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COMPLETE WILLMORE SURFACES IN H
3

WITH BOUNDED ENERGY:

BOUNDARY REGULARITY AND BUBBLING

Spyros Alexakis & Rafe Mazzeo

Abstract

We study various aspects related to boundary regularity of
complete properly embedded Willmore surfaces in H3, particu-
larly those related to assumptions on boundedness or smallness
of a certain weighted version of the Willmore energy. We prove,
in particular, that small energy controls C1 boundary regularity.
We examine the possible lack of C1 convergence for sequences of
surfaces with bounded Willmore energy and find that the mecha-
nism responsible for this is a bubbling phenomenon, where energy
escapes to infinity.

1. Introduction

In our previous paper [1] we studied the renormalized area, RenA(Y ),
as a functional on the space of all properly embedded minimal surfaces
Y in H

3 with a sufficiently smooth boundary curve at infinity. Area or
volume renormalization of a properly embedded minimal submanifold
of arbitrary dimension or codimension in hyperbolic space was intro-
duced by Graham and Witten [9]; the renormalization is accomplished
by a Hadamard regularization of the asymptotic expansion of areas (or
volumes) of a family of compact truncations of the submanifold. The
renormalized area of such a minimal surface in H

3 turns out to be a
classical quantity. The first result in [1] is that

(1.1) RenA(Y ) = −2πχ(Y )− 1

2

∫
Y
|Å|2 dμ,

where χ(Y ) and Å are the Euler characteristic and trace-free second

fundamental form of Y , respectively. Since Y is minimal, Å equals the
full second fundamental form A, so

∫
Y |Å|2 dμ is the same as the total

curvature
∫
Y |A|2 dμ of the surface Y . In other words, RenA(Y ) differs
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from E [Y ] :=
∫
Y |A|2 dμ by a purely topological term. In general, even

if Y is not minimal, then a short computation shows that

(1.2) |A|2 = 2|Å|2 + 2KY − 2KH3

Y = 2
(
|Å|2 +KY + 1

)
,

where KY is the Gauss curvature of Y and the third term on the right
is the contribution from the sectional curvature of the tangent space of
Y with respect to the hyperbolic metric on H

3.
We can also relate E [Y ] to the total curvature of Y , regarded as a

compact surface with boundary in the upper half-space R
3
+ with the

Euclidean metric. Indeed, the density |Å|2 dμ is invariant with respect
to conformal changes of the ambient space. Decorating all quantities
computed with respect to the Euclidean metric with bars, and using
the Gauss-Bonnet theorem and the analogue of (1.2) for the Euclidean
curvatures, one obtains

(1.3)

∫
Y
|Ā|2 dμ̄ = 2

∫
Y
| ˚̄A|2 dμ̄ + 4πχ(Y ) = 2

∫
Y
|Å|2 dμ+ 4πχ(Y ).

There is no boundary term here because if ∂∞Y is smooth, then Y is
smooth up to its boundary and meets ∂R3

+ orthogonally, so the geodesic
curvature of this boundary vanishes.

We shall generalize our class of surfaces slightly and regard E̊ [Y ] :=∫
Y |Å|2dμ as an energy on the space of complete, properly embedded

surfaces in H
3 with asymptotic boundary of some fixed regularity which

meet ∂∞H
3 orthogonally. We show later that this orthogonality is a con-

sequence of the finiteness of the total curvature E [Y ] (computed with

respect to the hyperbolic metric!). The critical points of E̊ in this ex-
tended class are the so-called Willmore surfaces. To set this into context,
recall that the Willmore energy of a closed surface Y in a Riemann-
ian manifold (M,g) is

∫
Y

(
1
4 |H|2 + KM

Y

)
dμ =

∫
Y

(
1
2 |Å|2 + KY dμ

)
=

1
2

∫
Y |Å|2 dμ + 2πχ(Y ) (see [17]); here KY is the Gauss curvature of Y

and KM
Y the sectional curvature with respect to M of the tangent space

of Y . Willmore surfaces are the critical points of this energy. For the
complete surfaces in H

3 considered here, the integral
∫
Y KY dμ always

diverges, so we regard
∫
Y |Å|2dμ as the Willmore energy instead. Critical

points (with respect to compactly supported variations) are the usual

Willmore surfaces in H
3. The Euler-Lagrange equation for

∫
Y |Å|2 dμ,

with respect to compactly supported variations, is conformally invari-
ant; hence Willmore surfaces are the same for either the hyperbolic or
the Euclidean metric on the upper half-space.

Stated more plainly, the objects studied in this paper are the critical
points of E̊ , which we call Willmore surfaces, for which the total cur-
vature E [Y ] :=

∫
Y |A|2dμ is finite (and hence Y ⊥ ∂H3). Our aim is to

study sequences Yj of Willmore surfaces with fixed genus and number
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of ends; we wish, in particular, to examine how boundedness of E [Yj ]
controls regularity of these surfaces at their boundaries. Unfortunately,
E itself does not seem to provide adequate control of this boundary
regularity—we comment on this further below, where we describe an
analogue of our results for harmonic functions, so we instead consider a
weighted energy

Ep(Y ) :=

∫
Y
|Å|2f2p dμ.

Here f is the intrinsic distance function in Y to a given finite collection
of points in Y , which we call poles, and p > 1 is fixed. These poles are
in the interior of Y so that near ∂∞H

3 = {x = 0} (in the upper half-
space model), f ∼ | log x|. For brevity we refer to Ep(Y ) as the weighted
energy of Y . We still require the finiteness of

∫
|A|2 dμ, instead of some

weighted version of it.
We shall study the following problem: If Yj is a sequence of Willmore

surfaces with Ep(Yj) ≤ C < ∞, then does some subsequence of the Yj

converge in C1 up to the boundary? In fact, we show that C1 conver-
gence may fail at a finite set of points at the boundary, but we are
able to understand this phenomenon via the loss of energy in the limit.
Since convergence of Willmore surfaces in any compact set of H3 is well
understood, we focus almost entirely on the behavior of these surfaces
near and at their asymptotic boundaries.

Before stating our results, we put this into a broader context. The
study of failure of compactness for variational problems goes back at
least to [30] and has now been explored in a wide variety of settings; we
refer to [28] for a good overview of results and methods. Particularly
relevant to our problem are the many deep advances in understanding
the analytic aspects of the Willmore functional; we refer in particular
to the fundamental paper of L. Simon [31], the more recent work by
Kuwert and Schätzle [16], and the powerful new approach developed
by Rivière [27]; see also [24]. Regularity at a free boundary for sub-
manifolds with prescribed mean curvature has been studied in [14], and
related problems have been studied in many other settings. However,
the analysis of bubbling phenomena at the boundary seems to be far
less well investigated. Often this failure of compactness at the boundary
is excluded by imposing a priori bounds on boundary regularity. Our
particular geometric problem presents a natural situation where it is
unnatural to impose such boundary control, and where this bubbling
phenomenon is then unavoidable.

The second context in which to view our work is slightly more tenu-
ous. To explain it we first recall the computation from [1] which gives the
first variation of E at a minimal surface Y . If γ = ∂∞Y is the boundary
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curve at infinity, then there is function u3 associated to Y such that

(1.4) D E|Y (ψ) = 6

∫
γ
u3ψ0 ds.

Here ψ is a Jacobi field along Y , i.e. an infinitesimal variation of Y
amongst minimal surfaces and ψ0 its boundary value at γ, and s is the
arclength parameter along γ. The pair (γ, u3) can be regarded as the
Cauchy data of Y . It follows from the basic regularity theory for such
surfaces, due to Tonegawa [32], that if the ‘Dirichlet data’ γ is C∞, then
Y is C∞ up to the boundary. By analogy with classical elliptic theory,
one might also expect that control on the Neumann data, u3, should also
control regularity of Y near its boundary. In particular, if Yj is a Palais-

Smale sequence for E (or Ep), then the functions u
(j)
3 converge to zero in

some weak sense, and the question then becomes whether quantitative
measures of smallness on these functions yield greater control on the
boundary curves γj . We do not emphasize this point of view, however,
since it has been difficult to make precise.

Results. Our first theorem is an ε-regularity result: if the weighted
energy of a Willmore surface in a Euclidean half-ball in the upper half-
space model around some point P ∈ ∂∞Y is small, then the C1 norm of
the surface is controlled uniformly up to the boundary. To explain this,
regard Y as a horizontal graph over a vertical half-plane (its tangent
plane at some boundary point). Finiteness of the weighted energy is
slightly weaker than bounding the (weighted) W 2,2 norm of the graph
function, with the same logarithmic weight. The conclusion that Y is C1
shows that this graph function exhibits better regularity near the bound-
ary than would follow from the Sobolev embedding theorem. (Indeed,
there are C1 functions with compact support for which the weighted
W 2,2 norm is finite and the W 1,∞ norm is arbitrarily large. It is not
hard to construct an infinite sum of these, with disjoint supports, so
that the weighted W 2,2 norm is finite and the W 1,∞ norm is infinite.)

This C1 regularity is nearly optimal. Indeed, since dilations are hy-
perbolic isometries, the energy Ep is dilation-invariant provided we let
the dilations act on the set of poles as well. However, if we take a
blow-down limit of a given surface, then the C1,α norm of the boundary
curve diverges, so we cannot expect that norm to be controlled only
by the weighted energy. It is not clear how to characterize the optimal
regularity associated with finiteness of weighted energy, nor is it ob-
vious whether there is an optimal weight function that guarantees C1
regularity.

One application of this first result is that if Yj is a sequence of Will-
more surfaces with Ep bounded, and with well-separated boundary com-
ponents, then some subsequence converges to a Willmore surface Y∗, the
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boundary at infinity of which is a priori Lipschitz except at a finite num-
ber of bad points. We then show that except possibly at these excep-
tional points, the limit curve is C1. This is a gain of regularity compared
to Sobolev embedding. We note that the convergence of γj = ∂∞Yj to
γ∗ = ∂∞Y∗ need not be C1; in fact we construct counterexamples to this
at the end of this paper: Using fairly simple gluing arguments, we obtain
a sequence Yj with energy Ep(Yj) ≤ C which converges to a totally geo-
desic hemisphere, but where the convergence is not C1 at a finite number
of boundary points. At each of those points, one sees a sequence of in-
creasingly strong blow-downs of a fixed Willmore surface, which carries
a fixed positive amount of energy, shrink to a point; we regard this as
a type of bubbling. However, unlike the various ‘interior’ bubbling phe-
nomena mentioned earlier which only occur when the energy is above
a certain threshold, in this setting arbitrarily small amounts of energy
can disappear in these limits.

Our final result is that the phenomenon exhibited by these examples
above is the only mechanism through which the convergence Yj → Y∗

can fail to be C1 near the boundary, at least in regions of small energy. In
such regions we show that if Pj ∈ γj , Pj → P∗ ∈ γ∗, but the tangent lines
TPjγj fail to converge to TP∗

γ∗, then there exist a sequence of hyperbolic
isometries ϕj which dilate away from Pj and are such that ϕj(Yj) →
Ỹ∗, where E(Ỹ∗) > 0. Finally, we show that such a bubble of energy
(which is already receding to infinity before applying the dilations ϕj)
carries with it one of the poles used to define the weight function f .
The investigation of regularity gain and bubbling in regions of large
energy presents various technical difficulties (some of which are already
apparent in [19]) which are beyond the scope of this paper. We intend
to return to this in the future.

A model problem. We conclude this introductory material by dis-
cussing a model linear problem where one already sees that it is im-
possible to obtain adequate control of boundary regularity from the
unweighted energy alone. This is, of course, only a hint that the same
should be true for our nonlinear problem.

Set D := {x2 + y2 ≤ 1} ⊂ R
2 and consider the Bergman-type space

of harmonic functions

B :=
{
u ∈W 1,2(D) : Δu = 0,

∫
D(1)

|∇u|2dxdy <∞
}
.

The standard Sobolev trace theorem shows that B 
 u �→ u|∂D ∈
H1/2(∂D) is continuous, and conversely, the Poisson map H1/2(∂D) 

f → Pf ∈ B, where u is the harmonic extension of f , is also bounded.
For any function f ∈ H1/2 \ L∞, the extension u = Pf has bounded
energy

∫
|∇u|2 <∞. In particular, the harmonicity of u does not guar-

antee any extra control at the boundary.
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On the other hand, for any p > 1, consider

Bp :=
{
u ∈W 1,2(D) : Δu = 0,

∫
D
|∇u|2[1 + log(1− r2)]2p dxdy <∞

}
.

We claim that any u ∈ Bp restricts to a bounded function on ∂D(1). The
argument is a simpler version of some part of one of the main arguments
in this paper, so we present it now.

Proof. To educe the analogy with section 5 below, and since the ar-
gument is local, we consider the equivalent problem of showing that if
u is any harmonic function on Q = {0 ≤ x ≤ 1, |y| ≤ 1} satisfying

Ep(u) :=
∫
|∇u|2(1− log x)2p dxdy <∞,

then its boundary value u(0, y) is continuous (note that 1 − log x is
comparable to the hyperbolic distance between (x, y) and (0, 1) in Q (at
least for x ≤ 1 − ε). More specifically, we show that u(x, y) converges
uniformly as x tends to 0, and that the limiting continuous function
u(0, y) is bounded by u(1, y) and Ep(u).

The first step is to show that the function v := (∂xu)
2(1− log x)2p is

subharmonic. This is true with respect to either the Euclidean or the hy-
perbolic Laplacians. Computing with the former, after some arithmetic
we see that

Δv = 2|∇∂xu|2(1− log x)2p + 2∇(∂xu)
2 · ∇(1− log x)2p

+ (∂xu)
2Δ(1− log x)2p ≥ 2(1− log x)2p−2

(
|∂2

xu|2(1− log x)2

−4px−1∂xu∂
2
xu(1− log x) + 4p2|∂xu|2x−2

)
≥ 0,

(1.5)

as claimed.
Now apply the mean value formula for subharmonic functions on the

(Euclidean) ball Bx0((x0, y)). This gives that for any 0 < x0 < 1,

|∂xu(x0, y)|2(1− log x0)
2p

≤ 1

4πx20

∫
Bx0 ((x0,y))

u(x)2(1− log x)2p dxdy ≤ 1

4πx20
Ep(u),

or equivalently,

|∂xu(x0, y)| ≤
1

2
√
πx0(1− log x0)p

Ep(u)1/2.

The right hand side is integrable on 0 < x0 < 1, which proves that

|u(1, y)− u(0, y)| ≤ CEp(u)1/2,
and also shows that u(x0, y) converges in the uniform norm as x0 ↘ 0,
so that u(0, y) is continuous. q.e.d.
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Outline. We now provide a brief outline of some of the key ideas and
arguments in this paper. The preamble to each section contains more
extensive discussion of the main idea in that section.

The argument commences in §2, where we prove two ‘soft’ results
about boundary regularity for Willmore surfaces with finite energy. To-
gether, these show that any such surface must meet ∂∞H

3 orthogonally
and have a good local graphical representation over a vertical plane pro-
vided the boundary curve has a corresponding graphical representation
over a line. This relies only on interior regularity results for Willmore
surfaces and simple Morse-theoretic arguments.

ε-regularity . Our first ‘hard’ result is that for (local) Willmore surfaces
with sufficiently small weighted energy, the boundary curve is controlled
in C1. Indeed, if this were to fail, then we could construct a sequence
of Willmore surfaces, the energies of which vanish in the limit, but
such that there is a jump in the tangent lines in the limit. To reach
a contradiction, we wish to relate the slope of the tangent line at the
boundary to information on a parallel curve in the interior of the surface
and then use the known C∞ convergence in the interior.

The relationship between derivative information in the interior and at
the boundary, i.e. the difference between the ‘horizontal’ derivatives at
height 0 and 1, say, is given by integrating the mixed second derivative
of the graph function along a vertical line and showing that this is con-
trolled by the energy. To do this we must use a choice of ‘gauge’, which
is a special isothermal coordinate system for which we have explicit
pointwise control of the conformal factor. We do so adapting some deep
results of Müller and Sverak [26] (see also Hélein [11]) to our setting.
Throughout this adaptation we must be careful that the jump in first
derivatives at the origin still holds in these new coordinates. Note that
this requires the finiteness of the unweighted energy only. This bounded-
ness of the conformal factor, along with the boundedness of the weighted
energy, allows us to obtain pointwise control of the mixed component of
the 2nd derivative of the graph function and bounding of its line inte-
gral. This pointwise bound relies on a realization of Willmore surfaces as
harmonic maps into the deSitter space; a mean value inequality for this
map yields a bound on a specific component of the second fundamental
form, which in turn implies our desired pointwise bounds. It is at this
point that the finiteness of the weighted Willmore energy is essential.
In this argument there is a second line integral which it is necessary to
control in terms of the energy of Yj in a half-ball. This second line in-
tegral (which can be controlled by the regular rather than the weighted
energy) plays a crucial role in the later analysis of bubbling.

These arguments occupy §3–6. In §7 we use the techniques developed
up to that point to derive the regularity gain for the limit surface Y∗ in
regions of small energy.
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Bubbling . Section 8 contains the argument that if the convergence
Yj → Y∗ is not C1 at some sequence of boundary points Pj → P∗ ∈ ∂∞Y∗,
then we can perform a sequence of blow-ups near those boundary points
to produce a sequence of Willmore surfaces Ỹj which converge to a limit

surface Ỹ∗ of non-zero energy; prior to the blow-up the surfaces Ỹj are
disappearing in the limit toward P∗. In other words, the C1 loss of com-
pactness is due to portions of Yj with fixed (but arbitrary) nonzero en-
ergy disappearing at infinity. Unlike similar arguments for bubbling in
the interior, since our surfaces have infinite area, it is not initially clear
that we can find points Yj 
 Qj → ∂∞H

3 on which |Å|g is bounded
below; the rescalings we wish to perform should be centered at such
points. Their existence is proved indirectly, by arguing that it is impos-
sible for all possible blow-ups near the points Pj ∈ Yj to converge to
surfaces of zero energy. This argument makes essential use of the sec-
ond line integral mentioned above. The key point is to show that this
line integral can be controlled by the energy of Yj in a conical region
emanating from (rather than a half-ball containing) Pj .

