Pc. A Finsler manifold (M,F ) is called bumpy if all the
closed geodesics on M are non-degenerate. Note that bumpy Finsler
metrics are generic in the set of Finsler metrics.

For surveys on closed geodesics on Riemannian and Finsler manifolds,
we refer to Bangert [Ban] and Long [Lon4] (see also [Ano]). Note that
by the classical theorem of Lyusternik and Fet [LyF] in 1951, there ex-
ists at least one closed geodesic on every compact Riemannian manifold.
Their proof is variational and works also for the Finsler manifolds. Later
proofs of this existence result can be found in [Ban] in German as well
as [Kli] and [Jos] in English. Besides other papers, in [Rad1], [Rad2],
and [Rad3], Rademacher studied the existence and stability of closed
geodesics on Finsler manifolds. Bangert and Long proved in 2005 the ex-
istence of at least two distinct closed geodesics on every Finsler 2-sphere
(S2, F ), which was published in 2010 [BaL] (cf. [Lon4] from 2006). Then
in Duan and Long [DuL1] and Rademacher [Rad4], the existence of at
least two distinct closed geodesics on every bumpy n-sphere was proved
independently. In [Rad5], Rademacher further proved there exist two
prime closed geodesics on any CP2 with a bumpy irreversible Finsler
metric. Related more recent results can be found in [LoW], [Wan], and
[HiR].

Note that for compact simply connected bumpy reversible Finsler
manifolds, Fet proved [Fet] in 1965 the existence of at least two distinct
closed geodesics. Our aim in this paper is to prove such a theorem for
these manifolds with bumpy irreversible Finsler metrics.

Theorem 1.1. There exist at least two closed geodesics on every
compact simply connected manifold M with a bumpy irreversible Finsler
metric F satisfying H∗(M ;Q) ∼= Td,h+1(x) for some integer h ≥ 2 and
even integer d ≥ 2.

For a compact simply connected Finsler manifold (M,F ), if the main
theorem in [GrM] is applicable (i.e., the Betti number sequence of
the free loop space ΛM of M is unbounded) then there exist infin-
itely many distinct closed geodesics on M . If this sequence is bounded,
then H∗(M ;Q) ∼= Td,h+1(x) holds for some integers h ≥ 1 and d ≥ 2 by
[ViS]. In this case, when d is odd, then x2 = 0 and h = 1 in Td,h+1(x).

Thus M is rationally homotopy equivalent to Sd (see [Rad1, Remark
2.5] and [Hin]). Note also that M is rationally homotopic to Sd for all
d ≥ 2 when h = 1.

Notice that the monotonicity of iterated Morse indices of closed geo-
desics has played an important and crucial role in some works on closed
geodesic problems (see [DuL1], [Rad4], and [Wan]). For example,
Rademacher [Rad4] and Wang [Wan] have used the monotonicity and
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the common index jump theorem obtained in [LoZ] to get some multi-
plicity results on Finsler spheres.

However, the monotonicity may no longer hold in general because
of smaller initial Morse index i(c) (see Lemma 3.1, below) when one
considers closed geodesics on a compact simply connected manifold M
with H∗(M ;Q) ∼= Td,h+1(x) for some integer h ≥ 2 and even integer
d ≥ 2. In this paper, the main novelty is to deal with the difficulty of
lack of index growth monotonicity.

Indeed, in the proof of Theorem 1.1, we assume that there exists
only one prime closed geodesic on such a manifold. On one hand, if a
compact simply connected manifold has a bumpy metric and only one
closed geodesic, the energy is a perfect equivariant Morse function, and
the homology has one generator for each SO(2) orbit of closed geodesics
that satisfies an orientability condition. Moreover, the dimensions in
which non-zero homology appears all have the same parity. So the Morse
inequalities become the equalities (see Lemma 3.2, below). This idea has
been used more or less in [DuL1], [Rad4], [Rad5], and [Wan]. On the
other hand, in order to investigate the question of whether or not it is
possible for the index of the iterates of a single closed geodesic to occur
in the sequence of the free loop space, we use the quasi-monotonicity
of index growth for closed geodesics proved in [DuL2] to truncate the
Morse series, and use the mean index equality of Rademacher to get
a contradiction to the Morse inequality. Such ideas are used by the
first two authors in their recent study (see, for example, [LoD] and
[DuL2]) on the multiplicity of closed geodesics, and the current paper
can be viewed as a simplified model of such a study that turns out to
be perfect.

