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MIN-MAX MINIMAL HYPERSURFACE IN (Mn+1, g)
WITH Ric > 0 AND 2 ≤ n ≤ 6

Xin Zhou

Abstract

In this paper, we study the shape of the min-max minimal hy-
persurface produced by Almgren-Pitts in [AF2, P] corresponding
to the fundamental class of a Riemannian manifold (Mn+1, g) of
positive Ricci curvature with 2 ≤ n ≤ 6. We characterize the
Morse index, area, and multiplicity of this min-max hypersurface.
In particular, we show that the min-max hypersurface is either ori-
entable and of index one, or is a double cover of a non-orientable
minimal hypersurface with least area among all closed embedded
minimal hypersurfaces.

1. Introduction

Almgren and Pitts developed a min-max theory for constructing em-
bedded minimal hypersurfaces by global variational method [AF1,AF2,
P]. They showed that any Riemannian manifold (Mn+1, g) with 2 ≤
n ≤ 5 has a nontrivial smooth, closed, embedded minimal hypersur-
face. Later on, Schoen and Simon [SS] extended it to the case of di-
mension n = 6. (They also showed the existence of a nontrivial min-
imal hypersurface with a singular set of Hausdorff dimension n − 7
when n ≥ 7.) In [AF1, AF2], Almgren showed that the fundamen-
tal class [M ] ∈ Hn+1(M) of an orientable manifold M can be real-
ized as a nontrivial homotopy class in π1

(
Zn(M), {0}

)
, where Zn(M) is

the space of integral n-cycles in M (see [P, §2.1]). Almgren and Pitts
[AF2, P] showed that a min-max construction on the homotopy class
in π1

(
Zn(M), {0}

)
corresponding to [M ] gives a nontrivial, smooth, em-

bedded, minimal hypersurface with possible multiplicity, which will be
called the min-max hypersurface corresponding to the fundamental class
[M ]. Besides existence, there is almost no geometric information known
about this min-max minimal hypersurface, e.g. the Morse index, volume,
and multiplicity. (See [CM2, Chap. 1.8] for the definition of Morse in-
dex.) Because of the nature of the min-max construction, it has been
conjectured that these min-max hypersurfaces should have total Morse
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index less than or equal to one (see [PR]). In addition, for the pur-
pose of geometric and topological applications, it is necessary to know
the index bound [Y, §4]. Recently, Marques and Neves [MN1] gave a
partial answer of this question when n = 2. They showed the existence
of an index one Heegaard surface in certain three manifolds. Later on,
in their celebrated proof of the Willmore conjecture [MN2], Marques
and Neves showed that the min-max surface has index five for a five-
parameter family of sweepouts in the standard three sphere S3.
In this paper, we study the shape of the min-max hypersurface cor-

responding to the fundamental class [M ] in the case when (Mn+1, g)
has positive Ricci curvature, i.e. Ricg > 0. In this case, there do not ex-
ist closed, embedded, stable minimal hypersurfaces (see [CM2, Chap.
1.8]) in M . By exploring this special feature, we will characterize the
Morse index, volume, and multiplicity of this min-max hypersurface.
The study of Morse index was initiated by Marques-Neves in the case
of dimension three [MN1].
We always assume that (Mn+1, g) is connected, closed, and orientable

with 2 ≤ n ≤ 6. Hypersurfaces Σn ⊂ Mn+1 are always assumed to be
connected, closed, and embedded. Denote

S = {Σn ⊂ (Mn+1, g) : Σn is a minimal hypersurface in M}.

By [P, SS, DT], S �= ∅. Let

(1.1) WM = min
Σ∈S

{
V (Σ), if Σ is orientable
2V (Σ), if Σ is non-orientable

}
,

where V (Σ) denotes the volume (sometime called area) of Σ. Our main
result is as follows.

Theorem 1.1. Let (Mn+1, g) be any (n+1)-dimensional connected,
closed, orientable Riemannian manifold with positive Ricci curvature
and 2 ≤ n ≤ 6. Then the min-max minimal hypersurface Σ correspond-
ing to the fundamental class [M ] is either:

(i) orientable of multiplicity one, with Morse index one and V (Σ) =
WM ;

(ii) or non-orientable of multiplicity two with 2V (Σ) =WM .

Remark 1.2. In case (ii), Σ has the least area among all S. Illustra-
tive examples of the first case are the equators, Sn embedded in Sn+1,
and for the second case the RPn’s embedded in RP

n+1, when n is an even
number. Our theorem says that those are the only possible situations.

Remark 1.3. In fact, the positive Ricci curvature condition is only
used to rule out the existence of closed, two-sided, stable minimal hyper-
surfaces, and to derive the fact that any two closed immersed minimal
hypersurfaces must intersect (Frankel’s Theorem 3.4). Actually, those
two facts can be derived by requiring that (Mn+1, g), 2 ≤ n ≤ 6, does
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not admit closed, embedded minimal hypersurfaces with stable two-
sided covering (see [MN3, Corollary 1.5] for discussion). So Theorem
1.1 is true when the positive Ricci curvature condition is replaced by
assuming that (Mn+1, g) does not admit closed, embedded minimal hy-
persurfaces with stable two-sided covering.

If there are no non-orientable, embedded, minimal hypersurfaces in
M , we have the following corollary.

Theorem 1.4. Given (Mn+1, g) as above, if (M,g) has no non-
orientable, embedded, minimal hypersurfaces, then there is an orientable,
embedded, minimal hypersurface Σn ⊂Mn+1 with Morse index one.

Remark 1.5. If M is simply connected, i.e. π1(M) = 0, then by [H,
Chap. 4, Theorem 4.7], there are no non-orientable, embedded hyper-
surfaces in M . If π1(M) is finite, and the cardinality #

(
π1(M)

)
is an

odd number, then M has no non-orientable, embedded, minimal hyper-
surfaces by looking at the universal cover.

As a by-product of the proof, we have a second corollary.

Theorem 1.6. In the case of Theorem 1.4, the hypersurface Σn ⊂
Mn+1 has least area among all closed, embedded, minimal hypersurfaces
in Mn+1.

Remark 1.7. In general, compactness of stable minimal hypersur-
faces follows from curvature estimates [SSY, SS], which would imply
the existence of a least area hypersurface among the class of stable min-
imal hypersurfaces, or even minimal hypersurfaces with uniform Morse
index bound. However, the class of all closed, embedded, minimal hy-
persurfaces in M does not have an a priori Morse index bound. In fact,
the existence of the least area minimal hypersurface comes from the
min-max theory and the special structure of orientable minimal hyper-
surfaces in manifold (Mn+1, g) with Ricg > 0.

The main idea is as follows. The difficulty in obtaining the desired
geometric information is due to the fact that the min-max hypersurface
is constructed by a very weak limit (varifold limit). To overcome this
difficulty, we try to find an optimal minimal hypersurface, which lies
in a “mountain pass” (see [St]) type sweepout (continuous family of
hypersurfaces; see Definition 2.1) in this min-max construction. Given
(Mn+1, g) as in Theorem 1.1, we will first embed any closed embedded
minimal hypersurface Σ into a good sweepout. Then, such families are
discretized as needed to apply the Almgren-Pitts theory. We will show
that those families all lie in the same homotopy class corresponding to
the fundamental class of M . The Almgren-Pitts theory applied to this
homotopy class produces an optimal, embedded minimal hypersurface,
for which we can characterize the Morse index, volume, and multiplicity.
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There are two reasons that we must use the discrete Almgren-Pitts the-
ory rather than other min-max theory in continuous setting [CD, DT].
One is due to the fact that the sweepouts generated by non-orientable
minimal hypersurfaces (Proposition 3.8) do not satisfy the requirements
for the continuous setting; the other reason is that only in the Almgren-
Pitts setting could we show that the sweepouts all lie in the same ho-
motopy class.
The paper is organized as follows. In Section 2, we give a min-max the-

ory for manifolds with boundary using the continuous setting as in [DT].
In Section 3, we show that good sweepouts can be generalized from
embedded minimal hypersurfaces, where orientable and non-orientable
cases are discussed separately. In Section 4, we introduce the celebrated
Almgren-Pitts theory [AF2, P, SS], especially the case of one parame-
ter sweepouts. In Section 5, sweepouts which are continuous in the flat
topology are made into discretized families under the mass norm topol-
ogy, as those used in the Almgren-Pitts theory. In Section 6, we give
a characterization of the orientation and multiplicity of the min-max
hypersurface. Finally, we prove the main result in Section 7.

Acknowledgements. I would like to express my gratitude to my ad-
visor Richard Schoen for many enlightening discussions as well as con-
stant encouragement. I would also like to thank Andre Neves, Fernando
Marques, Brian White, and Alessandro Carlotto for comments and dis-
cussions. Finally, thanks to Otis Chodosh for the help on language.

2. Min-max theory I—continuous setting

Let us first introduce a continuous setting for the min-max the-
ory for constructing minimal hypersurfaces. In fact, Almgren and Pitts
[AF2, P] used a discretized setting. They can deal with a very gen-
erally discretized multi-parameter family of surfaces, but due to the
discretized setting, the multi-parameter family is hard to apply to ge-
ometry directly. Later on, Smith [Sm] introduced a setting using con-
tinuous families in S3. Recently, Colding, De Lellis [CD] (n = 2) and
De Lellis, Tasnady [DT] (n ≥ 2) gave a version of min-max theory us-
ing continuous setting based on the ideas in [Sm]. They mainly dealt
with the family of level surfaces of a Morse function. Their setting is
more suitable for geometric manipulation. Marques and Neves [MN1]
extended [CD] to a setting for manifolds with fixed convex boundary
when n = 2. They used that to construct a smooth sweepout by a Hee-
gaard surface in certain three manifolds. In this section we will mainly
use the version by De Lellis and Tasnady [DT]. We will extend Mar-
ques and Neves’s min-max construction for manifolds with fixed convex
boundary to high dimensions.
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Let (Mn+1, g) be a Riemannian manifold with or without boundary
∂M . Hn denotes the n dimensional Hausdorff measure. When Σn is an
n-dimensional submanifold, we use V (Σ) to denote Hn(Σ).

Definition 2.1. A family ofHn measurable closed subsets {Γt}t∈[0,1]k
(the parameter space [0, 1] can be any other interval [a, b] in R) of M
with finite Hn measure is called a generalized smooth family of hyper-
surfaces if

(s1): for each t, there is a finite subset Pt ⊂ M , such that Γt is a
smooth hypersurface in M \ Pt;

(s2): t → Hn(Γt) is continuous, and t → Γt is continuous in the
Hausdorff topology;

(s3): Γt → Γt0 smoothly in any compact U ⊂⊂M \ Pt0 as t→ t0.