Further questions. There are several questions and problems which
are closely related to the themes in this paper and which seem of par-
ticular interest. We hope to return to some of these soon.

Despite the fact that the problems which led us to the current in-
vestigations involve Willmore surfaces of finite weighted energy in H

3,
one could equally study Willmore surfaces in the Euclidean ball, with
boundaries lying on the boundary S

2. In fact, the present work makes
clear that only a weighted version of the traceless part

∫
Y |Å|2f2pdμ of

the total curvature is needed for our results; in view of the conformal
invariance of the form |Å|2dμ, this suggests that the results here may
also hold in a Euclidean ball, assuming an upper bound on the weighted

energy
∫
Y | ˚̄A|2f2pdμ and imposing bounds on the angle of intersection

between Y and S
2 = ∂B3. Indeed, many of the methods developed here

transfer to that more general setting with no difficulty.
Another question, which was a motivation for this work but not stud-

ied explicitly here, concerns the analysis of sequences of Willmore sur-
faces Yj which are Palais-Smale for the functional E . Recall that this
means that E(Yj) tends to a critical value and DE|Yj

converges to 0.

The goal would be to find critical points for E . Our results show that
critical sequences may converge to surfaces with strictly lower genus,
and this convergence often occurs only in a weak norm at the boundary,
but it may still be possible to produce E-critical surfaces this way.

Finally, one other set of problems we wish to mention involve an
analogous though more complicated problem of studying sequences of
Poincaré-Einstein metrics in four dimensions. Recall that (M,g) is said
to be Poincaré-Einstein if M is a compact manifold with boundary, and
g is conformally compact (hence is complete on the interior of M) and
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Einstein; see [22, 3] for more details and further references. These ob-
jects can be studied in any dimension, but it is known that dimension
4 is critical in the same way that dimension 2 is critical for Willmore
surfaces. This is reflected in two formulæ due to Anderson [2]: the first
is an explicit local integral expression for the renormalized volume of a
four-dimensional Poincaré-Einstein space as the sum of an Euler char-
acteristic and the squared L2-norm of the Weyl curvature, while the
second describes the differential of renormalized volume with respect to
Poincaré-Einstein deformations. These are entirely analogous to (and
indeed were the motivatations for) the corresponding formulæ here. It
is therefore reasonable to ask whether results like the ones here can
be proved in that Poincaré-Einstein setting. Slightly more generally, re-
flecting the passage from minimal to Willmore, one should study these
questions in the setting of Bach-flat metrics. More specifically, suppose
that (M4, gj) is a sequence of Poincaré-Einstein (or Bach-flat) metrics
such that

∫
|Wj |2 dVgj ≤ C <∞, whereWj is the Weyl tensor of gj . The

specific issue is to determine how this uniform energy bound (or some
suitably weighted version of such a bound) controls the regularity of the
sequence of conformal infinities of gj . This is related to the questions
studied by Anderson [3] and more recently by Chang-Qing-Yang [4].

1.1. Notation and terminology. Almost all of the results below are
local, so we always work in the upper half-space model R3

+ of H3, with
vertical (height) coordinate x, and with linear coordinates (y, z) on R

2 =
{x = 0}.

All of the surfaces studied here are assumed to be smooth and Will-
more (or minimal, if noted explicitly). We always assume that any such

Y is connected and has closure Y ⊂ H3, a compact surface with bound-
ary curve γ = ∂∞Y ⊂ R

2 which is embedded and closed, but possibly
disconnected. We assume that Y is at least C2 unless explicitly stated
otherwise. Since H3 has many isometries, including dilation and horizon-
tal (R2) translation, it is convenient to fix a normalization and scale. We
say that Y is normalized if the length of its boundary curve (measured
with respect to the Euclidean metric on R

2) satisfies |γ| = 100π and if
the center of mass of γ in R

2 is 0. The class of all Willmore surfaces
with k ends and genus g, normalized in this way, and which meet ∂R3

+

orthogonally, is denoted Mk,g, and M =
⋃

k,gMk,g. For each Y ∈ M,

Y is the closure of Y in R
3
+. We prove later that any complete Y with

finite energy necessarily meets ∂H3 orthogonally, so we can omit this
condition from the definition of elements of M.

Many of the arguments below use the interplay between the metrics
g and ḡ on a surface Y induced from the ambient hyperbolic and Eu-

clidean metrics, respectively. We denote by A and Ā, and Å and ˚̄A, the
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corresponding second fundamental form and trace-free second funda-
mental forms of Y , and by dμ, dμ the area elements. As noted earlier,

(1.6) |Å|2g dμ = | ˚̄A|2ḡ dμ̄.
If Y is minimal (rather than just Willmore) with respect to g, then

A = Å and

(1.7) |A|2g dμ = |Å|2g dμ = | ˚̄A|2ḡ dμ̄.
For brevity, the subscripts g and ḡ are often omitted when the meaning
is clear.

Definition 1.1. If Y ∈ M, then we define the Willmore energy of Y
to equal E(Y ) :=

∫
Y |A|2 dμ.

Key Assumption: In the entirety of this paper, we restrict to the
subset of surfaces Y ∈Mk,g for which E(Y ) ≤M for some fixedM <∞.
We remark that in view of (1.3) and (1.6), this restriction ensures a
uniform bound on

∫
Y |Ā|2 dμ, which we shall use frequently, and without

further mention.

1.2. Results. As explained earlier, we shall need to consider surfaces
which satisfy a slightly stronger condition than finiteness of Willmore
energy. This involves a weighted version of the Willmore energy which
we now define.

Definition 1.2. Fix N ∈ N. Given any finite set of points O =
{O1, . . . , ON}, where each Oj ∈ Y , let fO(P ) := dist(P,O) + 5. We call
the points Ok the poles of fO. If P ∈ Y and Ok is one of the poles
nearest to P , we write P ∼ Ok. We frequently write f instead of fO for
brevity; thus f is the distance function from some set of N points which
may be anywhere on Y .

Now define the weighted energy

Ep(Y,O) :=

∫
Y
|Å|2f2p

O dμ;

we sometimes write this simply as Ep(Y ).

Definition 1.3. Fix Y ∈ M and γ = ∂∞Y . Writing B(P,R) as the
open Euclidean half-ball centered at P of radius R, for any P ∈ γ and
R > 0, denote by Y ′

B(P,R) the path component of Y ∩ B(P,R) which

contains P in its closure and γ′B(P,R) = Y ′
B(P,R) ∩ ∂R3

+. The weighted

and unweighted localized energies of Y ′
B(P,R) are given by

(1.8)

EB(P,R)
p (Y,O) :=

∫
Y ′

B(P,R)

|Å|2f2p
O dμ, EB(P,R)(Y ) :=

∫
Y ′

B(P,R)

|A|2 dμ.
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Definition 1.4. The ζ-Lipschitz radius of a normalized, closed em-
bedded C1 curve γ ⊂ R

2 is defined as follows. If P ∈ γ and 
γ(P ) = TP γ,
then let γP ⊂ γ be the largest open connected arc containing P which
is a graph over 
γ(P ). Thus if P = 0 and 
P = {(0, y, 0)}, then γP =
{(y, f(y)) : a < y < b} for some maximal a < 0 < b. We then define

LipRadζγ(P ) to be the largest number M such that (−M,M) ⊂ (a, b)

and |f(y)−f(y′)|
|y−y′| < ζ for every y, y′ ∈ (−M,M). Finally, we set

(1.9) LipRadζ(γ) = inf
P∈γ

LipRadζγ(P ).

Since γ is compact, the easily verified lower semicontinuity of LipRadζ

implies that the infimum is attained at some point and LipRadζ(γ) > 0.

Theorem 1.1. There is a ζ0 ∈ (0, 1/20) with the property that for
any ζ ∈ (0, ζ0), there exists an ε(ζ, p) > 0 such that if Y ∈ Mk,g and

EB(P,R)
p (Y ) < ε for some P ∈ γ = ∂∞Y and R ≤ 1, then

LipRadζγ(Q) ≥ ζ · R− |PQ|
10

for all Q ∈ γ′B(P,R).

Let us note that this lower bound on LipRadζγ(Q) is completely in-
dependent of the set of poles O in Y .

From this and Lemma 2.4 below, we can deduce the

Corollary 1.1. In the setting of Theorem 1.1, there exists ε′(ζ, p) ≤
ε(ζ, p) such that if EB(P,R)

p [Y ] < ε′(ζ, p), then Y ′
B(P,R/2) is a horizontal

graph z = u(x, y) over the half-disc D+(P,R/2) in the vertical half-plane
R+ × 
P , and |∇u| ≤ 2ζ in D+(P,R/2).

The Lipschitz radius is a reasonable measure of regularity on the
space of normalized embedded curves γ. Note that if γj is a sequence of

such curves with LipRadζ(γj) ≥ C > 0, then there are uniform Lipschitz
parametrizations around each point of every γj; hence in particular some
subsequence of the γj converge in C0,α for any α < 1 to a limit curve γ
which is itself Lipschitz.

For future use, we state a slightly modified version of this result. Let
M′ be the space of properly embedded Willmore surfaces Y ⊂ H

3 for
which

∫
Y |A|2 dμ <∞ and with C1 boundary curves γ = ∂∞Y . Note that

Y ′
B(P,R) and E

B(P,R)
p (Y ) are still defined when Y ∈ M′. The modification

deals with surfaces Y ∈ M′ for which γ′B(P,R) intersects ∂B(P,R).

Theorem 1.2. For some ζ0 > 0 and every ζ ∈ (0, ζ0) there exists

an ε(ζ, p) > 0 such that if Y ∈ M′, EB(P,R)
p ≤ ε(ζ) (with R ≤ 1) and
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γ′B(P,R) intersects ∂B(P,R) for some P ∈ γ = ∂∞Y and if γ′B(P,R) is C1
up to its endpoints, then

LipRadζγ(Q) ≥ ζ · R− |PQ|
10

for all Q ∈ γ′B(P,R).

Theorem 1.1 leads to the following characterization of the possible
limits of sequences of Willmore surfaces for which there is a uniform
upper bound on the weighted energy.

Theorem 1.3. Let Yj ∈ Mk,g and suppose that Ep(Yj) ≤M for some
M > 0. Suppose too that the distance between the various components
of γj = ∂∞Yj is uniformly bounded away from 0. Then if 0 < ζ ≤
ζ0, there is a subsequence, again relabelled as Yj, which converges to a
finite multiplicity (but possibly disconnected) Willmore surface Y∗ with
boundary curve γ∗. The convergence Yj → Y∗ is smooth away from {x =
0}, except at a finite number of interior points, where Y∗ may fail to be

smooth. In this limit, the set of poles O(j) ⊂ Yj converges to a set of

poles O∗ ⊂ Y∗.
Furthermore, there exist points P1, . . . , PΛ ∈ γ∗, Λ = Λ(ζ), and cor-

responding sequences P
(j)
i ∈ γj, i = 1, . . . ,Λ, with P

(j)
i → Pi for all i,

such that the convergence of γj to γ∗ is C0,α for every α < 1 away from

the points P
(j)
i . Finally, if P ∈ γ \ {P1, . . . , PΛ}, then there is a line 
P

such that Y∗ is the graph of a Lipschitz function with Lipschitz constant
2ζ over some disc in the half-plane R

+ × 
P .

There are two distinctly separate aspects to the proof of this result.
One establishes convergence in the interior, i.e., for the truncated sur-
faces Y η

j := Yj
⋂{x ≥ η} for any fixed η > 0, while the second focuses

on convergence near the boundary. Interior convergence (in the sense
allowed in the theorem) follows from standard arguments once we show
that there are uniform energy and area bounds for the Y η

j . These argu-
ments involve ε-regularity results for smooth Willmore surfaces, which
can be deduced from [15, Theorem 2.1] (note that the method there
can be applied when the ambient metric is hyperbolic since the Will-
more equation still leads to an elliptic equation for Δ|A|2), along with
a covering argument and a further diagonalization.

The assumptions of Theorem 1.3 include the uniform bounds for∫
Yj

⋂
{x≥η} |A|2 dμj . In fact, these energy bounds also imply area bounds

for the Y η
j ; this is done in Proposition 2.1. This relies on the fact from

our earlier paper [1] that the total curvature of each Yj , together with a

bound on the geodesic curvature of ∂Y
θj
j for some θj ∈ (η/2, η), bounds
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the renormalized area of each Yj (see [1] for the definition of this con-
cept), which in turn bounds the area of each Y η

j . We defer details of
this argument to the next section.

Convergence at the boundary, on the other hand, follows directly
from Theorem 1.1 and Corollary 1.1. Indeed, let δ(Q) be the largest
radius such that the half-ball B(Q, δ(Q)) centered at Q ∈ γj satisfies

EB(Q,δ(Q))
p (Y ′

j ) ≤ ε′(ζ). If t denotes the arclength parameter along any

component of γi, then the upper bound on Ep(Yj) implies that for all

but those finitely many values of t corresponding to the points Q
(j)
i ,

lim infj δ(γj(t)) > 0. From this and a diagonalization argument, we
deduce the asserted convergence near the boundary.

We next show that the limit curve γ∗ is C1, rather than just Lipschitz,
away from a finite set of points.

Theorem 1.4. In the setting of Theorem 1.3, the curve γ∗ = ∂∞Y∗

is piecewise C1, with singularities occurring (at most) at the set
{P1, . . . , PΛ} ⊂ γ∗.

Remark 1.1. A modification of the proof of Lemma 2.4 below shows
that Y ∗ is then C1 up to γ∗ \ {P1, . . . , PΛ}.

We also describe bubbling in this setting by showing that away from
points where the convergence γj → γ∗ is not C1, the loss of compactness
is due to some portion of the Willmore surfaces with non-zero energy
escaping to infinity:

Theorem 1.5. Let Yj be a sequence in Mk,g, Ep(Yj) ≤ M < ∞,
with Yj → Y∗ where Y∗ is C1 up to γ∗ \ {P1, . . . , PΛ}. After rotating and
translating, we write each Yj as a horizontal graph z = uj(x, y) over
the half-disc {x2 + y2 ≤ δ2, z = 0}, with |∇uj | ≤ 2ζ and uj → u∗ in
C∞ away from {x = 0} and in C0,α up to {x = 0}. Suppose too that
for some y0 ∈ (−δ, δ), limj→∞ ∂yuj(y0, 0) �= ∂yu∗(y0, 0). Then there
exists a sequence of interior points Qj ∈ Y ′

j

⋂
B(0, δ) with Qj → Aj :=

(0, y0, uj(y0, 0)) and a sequence of hyperbolic isometries ψj mapping Qj

to (1, 0, 0) so that ψj(Yj)→ Y ′
∗ for some complete Willmore surface Y ′

∗

with E(Y ′
∗) > 0.

At most N non-isometric blow-ups can be obtained in this way, and
there exists a number M ′ > 0 such that for each sequence Qj there is a

sequence of poles O(j) ∈ Yj such that distYj (Qj, O
(j)) ≤M ′.

This theorem actually proves that the convergence ∂Yj → ∂Y∗ is C1
near all points P ∈ ∂Y∗ \ (∂Y∗

⋂{P1, . . . , PΛ}) except at those points on

∂∞Y∗ which are limits of the poles O
(j)
i . Thus, contrary to Theorem 1.1,

the possibilities for bubbling depend very strongly on the positions of
the poles in each Yj .
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Corollary 1.2. Assume that for some point P ∈ ∂Y∗ \ (∂Y∗
⋂

{P1, . . . , PΛ}) there exists a relatively open set Ω ⊂ R3
+ such that Oi /∈ Ω

for all poles Oi ∈ Yj and for all j large enough. Then the curves ∂Yj

converge to ∂Y∗ in the C1 norm in the domain Ω.

Indeed, if this were not the case at some point Q ∈ ∂Y∗
⋂

Ω, then for
p′ ∈ (1, p) and any ε > 0 there exists an open half-ball B(P, δ) such that

EB(P,δ)
p′ (Yj) ≤ ε for all j large enough. If ε is small enough, this implies

a lower bound on LipRad(γj) in the half-balls B(P, δ/2).
Applying Theorem 1.5, we obtain a blow-up limit ϕj(Yj)→ Y ′

∗ with
E(Y ′

∗) > 0, where the ϕj are hyperbolic isometries centered at Q ∈
∂∞H

3. The C∞ convergence away from the boundary of ϕj(Yj) implies
that there exist balls B(Pj, 1) ⊂ Yj of (intrinsic) radius 1 in Yj with

Pj → Q and with EB(Pj ,1)(Yj) ≥ ε0 > 0. (Indeed, it suffices to let

ε0 < EB(P,1)(Y ′
∗) where B(P, 1) ⊂ Y ′

∗ is any intrinsic ball where the
energy is non-zero.) Now, Pj → Q readily implies that fj,O(Qj) → ∞
(fj,O is the weight function for the surface Yj), so that EB(P,δ)

p′ (Yj)→∞.

This is a contradiction.
In the last section of this paper, we construct examples where bub-

bling to infinity does occur. These are sequences of minimal (and thus
Willmore) surfaces Yj ∈ M with E(Yj) ≤ M < ∞ and with Y j con-
verging smoothly away from a finite number of points on the boundary.
At these points, the convergence fails to be C1, despite the fact that the
curves γj and γ∗ are all C∞.

Acknowledgments. We offer special thanks to Tristan Rivière for gen-
erously sharing his insight into these questions and for much encourage-
ment during the early stages of this work. The first author acknowledges
helpful conversations with Jacob Bernstein. R.M. was supported by NSF
grant DMS-1105050. S.A. was supported by NSERC grants 488916 and
489103, as well as Clay and Sloan fellowships. The exposition of this
paper was greatly improved because of the thoughtful remarks of two
different referees. In particular, one of these reports urged us to employ
the local analytic theory of Müller and Sverak in section 4, rather than
a more complicated global version of these results due to De Lellis and
Müller, and this has simplified that part of the paper considerably.