Now, together with results in [DuL1] and [Rad4], Theorem 1.1 yields
the following corollary.

Corollary 1.2. There exist always at least two closed geodesics on
every compact simply connected bumpy irreversible Finsler manifold
(M,F ).

Remark 1.3. When one considers any closed geodesic c on a com-
pact manifold with a reversible Finsler metric, its inverse curve c−1 has
the same energy and plays the same role in the variational setting of
the energy functional E on ΛM as c. Specially, the mth iterates cm and
c−m of a closed geodesic c and its inverse curve c−1 have precisely the
same Morse indices, nullities, and critical modules. When the metric is
bumpy, the Morse-type number sequence and Betti number sequence are
lacunary, and thus no cancelation in homologies. Thus if we assume that
there exists only one prime closed geodesic on a compact simply con-
nected bumpy reversible Finsler manifold, then all Morse-type numbers
defined in (3.1), below, are even. But the first non-zero Betti number
bd−1 is 1 (cf. [Rad1, Theorem 2.4 and Remark 2.5] and [DuL2, Lemma
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2.5]). This yields a contradiction to the Morse theory (cf. Lemma 3.2
below). This gives a different and simpler proof of Fet’s theorem [Fet],
i.e., Corollary 1.2 holds in the case of such reversible Finsler manifolds
too.

In this paper, let N, N0, Z, Q, and R denote the sets of natu-
ral integers, non-negative integers, integers, rational numbers, and real
numbers respectively. We use only singular homology modules with Q-
coefficients. We use also notations [a] = max{k ∈ Z | k ≤ a}, E(a) =
min{k ∈ Z | k ≥ a}, ϕ(a) = E(a)− [a], and {a} = a− [a] for any a ∈ R.
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sity. The second author is partially supported by NSFC (No.11131004),
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authors sincerely thank the referees for their careful reading, valuable
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2. Preliminary results on closed geodesics

2.1. Critical modules of iterations of closed geodesics. Let M =
(M,F ) be a compact Finsler manifold. The space Λ = ΛM of H1-maps
γ : S1 → M has a natural structure of Riemannian Hilbert manifolds
on which the group S1 = R/Z acts continuously by isometries. This
action is defined by (s · γ)(t) = γ(t+ s) for all γ ∈ Λ and s, t ∈ S1. For
any γ ∈ Λ, the energy functional is defined by

(2.1) E(γ) =
1

2

∫
S1

F (γ(t), γ̇(t))2dt.

It is C1,1 and invariant under the S1-action. The critical points of E
of positive energies are precisely the closed geodesics γ : S1 → M . The
index form of the functional E is well defined along any closed geodesic
c on M , which we denote by E′′(c). As usual, we denote by i(c) and
ν(c) the Morse index and nullity of E at c. In the text below, we use
the following notation:

(2.2) Λκ = {d ∈ Λ | E(d) ≤ κ}, Λκ− = {d ∈ Λ | E(d) < κ}, ∀κ ≥ 0.

For a closed geodesic c, we set Λ(c) = {γ ∈ Λ | E(γ) < E(c)}.

For a closed geodesic c, the mean index î(c) is defined as usual by

î(c) = limm→∞ i(cm)/m. Using singular homology with rational coeffi-
cients, we consider the following critical Q-module of a closed geodesic
c ∈ Λ:

(2.3) C∗(E, c) = H∗
(
(Λ(c) ∪ S1 · c)/S1,Λ(c)/S1

)
.
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Proposition 2.1. (cf. [Rad2, Satz 6.11]) Let c be a prime closed
geodesic on a bumpy Finsler manifold (M,F ). Then there holds

Cq(E, cm) =

{
Q, if i(cm)− i(c) ∈ 2Z and q = i(cm),
0, otherwise .