When ∂M = ∅, a generalized smooth family {Σt}t∈[0,1] is called a sweep-
out of M if there exists a family of open sets {Ωt}t∈[0,1] such that

(sw1): (Σt \ ∂Ωt) ⊂ Pt, for any t ∈ [0, 1];
(sw2): Volume(Ωt \ Ωs) + Volume(Ωs \Ωt)→ 0, as s→ t;
(sw3): Ω0 = ∅, and Ω1 =M .

When ∂M �= ∅, a sweepout is required to satisfy all of the above, except
with (sw3) changed by

(sw3′): Ω1 = M . Σ0 = ∂M , Σt ⊂ int(M) for t > 0, and {Σt}0≤t≤ε
is a smooth foliation of a neighborhood of ∂M for some small
ε > 0, i.e. there exists a smooth function w : [0, ε] × ∂M → R,
with w(0, x) = 0 and ∂

∂t
w(0, x) > 0, such that

Σt = {expx
(
w(t, x)ν(x)

)
: x ∈ ∂M}, for t ∈ [0, ε],

where ν is the inward unit normal for (M,∂M).

Remark 2.2. The first part of the definition follows from [DT, Def-
inition 0.2], while the second part borrows an idea from [MN1].

We will need the following two basic results.

Proposition 2.3. ([DT, Proposition 0.4]) Assume ∂M = ∅. Let
f : M → [0, 1] be a smooth Morse function. Then the level sets

{
{f =

t}
}
t∈[0,1]

form a sweepout.

Given a generalized family {Γt}, we set

L({Γt}) = max
t
Hn(Γt).

As a consequence of the isoperimetric inequality, we have

Proposition 2.4. ([CD, Proposition 1.4] and [DT, Proposition 0.5])
Assume ∂M = ∅. There exists a positive constant C(M) > 0 depending
only on M , such that L({Σt}) ≥ C(M) for any sweepout {Σt}t∈[0,1].

We need the following notion of homotopy equivalence.
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Definition 2.5. When ∂M = ∅, two sweepouts {Σ1
t }t∈[0,1] and

{Σ2
t }t∈[0,1] are homotopic if there is a generalized smooth family

{Γ(s,t)}(s,t)∈[0,1]2 , such that Γ(0,t) = Σ1
t and Γ(1,t) = Σ2

t . When ∂M �= ∅,
we further require the following condition:

(*): Γ(s,0) ≡ ∂M , Γ(s,t) ⊂ int(M) for t > 0, and for some small
ε > 0, there exists a smooth function w : [0, ε] × [0, ε] × ∂M → R,
with w(s, 0, x) = 0 and ∂

∂t
w(s, 0, x) > 0, such that

Γ(s,t) = {expx
(
w(s, t, x)ν(x)

)
: x ∈ ∂M}, for (s, t) ∈ [0, ε] × [0, ε].

A family Λ of sweepouts is called homotopically closed if it contains the
homotopy class of each of its elements.

Remark 2.6. Denote Diff0(M) to be the isotopy group of diffeo-
morphisms of M . When ∂M �= ∅, we require the isotopies to leave
a neighborhood of ∂M fixed. Given a sweepout {Σt}t∈[0,1], and ψ ∈
C∞([0, 1] ×M,M) with ψ(t) ∈ Diff0(M) for all t, then {ψ(t,Σt)}t∈[0,1]
is also a sweepout, which is homotopic to {Σt}. Such homotopies will
be called homotopies induced by ambient isotopies.

Given a homotopically closed family Λ of sweepouts, the width of M
associated with Λ is defined as

(2.1) W (M,∂M,Λ) = inf
{Σt}∈Λ

L
(
{Σt}

)
.

When ∂M = ∅, we omit ∂M and write the width as W (M,Λ). In case
∂M = ∅, as a corollary of Proposition 2.4, the width of M is always
nontrivial, i.e. W (M,Λ) ≥ C(M) > 0.
A sequence

{
{Σn

t }t∈[0,1]
}∞
n=1

⊂ Λ of sweepouts is called a minimizing

sequence if L
(
{Σn

t }
)
↘ W (M,∂M,Λ). A sequence of slices {Σn

tn} with
tn ∈ [0, 1] is called a min-max sequence if Hn(Σn

tn
) → W (M,∂M,Λ).

The goal in min-max theory [P, SS, CD, DT] is to find a regular
minimal hypersurface as a min-max limit corresponding to the width
W (M,∂M,Λ).
If ∂M �= ∅ and ν is the inward unit normal for (M,∂M), we denote

the mean curvature of the boundary byH(∂M), and the mean curvature
vector by H(∂M)ν. Here the sign convention for H is that H(∂M)(p) =
−

∑n
i=1〈∇eiν, ei〉, where {e1, · · · , en} is a local orthonormal basis at

p ∈ ∂M . Based on the main results in [DT] and an idea in [MN1], we
have the following main result for this section.

Theorem 2.7. Let (Mn+1, g) be a connected compact Riemannian
manifold with or without boundary ∂M and 2 ≤ n ≤ 6. When ∂M �=
∅, we assume H(∂M) > 0. For any homologically closed family Λ of
sweepouts, with W (M,∂M,Λ) > V (∂M) if ∂M �= ∅, there exists a
min-max sequence {Σn

tn
} of Λ that converges in the varifold sense to an

embedded minimal hypersurface Σ (possibly disconnected), which lies in
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the interior of M if ∂M �= ∅. Furthermore, the width W (M,∂M,Λ) is
equal to the volume of Σ if counted with multiplicities.

Proof. When ∂M = ∅, this is just Theorem 0.7 in [DT].
Now let us assume ∂M �= ∅. The result follows from an observation

of Theorem 2.1 in [MN1] and minor modifications of the arguments in
[DT]. Here we will state the main steps and point out the key points
on how to modify arguments in [DT] to our setting.

Part 1: Since H(∂M) > 0, by almost the same argument as in the proof
of [MN1, Theorem 2.1], we can find a > 0, and a minimizing sequence
of sweepouts

{
{Σn

t }t∈[0,1]
}∞
n=1

, such that

(2.2) Hn(Σn
t ) ≥W (M,∂M,Λ) − δ, =⇒ d(Σn

t , ∂M) ≥ a/2,

where δ = 1
4

(
W (M,∂M,Λ) − V (∂M)

)
> 0, and d(·, ·) is the distance

function of (M,g).
Let us discuss the minor difference between our situation and those

in [MN1]. We can find a neighborhood of ∂M , such that using normal
coordinates [0, 2a] × ∂M for some a > 0, the metric can be written as
g = dr2+gr. In [MN1] they deform an arbitrary minimizing sequence to
satisfy (2.2) by ambient isotopies induced by a vector field ϕ(r) ∂

∂r
, where

ϕ(r) is a cutoff function supported in [0, 2a]. Although the argument in
[MN1, Theorem 2.1] was given only in dimension 2, it works in all
dimensions. The only difference is that in the proof of the claim on
[MN1, page 5], we need to take the orthonormal basis {e1, · · · , en}
such that {e1, · · · , en−1} is orthogonal to

∂
∂r
and then projects en to the

orthogonal complement of ∂
∂r
. Then all the argument follows exactly as

in [MN1].

Part 2: Now let us sketch the main steps for modifying arguments of
the min-max construction in [DT, CD] to our setting.
Given the minimizing sequence

{
{Σn

t }t∈[0,1]
}∞
n=1

⊂ Λ as above, the
first step is a tightening process as in [CD, §4], where we deform each

{Σn
t }t∈[0,1] to another one {Σ̃

n
t }t∈[0,1] by ambient isotopy {Ft}t∈[0,1] ⊂

Diff0(M), i.e. {Σ̃n
t = F (t,Σn

t )}t∈[0,1] ⊂ Λ, such that every min-max

sequence {Σ̃n
tn} converges to a stationary varifold. Since those Σ

n
t with

volume near W (M,∂M,Λ) have a distance a/2 > 0 away from ∂M , we
can take all the deformation vector field to be zero near ∂M in [CD,

§4]. Hence {Σ̃n
t } can be chosen to satisfy (2.2) too.

The second step is to find an almost minimizing min-max sequence
(see Definition 2.3 and Proposition 2.4 in [DT]) {Σ̃n

tn
} among {Σ̃n

t }t∈[0,1],

where Σ̃n
tn
converge to a stationary varifold V . By (2.2), the slices Σ̃n

t

with volume near W (M,∂M,Λ) always have a distance a/2 > 0 away
from ∂M ; hence they are almost minimizing in any open set supported
near ∂M . Away from ∂M , all the arguments in [DT, §3] work; hence it
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implies the existence of an almost minimizing sequence in the sense of
[DT, Proposition 2.4], which are supported away from ∂M .
The final step is to prove that the limiting stationary varifold V of the

almost minimizing sequence is supported on a smooth embedded mini-
mal hypersurface. This step was done in [DT, §4 and §5]. The arguments
are purely local. By our construction, the corresponding varifold mea-
sure |V | on M is supported away from ∂M ; hence the regularity results
in [DT] are true in our case. By the dimension restriction 2 ≤ n ≤ 6,
they imply the conclusion. q.e.d.

3. Min-max family from embedded minimal hypersurfaces

In this section, by exploring some special structures for embedded
minimal hypersurfaces in positive Ricci curvature manifolds, we will
show that every embedded closed connected orientable minimal hyper-
surface can be embedded into a sweepout, and a double cover of every
embedded closed connected non-orientable minimal hypersurface can
be embedded into a sweepout in a double cover of the manifold. The
sweepouts constructed in both cases can be chosen to be level surfaces
of a Morse function, which hence represent the fundamental class of the
ambient manifold (see Theorem 5.8). We first collect some results from
differentiable topology.

Theorem 3.1. ([H, Chap. 4, Lemma 4.1 and Theorem 4.2]) Let Ω
be a connected, compact, orientable manifold with boundary ∂Ω. Then
∂Ω is orientable.

Theorem 3.2. ([H, Chap. 4, Theorem 4.5]) Let M be a connected,
closed, orientable manifold, and Σ ⊂ M a connected, closed, embedded
submanifold of codimension 1. If Σ separates M , i.e. M \ Σ has two
connected components, then Σ is orientable.

Lemma 3.3. Given M and Σ as above, Σ is orientable if and only
if the normal bundle of Σ inside M is trivial.

Proof. The tangent bundle has a splitting TM
∣∣
Σ
= TΣ ⊕ N , where

N is the normal bundle. Hence our result is a corollary of Lemma 4.1
and Theorem 4.3 in [H, Chap. 4]. q.e.d.

We also need the following result, which says that any two connected
minimal surfaces must intersect in positive Ricci curvature manifolds.

Theorem 3.4. (Generalized Hadamard Theorem in [F]) Let (M,g)
be a connected manifold with Ricg > 0; then any two connected closed
immersed minimal hypersurfaces Σ and Σ′ must intersect.