2. Some geometric lemmas

2.1. Graphicality near the boundary. We begin with some geomet-
ric results, pertaining primarily to fixed complete Willmore surfaces Y
with E(Y ) < ∞ and with γ = ∂∞Y a finite union of compact em-
bedded Lipschitz curves. We prove first that any such Y meets ∂∞H

3

orthogonally, which is the well-known behavior, when Y is C2 up to the
boundary. We then show that if some segment of γ is graphical with
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a bounded Lipschitz constant, then a portion of the Willmore surface
directly above this segment is also graphical, with bounded gradient.
The proofs are almost entirely geometric, involving blow-up arguments,
though we rely on one analytic fact which is the ε-regularity theorem
for (interior) Willmore discs. The finiteness of energy is used crucially
at several places.

Lemma 2.1. Let Y be a complete properly embedded Willmore sur-
face such that γ = ∂∞Y is a finite collection of embedded Lipschitz
curves. Let Pj be a sequence of points in Y converging to a point on
∂∞Y . If ν̄ denotes the Euclidean unit normal to Y , then 〈∂x, ν̄〉g(Pj)→
0 as j →∞.

Proof. Since Y has finite energy, then
∫
Y ∩{x≤Cx(Pj)}

|A|2 dμ → 0 for

any C > 0. Now suppose that the assertion is false. Thus, passing to a
subsequence if necessary, 〈∂x, ν̄〉g(Pj) → β �= 0. Let B1(Pj) be the ball
of radius 1 around Pj with respect to the metric g. Passing to a further
subsequence, we may assume that B1(Pj)∩B1(Pk) = ∅ for j �= k. Then∫
B1(Pj)

|A|2 dμ→ 0, since otherwise E(Y ) would be infinite.

Now translate Y horizontally and dilate by the factor 1/x(Pj) so
that Pj is mapped to (1, 0, 0) and denote by Yj the resulting sequence
of surfaces. Since each Yj passes through the fixed point (1, 0, 0) and∫
Yj∩{x≤M} |A|2 dμ→ 0 for any M > 0, we can invoke the a priori point-

wise bounds for |∇pAj| on a ball of any fixed radius around this fixed
point using [27, Theorem I.5]; see also [18]. These show that yet a fur-
ther subsequence of the Yj converges in the C∞ topology on compact
sets to a complete Willmore surface Y∗.

Since EBR(Pj)(Yj) → 0 for any R > 0, we see that Y∗ is totally ge-
odesic, and hence is either a vertical plane or a hemisphere; its slope
at (1, 0, 0) equals β �= 0, so we must be in the latter case. This shows
that there is a fixed constant R = R(β) > 0 such that if j is large, then
the ball BR(Pj) in Y contains a point Qj where TQjY is horizontal, i.e.
parallel to {x = 0}.

We can assume (passing again to a further subsequence) that x(Qj) is
strictly monotone decreasing, so a standard minimax argument shows
that we may choose a sequence of points Q′

j ∈ Yj which are critical
points of index one for the function x. In other words, writing Yj as a
graph x = v(y, z) near Q′

j, v has a saddle at Q′
j. We can therefore trans-

late horizontally and dilate by the factor 1/x(Q′
j) to obtain a sequence

Y ′
j of Willmore surfaces which converge locally in C∞ to a complete Will-

more surface Y ′
∗ passing through the point (1, 0, 0). By construction, for

any M > 0,

(2.1)

∫
Y ′

j∩{x≤M}
|Aj |2 dμj → 0.
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Using the interior curvature estimates that follow from the ε-regularity
in [27] again, we see that the convergence of Y ′

j to Y ′
∗ is C∞ near the

point (1, 0, 0); hence Y ′
∗ has a horizontal tangent plane at this point.

Furthermore, the two principal curvatures at Q′
j relative to the ambi-

ent Euclidean metric are κ1 ≥ 0 and κ2 ≤ 0, and these inequalities
must persist in the limit. This means that Y ′

∗ cannot be a hemisphere.
However, (2.1) implies that E(Y ′

∗) = 0, which yields a contradiction.
q.e.d.

An almost identical argument proves

Lemma 2.2. Let Y be a fixed Willmore surface in H
3 with E(Y ) <

∞. Let Pj be a sequence of points in ∂∞Y and choose δj ↘ 0. Denote
by B+

δj
(Pj) the Euclidean half-ball centered at Pj and with radius δj .

Assume that the sequence of dilated translates δ−1
j (Y ∩ B+

1 (Pj) − Pj)

converges to a surface Ỹ (which is necessarily Willmore). Then Ỹ must
be a vertical half-plane.

(We note that the two lemmas above do not require the boundary
curves to be locally Lipschitz.)

We next turn to proving local graphicality of any Willmore surface
of finite energy near points where the boundary curve is Lipschitz.

Lemma 2.3. Let Y be a complete properly embedded Willmore sur-
face in H

3 with finite energy and such that ∂∞Y = γ is a finite union
of closed embedded rectifiable loops. Define SB to be the set of all points
P ∈ γ for which there exists a connected subarc γP ⊂ γ which is a graph
over a straight line 
P ⊂ R

2 containing P which, if we rotate and trans-
late so that 
P is the y-axis, has graph function z = f(y), |y| ≤ δ(P ),
satisfying Lip(f) ≤ B.

Then there exists an h > 0, independent of P ∈ SB, such that
the portion Y ′

B(P,h δ(P )) of the surface Y is graphical over the half-disc

{
√

x2 + y2 ≤ h δ(P ), z = 0} with graph function z = u(x, y), where u
satisfies |∇u| ≤ 2B.

Proof. If this were false, then there would exist a sequence Pj ∈ γ,
lines 
j and graph functions fj : [−δj , δj ]→ R for γ with Lipschitz con-
stant B, and sequences of numbers hj → 0 and points Qj ∈ Y ′

B(Pj ,hjδj)

with coordinates (xj , yj , zj) (using coordinates (x, y, z) where Pj is the
origin and 
Pj is the y-axis), such that the angle between the unit (Eu-
clidean) normal ν̄(Qj) to Y at Qj and ∂z is greater than arctan(2B).

Since Y has finite energy, we have that EB(Pj ,hjδj)(Y ) → 0, so a
contradiction can be drawn by a blow-up argument. Translate so that
yj = 0, then dilate by the factor 1

xj
to obtain a sequence of surfaces

Ỹj. By construction, ∂∞Ỹj is graphical over the y-axis at least over the
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interval |y| ≤ 1
hj
, with Lipschitz constant B. Furthermore, the angle

between ν̄ and ∂z at (1, 0, 0) is greater than arctan(2B). However, Yj

converges to a vertical half-plane Y∗, and since the convergence is C∞
away from the boundary by [6], the angle condition at (1, 0, 0) is pre-
served in the limit. However, by Lemma 2.2, from the Lipschitz bound
on the graph function fj, we see that Y∗ = {z = αy+β, x > 0} for some
α with |α| ≤ B. This contradicts the angle condition at (1, 0, 0). q.e.d.

We also need a slight variant of this.

Lemma 2.4. Consider a sequence of complete Willmore surfaces Yj,
the closures of which pass through the (0, 0, 0). Assume that the subdo-

mains Y ′
j,B(0,3) satisfy EB(0,3)(Yj) → 0, and that γj = ∂∞Y ′

j,B(0,3) is a

graph z = vj(y) over the interval |y| ≤ 2 with vj ∈ C1 and |v′j(y)| ≤ δ

for some δ > 0. Then there exists an ε0(δ) > 0 such that Y ′
j,B(0,3) is a

graph z = uj(x, y) over the rectangle R := {0 ≤ x ≤ ε0(δ), |y| ≤ 2}, and
|∇uj | ≤ 2δ on R.

Proof. This is proved essentially as before. We pick ε0(δ) small enough
so that all functions uj(x, y) with (x, y) ∈ [0, ε0(δ)]×[−2, 2] whose graphs
are portions of upper half-spheres and satisfy |∂yuj|x=0| ≤ δ also satisfy

|∇uj(x, y)| ≤ 3δ
2 for (x, y) ∈ [0, ε0(δ)] × [−2, 2]. If the claim were to fail

for this ε0(δ), we could choose points Pj ∈ Yj contained in the portion
of Yj which is graphical over this rectangle where |∇uj(Pj)| > 2δ. Since
Yj → Y∗ smoothly away from x = 0 and Y∗ must be a portion of a
hemisphere, we must have x(Pj)→ 0. Now dilate by the factor x(Pj)

−1;

this produces a sequence of Willmore surfaces Ỹj which converge to a
vertical half-plane Y∗ which meets the xy-plane at a small angle bounded
above by | arctan(δ)|, but such that the corresponding graph functions
ũj satisfy |∇ũj | > 2δ at a fixed point (0, 0, 1). However, convergence in
this dilated setting is still smooth away from x = 0 by [27], so this is a
contradiction. q.e.d.

2.2. Interior area bounds. We now explain how to derive the interior
area bounds required for Theorem 1.3.

Proposition 2.1. Consider any sequence Yj ∈ Mk,g of normalized
surfaces with

∫
Yj
|A|2 dμj ≤ M < ∞. Then for any η > 0, there is a

uniform bound on the areas of the truncations Y η
j = Yj ∩ {x ≥ η}, at

least for some subsequence of the Yj .

Proof. The first step is a lemma which shows that the Yj remain
outside a fixed half-space B+ ⊂ H

3. Note that this would be trivial by
virtue of the maximum principle if the Yj were minimal. In this more
general setting, however, this follows from the energy bounds. Recall
too that we are assuming that each γj = ∂∞Yj has |γj| = 100π.
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Lemma 2.5. Suppose that Yj ∈Mk,g is a sequence with
∫
Yj
|A|2 dμj ≤

M < ∞. Then there exists a closed half-ball B∗ = {(x, y, z) : x2 + (y −
y0)

2+(z−z0)
2 ≤ R2} so that Yj∩B∗ = ∅ (at least for some subsequence

of the Yj).

Proof. We first note that because of the uniform bound on the length
and number of components of each γj , there must exist a disk D′

∗ =
{x = 0, (y − y′0)

2 + (z − z′0)
2 ≤ (R′)2} ⊂ ∂∞H

3 such that γj ∩D∗ = ∅
for infinitely many j.

Now, if the assertion were false, then there would exist points Pj ∈ Yj

for infinitely many j where x(Pj)→ 0 and such that TPjYj is horizontal
and Yj locally lies above this tangent plane. By virtue of the uniform en-
ergy bound, the energies of Yj ∩B(Pj, 1) (i.e., hyperbolic radius 1) must
converge to 0. Use a dilation and horizontal translation to transform
Pj to (1, 0, 0) ∈ H

3. The Yj must then converge, locally in C∞ around
(1, 0, 0), to the half-sphere {x2 + y2 + z2 = 1, x ≥ 0}, which contradicts
the fact that Yj locally lies above Pj . q.e.d.

By virtue of this lemma, we may as well now assume that each Yj

lies in the half-ball {x2 + y2 + z2 ≤ 1, x ≥ 0}. The key idea in the
rest of the proof is that there exists a sequence of good truncations

Y 	
j := Y

θj
j = Yj ∩ {x ≥ θj}, with θj ≥ c > 0, determined by the re-

quirement that
∣∣∣∫γ�

j
κds

∣∣∣ ≤ C, where γ	j = ∂Y 	
j and κ is the geodesic

curvature of this boundary in Y 	
j . Indeed, suppose that we have deter-

mined these truncations, and suppose too that we have shown that the

Euler characteristics of the Y 	
j remain bounded. Recalling from (1.2)

that the Gauss curvature of Y 	
j satisfies

K =
1

2
|A|2 − |Å|2 − 1,

then the Gauss-Bonnet formula∫
Y �
j

1

2
|A|2 − |Å|2 dμj −Area(Y 	

j ) +

∫
γ�
j

κdsj = 2πχ(Y 	
j ),

combined with the bounds on the energy, the boundary term, and the

Euler characteristic, shows that the areas of the Y 	
j remain uniformly

bounded.
Let us first explain how to find truncations with bounded Euler char-

acteristic. The only way this could fail is if, for each η > 0, the surfaces
Yj have increasingly large numbers of boundary components as j →∞.
This, in turn, could happen only if there were to exist a sequence of
points Pj ∈ Yj with horizontal tangent and where Yj lies above the
tangent plane at Pj . (The idea is simply that each new boundary com-
ponent of the truncation would bound a compact portion of the surface,
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on which the height function attains a minimum.) However, we have
already showed in the lemma that this is impossible.

Now let us show that there are truncations for which the integral of
geodesic curvature on the boundary remains bounded. For any constants
0 < a < b, let Y a,b = Y ∩ {a ≤ x ≤ b}. We shall use the argument in
Lemma 2.1 and the ε-regularity result [15, Theorem 2.1], which together
imply that there exist small constants δ, δ′ > 0 so that for any 0 < δ′′ <
δ′, if Y ∈ M satisfies

(2.2)

∫
Y δ′′/4,δ′′

|A|2 dμ ≤ δ,

then for any point P ∈ Y δ′′/3, δ′′/2, Y is a graph over a disc of radius
δ′′/10 lying in a vertical half-plane, where the Ck norm of the graph
function is controlled by δ and (δ′′)−1, and so that Y is almost vertical
in the sense that |g(ν, ∂x)| ≤ 1/10, where ν is the Euclidean unit normal
vector to Y at P .

Having fixed the constants δ, δ′, we must show that (2.2) holds for
infinitely many Yj, for some δ′′ which is uniformly bounded below. We
have already chosen one value of η which is suitable for the topological
bound. Now fix N ≥ M/δ + 1 (where M is the energy bound), and
divide the interval [2−2Nη, η] into the union of N − 1 subintervals I
 =
[2−2
η, 2−2
+2η]. The sum of the energies of Yj on each of these pieces
is no larger than M , so for each j, the energy of Yj on at least one of
the I
 is less than δ. Finally, choose 
 so that infinitely many of the Yj

have energy less than δ on I
 and relabel that subsequence as the whole
sequence.

The C2 bounds of the vertical graph functions show that the geodesic
curvature of any cut Yj

⋂{x = θ} in Y θ
j , θ ∈ I
, is bounded; this fact,

recalling that Yj
⋂
{x = θ} are contained in a disc of fixed radius R

yields a length bound for these curves. Thus we conclude at last that∣∣∣∣∣
∫
Y θ
j

κds

∣∣∣∣∣ ≤ C

for any such θ, independently of j. q.e.d.

3. The ε-regularity results: Small energy controls boundary

regularity

3.1. Vanishing energy implies C1 boundary convergence. We
first state a key proposition, and then deduce Theorems 1.1 and 1.2
from it.

For any ζ ∈ (0, 1], consider the (unique) circle Cζ
∗ in the yz-plane

which is tangent to the y-axis at the origin and whose graph function

f ζ
∗ (y) over the interval [−1, 1] satisfies (f ζ

∗ )
′(1) = ζ. Pick ζ0 small enough
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so that for each ζ ∈ (0, ζ0] the circle Cζ
∗ is contained in the open ball

B(0, 5ζ ) ⊂ R
2.

Proposition 3.1. Let ζ and ζ0 be as above. Suppose that Yj is a
sequence of connected Willmore surfaces in H

3
⋂

B(0, 2) with boundaries
at infinity ∂∞Yj = γj , and the remaining boundary components on the
outer boundary of this half-ball. Assume

∫
Yj
|Ā|2dμ ≤ M < ∞. We

assume furthermore that:

a) Each γj is the graph of a function fj over [−1, 1], which satisfies
|fj(y) − fj(y

′)| ≤ ζ|y − y′| for all y, y′ ∈ [−1, 1] and fj(0) = 0,
f ′
j(0) = 0, f ′

j(1) = ζ;

b) LipRadζγj (P ) ≥ 2−|P |
A , for some fixed A > 0;

c) EB(0,2)
p (Yj)→ 0 as j →∞.

Then fj → f ζ
∗ in C1([−1, 1]).

In other words, if the weighted energies of a sequence of Willmore
surfaces converge to zero in some fixed half-ball, and if the boundaries
at infinity of these Willmore surfaces are uniformly Lipschitz in the
qualitative sense above, then these boundaries must converge to a par-
ticular circular arc defined by the normalization, and the convergence
is actually in C1.

For future reference, we state another proposition which guarantees
C1 convergence of boundary curves under slightly different assumptions.
This will be used in the proof of Theorem 1.4 above.

Proposition 3.2. Assume that Yj is a sequence of connected Will-
more surfaces in H

3
⋂

B(0, 2), with boundaries at infinity ∂∞Yj = γj,
and with all other boundaries contained in the outer boundary of the
half-ball B(0, 2). Assume

∫
Yj
|Ā|2dμ ≤M <∞. Assume also that

a) Yj is the graph of a function z = uj(x, y) over the half-disc {x2 +
y2 ≤ 2, z = 0}.

b) |∇uj | ≤ 2ζ ≤ 1/10 for x > 0 and fj(y) := uj(0, y) is a Lipschitz
function with Lipschitz constant ζ.

c) Ep(Yj) → 0, and Yj converges (in the Cα norm, α < 1) to the
upper half-disc {z = 0, x2 + y2 < 2}.

d) All fj are differentiable at y = 0.

Then limj→∞ f ′
j(0) = 0.

3.2. Proposition 3.1 implies ε-regularity. We now show that The-
orems 1.1 and 1.2 can be deduced from Proposition 3.1.

The argument is by contradiction. Assume that for every j ≥ 1
there exist surfaces Yj ∈ M and points Pj ∈ γj := ∂Yj (and radii

Rj ≤ 1 in the context of Theorem 1.1) such that EB(Pj ,Rj)
p (Yj) <

1
j , yet
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LipRadζγj (Qj) < ζ
Rj−|PjQj |

10 for some Qj ∈ γj ∩B(Pj , Rj). Observe that

the points Qj must lie in the open ball B(Pj , Rj) since LipRad
ζ(γj) > 0.