Definition 2.2. (cf. [Rad1, Definition 1.6]) For a closed geodesic c,
let γc ∈ {±

1
2 ,±1} be the invariant defined by γc > 0 if and only if i(c)

is even, and |γc| = 1 if and only if i(c2)− i(c) is even.

Proposition 2.3. (cf. [Rad1, Theorem 3.1] and [Rad2, Satz 7.9])
Let (M,F ) be a compact simply connected bumpy Finsler manifold with
H∗(M,Q) = Td,h+1(x). Denote prime closed geodesics on (M,F ) with
positive mean indices by {cj}1≤j≤q for some q ∈ N. Then the identity

(2.4)

q∑
j=1

γcj

î(cj)
= B(d, h) =

{
− h(h+1)d

2d(h+1)−4 , d is even,
d+1
2d−2 , d is odd ,

holds, where dimM = hd, h = 1 when M is a sphere Sd of dimension d.

2.2. The structure of H∗(ΛM/S1,Λ0M/S1;Q). Set Λ
0
= Λ

0
M =

{constant point curves in M} ∼= M . Let (X,Y ) be a space pair such
that the Betti numbers bi = bi(X,Y ) = dimHi(X,Y ;Q) are finite for
all i ∈ Z. As usual, the Poincaré series of (X,Y ) is defined by the formal
power series P (X,Y ) =

∑∞
i=0 bit

i. As discussed before Corollary 1.2, in
the following we consider only the case when d ≥ 2 is even and h ≥ 2.

Lemma 2.4. (cf. [Rad1, Theorem 2.4] and [DuL2, Lemma 2.6]) Let
M be a compact simply connected manifold with H∗(M ;Q) ∼= Td,h+1(x)
for some integer h ≥ 2 and even integer d ≥ 2. Let D = d(h + 1) − 2
and

Ω(d, h) = {k ∈ 2N− 1 | iD ≤ k − (d− 1) = iD + jd ≤ iD + (h− 1)d

for some i ∈ N and j ∈ [1, h− 1]}.(2.5)

Then the Betti numbers of the free loop space of M defined by bq =
rankHq(ΛM/S1,Λ0M/S1;Q) for q ∈ Z are given by

(2.6) bq =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if q is even or q ≤ d− 2,

[ q−(d−1)
d

] + 1, if q ∈ 2N− 1
and d− 1 ≤ q < d− 1 + (h− 1)d,

h+ 1, if q ∈ Ω(d, h),
h, otherwise.

In particular, for every integer l ≥ d− 1+ (h− 1)d = hd− 1, we have

l∑
q=0

bq < h(
D

2
+ 1)

l − (d− 1)

D
−

h(h− 1)d

4
+ 2.(2.7)
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2.3. Morse indices of closed geodesics. In [Lon1], from 1999, Long
established the basic normal form decomposition of symplectic matrices.
Based on this result, he further established the precise iteration formulae
of indices of symplectic paths in [Lon2], from 2000.

As in [Lon2], we denote the following:

N1(λ, a) =

(
λ a
0 λ

)
, for λ = ±1, a ∈ R,(2.8)

H(b) =

(
b 0
0 b−1

)
, for b ∈ R \ {0,±1},(2.9)

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, for θ ∈ (0, π) ∪ (π, 2π),(2.10)

N2(e
θ
√−1, B) =

(
R(θ) B
0 R(θ)

)
, for θ ∈ (0, π) ∪ (π, 2π) and

B =

(
b1 b2
b3 b4

)
with bj ∈ R, and b2 �= b3.(2.11)

Here N2(e
θ
√−1, B) is non-trivial if (b2 − b3) sin θ < 0, and trivial if

(b2 − b3) sin θ > 0.
As in [Lon2], the 
-sum (direct sum) of any two real matrices is

defined by

(
A1 B1

C1 D1

)
2i×2i




(
A2 B2

C2 D2

)
2j×2j

=

⎛
⎜⎜⎝

A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

⎞
⎟⎟⎠ .