Let Σn ⊂ Mn+1 be a minimal hypersurface. When Σ is two-sided,
i.e. the normal bundle of Σ is trivial, there always exists a unit normal
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vector field ν. The Jacobi operator is

Lφ = �Σφ+ (Ric(ν, ν) + |A|2)φ,

where φ ∈ C∞(Σ), �Σ is the Laplacian operator on Σ with respect to
the induced metric, and A is the second fundamental form of Σ. We say
that λ ∈ R is an eigenvalue of L if there exists a φ ∈ C∞(Σ), such that
Lφ = −λφ. The Morse index (abbreviated as index in the following)
of Σ, denoted by ind(Σ), is the number of negative eigenvalues of L
counted with multiplicity. Σ is called stable if ind(Σ) ≥ 0, or in other
words L is a nonpositive operator. Clearly Ricg > 0 implies that there
is no closed two-sided stable minimal hypersurface.
Using basic algebraic topology and geometric measure theory, to-

gether with the fact that there is no two-sided stable minimal hyper-
surface when Ricg > 0, we can show the reverse of Theorem 3.2 when
2 ≤ n ≤ 6.

Proposition 3.5. Let (Mn+1, g) be a connected closed orientable
Riemannian manifold with 2 ≤ n ≤ 6 and Ricg > 0; then every em-
bedded connected closed orientable hypersurface Σn ⊂Mn+1 must sepa-
rate M .

Proof. Since Σn is orientable, the fundamental class [Σn] (see [B, p.
355]) of Σ represents a homology class in Hn(M,Z). Using the language
of geometric measure theory, Σ is an integral n-cycle; hence it also rep-
resents an integral n homology class [Σn] in Hn(M,Z) in the sense of
currents (see [FH, §4.4]). Suppose that Σn does not separate. Take a
coordinates chart U ⊂ M such that U ∩ Σ �= ∅. Since Σn is embedded,
Σ separates U into U1 and U2 after possibly shrinking U . Pick p1 ∈ U1

and p2 ∈ U2. We can connect p1 to p2 by a curve γ1 inside U , such
that γ1 intersects Σ transversally only once. Since Σ does not separate,
M \Σ is connected. We can connect p1 to p2 by a curve γ2 insideM \Σ.
Now we get a closed curve γ = γ1 ∪ γ2, which intersects Σ transversally
only once. Hence Σ meets γ transversally, and Σ ∩ γ is a single point.
Using the intersection theory (see [B, page 367]), the intersection of the
n homology [Σ] and the 1 homology [γ] is

[Σ] · [γ] = [Σ ∩ γ] �= 0.

Hence [Σ] �= 0 inHn(M,Z). Now we can minimize the mass inside the in-
tegral homology class [Σ] (as a collection of integral cycles). [Si, Lemma
34.3] tells us that there is a minimizing integral current T0 ∈ [Σ]. More-
over, the codimension one regularity theory ([Si, Theorem 37.7]) when
2 ≤ n ≤ 6 implies that T0 is represented by a smooth n dimensional
hypersurface Σ0 (possibly with multiplicity), i.e. T0 = m[Σ0], where
m ∈ Z, m �= 0. Since m[Σ0] represents a nontrivial integral homology
class, Σ0 is orientable. The fact that both M and Σ0 are orientable im-
plies that the normal bundle of Σ0 is trivial by Lemma 3.3; hence Σ0 is
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two-sided. By the nature of the mass minimizing property of T , Σ0 must
be locally volume minimizing; hence Σ0 is stable. This is a contradiction
with Ricg > 0. q.e.d.

From now on, we always assume that (Mn+1, g) is connected closed
oriented with 2 ≤ n ≤ 6, and hypersurfaces Σn ⊂ Mn+1 are connected
closed and embedded in this section.

3.1. Orientable case. The following proposition, which asserts that
every orientable minimal hypersurface lies in a good sweepout in man-
ifold (Mn+1, g) of positive Ricci curvature when 2 ≤ n ≤ 6, is a key
observation in proving our main theorem. Denote

(3.1) S+ = {Σn : Σn is an orientable minimal hypersurface in M}.

Proposition 3.6. For any Σ ∈ S+, there exists a sweepout {Σt}t∈[−1,1]
of M such that

(a) Σ0 = Σ;
(b) Hn(Σt) ≤ V (Σ), with equality only if t = 0;
(c) {Σt}t∈[−ε,ε] forms a smooth foliation of a neighborhood of Σ, i.e.

there exists w(t, x) ∈ C∞([−ε, ε]× Σ), w(0, x) = 0, ∂
∂t
w(0, x) > 0,

such that

Σt = {expx
(
w(t, x)ν(x)

)
: x ∈ Σ}, t ∈ [−ε, ε],

where ν is the unit normal vector field of Σ in M .

Proof. By Proposition 3.5, Σ separatesM ; henceM \Σ =M1∪M2 is
a disjoint union of two connected components M1 and M2, with ∂M1 =
∂M2 = Σ. Assume that the unit normal vector field ν points into M1.
We denote λ1 to be the first eigenvalue of the Jacobi operator L, and u1
the corresponding eigenfunction. The first eigenvalue has multiplicity 1,
and u1 > 0 everywhere on Σ. Ricg > 0 means that Σ is unstable; hence
λ1 < 0, i.e. Lu1 = −λ1u1 > 0.
Consider the local foliation by the first eigenfunction via the expo-

nential map,

Σs = {expx
(
su1(x)ν(x)

)
: x ∈ Σ}, s ∈ [−ε, ε].

• For ε > 0 small enough, since u1 > 0, the map F : [−ε, ε]×Σ→M
given by F (s, x) = expx

(
su1(x)ν(x)

)
is a smooth diffeomorphic

one-to-one map; hence {Σs}s∈[−ε,ε] is a smooth foliation of a neigh-
borhood of Σ.

• Since u1 > 0, Σs is contained in M1 (in M2) for 0 < s < ε (for
−ε < s < 0).

• By the first and second variational formulae (see [CM2][Si]),

d

ds

∣∣∣∣
s=0

V (Σs) = −

∫
Σ
Hu1dμ = 0,

d2

ds2

∣∣∣∣
s=0

V (Σs)
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= −

∫
Σ
u1Lu1dμ < 0,

where H ≡ 0 is the mean curvature of Σ. So V (Σs) ≤ V (Σ) for
s ∈ [−ε, ε], and equality holds only if s = 0.

• Denote �Hs to be the mean curvature operator of Σs; then

∂

∂s

∣∣∣∣
s=0

〈 �Hs, ν〉 = Lu1 > 0.

Hence H(Σs) > 0 for 0 < s < ε with respect to the normal ν for ε
small enough.

Denote M1,s0 = M1 \ {Σs}0≤s≤s0 for 0 < s0 ≤ ε, which is the region
bounded by Σs0 . Similarly we have M2,s0 , such that ∂M2,s0 = Σ−s0 . We
will extend the foliation {Σs} toM1,s0 andM2,s0 . We need the following
claim, which is proved in Appendix 8:

Claim 1. For ε small enough, there exists a sweepout {Σ̃s}s∈[−1,1],

such that Σ̃s = Σs for s ∈ [−
1
2ε,

1
2ε], and Σ̃s ⊂M1, 1

2
ε (or ⊂M2, 1

2
ε) when

s > 1
2ε (or s < −

1
2ε).

Now cut out part of the sweepout {Σ̃s}s∈[ 1
4
ε,1], which is then a sweep-

out of (M1, 1
4
ε, ∂M1, 1

4
ε) (abbreviated as (M1, ∂M1)) by Definition 2.1.

Consider the smallest homotopically closed family Λ̃1 of sweepouts con-
taining {Σ̃s}s∈[ 1

4
ε,1]. If the width W (M1, ∂M1, Λ̃1) > V (∂M1), then

by Theorem 2.7 and the fact that H(∂M1) = H(Σ 1
4
ε) > 0, there is

a nontrivial embedded minimal hypersurface Σ̃ lying in the interior
of M1, which is then disjoint with Σ, and hence is a contradiction
to Theorem 3.4. So W (M1, ∂M1, Λ̃1) ≤ V (∂M1), which means that

there exist sweepouts {Σ̃′s}s∈[ 1
4
ε,1] of (M1, ∂M1), with maxs∈[ 1

4
ε,1]H

n(Σ̃′s)

very close to V (∂M1). Since ∂M1 = Σ 1
4
ε, and V (Σ 1

4
ε) < V (Σ) by

our construction above, we can pick up one sweepout {Σ̃′s}s∈[ 1
4
ε,1] with

maxs∈[ 1
4
ε,1]H

n(Σ̃′s) < V (Σ).

We can do similar things to M2, 1
4
ε to get another partial sweepout.

Then we finish by putting them together with {Σs}s∈[− 1
4
ε, 1

4
ε]. q.e.d.

3.2. Non-orientable case.We have the following topological charac-
terization of non-orientable embedded hypersurfaces in orientable man-
ifold M .

Proposition 3.7. For any non-orientable embedded hypersurface Σn

in an orientable manifold Mn+1, there exists a connected double cover
M̃ of M , such that the lift Σ̃ of Σ is a connected orientable embedded
hypersurface. Furthermore, Σ̃ separates M̃ , and both components of M̃ \
Σ̃ are diffeomorphic to M \ Σ.
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Proof. Since Σ is non-orientable, M \Σ is connected by Theorem 3.2.
Denote Ω = M \ Σ. Ω has a topological boundary ∂Ω. Ω is orientable
since M is orientable; hence ∂Ω is orientable by Theorem 3.1.

Claim 2. ∂Ω is a double cover of Σ.

This is proved as follows. For all x ∈ Σ, there exists a neighborhood
U of x, i.e., x ∈ U ⊂ M , with U diffeomorphic to a unit ball B1(0).
Since Σ is embedded, after possibly shrinking U , Σ∩U is a topological n
dimensional ball, and Σ separates U into two connected components U1

and U2, i.e. U \Σ = U1∪U2. Then the sets U∩Σ � (∂U1)∩Σ � (∂U2)∩Σ
are diffeomorphic. The sets {U ∩ Σ} form a system of local coordinate
charts for Σ. Moreover, {(∂U1) ∩ Σ, (∂U2) ∩ Σ} form a system of local
coordinate charts for ∂Ω, and {(U1, ∂U1 ∩ Σ), (U2, ∂U2 ∩ Σ)} form a
system of local boundary coordinate charts for (Ω, ∂Ω). Hence ∂Ω is a
double covering of Σ, with the covering map given by (∂U1)∩Σ, (∂U2)∩
Σ→ U ∩ Σ.
Since Σ is connected, ∂Ω has no more than two connected compo-

nents. If ∂Ω is not connected, then ∂Ω has two connected components,
i.e. ∂Ω = (∂Ω)1∪(∂Ω)2, with Σ � (∂Ω)1 � (∂Ω)2. Hence Σ is orientable
since ∂Ω is orientable, which is a contradiction. So Ω must be connected.
Let M̃ = Ω �{∂Ω:x→x∗} Ω be the gluing of two copies of (Ω, ∂Ω) along
∂Ω using the deck transformation map x→ x∗ of the covering ∂Ω→ Σ;
then the lift of Σ is Σ̃ � ∂Ω. M̃ is then orientable and satisfies all the
requirements. q.e.d.