Select a point Zj ∈ γj in the open ball B(Pj , Rj) so that

inf
Q

LipRadζγj (Q)

(Rj − |PjQ|)
=

LipRadζγj (Zj)

(Rj − |PjZj |)
,

and note that this ratio is less than ζ/10. Let δj := LipRadζγj (Zj). By

translation and rotation, assume that Zj = 0 and TZjγj is the y-axis.

Now dilate by δ−1
j . Denote the rescaled surface by Ỹj and the rescaled

boundary curve by γ̃j ; note that |γ̃j | = 100πδ−1
j . Thus γ̃j is a graph

z = fj(y) over [−1, 1], with fj(0) = 0, f ′
j(0) = 0, and |fj(y)− fj(y

′)| ≤
ζ|y−y′|. Moreover, because [−1, 1] is the maximal interval on which the
Lipschitz norm of fj is bounded by ζ, we must have either |f ′

j(−1)| = ζ

or |f ′
j(1)| = ζ, and to be definite we suppose that f ′

j(1) = ζ for each j.

The translated and rescaled ball B̃j contains B(0, 5ζ ). Furthermore,

by the choice of Zj and the dilation, we see that there exists an η > 0

such that for each P ∈ γ̃j
⋂
B(0, 5ζ ), LipRad

ζ
γ̃j
(P ) ≥ η.

We claim that γ̃j → Cζ
∗ in C1. Assuming this for the moment, we

show that this leads to a contradiction in Theorems 1.1 and 1.2.
For Theorem 1.2, the contradiction is immediate. Indeed, the curves

γ̃j intersect the circle ∂B̃j, which contradicts the fact that γ̃j → Cζ
∗ ,

which lies strictly in the interior of B̃j.

As for Theorem 1.1, let gj : [−50πδ−1
j , 50πδ−1

j ] → R
2 parametrize

γ̃j by arclength, so the length along the curve between gj(0) and gj(s)

is |s|; similarly, let g∗ : [−50πδ−1
j , 50πδ−1

j ] → Cζ
∗ be a (multi-covering)

arclength parametrization of Cζ
∗ .

Observe that |Cζ
∗ | = 2πRζ , with Rζ =

√
1 + 1

ζ2
. Our claim gives that

gj(s)→ g∗(s) in C1([−πRζ , πRζ ]), so in particular,

lim
j→∞

gj(−πRζ) = lim
j→∞

gj(πRζ), lim
j→∞

g′j(−πRζ) = − lim
j→∞

g′j(πRζ).

This shows that limj→∞ |γ̃j | = |Cζ
∗ |. On the other hand, we know that

|γ̃j | = 100πδ−1
j , which is impossible since |Cζ

∗ | = 2πRζ .

Proof that Proposition 3.1 implies γj → Cζ
∗ in C1: Let 2ζ ′ be the length

of the arc in Cζ
∗ which is a graph over the interval y ∈ [−1, 1]. By

Proposition 3.1, gj(s)→ g∗(s) for s ∈ [−ζ ′, ζ ′]. (Note that the required
bound on

∫
Yj
|Ā|2dμ follows from the key assumption at the end of

subsection 1.1.) Let M > 0 be the largest number in [0, πRζ ] such that
gj(s) → g∗(s) in C1([−M,M ]). We must prove that M = πRζ , and
moreover, for any small ε > 0 and j sufficiently large, that there exists
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an εj > 0 with limj→∞ εj = ε and gj(−πRζ − εj) = gj(πRζ − ε). The

first claim ensures that γj([−πRζ , πRζ ])→ Cζ
∗ , while the second implies

that γj(s) closes up on a small extension of the interval [−πRζ , πRζ ].
The first part is proved by contradiction: Assume M < πRζ , and

consider the pairs (gj(M), g′j(M)). These converge to (g∗(M), g′∗(M)),
so for j large they lie in the open set U where LipRad is bounded below
by some η > 0. Now let 
j be the tangent line to γ̃j at gj(M). Consider
the intervals of length η centered at gj(M) on each 
j . After translation,
rotation, and dilation by the factor η−1, the rescaled γ̃j can be written
as the graphs of functions φj on [−1, 1]. Applying Proposition 3.1 to
these functions, we see that φj → f∗ in C1. Hence gj → g∗ on a larger
interval [−M ′,M ′], which contradicts the maximality of M .

As for the second part of the claim, note that the argument above
shows that for |τ | ≤ η we have

lim
j→∞

(gj(−πRζ − τ), g′j(−πRζ − τ)) = lim
j→∞

(gj(πRζ − τ),−g′j(πRζ − τ)),

because of the lower bound LipRadζ ≥ η and the C1 convergence of the

gj on [−πRζ − τ,−πRζ + τ ] to an arc of Cζ
∗ .

Now, assume that for some fixed ε > 0, there exists a subsequence in
j such that gj(−πRζ− ε) �= gj(πRζ−s) for any s ∈ (0, 2ε). In particular
this says that gj(t) does not ‘close up’ for t ≤ −πRζ and t ≥ πRζ .

This gives a sequence of values τj ∈ [−50πδ−1
j ,−πRζ ]

⋃
[πRζ , 50πδ

−1
j ]

such that τj → τ∗, gj(−τj)→ P , with P ∈ Cζ
∗ , yet g

′
j(τj)→ T∗ for some

vector T∗ which is transverse to the tangent vector T of Cζ
∗ at P . How-

ever, if j is large enough, then gj(τj) ∈ U , and hence LipRadζγj (gj(τj)) ≥
η > 0. But this implies that γj must self-intersect near P , which con-
tradicts that the boundary curves are embedded. �

3.3. An overview of the strategy. In the next two sections, we prove
Propositions 3.1 and 3.2. In a nutshell, both results show, in slightly dif-
ferent settings, that if the weighted energies of portions of the Willmore
surfaces Yj ⊂ H

3 converge to zero, then γj = ∂∞Yj must converge in the
C1 norm to the boundary curve γ∗ of a totally geodesic surface Y∗. We
stress that the convergence of the graphical portions of the surfaces Yj

to Y∗ is C∞ away from {x = 0}; the novelty here is the C1 convergence
at the boundary.

Since the argument has several steps, we now provide a moderately
detailed outline of the strategy. If the results were false, we could find a
sequence of Willmore surfaces Yj satisfying the hypotheses but for which
the C1 convergence fails at some boundary point. Thus, having written
the boundary curves graphically, we assume that there exists y0 ∈ [0, 1]
such that limj→∞ f ′

j(y0) = b1 �= b2 = f ′
∗(y0). Because the local energy

converges to zero, the limit Y∗ is totally geodesic, and the convergence
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is C∞ away from {x = 0}. Furthermore, at {x = 0}, fj → f∗ in Cρ, ρ < 1
where the graph of f∗ is a circular arc.

Compose with a suitable sequence of rotations, reflections, and inver-
sions so that we can assume that (y0, fj(y0)) = (0, 0) and (maintaining
the names of all surfaces and curves) that Y∗ is a portion of the vertical
plane {z = 0}. By assumption b) of Proposition 3.1, each γj is the graph
of a function fj defined on a fixed interval [−1, 1], and the limiting curve
γ∗ is the graph of f∗ = 0 on this same interval. The hypothesis is that
limj→∞ f ′

j(0) = α > 0, although f ′
∗(0) = 0.

The argument proceeds in two steps. We first show that there exists
a sequence of hyperbolic isometries ϕj such that the surfaces ϕj(Yj)
satisfy all the assumptions of Propositions 3.1 and 3.2 (including the
jump in the limit of the first derivatives), but so that some fixed portion
of ϕj(Yj) is covered by isothermal coordinates, the associated conformal
factor of which is uniformly bounded. This construction relies crucially
on ideas in [8], many of which go back to the influential paper [26].
The work here will involve modifying some arguments in [8], which is
possible because of some special features of our setting, to ensure that
the jump in the first derivative has a fixed size α− β > α

2 .
However, we then use particular properties of these isothermal cor-

dinate systems to prove that no such jump in the limit of the first
derivatives can occur. Writing ϕj(Yj) as the graphs of functions uj, and
denoting the isothermal coordinates by (qj , wj), the idea is to control
∂wjuj|(0,0) using that ∂wjuj → 0 as j →∞ uniformly along {x = 1}. The
relationship between these derivatives at x = 0 and x = 1 is obtained
using two integrals, the first of the mixed component of the second fun-
damental form of ϕj(Yj) with respect to the Euclidean metric, and the
second depending on a derivative of the conformal factor. We show that
these integrals are bounded in terms of Ep(ϕj(Yj)) and hence converge
to 0. The estimate for the first integral uses a realization of Willmore
surfaces as harmonic maps into the (3+1)-dimensional deSitter space. In
Euclidean coordinates, the energy integrand for this map turns out pre-

cisely to be the traceless second fundamental form | ˚̄A|2. This, together
with the harmonic map equation and the strong subharmonicity of the

distance function on our surfaces, yields bounds on | ˚̄A| which are inte-
grable in x. It is at this point exactly that the boundedness of weighted
Willmore energy (as opposed to the regular Willmore energy) is used.
The control of the second integral follows from interpreting it as one
term in a flux formula whose interior term is controlled by E(ϕj(Yj)).

Remark 3.1. The jump of the first derivative of γj can also be
described in terms of the Euclidean coordinate function z restricted to
the surface Yj. Indeed, the jump condition is the same as

(3.1) | lim
j→∞

ν̄j(z)− ν̄∗(z)| = α > 0,
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where ν̄j and ν̄∗ are the Euclidean unit tangent vectors to ∂∞Yj and
∂∞Y∗ at (0, 0, 0).

4. Uniform isothermal parametrizations

We now choose a sequence of hyperbolic isometries ϕj which map
the surfaces Yj to a new sequence of surfaces which satisfy the assump-
tions of our propositions (in particular they converge to a vertical half-
plane) but such that some fixed portions of these rescaled surfaces admit
isothermal coordinates (qj , wj), the conformal factors of which are uni-
formly bounded in C0, W 2,1, and W 1,2. We must also ensure that the
transformed surfaces still exhibit a jump in first derivative at the origin.
The main tool we employ is the work of Müller and Sverak [26] that
provides the desired isothermal coordinates for complete graphs of finite
total curvature.

This construction is used in the proofs of Propositions 3.1 and 3.2 in
slightly different settings, so we prove the present result in two different
settings as well. These involve different hypotheses on the boundary
curves γj = ∂∞Yj (assumed as always to pass through the origin). The
γj are C1 or Lipschitz, respectively, with uniform control on the norms,
and in the second setting, we assume that γj is differentiable at the
origin. Let us now describe these more carefully. In the following, and
throughout the rest of this section, we write

D+(a) = {(x, y, 0) : x2 + y2 ≤ a2, x ≥ 0},
D(a) = {(x, y, 0) : x2 + y2 ≤ a2}

for the half-disk or disk of radius a in the vertical plane {z = 0}.
Setting 1: Yj is a sequence of incomplete Willmore surfaces, where
each Yj is a horizontal graph z = uj(x, y) over D+(3) with uj ∈ C2,
||uj ||W 2,2 ≤ M < ∞, uj(0, 0) = 0, and ∂yuj(0, 0) = α > 0. We assume
that |∇uj|g ≤ ζ ≤ 1/20, and finally that E(Yj) ≤ μ < 2π and Yj →
Y∗ = D+(3).

Setting 2: Yj is a sequence of incomplete Willmore surfaces which are
again horizontal graphs z = uj(x, y) over D+(3) with uj(0, 0) = 0 and
uj ∈ W 2,2, ||uj ||W 2,2 ≤ M < ∞, and uj ∈ C2 away from {x = 0}. We
assume that (0, 0) is a point of differentiability for uj and ∂yuj(0, 0) =
α > 0. We also assume that y �→ uj(0, y) is Lipschitz with constant
ζ ≤ 1/20, and furthermore, |∇uj | ≤ 2ζ for x > 0. Finally, suppose that
E(Yj) ≤ 2π and Yj → Y∗ = D+(3).

Recalling that α is the jump in the derivative, choose any number
β with 0 < β � α. Consider the straight line 
β = {z = βy} in the
horizontal plane {x = 0}. Since the curves γj converge to a segment
in the y-axis containing the subinterval [−1, 1], then for j large, there
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must exist values −1 < y−j < 0 < y+j < 1 such that the two points

F±
j = (0, y±j , uj(y

±
j )) both lie on the line 
β. We assume that y+j is

chosen as large as possible in the interval (0, 1), and similarly for y−j .

Since γj = Graph(uj |x=0) converges to the line 
0 = {z = 0}, it is
necessarily the case that |F±

j | → 0. Let R−β denote the rotation of
the yz-plane by the small negative angle which sends 
β to 
0; thus

R−β(F
±
j ) = (±|F±

j |, 0).
Suppose, to be definite, that |F+

j | ≥ |F−
j |. Dilating the entire surface

by the factor |F+
j |−1 pushes the point F+

j to (1, 0). The key observation

is that this dilation of R−βYj converges to a vertical plane (since it must
be totally geodesic and graphical over {z = 0}), and since this plane
contains the two points (0, 0) and (1, 0), it must be {z = 0, x ≥ 0}.
This holds even though, before dilating, the sequence R−βYj converges
to the vertical plane {y = −βz, x ≥ 0}. Denote this dilated, rotated

surface by R̃−β(Yj). Note also that our assumed W 2,2 bound implies
that

∫
R̃−β(Yj)

|Ā|2dμ ≤ M , and hence given γ > 0 and fixing 0 < β− <

β+ � α, then for j large enough there exists some βj ∈ (β−, β+) such
that

(4.1)

∫
R̃−βj

(Yj)
⋂
{1/4≤x2+y2+z2≤9}

|Ā|2dμ ≤ γ.

Remark 4.1. By this observation, we can pick a sequence βj , 0 <
β− ≤ βj < β+ � α such that:

(4.2)

∫
R̃−βj

(Yj)
⋂
{1/4≤x2+y2+z2≤9}

|Ā|2dμ = o(1).

We make this choice hereafter.

For simplicity, now reset the notation and write the rotated dilated
surfaces as Yj, with boundary curves γj, graph functions uj , etc.

Lemma 4.1. Consider a sequence of incomplete Willmore surfaces Yj

which are graphs z = uj(x, y) over D+(3) with |∇uj | ≤ 2ζ, Lip(uj |x=0) ≤
ζ, 8E(Yj) ≤ π,

∫
Yj∩{1/4≤x2+y2+z2≤9} |Ā|2dμ→ 0, uj(0, 0) = 0, uj(0, 1) =

0, and uj → 0, where the convergence is in C∞ away from {x = 0} and
in C0,α up to x = 0. Assume further that there is a jump in the first
derivative at the origin:

(4.3) lim
j→∞

∂yuj(0, 0) − ∂yu∗(0, 0) ≥ α− 2βj >
1

2
α.

Then, setting Uj = Graph(uj)|D+(2), we claim that there exist relatively

open domains Dj ⊂ R2
+ and conformal maps Ψj : Dj → Uj, with Ψj :

Dj
⋂{x = 0} → Uj

⋂{x = 0}, and so that the conformal factor φj in

(Ψj)
∗gj = e2φjδij (δij is the Euclidean metric),
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which is defined on Dj ⊂ R
2
+, satisfies

(4.4) ||φj ||C0(Dj)+ ||φj ||W 1,2(Dj)+ ||φj||W 2,1(Dj) ≤ C

∫
Dj

| ˚̄Aj |2 dμ+o(1).

Remark 4.2. Since Ψj is conformal, |DΨj(P )| = eφj(P ) at any point
P , which implies that the upper and lower bounds on ||φj ||C0 automati-
cally bound from above and below the distortion of distance with respect
to Ψj. In particular, the distance between Ψ−1

j (0, 0, 0) and Ψ−1
j (0, 1, 0)

is uniformly bounded above and below by positive constants, and in
addition, there exist c, C > 0 so that D+(0, c) ⊂ Dj ⊂ D+(0, C).

Remark 4.3. Note, for future reference, that we actually prove that
the surfaces Uj ⊂ Graph(uj)|D+(2) are subregions of complete, smooth

graphical surfaces Y �
j in R

3 which are reflection-symmetric across {x =

0}. If u�j(x, y) is the graph function of Y �
j , then the (distorted) annular

regions {(x, y, u�j(x, y)), 2 ≤
√

x2 + y2 ≤ 4} of these larger surfaces are
not Willmore with respect to the hyperbolic metric. On the other hand,

u�j(x, y) = 0 for
√

x2 + y2 ≥ 5; we denote this portion of Y �
j by Y 	

j .

The isothermal coordinates (qj, wj) cover the entire surface Y
�
j , and the

associated conformal factor φj satisfies (4.4) on all of Y �
j and φj → 0 as√

x2 + y2 →∞. In the first setting above, E(Y �
j )→ 0.

Remark 4.4. We let qj, wj be the isothermal coordinates induced
onto Uj by the map Ψj. In other words, letting x, y be the standard
coordinates on R

2
+ := {x ≥ 0, y ∈ R}, we write

(4.5) (qj, wj) = (Ψj)∗(x, y).

We also note that the pointwise bound on φj yields bounds on |∇qj|g,
|∇wj |g. Indeed, dropping the subscript j momentarily, we have

(4.6) g = e2φ(dq2+dw2) = (1+(ux)
2)dx2+2uxuydxdy+(1+(uy)

2)dy2,

so in particular

g(∂x, ∂x)+g(∂y, ∂y) = 2+u2x+u2y = e2φ(|∂xq|2+|∂yq|2+|∂xw|2+|∂yw|2).
Using |ux|, |uy| ≤ 1/10 and |dq|g = |dw|g, dq ⊥ dw, the equivalence of
pointwise bounds on φj and |∇qj|g follows directly.