For every P ∈ Sp(2d), the homotopy set Ω(P ) of P in Sp(2d) is
defined by

Ω(P ) = {N ∈ Sp(2d) |σ(N) ∩U = σ(P ) ∩U ≡ Γ,

and νω(N) = νω(P ), ∀ω ∈ Γ},

where σ(P ) denotes the spectrum of P , νω(P ) ≡ dimC kerC(P −ωI) for
ω ∈ U. The homotopy component Ω0(P ) of P in Sp(2d) is defined by the
path-connected component of Ω(P ) containing P . Then the following
decomposition theorem is proved in [Lon1] and [Lon2].

Theorem 2.5. (cf. [Lon1, Theorem 7.8], [Lon2, Theorems 1.2 and
1.3]; see also [Lon3, Theorem 1.8.10, Lemma 2.3.5, Theorem 8.3.1]) For
every P ∈ Sp(2n), there exists a continuous path f ∈ Ω0(P ) such that
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f(0) = P and

f(1) = N1(1, 1)
�p− 
 I2p0 
N1(1,−1)

�p+


N1(−1, 1)
�q− 
 (−I2q0) 
N1(−1,−1)

�q+


N2(e
α1

√−1, A1) 
 · · · 
N2(e
αr∗

√−1, Ar∗)


N2(e
β1

√−1, B1) 
 · · · 
N2(e
βr0

√−1, Br0)


R(θ1) 
 · · · 
R(θk) 
R(θk+1) 
 · · · 
R(θr)
H(2)�h,(2.12)

where
θj
2π �∈ Q∩(0, 1) for 1 ≤ j ≤ k and

θj
2π ∈ Q∩(0, 1) for k+1 ≤ j ≤ r;

N2(e
αj

√−1, Aj)’s are non-trivial and N2(e
βj

√−1, Bj)’s are trivial; and
non-negative integers p−, p0, p+, q−, q0, q+, r, r∗, r0, h satisfy

(2.13) p− + p0 + p+ + q− + q0 + q+ + r + 2r∗ + 2r0 + h = n.

Let γ ∈ Pτ (2n) = {γ ∈ C([0, τ ],Sp(2n)) | γ(0) = I}. Denote the basic
normal form decomposition of P ≡ γ(τ) by (2.13). Then we have

i(γm) = m(i(γ) + p− + p0 − r) + 2
r∑

j=1

E

(
mθj
2π

)
− r

−p− − p0 −
1 + (−1)m

2
(q0 + q+) + 2

r∗∑
j=1

ϕ
(mαj

2π

)
− 2r∗.(2.14)

By [Liu] and [LiL], these results can be applied to closed geodesic
problems.

Theorem 2.6. (cf. [DuL2, Theorem 3.21, Corollary 3.24]) Let c be a

orientable closed geodesic with mean index î(c) > 0 on a bumpy Finsler
manifold (M,F ). Denote the basic normal form decomposition of the
linearized Poincaré map Pc of c by (2.13). Then there exist an integer
A with [(k + 1)/2] ≤ A ≤ k and a subset P of integers {1, . . . , k} with
A integers such that for any ε ∈ (0, 1/4) there exists an arbitrarily large
even integer T that can be chosen to be the multiple of any fixed integer
satisfying {

Tθj
2π

}
> 1− ε, for j ∈ P,(2.15) {

Tθj
2π

}
< ε, for j ∈ {1, . . . , k} \ P.(2.16)

Consequently, we have

i(cm) ≥ i(cT ) + i(c) + (2A − k), ∀m ≥ T + 1,(2.17)

i(cm) ≤ i(cT )− i(c) + (2A − k), ∀ 1 ≤ m ≤ T − 1.(2.18)
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3. Proof of main theorem

By the discussion before Corollary 1.2 in Section 1, we consider only
the multiplicity problem on a compact simply connected bumpy Finsler
manifold (M,F ) satisfying H∗(M ;Q) ∼= Td,h+1(x) for h ≥ 2 and even
d ≥ 2. We shall prove Theorem 1.1 by contradiction. Thus we assume
the following condition holds:

(OSCG). there exists only one prime closed geodesic c on the man-
ifold (M,F ).