As a direct corollary of the results in the previous section, we can
embed a double cover of a non-orientable minimal hypersurface to a
sweepout in the double cover M̃ of a manifold (Mn+1, g) with positive
Ricci curvature when 2 ≤ n ≤ 6. Let
(3.2)
S− = {Σ

n : Σn is a non-orientable minimal hypersurface in M}.

Proposition 3.8. Given Σ ∈ S−, there exists a family {Σt}t∈[0,1] of
closed sets such that

(a) Σ0 = ∅;
(b) {Σt}t∈[0,1] satisfies (s1)(sw1)(sw2)(sw3) in Definition 2.1;
(c) maxt∈[0,1]H

n(Σt) = 2V (Σ) and Hn(Σt) < 2V (Σ) for all t ∈ [0, 1];
(d) (s2) in Definition 2.1 only fails when t → 0, where Hn(Σt) →

2V (Σ);
(e) (s3) in Definition 2.1 only fails when t→ 0, where Σt → 2Σ.

Proof. Consider the double cover (M̃ , g) given by Proposition 3.7.

The lift Σ̃ is an orientable minimal hypersurface, and must have the
double volume of Σ, i.e. V (Σ̃) = 2V (Σ). Σ̃ separates M̃ into two iso-

morphic components M̃1 and M̃2, which are both isomorphic to M \Σ.
We can apply Proposition 3.6 to (M̃ , Σ̃) to get a sweepout {Σ̃t}t∈[−1,1]
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satisfying (a)(b)(c) there. By the construction, we know that Σ̃t ⊂ M1

for t > 0, and Σ̃t ⊂ M2 for t < 0. To define {Σt}t∈[0,1], we can let

Σt = Σ̃t while identifying M1 with M \ Σ, and let Σ0 = ∅. Then the

properties follow from those of {Σ̃t}t∈[−1,1]. q.e.d.

4. Min-max theory II—Almgren-Pitts discrete setting

Let us introduce the min-max theory developed by Almgren and Pitts
[AF1, AF2, P]. We will briefly give the notations in [P, §4.1] in order
to state the min-max theorem. Marques and Neves also gave a nice
introduction in [MN2, §7 and §8]. For notations in geometric measure
theory, we refer to [Si], [P, §2.1], and [MN2, §4].
Fix an oriented Riemannian manifold (Mn+1, g) of dimension n+ 1,

with 2 ≤ n ≤ 6. Assume that (Mn+1, g) is embedded in some R
N for

N large. We denote by Ik(M) the space of k-dimensional integral cur-
rents in R

N with support in M , Zk(M) the space of integral currents
T ∈ Ik(M) with ∂T = 0, and Vk(M) the weak closure of the space of
k-dimensional rectifiable varifolds in R

N with support in M , endowed
with the weak topology. Given T ∈ Ik(M), |T | and ‖T‖ denote respec-
tively the integral varifold and Radon measure in M associated with T .
F and M denote respectively the flat norm and mass norm on Ik(M).
Ik(M) and Zk(M) are in general assumed to have the flat norm topol-
ogy. Ik(M,M) and Zk(M,M) are the same space endowed with the
mass norm topology. Given a smooth surface Σ or an open set Ω as in
Definition 2.1, we use [[Σ]], [[Ω]] and [Σ], [Ω] to denote respectively the
corresponding integral currents and integral varifolds.
We are mainly interested in the application of the Almgren-Pitts

theory to the special case π1
(
Zn(M

n+1), {0}
)
, so our notions will be

restricted to this case.

Definition 4.1. (cell complex of I = [0, 1])

(1) I = [0, 1], I0 = {[0], [1]}.
(2) For j ∈ N, I(1, j) is the cell complex of I, whose 1-cells are all

intervals of form [ i
3j
, i+1

3j
], and 0-cells are all points [ i

3j
]. Denote

I(1, j)p the set of all p-cells in I(1, j), with p = 0, 1, and I0(1, j) =
{[0], [1]} the boundary 0-cells.

(3) Given α a 1-cell in I(1, j) and k ∈ N, α(k) denotes the 1-dimensional
sub-complex of I(1, j + k) formed by all cells contained in α, and
α(k)0 are the boundary 0-cells of α.

(4) The boundary homeomorphism ∂ : I(1, j) → I(1, j) is given by
∂[a, b] = [b]− [a] and ∂[a] = 0.

(5) The distance function d : I(1, j)0 × I(1, j)0 → Z
+ is defined as

d(x, y) = 3j |x− y|.



142 X. ZHOU

(6) The map n(i, j) : I(1, i)0 → I(1, j)0 is defined as: n(i, j)(x) ∈
I(1, j)0 is the unique element such that d

(
x, n(i, j)(x)

)
= inf

{
d(x, y) :

y ∈ I(1, j)0
}
.

Consider a map to the space of integral cycles: φ : I(1, j)0 → Zn

(Mn+1). The fineness of φ is defined as:

(4.1) f(φ) = sup
{M

(
φ(x)− φ(y)

)
d(x, y)

: x, y ∈ I(1, j)0, x �= y
}
.

A map φ : I(1, j)0 →
(
Zn(M

n+1), {0}
)
means that φ

(
I(1, j)0

)
⊂ Zn

(Mn+1) and φ|I0(1,j)0 = 0, i.e. φ([0]) = φ([1]) = 0.

Definition 4.2. Given δ > 0 and φi : I(1, ki)0 →
(
Zn(M

n+1), {0}
)
,

i = 1, 2. We say φ1 is 1-homotopic to φ2 in
(
Zn(M

n+1), {0}
)
with fine-

ness δ, if ∃ k3 ∈ N, k3 ≥ max{k1, k2}, and

ψ : I(1, k3)0 × I(1, k3)0 → Zn(M
n+1),

such that

• f(ψ) ≤ δ;
• ψ([i − 1], x) = φi

(
n(k3, ki)(x)

)
;

• ψ
(
I(1, k3)0 × I0(1, k3)0

)
= 0.

Definition 4.3. A (1,M)-homotopy sequence of mappings into(
Zn(M

n+1), {0}
)
is a sequence of mappings {φi}i∈N,

φi : I(1, ki)0 →
(
Zn(M

n+1), {0}
)
,

such that φi is 1-homotopic to φi+1 in
(
Zn(M

n+1), {0}
)
with fineness

δi, and

• limi→∞ δi = 0;
• supi

{
M(φi(x)) : x ∈ I(1, ki)0

}
< +∞.

Definition 4.4. Assume that S1 = {φ1i }i∈N and S2 = {φ2i }i∈N are
two (1,M)-homotopy sequence of mappings into

(
Zn(M

n+1), {0}
)
; S1

is homotopic with S2 if ∃ {δi}i∈N, such that

• φ1i is 1-homotopic to φ
2
i in

(
Zn(M

n+1), {0}
)
with fineness δi;

• limi→∞ δi = 0.

The relation “is homotopic with” is an equivalent relation on the
space of (1,M)-homotopy sequences of mapping into

(
Zn(M

n+1), {0}
)

(see [P, §4.1.2]). An equivalent class is a (1,M) homotopy class of map-
pings into

(
Zn(M

n+1), {0}
)
. Denote the set of all equivalent classes by

π#1
(
Zn(M

n+1,M), {0}
)
. Similarly, we can define the (1,F)-homotopy

class and denote the set of all equivalent classes by π#1
(
Zn(M

n+1,F), {0}
)
.

In fact, Almgren-Pitts showed that they are all isomorphic to the top
homology group.
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Theorem 4.5. ([AF1, Theorem 13.4] and [P, Theorem 4.6]) The
following are all isomorphic:

Hn+1(M
n+1), π#1

(
Zn(M

n+1,M), {0}
)
, π#1

(
Zn(M

n+1,F), {0}
)
.

Definition 4.6. (Min-max definition)

Given Π ∈ π#1
(
Zn(M

n+1,M), {0}
)
, define

L : Π→ R
+

as a function given by:

L(S) = L({φi}i∈N) = lim sup
i→∞

max
{
M

(
φi(x)

)
: x lies in the domain of φi

}
.

The width of Π is defined as

(4.2) L(Π) = inf{L(S) : S ∈ Π}.

We call S ∈ Π a critical sequence if L(S) = L(Π). Let K : Π →
{compact subsets of Vn(M

n+1)} be defined by

K(S) = {V : V = lim
j→∞

|φij (xj)| : xj lies in the domain of φij}.

The critical set of S is C(S) = K(S) ∩ {V : M(V ) = L(S)}.

The celebrated min-max theorem of Almgren-Pitts (Theorem 4.3,
4.10, 7.12, Corollary 4.7 in [P]) and Schoen-Simon (for n = 6 [SS,
Theorem 4]) is as follows.

Theorem 4.7. Given a nontrivial Π ∈ π#1
(
Zn(M

n+1,M), {0}
)
; then

L(Π) > 0, and there exists a stationary integral varifold Σ, whose sup-
port is a closed, smooth, embedded, minimal hypersurface (which may
be disconnected with multiplicity), such that

‖Σ‖(M) = L(Π).

In particular, Σ lies in the critical set C(S) of some critical sequence.

5. Discretization

In this section, we will adapt the families constructed in Section 3
to the Almgren-Pitts setting. The families constructed in Section 3 are
continuous under the flat norm topology, but Almgren-Pitts theory ap-
plies only to discrete family continuous under the mass norm topology.
So we need to discretize our families and to make them continuous under
the mass norm. A similar issue was considered in the celebrated proof
of the Willmore conjecture [MN2]. In addition, we will show that the
discretized families all belong to the same homotopy class. The proof
is elementary but relatively long. Upon first perusla of this section, the
reader might focus only on the statements of Proposition 5.4, Theorem
5.5, and Theorem 5.8.
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5.1. Generating min-max family.

Proposition 5.1. Given Φ : [0, 1]→ Zn(M
n+1) defined by

Φ(x) = [[∂Ωx]], x ∈ [0, 1],

where {Ωt}t∈[0,1] is a family of open sets which satisfies (sw1)(sw2)(sw3)
in Definition 2.1 for some {Σt}t∈[0,1] satisfying (s1)(s2)(s3) there; then

(1) Φ : [0, 1]→
(
Zn(M

n+1), {0}
)
is continuous under the flat topology;

(2) m(Φ, r) = sup
{
‖Φ(x)‖B(p, r) : p ∈ M,x ∈ [0, 1]

}
→ 0 when

r → 0, where B(p, r) is the geodesic ball of radius r and centered
at p on M . (The concept of m first appears in [MN2, §4.2].)