Proof. As described earlier, we apply a result of Müller and Sverak
[26], which yields a special isothermal parametrization of a complete
graphical surface of bounded total curvature. To reduce to this setting,
consider the graph functions uj in Lemma 4.1. Reflect these across the
plane {x = 0} and then modify them outside a disk of radius 2 to equal 0.
The resulting surface is not Willmore outside the disk of radius 2, but
the Müller-Sverak theorem yields a good isothermal parametrization,
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the restriction of which to the small disk is the one required in Lemma
4.1.

In any case, we obtain isothermal coordinates (q, w) which still detect
the jump in the first derivative, and with 0 < C1 ≤ |∇q|, |∇w| ≤ C2.

Reflection. We first reflect Yj across the horizontal plane to obtain a
surface Y ′

j in R
3 invariant with respect to the vertical reflection x �→ −x.

The doubled surface is graphical over D(3), and has graph function
ũj ∈ W 2,2(D(3)). This is straightforward to check using Lemma 2.1.
We change notation, denoting the doubled surface Y ′

j by Yj again.

Extension. We now claim that the doubled incomplete surface Yj can
be extended to a complete surface Y ext

j which is a graph over the entire

vertical plane {z = 0} with graph function uextj which vanishes when

x2 + y2 ≥ 25 and also satisfies

(4.7) E(Y ext
j ) ≤ 2E(Yj) + o(1).

Notice that Y ext
j is no longer Willmore in the transition annulus 4 ≤

x2 + y2 ≤ 9.
This construction is a bit lengthy, so we defer it to the subsection

below, but let us grant that for the moment.
Now invoke [26, Theorem 5.2] to obtain a conformal map

Ψj : R
2 −→ Y ext

j .

If g0 is the standard flat metric on R
2 and gj is the metric on Y ext

j

induced from the Euclidean metric in R
3, then define φj by

Ψ∗
jgj = e2φjg0.

Then [26, Theorem 5.2] and the W 2,1 �→ W 1,2 estimates immediately
before it show that

||φj ||C0(R2) + ||φj ||W 1,2(R2) + ||φj ||W 2,1(R2) ≤ C

∫
Y ext
j

| ˚̄Aj |2 dμ̄j(4.8)

≤ 2CE(Yj) + o(1).

The second inequality here follows from (4.7) and (4.1). The restriction
of Ψj to Uj := Ψ−1

j (Graph(uj)|D+(2)) gives our claim.

As a brief hint of the idea of the proof of this fact (but see [26] for
further details), φj is a solution of the semilinear elliptic PDE, Δg0φj =

K̂je
2φj , where K̂j is the Gauss curvature function on Mtj (Ŷj). The main

term K̂je
2φj on the right has a ‘determinant structure’, since it can be

expressed via the pullback of the area form on S2 by the Gauss map.
This allows one to conclude that the right hand side lies in the Hardy
space H1(R2), and from there the estimates follow from some important
and well-known theorems in harmonic analysis. q.e.d.
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Construction of the extension. We now prove the fact claimed in
the proof of Lemma 4.1 that the reflected surface Y ′

j can be extended

to a graph over the entire plane {z = 0} in such a way that the increase
of energy is controlled. This is straightforward using mollification. The
point is that each of our surfaces is graphical with bounded tilt, so the
total curvature is equivalent to the L2-norm of the Hessian of its graph
function. In particular, if Y = Graph(u) for u ∈ C2(D′), D′ = {1/4 ≤
x2 + y2 ≤ 9}, with |∇u| ≤ 2ζ, then
(4.9)

1

(1 + 4ζ2)

∫
D′

|∂2u|2dxdy ≤
∫
Y ′

|Ā|2dμ ≤ (1 + 4ζ2)

∫
D′

|∂2u|2dxdy.

Lemma 4.2. Let u be a W 2,2 function defined on the half-disc

D+(3) := {
√

x2 + y2 ≤ 3, x > 0}. If Y = Graph(u), then write∫
Y
| ˚̄A|2dμ̄ := E ,

∫
Y ∩1/2≤

√
x2+y2≤3

|Ā|2dμ̄ := E ′

and assume that |∇u| ≤ 1, and in addition

1) there exist ε, δ > 0 such that |∇u(P )| ≤ δ for all P ∈ D′
⋂{x ≥ ε};

2) for any P ∈ D′∩{x = 0}, and any sequence Pj ∈ D′ with Pj → P ,
we have limj→∞ ∂xu(Pj) = 0.

Let U be the even extension of u to D = {
√

x2 + y2 ≤ 3}. Then there

exists a function u such that u = U on {
√

x2 + y2 ≤ 1}, u = 0 on

{
√

x2 + y2 ≥ 5}, and if we let Y := Graph(u) then
∫
Y | ˚̄AY |2 ≤ 2E +

1000(δ + ε) + 10E ′.

By Remark 4.1 and the fact that the Yj converge locally in C∞ to
a vertical half-plane away from {x = 0}, this lemma then implies the
claim on extension from above.

Proof. First note that if u ∈ W 2,2, then using the fact that ∂xu = 0
on {x = 0}, we have U ∈ W 2,2. Furthermore, using the formula for the
second fundamental form of a graph z = U(x, y), we have∫

Y ′

| ˚̄A|2dμ = 2E .

To construct the extension, fix a smooth cutoff function χ(x, y) ∈
C∞0 (B1(0)) with

∫
R2 χdxdy = 1, and such that |∂χ| ≤ 10, |∂2χ| ≤ 100.

Given any ρ > 0, we let χρ := ρ−2χ(xρ ,
y
ρ). We work in polar coordinates

r :=
√

x2 + y2, θ := arctan(y/x).
Define a function u	(r, θ) which equals u(r, θ) for r ≤ 5/2, and which

vanishes for r > 5/2. In addition, let ψ(r) be a C∞ function which
vanishes when r ≤ 1, equals 2 for r ≥ 3, is strictly monotone increasing
in the interval [1, 3], and satisfies |ψ′(r)| ≤ 10, |ψ′′(r)| ≤ 100. Then



COMPLETE WILLMORE SURFACES IN H3
397

define the function

u(r, θ) := (u	 ∗ χψ(r))(r, θ),

where χ0 is understood as the δ function. It is straightforward that u is
C2 away from {x = 0}, and it is also obvious that u(r, θ) = 0 for r ≥ 5
and that |∇u| ≤ 1 throughout R

2. What remains is to show that the
surface Y = Graph(u) satisfies the claims of our lemma.

To do this, we recall some facts about the Hardy-Littlewood maximal
functions. For χ ∈ C∞0 and f ∈ L1

loc(R
2), define

M(f)(x) := sup
ρ>0

|(f ∗ χρ)(x)|.

Then (for an appropriate choice of cutoff function χ),

(4.10) ||M(f)||L2 ≤ 10||f ||L2 .

Using (4.10) and (4.9) we derive:∫
Y

⋂
{1≤r≤2}

|Ā|2dμ ≤ 20E ′.

This implies immediately that∫
Y

⋂
{r≤2}

| ˚̄A|2dμ ≤ 2E + 20E ′.

Thus matters are reduced to estimating
∫
Yj

⋂
{r≥2} | ˚̄A|2dμ. Given (4.6),

it suffices to control: ∫
{r≥2}

|∂2u|2dxdy.

We use the formula ∂2u(P ) = [∂2(χψ(r(P )))∗u	](P ). Using the pointwise

bounds on ∂jχr, ∂
jψ, j = 0, 1, 2 and on |u|, we directly derive that:∫

Y
⋂
{2≤r≤5}

|Ā|2dμ ≤ 1000

∫
R2

⋂
{2≤r≤5}

|u|2dxdy ≤ 1000(ε + δ).

Finally, using the definition of u	, we deduce that
∫
Y

⋂
{5≤r} |Ā|2dμ = 0.

q.e.d.

5. The key estimates: Small weighted energy in a half-ball

controls C1 regularity

We now prove Propositions 3.1 and 3.2. In both cases, consider the se-
quence of (incomplete, graphical) Willmore surfaces furnished by Lemma
4.1, but dilate these further so that they are all graphical over D+(3).

We denote by Ŷj the image of the original surfaces under the Möbius
transformation in the previous subsection.

Recall also the connection between the bounds on the conformal fac-
tor φj and on |dqj|g and |dwj |g, as explained in Remark 4.3. Recall
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equation (4.4) and choose j large enough so that ||φj ||C0 ≤ 10−2; this
implies that the image of the entire rectangle 0 ≤ qj ≤ 1, |wj | ≤ 1

lies in Yj . Furthermore, since Y �
j converges to a vertical plane Y∗ (see

Remark 4.3), and since qj has gradient bounded above and below and
vanishes along {x = 0}, and Δgjqj = 0, there is a subsequence of the
qj converging to a harmonic function of linear growth which vanishes at
x = 0. The only possible limit is λx for some λ ∈ [C−1, C]. As before,
the convergence is C∞ away from {x = 0}.

Again, using the C0 and W 1,2 bounds for φj in (4.4), we may replace
coordinate derivatives by covariant derivatives in these bounds, at worst
only increasing the constant.

We can now prove the main analytic estimate, which shows that the
energy of Yj controls the jump in the first derivative of the boundary
curve of Yj at the origin.

In the following, we often write ∂1 and ∂2 for the coordinate vec-
tor fields ∂qj , ∂wj on Yj, and also set Āj(∂1, ∂2) = (Āj)12, or simply

Ā12. Since the coordinate function z equals uj on Yj, letting ν be the
(Euclidean) unit normal to Yj we have

(5.1) (Āj)12∇νz = ∇12uj = ∂12uj − ∂1uj ∂2φj − ∂1φj ∂2uj .

The two equalities are just specializations of basic definitions to this
situation. Now drop the subscript j for simplicity. Multiply the equation
by e−φ. Noting that e−φ(∂12u−∂1φ∂2u) = ∂1(e

−φ∂2u), then integrating
along the line segment 0 ≤ q ≤ 1, w = 0 gives

(e−φ∂2u)(1, 0) − (e−φ∂2u)(0, 0) =

∫ (1,0)

(0,0)
e−φĀ12∇νu dq(5.2)

+

∫ (1,0)

(0,0)
e−φ∂2φ∂1u dq.

We now state our main estimate.

Proposition 5.1. Set Ej := E(Yj) and Ej,p = Ep(Yj). Then there
exist constants C,C ′ such that
(5.3)∫ (1,0)

(0,0)

∣∣(Āj)12e
−φj

∣∣ dqj + ∫ (1,0)

(0,0)

e−φj∂2φj∂1uj dqj ≤ C
√
Ej,p + C′

√
Ej + o(1).

Before proving this, let us explain how it leads to a contradiction, thus
establishing Propositions 3.1 and 3.2. In view of the C∞ convergence of
uj → u∗ and (qj, wj)→ (q∗, w∗) (both for x > 0),

(5.4) |e−φj∂wjuj(1, 0) − e−φ∗∂w∗
u∗(1, 0)| ≤ α/10

for j sufficiently large. Furthermore,

(5.5) e−φj∂wjuj(1, 0) − e−φj∂wjuj(0, 0) =

∫ 1

0
∂1(e

−φj∂2uj) dqj ,



COMPLETE WILLMORE SURFACES IN H3
399

and since Y∗ lies in the plane {z = 0}, we also have

(5.6) e−φ∗∂w∗
u∗(1, 0) − e−φ∗∂w∗

u∗(0, 0) = 0.

Proposition 5.1 then yields that for large enough j,

(5.7)

∫ (1,0)

(0,0)
∂qj(e

−φj∂wjuj) dqj ≤ α/10.

Combining these facts along with |e−φj∂wjuj − ∂yuj| ≤ 1
10 |∂yuj |, which

holds since |∇uj| < 2ζ ≤ 1/10 and |∂wj −∂y|g is also small, we conclude
that

(5.8) |∂yuj(0, 0) − ∂yu∗(0, 0)| ≤ α/3

when j is large, which contradicts (4.3).

5.1. Regularity from the interior: the two line integrals. Propo-
sition 5.1 is a consequence of the following two results:

Proposition 5.2. With all notation as above, suppose that ||φj ||C0(Yj) ≤
K for all j. Then there exists a constant C(K) > 0 such that for each
point P ∈ Yj with qj(P ) ∈ [0, 1] and wj(P ) = 0 we have

(5.9) |( ˚̄Aj)12|(P ) ≤ C(K)

√∫
B2(P ) | ˚̄Aj |2f2p

j dμ̄

Uj(qj)
,

where B2(P ) is the (intrinsic) ball of radius 2 centered at P and the

functions Uj(qj) satisfy
∫ 1
0

dqj
Uj(qj)

≤M ′ <∞ for some uniform constant

M ′.

Proposition 5.3. For some constants C,C ′ independent of j, we
have
(5.10)∫ (1,0)

(0,0)
e−φj∂2φj∂1uj dqj ≤ C

∫
Yj

| ˚̄Aj |2 dμ̄+ C ′

√∫
Yj

| ˚̄Aj |2 dμ̄+ o(1).

These are proved in the remaining subsections of §5.

Remark 5.1. In our setting, the ε-regularity result [27, Theorem
I.5] applied to intrinsic discs of radius 1 in Yj (with respect to gj) yields

that |Åj | ≤ C
√
Ej , which implies that x| ˚̄Aj | ≤ C

√
Ej. Using that 0 <

C1 ≤ qj/x < C2, which we have already noted follows from the upper

and lower bounds on ||φh||C0 , we see that qj| ˚̄Aj | ≤ C ′
√
Ej. Therefore,

Proposition 5.2 actually shows that assuming bounded weighted energy

yields a stronger pointwise decay estimate for | ˚̄Aj |.
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5.2. Proof of Proposition 5.2. The argument relies on obtaining

pointwise control on | ˚̄A| at each point on the segment {0 ≤ qj ≤ 1, wj =
0} using the weighted energy of Yj on a ball of (hyperbolic) radius 1
around that point.

To this end, we use a well-known realization of Willmore surfaces as
harmonic maps into the (3 + 1)-dimensional deSitter space (dS1,3, h),
which we regard as a hypersurface in the (4+1)-dimensional Minkowski
space R

1,4. This is useful since the norm of this map, |dΦ|2, is precisely
equal to | ˚̄A|2.
Willmore surfaces as harmonic maps. Consider the (incomplete)
Willmore surfaces Yj ⊂ R

3
+ ⊂ R

3, equipped with the isothermal coor-
dinates qj ∈ [0, 1], wj ∈ [−1, 1]. For simplicity, denote Yj as Y for the

moment. Let g, ∇, and Δ be the induced Euclidean metric, connection,
and corresponding Laplacian. The Willmore surface in R

3 determines a
unique conformal harmonic map

Φ : Y → (dS1,3, h) ⊂ R
1,4

(see [12] for details). Using coordinates (t, x1, x2, x3, x4) so that the
Minkowski metric on R

1,4 is gMink := −dt2 + ∑
(dxj)2, then dS1,3 =

{−t2 +∑
(xj)2 = 1}. We recall first that

(5.11)
1

2
| ˚̄A|2 = (dΦ)iα(dΦ)

j
βg

αβhij := |dΦ|2.

Since harmonic maps from 2-dimensional domains are conformally
invariant, we may as well use the flat metric gE2 := dq2 + dw2 on Y
rather than e2φ(dq2 + dw2). Observe that |dΦ|2

E2 = e−2φ|dΦ|2, so if φ
is bounded above and below, then |T |E2 and |T | are comparable; in

particular, if e|φ| ≤
√
2, then

(5.12)
1

2
| ˚̄A|2 ≤ |dΦ|2

E2 ≤ 2| ˚̄A|2.

Now recall that
(5.13)

ΔE2 |dΦ|2
E2 = 2|∇dΦ|2

E2 + (RiemdS)ijkl(dΦ)
i
α(dΦ)

j
β(dΦ)

k
γ(dΦ)

l
δ(gE2)αγ(gE2)βδ,

which is the special case of the Bochner-type formula for any harmonic
map ([13, Eqn. (8.7.13)]). We recall the Riemann curvature tensor of
deSitter space:

(RiemdS)ijkl = (hikhjl − hilhjk).

Also, since Φ is conformal (and the metric induced by h on Φ(Y ) is
Riemannian), dΦ(∂q), dΦ(∂w) are orthogonal and have the same length;
hence

hikhjl(dΦ)
i
α(dΦ)

j
β(dΦ)

k
γ(dΦ)

l
δ(gE2)αγ(gE2)βδ

= 2hilhjk(dΦ)
i
α(dΦ)

j
β(dΦ)

k
γ(dΦ)

l
δ(gE2)αγ(gE2)βδ.
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In particular, (5.13) implies that:

(5.14) ΔE2 |dΦ|2
E2 = 2|∇dΦ|2

E2 − (|dΦ|2
E2)

2.

Remark 5.2. The sign of the second term on the right here is what
makes it necessary to assume finiteness of the weighted energy. Indeed,
this formula seems to imply that finiteness of some sort of weighted
energy is actually necessary. As in the introduction, even for scalar har-
monic functions Φ in R

2
+,

∫
R2
+
|dΦ|2 dxdy < ∞ does not imply that

||Φ||L∞(R2
+) < ∞. The sign of |dΦ|4

E2 suggests that finiteness of
∫
|dΦ|2

is even less effective in controlling sup |Φ| than in the linear case. In
particular, the theorems above would fail if we only assume finiteness
of the (unweighted) energy.

For future reference, note that by Remark 5.1 we have

(5.15) q2j |dΦ|2E2 ≤ 1.

Modified weight function and the isothermal parametrization:

Now recall the weight function f . We need to replace f by a new function
f̃j (one for each j) which is better suited for computations; the weighted
energy with respect to the new weight function is still bounded. After
isolating the part Yj in the original Willmore surface Ŷj which admits

good isothermal coordinates, some poles lie in Yj and others lie in Ŷj\Yj .
We shall modify the weight function f to omit those poles which do
not lie in Yj, but the justification for this requires some preliminary
estimates.