Note that by the Morse theory and (2.6) of Lemma 2.4, in order to
generate the non-trivial Betti number bd−1 = 1, the initial Morse index
of this closed geodesic c must be d− 1. That is,

Lemma 3.1. Under the condition (OSCG), there holds i(c) = d−1 ∈
2N− 1.

Now under the condition (OSCG), we define

(3.1) mq = #{m ≥ 1 | Cq(E, cm) �= 0}, ∀ q ∈ Z.

Note that since (M,F ) is bumpy, by Proposition 2.1 we have i(cm) = q
whenever Cq(E, cm) �= 0.

Then we have the following lemma.

Lemma 3.2. Under the condition (OSCG), there hold

(3.2) m2q+1 = b2q+1, m2q = b2q = 0, ∀ q ∈ Z.

Proof. Under the condition (OSCG), as usual we define the Morse-
type numbers by

Mq =
∑
m≥1

dimCq(E, cm), ∀q ∈ N0.

By Proposition 2.1, we have dimCq(E, cm) = 1 when Cq(E, cm) �= 0.
Therefore, Mq = mq holds for all q ∈ Z.

By Lemma 3.1, we have i(c) = d − 1 ∈ 2N − 1. Thus Cq(E, cm) = 0
when i(cm) is even by Proposition 2.1. This implies m2q = 0 for all
q ∈ N0. Then, by (2.6) of Lemma 2.4, it yields M2q = b2q = 0 for all
q ∈ N0. Then (3.2) obviously follows from the Morse inequalities

(3.3) Mq−Mq−1+ · · ·+(−1)qM0 ≥ bq−bq−1+ · · ·+(−1)qb0, ∀ q ∈ N0,

and the proof is complete. q.e.d.

Proof of Theorem 1.1. Since the Finsler metric F is bumpy, the decom-
position in Theorem 2.5 of the linearized Poincaré map has the following
form:

fc(1) = R(θ1) 
 · · · 
R(θk) 
H(2)�h


N2(e
α1

√−1, A1) 
 · · · 
N2(e
αk∗

√−1, Ak∗)


N2(e
β1

√−1, B1) 
 · · · 
N2(e
βk0

√−1, Bk0),
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where
θj
2π �∈ Q for 1 ≤ j ≤ k;

αj

2π �∈ Q for 1 ≤ j ≤ k∗;
βj

2π �∈ Q for
1 ≤ j ≤ k0 and

(3.4) k + h+ 2k∗ + 2k0 = dh− 1,

where we have used the fact p− = p0 = q0 = q+ = 0 in (2.14). Using the
bumpy assumption, Theorems 8.2.3 and 8.2.4 of [Lon3], and Lemma
3.1, as further studied in Section 4 of [DuL1], we then obtain

(3.5) i(cm) = m(d−1−k)+2

k∑
j=1

[
mθj
2π

]
+k, ν(cm) = 0, ∀m ≥ 1,

where we used the fact that ϕ(a) = 1 if a /∈ Z.
Next, we carry out our proofs in three cases according to the parity

of k and the case of k = 0.

Case 1. k = dh− 1− (h− + h+ + 2k∗ + 2k0) ∈ 2N− 1.

In this case, i(cm) is odd and i(cm) − i(c) is even for any m ∈ N
by (3.5). Thus by Definition 2.2 we get γc = −1, which, together with
Proposition 2.3, yields

−
1

î(c)
= B(d, h) = −

h(h + 1)d

2d(h+ 1)− 4
.

Thus by (3.5) we obtain

(3.6) d− 1− k +

k∑
i=1

θi
π

= î(c) =
2d(h+ 1)− 4

h(h + 1)d
.