Proof. By (sw1) and (s1) in Definition 2.1, ∂Ωx is smooth away from
finitely many points; hence it lies in Zn(M

n+1). By (sw3), Ω0 = ∅,
Ω1 = M , so that Φ(0) = Φ(1) = 0. So Φ is well-defined as a map to(
Zn(M

n+1), {0}
)
.

From the definition of the flat norm (see [Si, §31]),

F
(
Φ(x),Φ(y)

)
≤ ‖Ωy − Ωx‖(M) = Volume(ΩyΔΩx)→ 0,

as y → x by (sw2) in Definition 2.1. Here and in the following, we abuse
Ω and Σ with the associated integral currents [[Ω]] and [[Σ]].
So what is left is the last property, i.e. m(Φ, r)→ 0 when r→ 0. Now

we will abuse the notation and write Φ(x) = Σx = ∂Ωx since they only
differ by a finite set of points.

Lemma 5.2. Fix x ∈ [0, 1], and let Px be the finite set of singular
points of Σx, and Br(Px) the collection of geodesic balls centered at Px

on M ; then limr→0 ‖Σx‖
(
Br(Px)

)
= 0. (Here ‖Σ‖ is the Radon measure

corresponding to the integral current [[Σ]] associated with Σ (see [Si,
§27]).)

Proof. We only need to show that limr→0 ‖Σx‖
(
Br(p)

)
= 0 for ev-

ery p ∈ Px. By the definition of Hausdorff measure (see [Si, §2]),
(Hn�Σx)({p}) = H

n(Σx ∩ {p}) = H
n({p}) = 0. Since Hn(Σx) < +∞,

by the basic convergence property for Radon measures (see [R, §11.1,
Proposition 2.1]),

0 = (Hn
�Σx)({p}) = lim

r→0
(Hn
�Σx)

(
Br(p)

)
= lim

r→0
‖Σx‖

(
Br(p)

)
.

q.e.d.

Given r0 > 0 small enough, define f : [0, r0]×M × [0, 1]→ R
+ by

f(r, p, x) = ‖Σx‖
(
Br(p)

)
.

Lemma 5.3. The function f is continuous.

Proof. For the continuity in the parameter “x”, we can fix the ball
Br(p). For any ε > 0, we can take 0 < rx,ε � 1, such that ‖Σx‖

(
Brx,ε(Px)

)
< ε

4 by the previous lemma, where Px is the finite singular set of Σx.
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Since Σy converges to Σx smooth on compact sets of M \ Px by (s3) of
Definition 2.1, we can find δx,ε, such that whenever |y − x| < δx,ε,∣∣‖Σy‖

(
Br(p) \Brx,ε(Px)

)
− ‖Σx‖

(
Br(p) \Brx,ε(Px)

)∣∣ < ε

4
.

We claim that ‖Σy‖
(
Brx,ε(Px)

)
< ε

2 if δx,ε is small enough. Suppose

not; then for a subsequence yi → x, ‖Σyi‖
(
Brx,ε(Px)

)
≥ ε

2 . Notice (s2)
in Definition 2.1, i.e. Hn(Σy)→Hn(Σx). Now

Hn(Σy) = H
n
(
Σy \Brx,ε(Px)

)
+Hn

(
Σy ∩Brx,ε(Px)

)
,

Hn(Σx) = H
n
(
Σx \Brx,ε(Px)

)
+Hn

(
Σx ∩Brx,ε(Px)

)
.

Since Σy converge smoothly to Σx on compact subsets ofM\Px,H
n
(
Σy\

Brx,ε(Px)
)
→Hn

(
Σx\Brx,ε(Px)

)
; and hence we get a contradiction since

Hn
(
Σy ∩Brx,ε(Px)

)
−Hn

(
Σx ∩Brx,ε(Px)

)
> ε

2 −
ε
4 =

ε
4 .

Combining all of the above, we have
∣∣‖Σy‖

(
Br(p)

)
−‖Σx‖

(
Br(p)

)∣∣ < ε
whenever |y−x| < δx,ε, and have hence proved the continuity of f w.r.t.
“x”.
For the continuity in the parameter “r”, we can fix Σx and the point

p ∈M . For any ε > 0, take rx,ε as above. For any Δr > 0,

Hn
(
Σx ∩Br+Δr(p)

)
−Hn

(
Σx ∩Br(p)

)
≤ Hn

(
Σx ∩Brx,ε(Px)

)
+Hn

(
Σx ∩A(p, r, r +Δr) \Brx,ε(Px)

)
,

where A(p, r, r+Δr) is the closed annulus. Since Σx is smooth onM \Px

by (s1) in Definition 2.1, we can take δx,ε > 0 such that whenever
Δr < δx,ε, H

n
(
Σx ∩ A(p, r, r + Δr) \ Brx,ε(Px)

)
< ε

4 . Hence H
n
(
Σx ∩

Br+Δr(p)
)
−Hn

(
Σx∩Br(p)

)
< ε

2 . A similar argument holds for Δr < 0.
The continuity in the parameter “p” follows exactly as that of “r”,

so we omit the details here. q.e.d.

Let us now return to the proof that limr→0m(Φ, r) = 0. Since [0, r0]×
M × [0, 1] is compact, f is uniformly continuous. So by standard argu-
ment in point-set topology, m(Φ, r) = supp∈M,x∈[0,1] f(r, p, x)→ 0 when

r → 0, as f(0, p, x) = ‖Σx‖({p}) = 0. q.e.d.

Given Σ ∈ S, we can define a mapping into
(
Zn(M

n+1), {0}
)
,

ΦΣ : [0, 1]→
(
Zn(M

n+1), {0}
)
,

as follows:

• when Σ ∈ S+, Φ
Σ(x) = [[∂Ω2x−1]] for x ∈ [0, 1], where {Ωt}t∈[−1,1]

is the family of open sets of M in Definition 2.1 corresponding to
the sweepout {Σt}t∈[−1,1] of Σ constructed in Proposition 3.6;

• when Σ ∈ S−, Φ
Σ(x) = [[∂Ωx]] for x ∈ [0, 1], where {Ωt}t∈[0,1] is

the family of open sets ofM in Definition 2.1 corresponding to the
family {Σt}t∈[0,1] of Σ constructed in Proposition 3.8.
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Then, as a corollary of Proposition 3.6, Proposition 3.8, and Proposition
5.1, we have

Corollary 5.4. ΦΣ : [0, 1] →
(
Zn(M

n+1), {0}
)
is continuous under

the flat topology, and

(a) supx∈[0,1]M
(
ΦΣ(x)

)
= V (Σ) if Σ ∈ S+;

(b) supx∈[0,1]M
(
ΦΣ(x)

)
= 2V (Σ) if Σ ∈ S−;

(c) m(ΦΣ, r)→ 0, when r → 0.

Proof. In the case Σ ∈ S+, our conclusions are a direct consequence
of Proposition 5.1, as ΦΣ satisfies the conditions there.
If Σ ∈ S−, all the conclusions are true by Proposition 3.8 and the

proof of Proposition 5.1, except that we need to check (c). Using no-

tions in Proposition 3.8, let M̃ and Σ̃ be the double cover of M and Σ

respectively. Let Φ̃Σ̃ be the mapping corresponding to Σ̃ in M̃ . Then it

is easy to see that m(ΦΣ, r) ≤ 2m(Φ̃Σ̃, r); hence we finish the proof by
using the first case. q.e.d.

5.2. Discretize the min-max family. Now we will discretize the con-
tinuous family ΦΣ to form a (1,M)-homotopy sequence as in Definition
4.3. The idea originates from Pitts in [P, §3.7 and §3.8]. Marques and
Neves first gave a complete statement in [MN2, §13] on generating an
(m,M)-homotopy sequence into the space Z2(M

3) of integral two cycles
in a three manifold from a given min-max family continuous under the
flat norm topology. Their proof never used any special feature of the
special dimensions, so Theorem 13.1 in [MN2] is still true to generate
an (n,M)-homotopy sequence into Zn(M

n+1) from any continuous fam-
ily under flat topology. While they used a contradiction argument, for
the purpose of the proof of Theorem 5.8, we will give a modified direct
discretization process based on ideas in [P, MN2]. Our main result is
an adaption of Theorem 13.1 in [MN2].

Theorem 5.5. Given a continuous mapping Φ : [0, 1]→
(
Zn(M

n+1,

F), {0}
)
, with

sup
x∈[0,1]

M(Φ(x)) <∞, and lim
r→0

m(Φ, r) = 0,

there exists a (1,M) homotopy sequence

φi : I(1, ki)0 →
(
Zn(M

n+1,M), {0}
)
,

and a sequence

ψi : I(1, ki)0 × I(1, ki)0 → Zn(M
n+1,M),

with ki < ki+1, and {δi}i∈N with δi > 0, δi → 0, and {li}i∈N, li ∈ N with
li →∞, such that ψi([0], ·) = φi, ψi([1], ·) = φi+1|I(1,ki)0 , and



MIN-MAX MINIMAL HYPERSURFACE IN (Mn+1, g) 147

(1) M
(
φi(x)

)
≤ sup

{
M

(
Φ(y)

)
: x, y ∈ α, for some 1-cell α ∈ I(1, li)

}
+

δi; hence

(5.1) L({φi}i∈N) ≤ sup
x∈[0,1]

M
(
Φ(x)

)
.

(2) f(ψi) < δi.
(3) sup

{
F
(
ψi(y, x) −Φ(x)

)
: y ∈ I(1, ki)0, x ∈ I(1, ki)0

}
< δi.

Before giving the proof, we first give a result which is a variation of
[P, Lemma 3.8] and [MN2, Proposition 13.3]. For completeness and for
the purpose of application to the proof of Theorem 5.8, we will sketch a
slightly modified proof. Denote BFε (S) to be a ball of radius ε centered
at S in Zn(M

n+1,F).

Lemma 5.6. Given δ, r, L positive real numbers, and T ∈ Zn(M
n+1)∩

{S : M(S) ≤ 2L}, there exists 0 < ε = ε(T, δ, r, L) < δ, and k =
k(T, δ, r, L) ∈ N, such that whenever S ∈ BFε (T ) ∩ {S : M(S) ≤ 2L},
and m(S, r) < δ

4 , there exists a mapping φ̃ : I(1, k)0 → BFε (T ), satisfy-
ing

(i) φ̃([0]) = S, φ̃([1]) = T ;

(ii) f(φ̃) ≤ δ;

(iii) supx∈I(1,k)0 φ̃([x]) ≤M(S) + δ.

Proof. By [AF1, Corollary 1.14], there exists εM > 0 such that if
ε < εM , there exists Q ∈ In+1(M

n+1) such that

∂Q = S − T, M(Q) = F(S − T ) < ε.