Lemma 5.1. Consider Y ⊂ H
3, and assume that the connected com-

ponent of Y
⋂

B+(0, 3) containing the origin is a graph z = u(x, y) over
the half-disc D+(3), with |∇u| ≤ 1. Then for points B ∈ Y \ Graph(u)
and Ax := (x, 0, u(x, 0)) ∈ Graph(u), with x ≤ 1 + 10−1, we have

dg(B,Ax) ≥ | log x|.

Proof. The proof is elementary: if B = (x0, y0, z0), then set B̃ =

(x0, y0, 0) and Ãx = (x, 0, 0). It suffices to check that dH3(B̃, Ãx) ≥
| log x|. The geodesic γ(B̃, Ãx) joining B̃, Ãx is a circular arc. If x0 ≥
1 + 10−1, the claim is obvious since dH3(B̃, Ãx) ≥ dH3((x0, 0, 0), Ãx) ≥
| log x|. If x0 ≤ 1 + 10−1, however, then since (x0)

2 + (y0)
2 ≥ 4, this

circular arc must intersect the line {x = 1+ 10−1, y = 0}; we can apply
the previous argument. q.e.d.

Now consider the hyperbolic metric gH := q−2
j ((dqj)

2+(dwj)
2) on Yj .

This is conformal to the metric gj induced by the embedding Yj ⊂ H
3;

indeed,
x2e−2φj

(qj)2
gj = gH.
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Quantities computed with respect to this metric will be labelled with
an H. In particular, with Bj = {0 ≤ qj ≤ 1,−1 ≤ wj ≤ 1} ⊂ Yj, then
for any P ∈ Bj, we write BR(P ) and BR

H
(P ) for the balls around P of

radius R with respect to dgj and dH.

The bounds that sup |φj |, sup |∇qj| ≤ 1+10−1, from the requirement
at the beginning of this section, give upper and lower bounds on qj/x
(in particular x ≤ qj(1 + 10−1)), which imply that

(5.16) |dH(P,Q)− dgj (P,Q)| ≤ 1 ∀ P,Q ∈ Yj.

Lemma 5.1 implies that for each point P ∈ {0 ≤ qj ≤ 1, wj = 0} and

each pole Ok ∈ Ŷj \ Yj , we have

(5.17) dgj (Ok, P ) ≥ | log x(P )|,
and hence also

(5.18) dgj (Ok, P ) + 1 ≥ | log qj(P )|,
using the upper and lower bounds on

qj
x in Bj.

These considerations make it natural to modify the weight function f
slightly. Thus, define the new function f̃j on Bj by setting f̃j(Q) = fj(Q)

if Q ∼ Ok, provided Ok ∈ Bj , and f̃j(Q) := | log(qj(Q))| + 5 otherwise.

Denote the weighted energy associated to f̃ by Ẽp, and observe that by
(5.17) and (5.18),

Ẽp[Yj ] =

∫
| ˚̄Aj |2f̃2

j dμj ≤ 2Ep[Yj ].

Proposition 5.4. On the segment {0 ≤ qj ≤ 1, wj = 0}, we have

| ˚̄Aj |E2(P ) ≤ 4

√
ẼB

1
H
(P )

p [Yj ]

f̃p
j (P )qj(P )

.

This will be proved below.
Proposition 5.4 implies Proposition 5.2: Assume (passing to a subse-

quence) that there are K poles Oi in Bj . There is an obvious bound

1/f̃p
j (P ) ≤ N −K

(− log qj(P ) + 5)p
+

1

(mini≤K dgj(P,Oi) + 5)p

≤ N −K

(− log qj(P ) + 5)p
+

K∑
i=1

1

(dgj(P,Oi) + 5)p
.

(5.19)

Observe that ∫ 1

0

1

q(| log q|+ 5)p
dq =

51−p

p− 1
.

Hence it suffices to obtain uniform bounds for the individual integrals∫ 1

0

1

qj[dgj(·, Oi) + 5]p
dqj, i ≤ K.
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Consider the poles Oi ∈ Bj and set qj(Oi) := δj,i ∈ (0, 1]. Equation
(5.16) implies that dgj (P,Oi)+5 ≥ | log qj(P )− log δj,i|+4, so we finish
the proof by noting that∫ 1

0

1

qj(| log qj − log δj,i|+ 4)p
dqj ≤

2

p− 1
.

Proof of Proposition 5.4. We begin by recalling a mean value
inequality:

Lemma 5.2 ([25]). There exists a constant C > 0 such that if F is
any positive C2 function on the ball B1

H
(P ) ⊂ H satisfying ΔHF ≥ −2F ,

then

F (P ) ≤ C

∫
B1

H
(P )

F dμH.

To use this, we modify f̃j slightly further: suppose that P ∈ Yj

and P ∼ Ok; if Ok ∈ Bj we define f j(Q) := dH(Q,Ok) + 5 for Q ∈
B1

H
(P ), while if Ok /∈ Bj (so f̃j(P ) = − log(qj(P )) + 5) then f j(Q) =

− log(qj(Q)) + 5 for Q ∈ B1
H
(P ). In other words, if Q ∈ B1

H
(P ), then

f j(Q) either equals the H-distance to the pole closest to P , or else, if
the nearest pole does not lie in Bj, it equals − log qj + 5.

Observe that f̃ ≤ f + 1 ≤ 2f on B1
H
(P ). To compare these functions

in the other direction, suppose Q ∈ B1
H
(P ), with P ∼ Ok and Q ∼ Or.

Using (5.16) and the triangle inequality, we find

f(Q)− 5 = dH(Q,Ok) ≤ dH(Q,P ) + dH(P,Ok) ≤ 2 + dgj (P,Ok)

≤ 2+dgj(P,Or) ≤ 2+dgj(P,Q)+dgj(Q,Or) ≤ 3+dgj(Q,Or) ≤ f̃(Q),

and hence

(5.20) f j(Q) ≤ 2f̃j(Q).

One consequence is that

(5.21)

∫
B1

H
(P )
|Aj |2f

2p
j dμH ≤ 4p

∫
B1

H
(P )
|Aj |2f̃2p

j dμH.

In any case, we have proved that 1/2 ≤ |f j/f̃j| ≤ 2 in B1
H
(P ), and so it

suffices to prove Proposition 5.4 with f j replacing f̃j.

We now prove this proposition. We first claim that (ΔHf j)f j−5|∇f j |2H ≥
0. Indeed, in the region where f j = dH(Ok, ·) + 5, then |∇f j|H = 1, and

the differential inequality follows from the standard formula ΔHf j =

coth(f j − 5). On the other hand, when f j = − log qj + 5, it follows by
calculating that

(5.22) (ΔHf j)f j − 5|∇f j|2H = (− log qj + 5− 5) ≥ 0,
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since qj ∈ (0, 1]. In any case, using (5.14), (5.22), as well as the Cauchy-
Schwarz inequality to handle the cross term in the derivative, we derive

ΔE2(|dΦj |2E2f
2p
j )

= f
2p−2
j

(
ΔE2(|dΦj |2E2)f

2
j + |dΦj |2E2(2p(ΔE2f j)f j

+ 2p(2p − 1)|dΦj |2E2 |∇f j |2E2) + 8p〈∇dΦ, dΦ〉 · f j∇f j

)
≥ f

2p−2
j

(
− |dΦ|4

E2f
2
j + (10p + 2p(2p − 1)− 8p2)|dΦj |2E2 |∇f j |2E2

)
≥ −|dΦj |4E2f

2p
j

(5.23)

because 10p + 2p(2p − 1) − 8p2 = −4p2 + 8p ≥ 0, which holds since
p ∈ (1, 2]. The reader should compare this with the model version of
this calculation (1.5). Using the conformal covariance of the Laplacian
and (5.15) this implies:

(5.24) ΔH(|dΦj |2E2f
2p
j ) ≥ −(|dΦj |2E2f

2p
j ).

Using Lemma 5.2 and (5.12), there exists a universal constant C > 0
such that

1

4
| ˚̄Aj(P )|2

E2f
2p
j (P ) ≤ |dΦj(P )|2

E2f
2p
j (P )

≤ C

∫
B1

H
(P )
|dΦj |2E2f

2p
j dμH ≤ 4C

∫
B1

H
(P )
| ˚̄Aj |2E2f

2p
j dμH.

(5.25)

Now, since e−2 ≤ qj(Q)
qj(P ) ≤ e2 for Q ∈ B1

H
(P ) and |φ| is uniformly

bounded,

| ˚̄Aj |2E2 =
e−2φj

q2j
|Åj|gj , and dμH = e−2φj

x2

q2j
dμj

implies that
(5.26)

| ˚̄Aj(P )|E2 ≤ C

√∫
B1

H
(P ) | ˚̄Aj |2Hf

2p
j dμH

qj(P )f
p
j

≤ C

√∫
B2(P ) | ˚̄Aj |2Hf

2p
j dμH

qj(P )f
p
j

.

This finishes the proof of Proposition 5.4 and hence the proof of Propo-
sition 5.2 as well.
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5.3. Proof of Proposition 5.3: the second line integral. The anal-
ysis of the second line integral in (5.3) differs from that of the first one.
In particular, rather than deriving pointwise control for the integrand
(which appears hopeless), we express the entire integral as a flux of a
suitable vector field across the line {0 ≤ qj ≤ 1, wj = 0} using Stokes’
theorem. The bound is then obtained by controlling the integral of the
divergence over boxes adjacent to this line.

Since e2φj = gj(∂1, ∂1), we obtain that for j large enough, |φj| ≤ 1/10,
and hence

e|φj | ≤ 2, and 1/2 ≤ |∂1|gj ≤ 2.

From these bounds we also obtain

(5.27) |∇1uj| ≤ 4ζ =⇒−1

2
≤ ∂1uj ≤ 2.

Recall also the basic equation, which follows from the Codazzi formulæ,

(5.28) −Δg φ =
4H

2 − |Ā|2
4

=
4H

2 − | ˚̄A|2
8

,

as well as the identity

(5.29) Δg e
−φ = −Δgφe

−φ + |∇φ|2g e−φ.

The key for proving (5.10) is to express the integral I on the left in
that formula as one of the boundary flux terms of an integration of the
divergences of two vector fields over the two rectangles D1 := {0 ≤ qj ≤
1, 0 ≤ wj ≤ 1} and D2 := {0 ≤ qj ≤ 1,−1 ≤ wj ≤ 0}. To do this,
introduce a cutoff function χ(w) such that χ ∈ C2 with 0 ≤ χ ≤ 1,
χ(0) = 1, χ(−1) = χ(1) = 0, and such that |χ′| ≤ 4.

By Stokes’ formula, and with summation over s implied,

I =

∫
D1

Δgj
e−φj (∂1uj + 1)χdμj +

∫
D1

∂se−φj∂s(∂1uj + 1)χdqjdwj

+

∫
D1

∂s(e
−φj )(∂1uj + 1)∂sχdμj −

∫
∂1e

−φj (∂1uj + 1)χdwj

∣∣∣∣qj=1

qj=0

+

∫
D2

Δgj
e−φjχdμj +

∫
D2

∂se
−φjeφj∂sχdqjdwj −

∫
∂1e

−φjeφχdwj

∣∣∣∣qj=1

qj=0

.

(5.30)

Some of these integrals are expressed with respect to the dμ̄j, others
with respect to the volume form dqjdwj , but the difference is not large

since dμ̄j = e2φjdqjdwj .
Since Yj → Y∗ smoothly away from {x = 0}, then for any η ∈ (0, 1],

∂qj |x=η → ∂q∗ |x=η and φj |x=η → φ∗|x=η smoothly. The bounds on |∂1|g
and the fact that φ∗ = const show that

(5.31)

∫ 1

−1
|∂1φj| dwj

∣∣∣∣
qj=1

= o(1).
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On the other hand, by (4.4),

(5.32)

∫ 1

0

∫ 1

−1
|∂12φj |dwjdqj ≤ Ej + o(1).

Combining these last two equations, we see that if η ∈ (0, 1], then for
−1 ≤ a ≤ w ≤ b ≤ 1,

(5.33)

∣∣∣∣∫ b

a
∂1φj dwj

∣∣∣∣
qj=η

≤
∣∣∣∣∫ b

a
∂1φj dwj

∣∣∣∣
qj=1

+

∫ 1

η

∫ b

a
|∂12φj | dwjdqj.

Since this is true for all subintervals [a, b], then for each η we can di-
vide the integral on the left into subintervals [a, b] where ∂1φj |qj=η has
constant sign, and then add these subintervals, to obtain that

(5.34)

∫ 1

−1
|∂1φj| dwj

∣∣∣∣
qj=η

≤ Ej + o(1),

where the error term is independent of η. Letting η → 0 gives

(5.35)

∫ 1

−1
|∂1φj | dwj

∣∣∣∣
qj=0

≤ Ej + o(1).

Now consider the interior integral terms in (5.30). By (5.29), the first
interior integral can be written as∫

D1

−Δgjφj(e
−φj )(∂1uj + 1)χdμ̄ +

∫
D1

|∇φj|2gj e
−φj(∂1uj + 1)χdμ̄.

The first term on the right here is controlled using (5.28):

−
∫
D1

Δgjφje
−φj(∂1uj + 1)χdμ̄ =

∫
D1

| ˚̄Aj |2 − 4H
2
j

8
(∂1uj + 1)χe−φj dμ̄

≤ 4

∫
D1

(
2| ˚̄Aj |2 −

H
2
j

64

)
χe−φj dμ̄.

(5.36)

Next, define

T :=

∫
D1

|∇φj |2gje
−φj(∂1uj + 1)χdμ̄ +

∫
D1

∂se−φj∂s1ujχdμ̄.

Replace ∂1suj by ∇1suj using ∇abuj = ∂abuj − Γt
ab∂tuj , where

(5.37)
Γ1
21 = ∂1φj ,Γ

2
22 = ∂2φj ,Γ

2
21 = −∂2φj ,Γ

1
22 = ∂1φj,Γ

1
12 = ∂2φj ,Γ

2
12 = ∂1φj ,
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to get that T equals

∫
D1

|∇φj |2gje
−φj (∇1uj + 1)χdμ̄ +

∫
D1

∂se−φj∇s1ujχdμ̄

+

∫
D1

∂se−φjΓt
s1∂tujχdμ̄ =

∫
D1

(
∂se−φj∇s1ujχ+ |∇φj |2gje

−φjχ
)
dμ̄.

(5.38)

Applying Cauchy-Schwarz, (4.4), and |∇abuj|gj ≤ 2|(Āj)ab|gj we derive:
(5.39)

T ≤ 100

∫
D

|∇φj |2χdμ̄+
1

100

∫
D

|Āj |2χdμ̄ ≤ C200 Ej +
1

50

∫
D

|Hj |2dμ̄+ o(1).

As for the third bulk term, using (4.4) again, we derive

Z :=

∫
D1

e−2φj∂2e
−φj (∂1uj + 1)∂2χdμ̄ =

∫
D1

∂2e
−φj (∂1uj + 1)∂2χdqdw

≤ 4

√
2

∫
D1

|∇φj |2gjdμ̄ ·
√∫

D1

dqdw ≤ 10C
√
Ej + o(1).

(5.40)

We control the last two bulk terms by∫
D2

(−Δgjφe
−φj + |∇φj|2gje

−φj )χdμ̄

≤
∫
D2

| ˚̄Aj |2 −H
2
j

4
|χ| dμ̄ + 2CEj + o(1).

(5.41)

Finally, the Cauchy-Schwarz inequality together with (4.4) one last time
gives
(5.42)∫
D2

e−2φ
j ∂2φj∂2χdμ ≤ 2

√∫
D
|∇e−φj |2 dμ̄

√∫
D2

dqdw ≤ 2

√∫
D2

| ˚̄Aj |2 dμ̄.

Taken together, these estimates complete the proof. The only thing

to observe is that the terms
∫
D H

2
j dμ̄ appear with a negative coefficient

in the end, and so can be discarded, since our proposition only claims
an upper bound on I. �

6. Regularity gain for the limit surface in the

small energy regions

We now turn to a closer look at the relationship between finiteness
of the weighted energy and the regularity of the boundary curve at
infinity, and prove Theorem 1.4. In fact, we prove the C1 regularity for
all Willmore surfaces with finite weighted total curvature near points
where the boundary curve is locally graphical and Lipschitz.
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Definition 6.1. Consider a rectifiable, closed, embedded loop γ ⊂
R
2, with arclength parametrization t → (y(t), z(t)) = γ(t). We say

that γ is locally Lipschitz at P = γ(t0) if there exists a δ(t0) > 0 and
a constant M(t0) < ∞ such that (after a rotation) the portion of γ
parametrized by (t0 − δ, t0 + δ) coincides with the graph z = f(y) over
an interval of length η(t0) centered at γ(t0). Thus γ((t0 − δ, t0 + δ)) =
Graph(f) and |f(y1)− f(y2)| ≤M(t0)|y1 − y2|.

Our main result in this section is the

Theorem 6.1. Let Y ⊂ H
3 be a complete Willmore surface with

γ = ∂∞Y a possibly disconnected embedded rectifiable curve. Suppose
that there exists a set of poles O = {O1, . . . , OK} ⊂ Y such that
Ep(Y ) < ∞ (the weight function f relative to O is implicit) and that
γ is locally graphical and Lipschitz except at a finite number of points
{P1, . . . , PΛ}. Assume finally that if γ(t0) �= Pj for any j, M(t0) = ζ

and EB(γ(t0),δ(t0))
p (Y ) ≤ ε′(ζ). Then γ \ {P1, . . . , PΛ} is a C1 curve.