So in this case, we have

i(c) = d− 1,

mî(c) = (d− 1− k)m+ 2

k∑
i=1

mθi
2π

=
2(dh+ d− 2)m

h(h + 1)d
, ∀ m ≥ 1.(3.7)

Claim 1. There exist an integer A with [k+1
2 ] ≤ A ≤ k and a subset

P of integers {1, . . . , k} with A integers such that there exist infinitely
many arbitrarily large integers T ∈ h(h+ 1)dN satisfying

i(cT ) =
2(dh + d− 2)T

h(h+ 1)d
− (2A− k).(3.8)

In fact, by Theorem 2.6 (cf. [DuL2, Corollary 3.19]), there exist an
integer A with [k+1

2 ] ≤ A ≤ k and a subset P of integers {1, . . . , k}
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with A integers such that for any ε ∈ (0, 1
2k ) there exist infinitely many

arbitrarily large integers T ∈ h(h+ 1)dN so that{
Tθj
2π

}
> 1− ε > 1−

1

2k
, for j ∈ P,(3.9) {

Tθj
2π

}
< ε <

1

2k
, for j ∈ {1, . . . , k} \ P.(3.10)

By (3.7), the choice of T , and the irrationality of all
Tθj
2π ’s, 1 ≤ j ≤ k,

we get

0 < 2
k∑

i=1

{
Tθi
2π

}
=

2(dh + d− 2)T

h(h+ 1)d
− (d− 1− k)T − 2

k∑
i=1

[
Tθi
2π

]

∈ N ∩ [1, 2k].(3.11)

On the other hand, by (3.9) and (3.10) it yields A(1 − 1
2k ) <∑A

i=1

{
Tθi
2π

}
< A and 0 <

∑k
i=A+1

{
Tθi
2π

}
< k−A

2k . Thus we obtain

2
k∑

i=1

{
Tθi
2π

}
= 2

A∑
i=1

{
Tθi
2π

}
+ 2

k∑
i=A+1

{
Tθi
2π

}

∈

(
2A−

A

k
, 2A+ 1−

A

k

)
⊂ (2A− 1, 2A + 1).(3.12)

Thus by (3.11) and (3.12) it yields 2
∑k

i=1

{
Tθi
2π

}
= 2A. Then by (3.5)

and (3.7) we obtain

i(cT ) = (d− 1− k)T + 2
k∑

i=1

[
Tθi
2π

]
+ k

= (d− 1− k)T + 2
k∑

i=1

Tθi
2π

− 2
k∑

i=1

{
Tθi
2π

}
+ k

=
2(dh + d− 2)T

h(h+ 1)d
− 2A+ k.(3.13)

This completes the proof of Claim 1.

Then Theorem 2.6 and Claim 1 yield

i(cm) ≥ i(cT ) + i(c) + 2A− k

=
2(dh + d− 2)T

h(h+ 1)d
+ (d− 1), ∀m ≥ T + 1,(3.14)

i(cm) ≤ i(cT )− i(c) + 2A− k

=
2(dh + d− 2)T

h(h+ 1)d
− (d− 1), ∀ 1 ≤ m ≤ T − 1.(3.15)
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Set T̂ = 2(dh+d−2)T
h(h+1)d . Then T̂ ∈ 2N may be arbitrarily large by the

choice of T in Claim 1, and then T̂ − (d− 1) is odd.
Now by (3.14) and Proposition 2.1, all iterates cm with m ≥ T + 1

have no contribution to the sum
∑T̂−(d−1)

q=0 mq. On the other hand, note

that all iterated indices in Case 1 are odd. So by (3.15) and Proposition
2.1, each iterate cm with 1 ≤ m ≤ T − 1 contributes precisely 1 to the

sum
∑T̂−(d−1)

q=0 mq. Finally, by Claim 1, it is possible that the iterate cT

contributes either 1 or 0 to this sum depending on whether the value of
i(cT ) is less than or equal to T̂ − (d− 1). Therefore, in Case 1 we have

(3.16)

T̂−(d−1)∑
q=0

mq ∈ {T, T − 1}.