We claim that there exists ε = ε(T, δ, r, L) > 0 small enough and
v = v(T, δ, r, L) ∈ N large enough such that for any S ∈ BFε (T ) ∩ {S :
M(S) ≤ 2L}, there exists a finite collection of disjoint balls {Bri(pi)}

v
i=1

with ri < r, satisfying the following five equations:

(5.2) ‖S‖
(
Bri(pi)

)
≤
δ

4
, ‖S‖

(
M \ ∪v

i=1Bri(pi)
)
≤
δ

4
.

(5.3) ‖T‖
(
Bri(pi)

)
≤
δ

3
, ‖T‖

(
M \ ∪v

i=1Bri(pi)
)
≤
δ

3
.

(5.4) (‖T‖−‖S‖)(Bri (pi)) ≤
δ

2v
, (‖T‖−‖S‖)(M \∪v

i=1Bri(pi)) ≤
δ

2v
.

Denoting di(x) = d(x, pi), the slice 〈Q, di, ri〉 ∈ In(M
n+1) (see [Si, §28]

for definition of slices.), and

〈Q, di, ri〉 = ∂
(
Q�Bri(pi)

)
− (∂Q)�Bri(pi)

= ∂
(
Q�Bri(pi)

)
− (S − T )�Bri(pi).

(5.5)
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(5.6)
v∑

i=1

M
(
〈Q, di, ri〉

)
<
δ

2
.

This claim follows from a contradiction argument. If it is not true, then
there is a sequence εj → 0, and Sj ∈ B

F
εi
(T ) ∩ {S : M(S) ≤ 2L}, such

that there exists no finite collection of disjoint balls satisfying the above
properties. Then limj→∞ Sj = T , and weak compactness of varifolds
with bounded mass implies that limj→∞ |Sj| = V ∈ Vn(M

n+1) for some
subsequence. Using the arguments in the proof of [MN2, Lemma 13.4]
and [P, Lemma 3.8], we can construct a finite collection of disjoint balls
satisfying the above requirement for each Sj when j is large enough;

hence a contradiction. Notice that the condition m(S, r) < δ
4 is essen-

tially used to find the radius of the balls (see Lemma 13.4 in [MN2] for
details).

Define the map φ̃ : I(1, k)0 → Zn(M
n+1), with k = N , where we

write v = 3N − 1 for some N ∈ N, as follows:

φ̃([
i

3N
]) = S −

i∑
a=1

∂
(
Q�Bra(pa)

)
, 0 ≤ i ≤ 3N − 1;

φ̃([1]) = T.

(5.7)

By arguments similar to [MN2, Lemma 13.4], we can check that

φ̃(I(1, k)0) ⊂ BFε (T ), and get the properties (i), (ii), (iii) listed in the
lemma using (5.2), (5.3), (5.4), (5.5). q.e.d.

Remark 5.7. In the proof of [MN2, Lemma 13.4] and [P, Lemma
3.8], Marques, Neves, and Pitts used contradiction arguments to get the
discretized maps, while we use contradiction arguments to get a good
collection of balls.

Now let us sketch the proof of Theorem 5.5. Since the idea is the
same as [MN2, Lemma 13.1], we will mainly point out the ingredients
which we will use in the following.

Proof Theorem 5.5. Fix a small δ > 0. Let L = supx∈[0,1]M
(
Φ(x)

)
, and

find r > 0, such that m(Φ, r) < δ
4 . By the compactness of Zn(M

n+1)
∩{S : M(S) ≤ 2L} under flat norm topology, we can find a finite cover
of Zn(M

n+1)∩ {S : M(S) ≤ 2L}, containing {BFεi (Ti) : i = 1, · · · , N},
with

Ti ∈ Zn(M
n+1) ∩ {S : M(S) ≤ 2L}, εi =

ε(Ti, δ, r, L)

8
,

where ε(Ti, δ, r, L) and ki = k(Ti, δ, r, L) are given by Lemma 5.6.
By the continuity of Φ, we can take jδ ∈ N large enough such that

for any 1-cell α ∈ I(1, jδ), Φ(α0) ⊂ B
F
εi(α)

(Ti(α)) for some i(α) depending
on α.



MIN-MAX MINIMAL HYPERSURFACE IN (Mn+1, g) 149

Now fix a 1-cell α ∈ I(1, jδ), with α = [t1α, t
2
α]. Then Φ(tlα) ∈ B

F
εi(α)

(Ti(α)), and m
(
Φ(tlα), r

)
< δ

4 , for l = 1, 2. By Lemma 5.6, there exists

φ̃lα : I(1, ki)0 → BFεi(α)
(Ti(α)) such that: φ̃

l
α([0]) = Φ(tlα), φ̃

l
α([1]) = Ti(α),

f(φ̃lα) ≤ δ, and sup{M
(
φ̃lα(x)

)
: x ∈ I(1, ki)0} ≤M

(
Φ(tlα)

)
+ δ.

By identifying α with [0, 1], we can define φ̃α : α(ki+1)0 → BFεi(α)
(Ti(α))

as follows:

(5.8) φ̃α([
j

3ki+1
]) =

{ φ̃1α([
j

3ki+1 ]), if j = 0, · · · , 3ki ;

Ti(α), if j = 3ki , · · · , 2 · 3ki ;

φ̃2α([
3ki+1−j
3ki+1 ]), if j = 2 · 3ki , · · · , 3ki+1.

Then for kδ = maxNi=1{ki}, we can define: φδ : I(1, jδ + kδ + 1)0 →
Zn(M

n+1) as follows:

(5.9) φδ|α(kδ+1)0 = φ̃α ◦ n(kδ + 1, ki + 1), for any 1-cell α ∈ I(1, jδ),

where n(i, j) is as in (6) of Definition 4.1. From Lemma 5.6, we know

that: φδ|I(1,jδ)0 = Φ|I(1,jδ)0 , f(φδ) ≤ supα∈I(1,jδ)1 f(φ̃α) ≤ δ, and

M
(
φδ(x)

)
≤ sup{M

(
Φ(y)

)
: y, x ∈ α, for some 1-cell α ∈ I(1, jδ)}+ δ.

Now take a sequence of positive numbers {δi}i∈N, with δi → 0 as
i→∞. Construct φi = φδi : I(1, jδi + kδi + 1)0 → Zn(M

n+1) as above.
By taking a subsequence, we can construct the sequence of 1-homotopy
{ψi}i∈N as in the second part of [MN2, Theorem 13.1]. The properties
(1)(2)(3) listed in the theorem follow from the arguments there. q.e.d.

In order to prove the final result, we need to show that the (1,M)-
homotopy sequences of mappings into

(
Zn(M

n+1), {0}
)
, which are con-

structed above from the mapping ΦΣ in Corollary 5.4 for any Σ ∈ S,

belong to the same homotopy class in π#1
(
Zn(M

n+1), {0}
)
. A similar is-

sue was considered in the proof of [MN2, Theorem 8.4]. However, they
only need to show that their sequence is nontrivial, while we need to
identify all our sequences. First we have the following theorem.

Theorem 5.8. Given Φ as in Theorem 5.5, and {φi}i∈N the corre-
sponding (1,M)-homotopy sequence obtained by Theorem 5.5, assume
that Φ(x) = [[∂Ωx]], x ∈ [0, 1] where {Ωt}t∈[0,1] is a family of open sets

satisfying (sw2)(sw3) in Definition 2.1. If F : π#1
(
Zn(M

n+1), {0}
)
→

Hn+1(M
n+1,Z) is the isomorphism given by Almgren in Section 3.2 in

[AF1], then

F
(
[{φi}i∈N]

)
= [[M ]],

where [[M ]] is the fundamental class of M .

Proof. We will directly cite the notions in the proof of Theorem 5.5.
First we review the definition of F given in [AF1, §3.2]. Fix an i large
enough, with δi small enough, and we will omit the sub-index i in the
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following. Take φδ = φδi : I(1, jδ + kδ + 1)0 → Zn(M
n+1) constructed

in Theorem 5.5. For any 1-cell β ∈ I(jδ + kδ + 1), with β = [t1β, t
2
β],

F
(
φδ(t

1
β), φδ(t

2
β)
)
≤ M

(
φδ(t

1
β), φδ(t

2
β)
)
≤ f(φδ) ≤ δ. By [AF1, Corol-

lary 1.14], there exists an isoperimetric choice Qβ ∈ In+1(M
n+1), with

M(Qβ) = F
(
φδ(t

1
β), φδ(t

2
β)
)
, and

∂Qβ = φδ(∂β) = φδ(t
2
β)− φδ(t

1
β).

Then F is defined in [AF1, §3.2] as:

(5.10) F
(
[{φi}i∈N]

)
=

∑
β∈I(1,jδ+kδ+1)1

[[Qβ ]],

where the right hand side is an n + 1 dimensional integral cycle as
φδ([0]) = φδ([1]) = 0, which hence represents an n + 1 dimensional
integral homology class.
For any 1-cell α ∈ I(1, jδ), we denote

(5.11) F̃ (α, φδ) =
∑

β∈α(kδ+1)1

[[Qβ ]].

Now let us identify the right hand side of (5.10) with [[M ]] using our
construction. Let {Ωt}t∈[0,1] be the defining open sets of Φ. From the
construction of φδ , we know φδ|I(1,jδ)0 = Φ|I(1,jδ)0 , so

φδ([
j

3jδ
]) = Φ(

j

3jδ
) = [[∂Ω j

3jδ

]],

by the definition of Φ.

Claim 3. For the 1-cell αj = [ j

3jδ
, j+1
3jδ

],

F̃ (αj , φδ) = [[Ω j+1

3jδ

]]− [[Ω j

3jδ

]].

Hence

F
(
[{φi}i∈N]

)
=

∑
α∈I(1,jδ)1

F̃ (α, φδ) =

3jδ−1∑
j=0

[[Ω j+1

3jδ

−Ω j

3jδ

]] = [[Ω1]] = [[M ]].

Let us go back to check the claim. Take α = αj = [ j

3jδ
, j+1
3jδ

]. Since

φδ|α(kδ+1)0 = φ̃α ◦ n(kδ + 1, ki(α) + 1) by (5.9), it is easy to see that

F̃ (α, φδ) = F̃ (α, φ̃α) =
∑

β∈α(ki(α)+1)1

[[Qβ ]].

By identifying α = [0, 1], the mapping φ̃α : I(ki(α)+1)0 → Zn(M
n+1) is

a combination of three parts by (5.8), especially φ̃α|[ 1
3
, 2
3
](ki(α))0

≡ Ti(α);

hence

F̃ (α, φ̃α) = F̃ (φ̃1α) + F̃ (φ̃2α).
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Take φ̃1α : I(1, ki(α))0 → Zn(M
n+1) for example. From the construc-

tion, there exists an isoperimetric choice Qα,1 ∈ In+1(M
n+1), such

that ∂Qα,1 = Φ([ j

3jδ
]) − Ti(α) = [[∂Ω j

3jδ

]] − Ti(α), and M(Qα,1) ≤

F
(
Φ([ j

3jδ
]), Ti(α)

)
≤ εα < δ. Then from (5.7), we have

φ̃1α([
h

3ki(α)
]) = [[∂Ω j

3jδ

]]−
h∑

a=1

∂
(
Qα,1�Bra(pa)

)
, 1 ≤ h ≤ 3ki(α) − 1;

φ̃1α([1]) = Ti(α).