In the setting in Theorem 1.4, the assumption that the boundary
curve is locally Lipschitz away from {P1 . . . , PΛ} holds for the curve
∂∞Y∗ which is the limit of the ∂∞Yj. Indeed, Corollary 1.1 ensures the
graphicality and Lipschitz bound away from the bad points P1, . . . PΛ.
We distinguish two further cases. Either there exists a sequence of poles

O
(j)
k converging to an interior point O∗ ∈ Y∗, or else any sequence of

poles O
(j)
k diverges to infinity in the limit. In the first case, without

precluding that some poles disappear to infinity, suppose that the lim-
its of the poles occur at O∗,1, . . . , O∗,K ∈ Y∗. We can also assume that

the poles O
(j)
k ∈ Yj converge to O∗,k ∈ Y∗. Also, using the weight func-

tion f∗ on Y∗ corresponding to the poles {O∗,1, . . . , O∗,K}, the weighted
Willmore energy is finite. To see this, note that for all ε > 0

Ep(Yj ∩ {x ≥ ε})→ Ep(Y∗ ∩ {x ≥ ε}).
This follows readily since all poles other than O1, . . . , OK disappear
toward infinity, thus fj → f∗ over the portion of the surfaces contained

in {x ≥ ε}. So consider the second case, where O
(j)
k → ∂∞H

3 for all
k. We claim that Y∗ must then be a finite union of half-spheres; this
implies Theorem 1.4 immediately. To prove this assertion, just note

that if all poles disappear toward infinity then | ˚̄A| = 0 on all of Y∗: If
this were false, then there would exist an interior point P ∈ Y∗ and a
ball B1(P ) ⊂ Y∗ such that

∫
B1(P ) |Å|2dμ = ε > 0. But then, since all

the O
(j)
k diverge to infinity, f |B1(P ) →∞ on B1(P ), which implies that

Ep[Yj]→∞ as well. This is a contradiction.
Therefore we have reduced matters to proving Theorem 6.1. This, in

turn, is a consequence of the following result.
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Proposition 6.1. Let γk(t), 0 < t < Mk, be an arclength parametriza-
tion of the kth connected component of γ. Suppose that γ(t∗) /∈ {P1, . . . ,
PΛ}. Choose any Cauchy sequence tj ∈ (0,Mk) where γk is differentiable
at tj , with tj → t∗ ∈ (0,Mk). Then γ̇(tj) is a Cauchy sequence.

Proof. Since γ(t∗) is not equal to one of the bad points Pj , there
exists a line 
 through γk(t∗) and a number δ such that γ|(t∗−δ,t∗+δ) is
a graph over the interval of length δ in 
 centered at γ(t∗) with graph
function z = f(y) having Lipschitz constant ζ. Lemma 2.3 guarantees

graphicality of Y ′
B(γ(t0),h δ) over the region

√
x2 + y2 ≤ hδ in the vertical

half-plane 
× R
+ (where we take 
 as the y-axis), with graph function

z = u(x, y), where |∇u| ≤ 2ζ.
Since tj is Cauchy, it lies in (t∗ − h δ, t∗ + h δ) for j large, so if we

write γ(tj) = (yj, u(0, yj)), then yj → 0.
Now, argue by contradiction and assume that γ̇(tj) is not Cauchy.

Then there exists θ > 0 and a subsequence jk such that |f ′(yjk−1
) −

f ′(yjk)| ≥ θ. Reset notation so that the index is simply j again. Translate
and rotate so that (yj−1, f(yj−1)) = (0, 0) and (yj, f(yj)) lies on the y-
axis, then dilate by the factor λj := |yj − yj−1|−1. Denote the resulting

Willmore surface by Ỹj and write ∂Ỹj = γ̃j .
This surface is still graphical with Lipschitz norm no larger than

ζ, and furthermore, EB(0,λjhδ)(Ỹj) ≤ ε′(ζ). By Lemma 2.2, Yj must
converge to a vertical half-plane Y∗, and since ∂∞Y∗ passes through the
origin and (0, 1, 0), necessarily Y∗ = {z = 0}. Thus Y∗ ∩ {x = 1} must
converge to the line {z = 0, x = 1} for some α with |α| ≤ 2ζ. But now,
since |f ′

j(0)−f ′
j(1)| ≥ θ, it follows that for at least one of the two values

y = 0, y = 1 there is a jump in the derivative of size at least θ/2 between
the heights x = 0 and 1. We can assume that this jump occurs at y = 0.

However, this contradicts Proposition 3.2. The graphicality and Lips-
chitz bound in that proposition still hold by virtue of the assumption and
Lemma 2.3. The fact that the weighted energy goes to zero follows from
the dilation invariance of Ep, and the fact that after dilation, the graphs

satisfy Ep(Graph(uj)) ≤ Ep(Y ∩B(P, 2hλ−1
j )], and λ−1

j = |yj−yj−1| → 0.
This proves the proposition and Theorem 6.1 as well. q.e.d.

7. Bubbling in the small energy regions

We now turn to a closer examination of how bubbling occurs, aiming
toward the proof of Theorem 1.5.

The argument leading to the fact that bubbling occurs is indirect.
We first construct a sequence of Möbius transformations ϕj to obtain
uniform isothermal parametrizations for the surfaces ϕj(Yj). If the sur-
faces ϕj(Yj) converge to a non-trivial surface, we are done. Otherwise,
we must prove that one can take a further sequence of dilations to obtain
a nontrivial limit.
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The idea is to use the jump in the first derivative coupled with the
bounds (5.1) to argue that one of the two line integrals on the right
side of that equation must be bounded below. In particular, with 4ε0 :=
limj→∞∂yuj(0, 0) − ∂yu∗(0, 0), then by (5.1), either

(7.1)

∫ 1

0
| ˚̄A12|e−φj dqj ≥ ε0 or

(7.2)

∣∣∣∣∫ 1

0
∂2e

−φj∂quj dqj

∣∣∣∣ ≥ ε0.

These cases are treated separately in the next two subsections. We also
show, in §7.3, that each bubble remains at finite distance from one of
the poles.

7.1. The integral
∫ 1
0 | ˚̄A12|e−φjdqj bounded below implies bub-

bling. Assuming (7.1), from Proposition 5.2, we derive that

sup
j

sup
P∈{0≤qj≤1,wj=0}

Ep(B1
H(P )) ≥ (p− 1)

C(K)M ′
ε0.

Consider the set of points P ∈ {0 ≤ qj ≤ 1, wj = 0} where Ep(B1
H
(P )) ≥

(p−1)ε0
10C(K)M ′ . We know that such points exist when j is large. We then

ask whether there exist a constant M and points Pj ∈ {0 ≤ qj ≤
1, wj = 0} with Ep(B1

H
(Pj)) ≥ (p−1)ε0

10C(K)M ′ such that fj(Pj) ≤ M . (The

requirement fj(Pj) ≤ M is equivalent to the existence of M < ∞ such

that dist(Pj , O
(j)
k ) ≤M , where Pj ∼ O

(j)
k .)

If such a sequence Pj exists, then consider the isometry ϕj of H
3

which maps Pj to P∗ = (1, 0, 0). The surfaces ϕj(Yj) converge (in a large
closed ball around P∗) to a Willmore surface Y∗ with E(B1

H
(P∗), Y∗) ≥

ε0/10M
2, and this would be the desired ‘bubble’.

It suffices then to show that (7.1) must fail if no such sequence Pj

exists. Indeed, observe that if 1 < p′ < p, then Proposition 5.4 gives the
new bound

| ˚̄Aj |E2(P ) ≤
Cp′

√
EB

1
H
(P )

p′ (Yj)

qj(P )(f̃p′

j (P ))
, whence

∫ 1

0
| ˚̄Aj |E2 dq ≤ C ′

p′ sup
P∈lj

√
EB

1
H
(P )

p′ [Yj ].

However, observe that lim supj→∞ supP∈lj Ep′(B1
H
(P )) = 0; this holds

because by definition EB
1
H
(P )

p′ (Yj) ≤ 2fp′−p
j (P )EB

1
H
(P )

p (Yj), and EB
1
H
(Pj)

p
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(Yj) ≤M ′′, while fj(Pj)→∞. Taken together, this all shows that

lim sup
j→∞

∫ 1

0
| ˚̄Aj |E2 dqj = 0,

contradicting (7.1), as claimed.

7.2. A lower bound on the flux (7.2) implies bubbling. Our goal
is to show that such a lower bound (7.2) implies the existence of fur-
ther blow-ups ϕj : H3 → H

3 such that ϕj(Yj) → Y∗ with E [Y∗] > 0.
Unlike in the final subsection of §5, it is not enough to bound the line

integral |
∫ 1
0 ∂2e

−φj∂qujdqj| by the energy in a box. Fortunately, we can
bound it in terms of the energy in a sector |wq | ≤ 1 emanating from the

distinguished boundary point in the isothermal coordinates (q, w). This
bound can then be used to show the existence of a sequence of points
where either |xĀj | or |∇φj |g are bounded away from zero. Either alter-
native provides the points around which we can recenter the rescalings.
In the first case, we obtain a limit surface with non-zero curvature at
one interior point, which must therefore be nontrivial. In the second we
obtain a complete Willmore surface for which the canonical isothermal
coordinates have non-constant conformal factor, and therefore the sur-
face must be nontrivial. The key difficulty in bounding the left side of
(7.2) in terms of the energy in a sector is that the cutoff function de-
pends on w/q, so a derivative of this cutoff function produces a power of
1/x. The resulting integral is controlled by using the specific algebraic
form of the integrand on the left in (7.2). This somewhat remarkable
fact is further evidence of the delicate nature of the blow-up procedure.

Proof. First, by translating and dilating, assume that y0 = 0, and
that the Yj and Y∗ are graphical over the vertical half-disc {x2 + y2 ≤
1000, z = 0}, with graph functions uj and u∗, where |∇uj|, |∇u∗| ≤
2ζ � 1. We can also assume that ∂yuj(0, 0) = α > 0 and ∂yu∗(0, 0) = 0.
Now, consider any subinterval [β−, β+] ⊂ [0, α] with β+ � α. For any
sequence βj ∈ [β−, β+], βj → β∗, the line z = βjy intersects γj = ∂∞Yj

at a point (yj , uj(0, yj)), yj > 0, and just as in §4, we have limj→∞ yj =
0.

Now dilate Yj by ρj :=
1
yj

to obtain a new surface Ỹj which converges

to Y ′, where Y ′ is graphical over the entire vertical half-plane {z = 0}
and passes through the fixed point (1, β∗). If, for any such sequence βj ,
E(Y ′) �= 0, then the proof is complete.

Otherwise, E(Y ′) = 0 so Y ′ is totally geodesic and graphical over a
half-plane, and hence is the half-plane {z = β∗y, x > 0}. Rotating again
to make this the xy-plane, the original graph function uj must satisfy
∂yuj(0, 0) = 0 while ∂yu∗(0, 0) ∼ α− β∗ > α

2 > 0. All of this is true for
any β∗ ∈ [β−, β+]. Using Remark 4.1, there exists a sequence βj such
that

∫
Ỹj∩{1/4≤

√
x2+y2+z2}≤4

|Āj |2dμ̄→ 0.
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By Lemma 4.1, there exists a sequence of hyperbolic isometries ϕj

such that ϕj(Ỹj) have all the properties listed there, and in particular
admit isothermal coordinates (qj , wj) for which the conformal factor φj

satisfies

||∇2φj ||L1(ϕn(Ỹj))
+ ||∇φj ||L2(ϕj(Ỹj))

+ ||φj ||C0(ϕj(Ỹj))

≤ E(ϕj(Ỹj)) + o(1) < 2ε′(ζ) + o(1).
(7.3)

Moreover, there is still a jump of α − β∗ in the first derivative at the
origin in these coordinates. The ϕj(Ỹj) are graphical over the disc {x2+
y2 ≤ 10, z = 0} (for simplicity, we denote the graph function by uj)
with |∇uj | ≤ 4ζ, and the image of the rectangle 0 ≤ qj ≤ 1, |wj | ≤ 1
is entirely contained in Graph(uj). Recall from Remark 4.3 that the

surfaces ϕj(Ỹj) admit an extension Y �
j which is a graph over the xy-

plane with graph function uj , where uj = 0 for
√

x2 + y2 ≥ 50. The
bounds (7.3) continue to hold for this extended surface.

Using Remark 4.4 and the smallness of the energy we derive that
|y|/x ≤ 10 and x2 + y2 ≤ 10 at all points in the sector

Sj := {(qj , wj) ∈ Yj, |wj |/qj ≤ 1, q2j + w2
j ≤ 4}.

We now claim that one of the following must be true:

a) Either ϕj(Ỹj) converge to a nontrivial limit Ỹ∗, or else

b) there exists a sequence ωj → ∞ such that the dilates ωj · ϕj(Ỹj)

converge to a non-trivial limit Ỹ∗.

The theorem will be proved once we show that these are the only pos-
sibilities.

As many times before, write ϕj(Ỹj) as just Yj. If alternative a) does
not occur, then Yj converges to a vertical half-plane Y∗. We claim that
for some μ > 0, there exists a sequence Pj ∈ Sj such that either
|∇φj |g(Pj) ≥ μ or else x |Ā|g(Pj) ≥ μ.

Observe that either of these two possibilities implies our theorem.
Indeed, suppose the former of these is true and consider the dilated
surfaces 1

x(Pj)
Yj. The images P̃j of the points Pj have height xj = 1 and

|yj| ≤ 10. Setting λj :=
1

x(Pj)
, consider the isothermal coordinates

q̃j(λjx, λjy) = λjqj(x, y), w̃j(λjx, λjy) = λjwj(x, y),

and the corresponding conformal factor φ̃j(λjx, λjy) = φj(x, y) on λjYj .

Clearly, |∇φ̃j|g(P̃j) ≥ μ. Also, passing to a subsequence, P̃j → P̃∗ where

x(P̃∗) = 1, |y(P̃∗)| ≤ 10, and |z(P̃∗)| ≤ 10ζ.
Using the estimates in [27, Thm. I.5], some subsequence of the sur-

faces λjYj must converge, smoothly in the interior and in C0,α up to

the boundary, to a surface Ỹ∗, and this limit surface admits isothermal
coordinates (q̃∗, w̃∗) where q̃∗ = 0 on {x = 0} and 1/10 ≤ |q̃|/|x| ≤ 10.

The convergence (q̃j, w̃j , φ̃j)→ (q̃∗, w̃∗, φ̃) is smooth away from {x = 0}.
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We claim that Ỹ∗ cannot be a vertical half-plane. Indeed, if it were, then
following the same argument as in the second paragraph of §5, q̃∗ = Cx
for some 1/10 ≤ C ≤ 10, and in that case, the corresponding conformal

factor φ̃∗ would be constant. This contradicts the smooth convergence
and the fact that |∇φ̃j(P̃j)|g ≥ μ.

The proof that x|Ā|g(Pj) ≥ μ implies the result is even simpler.
Indeed, the same sequence of dilations of Yj converges to a Willmore

surface with |Ā|g(P̃∗) ≥ μ, and this must be nontrivial since we know
that it is graphical over the half-plane {z = 0} and hence cannot be a
sphere.

We have therefore reduced the proof to showing that conditions i) to
vi) below lead to a contradiction.

i) Each Yj is a graphical Willmore surface, with graph function uj ,
over {x2 + y2 ≤ 10, x > 0, z = 0}, with E(Yj) ≤ ε′(ζ) and∫
Yj
|Āj |2dμ̄ ≤M for some fixed M <∞. The surface Yj extends to

a (non-Willmore) graphical surface Y �
j . The region 30 ≤

√
x2 + y2

is denoted Y 	
j and uj = 0 there.

ii) Each Yj, and its extension Y �
j too, admits an isothermal coordinate

chart (qj , wj) with conformal factor φj satisfying (7.3).
iii) Yj → Y∗ := {x2 + y2 ≤ 10, z = 0}.
iv) The conformal factors φj satisfy |∇φj |g → 0 uniformly in Sj.
v) x · |Āj |g → 0 uniformly in Sj.
vi) |

∫ 1
0 ∂2e

−φj∂qujdqj| ≥ ε0 > 0.

To reach the contradiction it suffices to prove that conditions i)–v)
contradict condition vi). In other words, we need to show that i)–v)
imply:

(7.4) lim
j→∞

∣∣∣∣∣
∫ (1,0)

(0,0)
∂2e

−φj∂1uj dqj

∣∣∣∣∣ = 0.

Proof of (7.4): Recall that since the conformal factor φj is bounded,
the quantities |∂q|, |∂x| and |∂y|, |∂w| are comparable. In the following,
| · | denotes the norm with respect to dq2 + dw2. In many expressions
below, we suppress the subscripts j for simplicity.

The strategy is to express the second integral
∫ (1,0)
(0,0) ∂2e

−φj∂1u dq as

the flux of the integral of a divergence over some part of the circu-

lar sector Sj . Introduce polar coordinates rj =
√

q2j +w2
j and θj with

tan(θj+
π
2 ) =

wj

qj
, so that Sj := {0 ≤ rj ≤ 1, π/4 ≤ θj ≤ 3π/4} ⊂ Yj . Let

S l denote the region where π/2 ≤ θ ≤ 3π/4, and define χl(θ) = (3− 4θ
π )

in S l.
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By the divergence theorem,

∫ (1,0)

(0,0)
∂2e

−φj∂1u dq =

∫
Sl

Δge
−φj∂1uχ

l dμ+

∫
Sl

∇se
−φj∇s(∂1u)χ

l dμ

+
4

π

∫
Sl

e−2φj∂θe
−φj

1

r2
∂1u dμ +

∫ 3π/4

π/2
(∂1u)∂1e

−φj (1, θ) dθ.

(7.5)

(The coefficient 4
π arises from ∂θχ

l.) The final boundary term tends
to zero since Yj converges to a vertical half-plane, so in particular
|∂uj |, |∂φj | → 0 away from {x = 0}.