On the other hand, by (2.7) of Lemma 2.4 with even d ≥ 2 and
D = d(h+ 1)− 2, we obtain

T̂−(d−1)∑
q=0

bq < h(
D

2
+ 1)

T̂ − 2(d − 1)

D
−

h(h − 1)d

4
+ 2.(3.17)

Therefore, by (3.2), (3.16), and (3.17) we have

T − 1 ≤

T̂−(d−1)∑
q=0

mq =

T̂−(d−1)∑
q=0

bq

< h(
D

2
+ 1)

T̂ − 2(d− 1)

D
−

h(h − 1)d

4
+ 2

=
h(D + 2)

2D
T̂ −

h(D + 2)(d− 1)

D
−

h(h − 1)d

4
+ 2

= T − h(d− 1)−
2h(d − 1)

D
−

(h− 1)hd

4
+ 2.(3.18)

Notice that h ≥ 2, d ≥ 2, and D = d(h+ 1)− 2 > 0. So we have

(3.19) h(d− 1) ≥ 2,
2h(d − 1)

D
> 0,

(h− 1)hd

4
≥ 1.

Now we obtain a contradiction by (3.18) and (3.19), and this completes
the proof of Theorem 1.1 in Case 1.

Case 2. k = dh− 1− (h− + h+ + 2k∗ + 2k0) ∈ 2N.

In this case, i(cm)−i(c) is odd for m ∈ 2N and is even for m ∈ 2N−1
by (3.5) and i(c) = d − 1 ∈ 2N − 1. Thus by Definition 2.2 we get
γc = −

1
2 , which, together with Proposition 2.3, yields

−
1

2̂i(c)
= B(d, h) = −

h(h+ 1)d

2d(h+ 1)− 4
.
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Thus by (3.5) we obtain

(3.20) d− 1− k +

k∑
i=1

θi
π

= î(c) =
d(h + 1)− 2

h(h + 1)d
.

So in this case, we have

i(c) = d− 1,

mî(c) = (d− 1− k)m+ 2
k∑

i=1

mθi
2π

=
(dh + d− 2)m

h(h + 1)d
, ∀ m ≥ 1.(3.21)

Claim 2. There exist an integer A with [k+1
2 ] ≤ A ≤ k and a subset

P of integers {1, . . . , k} with A integers such that there exist infinitely
many arbitrarily large integers T ∈ 2h(h + 1)dN satisfying

(3.22) i(cT ) =
(dh+ d− 2)T

h(h+ 1)d
− (2A − k).

In fact, by the same arguments in the proof of Claim 1, we get

2
∑k

i=1

{
Tθi
2π

}
= 2A, too. Therefore (similarly to (3.13)), by (3.5), (3.7),

and (3.21), Claim 2 holds.

Then Theorem 2.6 and Claim 2 yield

i(cm) ≥ i(cT ) + i(c) + 2A− k

=
(dh+ d− 2)T

h(h+ 1)d
+ (d− 1), ∀m ≥ T + 1,(3.23)

i(cm) ≤ i(cT )− i(c) + 2A− k

=
(dh+ d− 2)T

h(h+ 1)d
− (d− 1), ∀ 1 ≤ m ≤ T − 1.(3.24)

Set T̂ = (dh+d−2)T
h(h+1)d . Then we have T̂ ∈ 2N, T̂ − (d − 1) is odd, and

T̂ − (d − 1) ≥ hd − 1. By (3.23) and Proposition 2.1, all iterates cm

with m ≥ T + 1 have no contribution to the sum
∑T̂−(d−1)

q=0 mq. On the

other hand, in Case 2 by (3.5) the index i(cm) and m have the same
parity. Thus all the iterates cm with even m ∈ N including cT contribute

nothing to the sum
∑T̂−(d−1)

q=0 mq by the definition (3.1) and Claim 2.