Take the isoperimetric choice Qα,1,h ∈ In+1(M
n+1) such that

∂Qα,1,h = φ̃α([
h

3ki(α)
])−φ̃α([

h− 1

3ki(α)
]) = −∂

(
Qα,1�Brh(ph)

)
, 1 ≤ h ≤ 3ki(α)−1;

∂Q
α,1,3

ki(α) = Ti(α)−φ̃α([
3ki(α) − 1

3ki(α)
]) = −∂

(
Qα,1�

(
M\∪v

h=1Brh(ph)
))
.

So
3
ki(α)∑
h=1

∂Qα,1,h = −∂Qα,1 = Ti(α) − [[∂Ω j

3jδ

]],

and from the definition of isoperimetric choice (see [AF1, Corollary
1.14]),

3
ki(α)∑
h=1

M(Qα,1,h) ≤
3
ki(α)−1∑
h=1

M
(
Qα,1�Brh(ph)

)

+M

(
Qα,1�

(
M \ ∪v

h=1Brh(ph)
))

=M(Qα,1) < δ.

Similar results hold for φ̃2α, so

F̃ (α, φ̃α) = F̃ (φ̃1α) + F̃ (φ̃2α) =

3
ki(α)∑
h=1

[[Qα,1,h]] +

3
ki(α)∑
h=1

[[Qα,2,h]],

with M
(
F̃ (α, φ̃α)

)
< 2δ, and

∂
(
F̃ (α, φ̃α)

)
= Ti(α) − [[∂Ω j

3jδ

]] + [[∂Ω j+1

3jδ

]]− Ti(α) = ∂[[Ω j+1

3jδ

− Ω j

3jδ

]].

Hence ∂
(
F̃ (α, φ̃α)− [[Ω j+1

3jδ

− Ω j

3jδ

]]
)
= 0, so using the Constancy The-

orem ([Si, Theorem 26.27]), we know that F̃ (α, φ̃α)− [[Ω j+1

3jδ

−Ω j

3jδ

]] =

k[[M ]] for some k ∈ Z. Since M
(
F̃ (α, φ̃α) − [[Ω j+1

3jδ

− Ω j

3jδ

]]
)
≤ 2δ +

Volume
(
Ω j+1

3jδ

�Ω j

3jδ

)
is small enough for large jδ, we know that k = 0,

and hence F̃ (α, φ̃α) = [[Ω j+1

3jδ

−Ω j

3jδ

]], so we have proved the claim and

finished the proof. q.e.d.
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Now we can combine all the results above to get discretized sequences
and show that they all lie in the same homotopy class. Given Σ ∈ S,
let ΦΣ : [0, 1] →

(
Zn(M

n+1), {0}
)
be the mapping given in Corollary

5.4. Then we can apply Theorem 5.5 to get a (1,M)-homotopy sequence
{φΣi }i∈N into

(
Zn(M

n+1,F), {0}
)
. Clearly

(5.12) L({φΣi }i∈N) ≤
{
V (Σ), if Σ ∈ S+;
2V (Σ), if Σ ∈ S−.

Then a direct corollary of Theorem 5.8 is

Corollary 5.9. [{φΣi }i∈N] = F−1([[M ]]) ∈ π#1
(
Z(Mn+1), {0}

)
, for

any Σ ∈ S.

6. Orientation and multiplicity

In this section, we will discuss the orientation and multiplicity of
the min-max hypersurface. In Theorem 4.7, the stationary varifold Σ
is an integer multiple of some smooth minimal hypersurface (denoted
still as Σ). The fact that Σ lies in the critical set C(S) of some critical
sequence S implies that Σ is a varifold limit of a sequence of integral
cycles {φij (xj)}j∈N ⊂ Zn(M

n+1). The weak compactness implies that
{φij (xj)}j∈N converge to a limit integral current up to a subsequence,
which is then supported on Σ. It has been conjectured that Σ should
have some orientation structures by comparing the varifold limit and
current limit. Hence we prove the following result. In fact, this result
holds for all Riemannian manifolds.

Proposition 6.1. Let Σ be the stationary varifold in Theorem 4.7,
with Σ = ∪l

i=1ki[Σi], where {Σi} is a disjoint collection of smooth con-
nected closed embedded minimal hypersurfaces with multiplicity ki ∈ N.
If Σi is non-orientable, then the multiplicity ki must be an even number.

Remark 6.2. This is a characterization of the orientation structure
of the min-max hypersurface. When a connected component of Σ is
orientable, it naturally represents an integral cycle. While a connected
component of Σ is non-orientable, an even multiple of it also represents
an integral cycle—a zero integral cycle.

Let us first introduce our strategy for proving this result. Two key
ingredients will be used. The first key ingredient is an important general
property of the min-max varifold called the “almost minimizing” prop-
erty [P, §3.1]. The almost minimizing property implies that the min-max
varifold has a local replacement, which is a varifold limit of a sequence
of integral cycles that are locally mass minimizing in the region where it
replaces the original min-max varifold. In the case of co-dimension one
theory, Pitts [P, Chap. 7] essentially showed that the local replacement,
which is regular in the replacement region, coincides with the original
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min-max varifold locally. Hence it implies the regularity of the original
min-max varifold. Here we will first show that good local replacements
coincide with the original min-max varifold globally by exploring Pitts’s
idea. Then we need the second key ingredient, which is a convergence
result by B. White [W]. In fact, for a sequence of integral currents where
all the associated varifolds have locally bounded first variations, White
showed that the varifold limit and the current limit of this sequence can
differ at most by an even multiple of some integral varifold. By applying
White’s result to the sequence of integral currents that converges to the
local replacement, we can show that the replacement, the same as the
original min-max hypersurface, must have even multiplicity when it is
non-orientable.
First let us introduce some concepts related to the “almost minimiz-

ing” property (see [P, §3.1]). Let Mn+1 be an arbitrary Riemannian
manifold, and U a bounded open subset of M . We use B(p, r) and

A(p, s, r) = B(p, r) \ B(p, s) to denote the open ball and open annulus
in M . Let k ∈ N with 1 ≤ k ≤ n.

Definition 6.3. Given ε > 0 and δ > 0, Ak(U, ε, δ) is the set of
integral cycles T ∈ Zk(M) such that if T = T0, T1, · · · , Tm ∈ Zk(M)
with

spt(T −Ti) ⊂ U, F(Ti, Ti−1) ≤ δ, M(Ti) ≤M(T )+ δ, for i = 1, · · · ,m,

then M(Tm) ≥M(T )− ε.
A rectifiable varifold V ∈ Vk(M) is called almost minimizing in U ,

if for any ε > 0, there exists a δ > 0 and T ∈ Ak(U, ε, δ) such that
F(V, |T |) < ε. (This F is the F-metric for varifold defined in [P, page
66], which also defines the varifold weak topology.)

Remark 6.4. In the original work of Pitts (see [P, §3.1]), the def-
inition of Ak(U, ·, ·) uses comparison currents T ∈ Zk(M,M \ U), i.e.
integral currents with boundary outside U , and the almost minimizing
varifold is defined to be approximated by Ak(U, ·, ·) under FU norm.
Our definition is stronger and implies Pitts’s definition in [P, §3.1], so
we can use all the regularity results in [P]. Moreover, the min-max vari-
fold appearing in [P, Theorem 4.10] does satisfy our definition (in small
annulli). In fact, the contradiction arguments (see Part 2 in the proof
on [P, Theorem 4.10, page 164]) are made with respect to our defini-
tion of “almost minimizing”. The observation of this stronger version
of “almost minimizing” will enable us to gain global properties of the
min-max hypersurface.

Now we introduce the concept of local replacement. Let M and U be
as above. We have the following result, which is exactly [P, Theorem
3.11] adapted to our definition of “almost minimizing.”
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Theorem 6.5. Suppose V ∈ Vk(M) is almost minimizing in U , and
K is a compact subset of U . Then there is a nonempty set R(V ;U,K) ⊂
Vk(M) such that any V ∗ ∈ R(V ;U,K) satisfies:

(1) V ∗�Gk(M \K) = V�Gk(M \K) (Gk(·) is the Grassmann man-
ifold [P, §2.1(12)].);

(2) V ∗ is almost minimizing in U ;
(3) ‖V ∗‖(M) = ‖V ‖(M);
(4) ∀ ε > 0, ∃ T ∈ Zk(M), such that F(V ∗, |T |) < ε, and T�Z

is locally mass minimizing with respect to (Z, ∅) for all compact
Lipschitz neighborhood retract Z ⊂ Int(K).

We will call such V ∗ a replacement of V in K.

Remark 6.6. The construction of V ∗ is given in [P, §3.10]. The
only difference here is property (4). Due to our definition of almost
minimizing, the approximation current T can be chosen as an integral
cycle rather than in Zk(M,M \U), and the approximation can be made
under F-norm rather than FU -norm.

Now let us cite some regularity results from [P, Chap. 7] for the
replacements of almost minimizing varifolds in the codimension one case.

Lemma 6.7. ([P, Corollary 7.7]) Suppose 2 ≤ k ≤ 6, Mk+1 is a
given Riemannian manifold, and U is a bounded open subset of M . If
K is a compact subset of U , V ∈ Vk(M) is almost minimizing in U , and
V ∗ ∈ R(V ;U,K), then spt(‖V ∗‖) ∩ Int(K) is a k dimensional smooth
submanifold, which is stable in Int(K).

Remark 6.8. The case k = 6 is due to [SS, equation (7.4)].

Another useful result in [P] is the following identification lemma.

Lemma 6.9. ([P, Lemma 7.10]) Let k,M be as above. Given p ∈
M and r > 0 small enough, if V ∈ Vk(M) is almost minimizing in
B(p, 2r) and spt(‖V ‖) ∩ A(p, r2 , r) is a smooth submanifold in M , then

for L1 almost all r
2 < s < r, if V ∗ ∈ R(V ;B(p, r), B(p, s)), then

V ∗�Gk

(
A(p, r2 , s)

)
= V�Gk

(
A(p, r2 , s)

)
.

Remark 6.10. The case k = 6 is again due to [SS, equation (7.40)].

Using the results above, we can show that good local replacement
coincides with the min-max hypersurface globally.