Now consider the bulk terms. First, observe that the pointwise bounds
on φj and on |∇u|g imply that |∂1u|g ≤ 3ζ. This uses the formula for
the second fundamental form for a graph in R

3 and implies that:

(7.6)

∫
Sl

|∂2u|2 dμ ≤ 10

∫
Sl

|Ā|2 dμ ≤ 10M.

Using (5.28) and |∂ru|g ≤ 3ζ, we have∣∣∣∣∫
Sl

Δge
−φ∂1uχ

l dμ̄

∣∣∣∣
≤ 4

∫
Sl

e−φH
2|∂1u| dμ̄ +

∫
Sl

| ˚̄A|2e−φ|∂1u| dμ̄ +

∫
Sl

|∇φ|2e−φ dμ̄.

(7.7)

Clearly,

(7.8)

∫
Sl

H
2|∂1u| dμ̄+ 4

∫
Sl

| ˚̄A|2e−φ|∂1u| dμ̄ ≤ 10

∫
Sl

|Ā|2|∂1u| dμ̄.

In addition, using (7.3) and (7.6),

∣∣∣∣∫
Sl

∇se
−φ∇s(∂1u)χ

l dμ̄

∣∣∣∣ = ∣∣∣∣∫
Sl

e−2φ∂se
−φ∂s(∂1u)χ

l dμ̄

∣∣∣∣
≤ 4

(∫
Sl

|∇φ|2 dμ̄
) 1

2
(∫

Sl

|∂2u|2 dμ̄
)1

2

≤ 100
√
M

(∫
Sl

|∇φ|2 dμ̄
) 1

2

.

(7.9)

The main issue is to control the term

T2 :=

∣∣∣∣∫
Sl

1

r2
e−2φ∂θe

−φ∂1u dμ̄

∣∣∣∣ .
Recall that by Lemma 2.1, ∂1u = 0 on {q = 0} = {x = 0}, and also
|∂1u|2

r2
≤ |∂1u|2

q2
. The Hardy inequality now gives∫
Sl

|∂1u|2
r2

dqdw ≤ 10

∫
B

|∂1u|2
q2

dqdw ≤
∫
D
|∂2u|2dqdw(7.10)

≤ 100

∫
Yj

|Ā|2gdμ ≤ 100M,
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where B := {0 ≤ w ≤ 1, 0 ≤ q ≤ 1}. Thus

T2 ≤ 10

∫
Sl

r−2|∂θφ∂1u| dμ̄ ≤ 10

(∫
Sl

|∇φ|2g dμ̄
) 1

2
(∫

Sl

r−2|∂1u|2 dμ̄
) 1

2

≤ 100

(∫
Sl

|∇φ|2g dμ̄
) 1

2
(∫

B
|∂2u|2 dμ̄

) 1
2

≤ 100
√
M

(∫
Sl

|∇φ|2g dμ̄
) 1

2

.

(7.11)

We then claim that

(7.12) lim
j→∞

∫
Sl

|∇φj |2g dμ̄ = 0,

and

(7.13) lim
j→∞

∫
Sl

|Āj |2|∂1uj | dμ̄ = 0.

These estimates will prove (7.4), and thus our theorem.

Proof of (7.12): We assert first that on the family of lines 
θ0 := {0 ≤
r ≤ 1, θ = θ0}, π

2 ≤ θ ≤ 3π
4 , there is a uniform bound

(7.14)

∫

θ0

|∂φj |dr ≤ ε′(ζ) +M ′.

Before proving (7.14), let us see how it proves the estimate.
Since 1/10 ≤ q/x ≤ 10 in S l, we have

r|∇φj |g ≤ 100|∇φj |g
in this sector, so that∫

Sl

|∇φj |2g dμ̄ =

∫ 3π/4

π/2

∫ 1

0
|∂φj ||∂φj |r drdθ

≤ 100 sup
Sl

|∇φj |g sup
θ∈[π/2,3π/4]

∫

θ

|∂φj | dr.

Since the first factor tends to 0 by the assumption v) above and the
second one is bounded, we obtain (7.12).

Thus matters are reduced to showing (7.14). Recall from (7.3) that
||∂2φj ||L1(R2) ≤ ε′(ζ) + o(1), where ∂ is differentiation with respect to

(qj, wj). Given any ray 
θ0 , consider the right-angle rectangle Rθ0 ⊂ Y �
j

which is defined by four straight (with respect to the coordinates qj, wj)
line segments: 
θ0 is one segment, then s1, s2 are two line segments of
length 50, emanating from the endpoints (0, 0) and (cos θ0, sin θ0) of 
θ0
and normal to it; finally 
′θ0 joins the other endpoints of s1, s2. Thus 
′θ0
is parallel to 
θ0 (with respect to the flat coordinates qj, wj) and lies in

the portion Y 	
j of Y �

j defined in Remark 4.3. Let n be the unit vector
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field (with respect to dq2 + dw2) normal to 
θ0 , so n is also normal to

′θ0 and tangent to the lines s1, s2.

Integrating ∂n(∂φj) over the rectangle Rθ0 and decomposing 
θ0 into
sets where a given component of ∂φj has constant sign, we obtain that∫


θ0

|∂φj | ≤
∫
Rθ0

|∂2φj | dqdw +

∫

′θ0

|∂φj |.

The first integral on the right is bounded above by (7.3). We obtain
a uniform upper bound on

∫

′θ0
|∂φj | by proving that ∂φj is bounded

above pointwise over 
′θ0 , which is true because in Y 	
j we have Δφj = 0

and |φj | is uniformly bounded. This proves (7.14). �

Proof of (7.13): Recall that condition vi) implies that limj→∞ supSl r
|Āj | = 0; using Cauchy-Schwarz, the Hardy inequality, and (7.6), we get∫

Sl

|Āj |2|∂1uj| dμ̄ =

∫
Sl

r|Āj| · |Āj | ·
1

r
|∂1uj | dμ̄

≤
(
sup
Sl

r|Āj|
)(∫

Sl

|Āj |2 dμ̄
) 1

2
(∫

Sl

r−2|∂1uj|2 dμ̄
) 1

2

≤ 10

(
sup
Sl

r|Āj|
)
M → 0.

(7.15)

This proves (7.4), and hence completes the proof of our theorem. q.e.d.

7.3. Finitely many bubbles. We conclude by showing that there can
exist at most N nontrivial nonisometric limits in the sequence Yj, which
completes the proof of Theorem 1.5. In other words, given Yj and any
sequence of isometries ϕj such that ϕj(Yj) converges to a limiting Will-
more surface Y∗ with E(Y∗) > 0, there can be at most N distinct possible
limits Y∗.

Arguing as usual by contradiction, assume there exist N + 1 non-
isometric limits, Y∗,1, . . . , Y∗,N+1, with induced metrics g∗,k, k ≤ N +1.
Since the limits Y∗,k are non-trivial, there exist points Ak on each Y∗,k

such that the intrinsic balls B1
g∗,k

(Ak) have non-zero energy.

The fact that the Y∗,k arise as limits of ϕj(Yj) (with C∞ conver-
gence on compact sets) gives balls B1

gj (Cj,k) ⊂ Yj with ϕk(B
1
gj(Cj,k))→

B1
g∗,k

(Ak). In particular we may assume that there is an ε > 0 such that

E [B1
gj (Cj,k)] > ε for all j, k. We then claim that for any pair of distinct

values k �= l the points Cj,k, Cj,l ∈ Yj drift infinitely far apart, i.e.

(7.16) distgj(Cj,k, Cj,l)→∞.

If we can prove this, then using the triangle inquality, there is a sequence
of points Cj,k(j) ∈ Yj with minr distgj(Or, Cj,k(j))→∞. But this cannot
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hold since then

Ep(Yj) ≥
∫
B1

gj
(Cj,k)

[min
r

distgj(Or, Cj,k(j))]
2p|Aj |2 dμj

≥ [min
r

distgj(Or, Cj,k(j))]
2pε2 →∞.

(7.17)

We have reduced matters to proving (7.16). But if this were not true,
then a large enough ball centered at Cj,k must contain Cj,l, which would
imply that the limit surfaces Y∗,k and Y∗,l coincide up to a hyperbolic
isometry; this contradicts our assumption.

8. Examples

In this final section we show that the putative modes of convergence
described above actually occur. Namely, we exhibit sequences Yj of com-
plete, properly embedded minimal (and therefore Willmore) surfaces in
H

3 with fixed genus which lose (unweighted) energy in the limit be-
cause some portions separate and disappear toward infinity. These Yj

have (unweighted) energy tending to zero and converge smoothly away
from a finite number of points on the boundary curve at infinity. The
limit is another complete, properly embedded surface Y∗, and we find
such sequences where the genus of Y∗ is strictly less than that of each
of the Yj. In other words, there can be a loss of genus in the limit.
The construction of these surfaces proceeds by a fairly standard gluing
result. There are many very similar ways to prove such theorems, and
we follow a method used in the papers [23, 21, 22]. Since this method
is well documented in these papers, we provide only a sketch of the
argument.

Theorem 8.1. Choose a finite number, Y1, . . . , Yk, of complete, prop-
erly embedded minimal surfaces, each with finite energy. Suppose that
each γr = ∂∞Yr, r = 1, . . . , k is a C2 curve, and assume also that each
Yr, r = 1, . . . , k is nondegenerate in the sense that it admits no Jacobi
fields which decay at γr. Then there is a family of complete, properly
embedded minimal surfaces Yt with boundary curves ∂∞Yt = γt, a small
perturbation of the unit circle. These boundary curves converge in C2
to the unit circle away from k distinct points q1, . . . , qk. Furthermore,
there exist rescalings of Yt at qj which converge to an isometric copy of
Yr. Finally,

E(Yt) =

k∑
r=1

E(Yr) + o(1)

as t→∞.

Proof. There are three steps: we first construct a family of approxi-
mate solutions Y ′

t which are approximately minimal and have the stated
concentration properties; we next analyze the mapping properties of the
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Jacobi operators on these surfaces, focusing on estimates which are uni-
form in the parameter t; the final step is to perturb Y ′

t to a minimal
surface Yt when t is sufficiently large.

Approximate solutions: First, choose two separate collections of points
p1, . . . , pk and q1, . . . , qk on the unit circle S1 in the boundary at infin-
ity {x = 0}, such that no two of these points coincide. For simplicity
of notation, assume that pr = −qr below. Next, fix points p′r, q

′
r ∈ γr,

r = 1, . . . , k, and choose a hyperbolic isometry Fr which carries p′r to
pr and q′r to qr, and set Y ′

r = Fr(Yr). Finally, let Mr,t be the family of
hyperbolic dilations with source pr and sink qr, and set Yr,t = Mr,t(Y

′
r ).

As t→ +∞, the surfaces Yr,t converge locally uniformly in C2 in the

region H3 \ {qr} to the totally geodesic hemisphere H bounded by the
unit circle, and this convergence is C∞ away from {x = 0}. In particular,
γr,t := ∂∞Yr,t converges in C2 away from the point qr. Applying the
inverse dilations Mr,−t, we see that rescalings of Y ′

t converge to Y ′
r ,

which is an isometric copy of Yr.
For each r, choose a closed spherical cap Ar (intersected with the

half-space x ≥ 0) centered at qr in the unit hemisphere H. We can do
this so that these caps are disjoint from one another, and we then let
Br = H\Ar. Choose a slightly larger spherical cap B′

r ⊃ Br, soB
′
r∩Ar is

diffeomorphic to a rectangle. Let A′
r be the complement of B′

r in H. By
the convergence explained in the last paragraph, some portionB′

r,t ⊂ Yr,t

is a normal graph over B′
r with graph function ur,t converging to 0 in

C2(B′
r)∩C∞(B′

r \ (B′
r ∩ {x = 0}). Finally, choose a smooth nonnegative

cutoff function χr which has support in Ar \ (Ar ∩B′
r) and which equals

1 in A′
r. Let Y

′
r,t be the surface which agrees with Yr,t over A

′
r and which

has graph function χrur,t over B
′
r.

By construction, each Y ′
r,t coincides with the totally geodesic hemi-

sphere in the region Br, and this region is disjoint from all of the other
regions Ai, i �= r. This means that we may define the surface Y ′

t to be
the superposition of these k separate surfaces, since they all agree on
the complement of the union of the Ar in the hemisphere H.

Observe that these surfaces are minimal in H \ (A1 ∪ . . .∪Ak) and in
A′

1 ∪ . . . ∪ A′
k, and the discrepancy from being minimal in the overlap

regions tends to 0 as t→∞.

Analysis of the Jacobi operator. Consider the Jacobi operator

Lr = ΔYr + |Ar|2 − 2

on the surface Yr. This operator has continuous spectrum filling out the
half-line (−∞,−9/4] and a finite number of L2 eigenvalues above that
ray. The assumption that Yr is nondegenerate means that Lr : H

2(Yr)→
L2(Yr) is an isomorphism, i.e. 0 is not an L2 eigenvalue. It is also the
case, cf. [1], that under this condition, Lr is an isomorphism on other
function spaces better suited for the gluing argument. In particular,
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let xδCk,α denote the intrinsic Hölder space (relative to the metric on
Yr induced from the hyperbolic metric) weighted by the function xδ,
where x is the upper half-space coordinate restricted to Yr. As described
carefully in [1], if 0 < δ < 3, then

Lr : x
δC2,δ(Yr) −→ xδC0,α(Yr)

is an isomorphism. Denote its inverse by Gr. It is very important that
we do not just know the existence of this operator abstractly, but realize
that it is a pseudodifferential operator for which we have a rather explicit
description of the asymptotic behavior of its Schwartz kernel.

Let us now define a family of weighted Hölder spaces on the surfaces
Y ′
t . We have already defined the cutoff functions χr, r = 1, . . . , k, and

it is clearly possible to add one extra smooth nonnegative function χ0

which equals 1 on H \ (A1 ∪ . . . ∪ Ak) and is supported away from
A′

1 ∪ . . . , A′
k, such that {χ0, . . . , χk} is a partition of unity on Y ′

t . (We
suppress the dependence on t in the χr.) Now define

C
,αδ,t (Y
′
t ) = {u =

k∑
r=0

χrur, where ur = (Mt ◦ Fr)
∗vr, vr ∈ xδC
,δ(Yr),

r = 1, . . . , k, and u0 ≡ v0 ∈ xδC
,α(H)},
endowed with the norm

||u||δ,t =
k∑

r=0

||vr||
,α,δ.

Notice that the elements of C
,αδ,t (Y
′
t ) coincide with those in xδC
,α(Y ′

t ),
but the norm in which there is a hidden extra t dependence, so in par-
ticular this norm is not uniformly equivalent as t↗∞ to the standard
norm on xδC
,α(Y ′

t ), which is given by an expression similar to the one
above, but using the summands ur instead of vr.

Next, we can transfer the inverse Gr on Yr using the mapping Mt ◦Fr

to an operator Gr,t on Y ′
r,t, and then define

G̃t =

k∑
r=0

χ̃rGr,tχr.

Here each χ̃r is a nonnegative smooth cutoff function which is equal to
1 on the support of χr and vanishes outside a larger neighbourhood. We
compute that if Lt denotes the Jacobi operator on Y ′

t , then

LtG̃t = Id−
k∑

r=0

[Ltχ̃r]Gr,tχr := Id−Kt.

The operator Kt is a smoothing operator; this is because the supports
of [Lt, χ̃r] and χr are disjoint from one another, and because Gr is a
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pseudodifferential operator, the Schwartz kernel of which is necessar-
ily singular only along the diagonal. Moreover, it is possible to choose
the supports of these two functions, [Lt, χ̃r] and χr, very far from one
another. On the other hand, the Schwartz kernel of Gr,t has a decay pro-
file equivalent to the one of Gr; namely, Gr(z, z

′) ≤ C exp(−3 dYr(z, z
′)).

Taking these facts together, and arguing exactly as in [26], we conclude

that the norm of Kt as a mapping on C
,αδ,t for any fixed δ ∈ (0, 3) can

be made as small as desired, uniformly in t, by choosing the supports
of these cutoff functions appropriately. We conclude from this that

Lt : C2,αδ,t (Y
′
t ) −→ C0,αδ,t

is an isomorphism for all t > 0 whenever 0 < δ < 3, and the norm of its
inverse is uniformly bounded in t as t→∞.

The gluing construction. If ν is the (hyperbolic) unit normal to Y ′
t

and φ is any function on Y ′
t , then define the normal graph

Yt,φ = {expz(φ(z)ν(z)) : z ∈ Y ′
t }.

Let M denote the minimal surface operators on Y ′
t , i.e. M(φ) is the

(hyperbolic) mean curvature function of Yt,φ, viewed as a graph over
Y ′
t . This is a second order quasilinear operator which can be written as

a small perturbation of the minimal surface operators for normal graphs
on Yr,t and H, but the main thing we need to know about it is that its
linearization at φ = 0 is simply the Jacobi operator Lt.

The perturbation argument is standard. SetM(0) = f . It is not hard
to see that ||f ||0,α,δ → 0 as t→∞. Expand M(φ) = 0 as

f + Ltφ+Qt(φ) = 0 =⇒ Ltφ = −f −Qt(φ);

here Qt is a quadratic remainder term involving the terms φ, ∇φ, and
∇2φ which satisfies

||Qt(φ)||0,α,δ ≤ C||φ||22,α,δ
and

||Qt(φ) −Qt(ψ)||0,α,δ ≤ C(||φ||2,α,δ + ||ψ||2,α,δ)||φ − ψ||2,α,δ.
The equation

φ = −Gt(f +Qt(φ))

can then be solved using the estimates above by a straightforward con-
traction mapping argument.

It is easy from the construction to see that if t is quite large, then
||φ||2,α,δ is small and the surface Yt := Yt,φ is embedded. Since φ → 0
at ∂∞Y ′

t , we see that the new surface has the same boundary curve at
infinity. The fact that Yt converges in C2 away from the points q1, . . . , qk
follows directly from the construction. q.e.d.
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