Only the iterates cm with odd m can contribute to this sum. By (3.23),
the iterates cm contribute nothing to this sum when m ≥ T + 1. By
(3.24), each cm with odd m ≤ T − 1 contributes precisely 1 to this sum.
Therefore, we obtain

(3.25)

T̂−(d−1)∑
q=0

mq =
T

2
.
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Then, by (3.2), (3.25), and (2.7) of Lemma 2.4 with even d ≥ 2 and
D = d(h+ 1)− 2, we obtain

T

2
=

T̂−(d−1)∑
q=0

mq =

T̂−(d−1)∑
q=0

bq

< h(
D

2
+ 1)

T̂ − 2(d− 1)

D
−

h(h− 1)d

4
+ 2

=
h(D + 2)

2D
T̂ −

h(D + 2)(d − 1)

D
−

h(h− 1)d

4
+ 2

=
T

2
− h(d − 1)−

2h(d − 1)

D
−

(h− 1)hd

4
+ 2.(3.26)

Notice that h ≥ 2, d ≥ 2, and D = d(h+ 1)− 2 > 0. So we have

h(d− 1) ≥ 2,
2h(d− 1)

D
> 0,

(h− 1)hd

4
≥ 1.

Then we obtain a contradiction from (3.26) and complete the proof of
Theorem 1.1 in Case 2.

Case 3. k = 0.

In this case, by (3.5) we have i(cm) = m(d − 1) for all m ≥ 1. In
other words, the iterated Morse indices of the closed geodesic c are
strictly monotone increasing in the iteration time m. So it follows from
Proposition 2.1 that Mq ≤ 1 for every odd q ∈ Ω(d, h) defined by (2.5).
On the other hand, by (2.6) it yields bq = h + 1 ≥ 3 for every odd
q ∈ Ω(d, h) defined by (2.5). Then by Lemma 3.2 we obtain 1 ≥ Mq =
bq = h+ 1 ≥ 3 for such odd q just mentioned above. This contradiction
completes the proof for Case 3.

Now Theorem 1.1 follows from the proofs in Cases 1–3. q.e.d.
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Math. 207, Birkhäuser, Basel, 2002, MR 1898560, Zbl 1012.37012.

[Lon4] Y. Long, Multiplicity and stability of closed geodesics on Finsler 2-spheres,
J. of Euro. Math. Soc. 8 (2006), 341–353, MR 2239281, Zbl 1099.53036.

[LoD] Y. Long & H. Duan, Multiple closed geodesics on 3-spheres, Adv. Math. 221

(2009), 1757–1803, MR 2522828, Zbl 1172.53027.

[LoW] Y. Long & W. Wang, Stability of closed geodesics on Finsler 2-spheres,
J. Funct. Anal. 255 (2008), 620–641, MR 2426431, Zbl 1151.53037.

[LoZ] Y. Long & C. Zhu, Closed characteristics on compact convex hypersurfaces
in R

2n, Ann. of Math. 155 (2002), 317–368, MR 1906590, Zbl 1028.53003.

[LyF] L.A. Lyusternik & A.I. Fet, Variational problems on closed manifolds,
Dokl. Akad. Nauk SSSR (N.S.) 81 (1951), 17–18 [Russian], MR 0044760,
Zbl 0045.20903.

[Rad1] H.-B. Rademacher, On the average indices of closed geodesics, J. Diff. Geom.

29 (1989), 65–83, MR 0978076, Zbl 0658.53042.

[Rad2] H.-B. Rademacher, Morse Theorie und geschlossene Geodatische, Bonner

Math. Schriften 229 (1992), MR 1237191, Zbl 0826.58012.

[Rad3] H.-B. Rademacher, Existence of closed geodesics on positively curved
Finsler manifolds, Ergodic Theory Dynam. Systems 27 (2007), 957–969,
MR 2322187, Zbl 1124.53018.

[Rad4] H.-B. Rademacher, The second closed geodesic on Finsler spheres of dimen-
sion n > 2, Trans. Amer. Math. Soc. 362 (2010), 1413–1421, MR 2563734,
Zbl 1189.53039.



TWO CLOSED GEODESICS ON FINSLER MANIFOLDS 289

[Rad5] H.-B. Rademacher, The second closed geodesic on the complex projective
plane, Front. Math. China 3 (2008), 253–258, MR 2395220, Zbl 1148.53028.

[She] Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001,
MR 1845637, Zbl 0974.53002.
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