Lemma 6.11. Given k,M, p, r as above, suppose V ∈ Vk(M) is al-
most minimizing in B(p, 2r) ⊂M , and spt(‖V ‖)∩B(p, 2r) is a smooth
connected embedded minimal hypersurface. Then for s ∈ [ r2 , r] as in
Lemma 6.9 with ‖V ‖(∂B(p, s)) = 0 (which exists due to transversality),

if V ∗ ∈ R(V ;B(p, r), B(p, s)), then V ∗ = V .
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Proof. By Lemma 6.9, V ∗�Gk

(
A(p, r2 , s)

)
= V�Gk

(
A(p, r2 , s)

)
. By

Lemma 6.7, spt(‖V ∗‖) ∩ B(p, s) is a smooth embedded minimal hy-
persurface. As spt(‖V ‖) ∩ B(p, 2r) is connected, the classical unique
continuation for minimal hypersurface (c.f. [DT, Theorem 5.3]) im-
plies that spt(‖V ‖) ∩ B(p, s) ⊂ spt(‖V ∗‖) ∩ B(p, s). By (1) and (3)
in Theorem 6.5, it is easy to see that ‖V ∗‖(B(p, s)) = ‖V ‖(B(p, s)) and

‖V ∗‖(∂B(p, s)) = 0. Hence V ∗�B(p, s) = V�B(p, s), so V ∗ = V .
q.e.d.

Finally we need the following convergence result by White [W].

Theorem 6.12. ([W, Theorem 1.2]) Let {Ti}i∈N and {Vi}i∈N be se-
quences of integral currents and integral varifolds with Vi = [Ti]. If Vi
have locally bounded first variation, and if ∂Ti converge to a limit cur-
rent, then for a subsequence, Vi converge to an integral varifold V and
Ti converge to an integral current T , such that V = [T ] + 2W for some
integral varifold W .

Now we are ready to prove Proposition 6.1.

Proof. (of Proposition 6.1) By [P, Theorem 4.10] and Remark 6.4,
for any p ∈M , there exists rp > 0 such that Σ is almost minimizing (in
the sense of Definition 6.3) in A(p, s, rp) for all 0 < s < rp. Let Σ1 be a
non-orientable component of Σ. Hence we can take a point p ∈ Σ1, and
r > 0 small enough, such that Σ is almost minimizing in B(p, 2r) (can
choose B(p, 2r) as a ball inside some open annulus A(p′, s, rp′)), and
spt(‖Σ‖)∩B(p, 2r) = spt(‖Σ1‖)∩B(p, 2r) is diffeomorphic to an n-ball.

Take s ∈ [ r2 , r] as in Lemma 6.11, and V
∗ ∈ R(V ;B(p, r), B(p, s)), then

V ∗ = V .
By (4) in Theorem 6.5, there exists a sequence of integral cycles

{Ti}i∈N ⊂ Zn(M
n+1), satisfying: limi→∞[Ti] = Σ as varifolds, and

Ti�B(p, s) is locally mass minimizing in B(p, s). The codimension one
regularity theory (c.f. [P, Theorem 7.2][Si, Theorem 37.7]) implies that
spt(Ti)�B(p, s) are smooth embedded stable minimal hypersurfaces.
Since limi→∞[Ti] = Σ as varifolds, M(Ti) are uniformly bounded;

hence the weak compactness theorem for integral currents ([Si, Theorem
27.3]) implies that a subsequence, still denoted by {Ti}, converges to
some integral current T0 ∈ Zn(M

n+1), i.e. limi→∞ Ti = T0. Since the
associated Radon measure ‖Ti‖ converges to ‖Σ‖ weakly by the varifold
convergence, we know that T0 must have its support in ∪l

i=1Σi, i.e.
spt(T0) ⊂ ∪l

i=1Σi. As an elementary fact, we have (see the proof in
Appendix 8).

Claim 4. T0 is an integral n-cycle in ∪l
i=1Σi, i.e. T0 ∈ Zn(∪

l
i=1Σi).

By the Constancy Theorem [Si, Theorem 26.27], T0 =
∑l

i=1[[k
′
iΣi]],

for some k′i ∈ Z. (Here we can first find a finite covering of Σ0, with
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each open set diffeomorphic to a Euclidean ball, and then apply the
Constancy Theorem to each open set of the covering, and finally patch
the results together.) As Σ1 is non-orientable, k

′
1 must be zero, or k

′
1Σ1

could not represent an integral cycle. The lower semi-continuity of the
mass implies that |k′i| ≤ ki, for i = 1, · · · , l.
Now let us focus on the ball B(p, s). After possibly shrinking the ra-

dius, we can assume that ∂(Ti�B(p, s)) have uniformly bounded mass
(by slicing theory [Si, Lemma 28.5]), and hence converge to a limit
current up to a subsequence. Clearly [Ti]�B(p, s) have bounded first
variation since they are represented by smooth stable minimal hypersur-
faces. Then Theorem 6.12 implies that Σ�B(p, s) = k1[Σ1]�B(p, s) =
[T0�B(p, s)] + 2W = 2W , for some integral varifold W . So k1 is even.
q.e.d.

7. Proof of the main result

Now we are ready to prove the main result.

Proof. (of Theorem 1.1) For any Σ ∈ S, take ΦΣ as in Corollary 5.4,
and let the corresponding (1,M)-homotopy sequence be SΣ = {φΣi }i∈N.
From Corollary 5.9, all SΣ lie in the same homotopy class F−1([[M ]]),
which we denote by ΠM ; then ΠM is nontrivial by Theorem 4.5. We
know from (5.12) that

L(ΠM ) ≤WM ,

where WM is defined in (1.1). Then we can apply the Almgren-Pitts
min-max Theorem 4.7, so there exists a stationary integral varifold Σ,
whose support is a closed smooth embedded minimal hypersurface Σ0,
such that L(ΠM ) = ‖Σ‖(M). Notice that Σ0 must be connected by
Theorem 3.4. Hence Σ = k[Σ0] for some k ∈ N, k �= 0. So

(7.1) kV (Σ0) = ‖Σ‖(M) = L(ΠM ) ≤WM ,

and from the definition (1.1) of WM ,

• if Σ0 ∈ S+, orientable, then k ≤ 1, and hence k = 1;
• if Σ0 ∈ S−, non-orientable, then k ≤ 2, and hence k = 1 or k = 2.

First let us deal with the case Σ0 ∈ S−. By Proposition 6.1, k must
be even, hence k = 2. By (1.1) and (7.1) WM ≤ 2V (Σ0) ≤ WM , which
implies that 2V (Σ0) =WM . So we have proved the case (ii).
If Σ0 ∈ S+, then by (1.1) and (7.1) again WM ≤ V (Σ0) ≤WM , which

implies that V (Σ0) =WM .

Claim 5. In this case, Σ0 has index one.

Let us check the claim now. As in the proof of Proposition 3.6, there
exists an eigenfunction u1 of the Jacobi operator LΣ0 , with LΣ0u1 > 0
and u1 > 0. Moreover, the sweepout {Σt}t∈[−1,1] constructed there is
just the flow of Σ0 along u1ν, where ν is the unit normal vector field of
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Σ0. Suppose the index of Σ0 is greater than or equal to two; then we
can find an L2 orthonormal eigenbasis {v1, v2} ⊂ C∞(Σ0) of LΣ0 with
negative eigenvalues. A linear combination will give a v3 ∈ C

∞(Σ0) such
that

(7.2)

∫
Σ0

v3LΣ0u1dμ = 0, v3 �= 0.

Let X̃ = v3ν be another normal vector field, and extend it to a tubular
neighborhood of Σ0. Denote {F̃s}s∈[−ε,ε] to be the flow of X̃; hence F̃s

are all isotopies. Now let Σs,t = F̃s(Σt), and consider the two parameter
family of generalized smooth family {Σs,t}(s,t)∈[−ε,ε]×[−1,1]. Notice that
Σs,t is then a smooth family for (s, t) ∈ [−ε, ε]×[−ε, ε] for ε small enough

by (c) in Proposition 3.6. Denote f̃(s, t) = Hn(Σs,t). Then ∇f̃(0, 0) = 0

(by minimality of Σ0),
∂2

∂t∂s
f̃(0, 0) = 0 (by (7.2)), and ∂2

∂t2
f(0, 0) < 0,

∂2

∂s2
f(0, 0) < 0 (by negativity of eigenvalues). So there exists δ > 0 small

enough, f̃(δ, t) < f̃(0, 0) for all t, since f̃(0, t) < f̃(0, 0) for all t �= 0 by
(b) in Proposition 3.6. By Remark 2.6, {Σδ,t}t∈[−1,1] is a sweepout in the
sense of Definition 2.1. By Proposition 5.1, Theorem 5.5, and Theorem
5.8, we can construct a (1,M)-homotopy sequence {φδi }i∈N, such that
{φδi }i∈N ∈ ΠM , and

L
(
{φδi }i∈N

)
≤ sup

t∈[−1,1]
f̃(δ, t) < f̃(0, 0) = V (Σ0) =WM ,

which is hence a contradiction to the fact that L(ΠM ) = WM . So we
have proved Claim 5 and hence case (i). q.e.d.

Remark 7.1. We used the same idea to prove the index bound as in
[MN1][MN2]. However, they a priori needed the existence of a least
area embedded minimal surface among a family of embedded minimal
surfaces, while in our case the existence of a least area minimal hy-
persurface is just a by-product of the min-max construction and the
existence of good sweepouts (Proposition 3.6, Proposition 3.8).

8. Appendix

First we give the proof of Claim 1 in Proposition 3.6.

Proof. (of Claim 1 in Proposition 3.6) Denote Us0 = F ([−s0, s0] ×
Σ) for 0 < s0 ≤ ε. It is easy to see that {Σs}s∈[−ε,ε] is a foliation
corresponding to the level set of a function f defined in a neighborhood
Uε of Σ, such that f(Σs) = s. In fact, using coordinates (s, x) ∈ [−ε, ε]×
Σ for Uε = F ([−ε, ε]× Σ),

f(s, x) = s =
d±(s, x)

u1(x)
, f ∈ C∞(Uε),
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where d± : Uε → R is the signed distance function with respect to Σ,
i.e.

d±(x) =
{
dist(x,Σ), if x ∈M1;
−dist(x,Σ), if x ∈M2.

Since |∇d±| = 1, |f | ≤ ε, and ∇f = ∇d±−f∇u1

u1
, we can choose ε small

enough depending only on u1 such that |∇f | is bounded away from 0
on Uε. Hence f is a Morse function on Uε.
We want to cook up a Morse function g on M , which coincides with

f on U 1
2
ε. First extend f to be a smooth function on M (denoted still

by f), such that f |M
1, 34 ε

> 3
4ε (and f |M2,34 ε

< −3
4ε). Using the fact that

the set of Morse functions is dense in Ck(M) for k ≥ 2 (see [H, Chap.

6, Theorem 1.2]), we can find a C∞ function f̃ such that ‖f − f̃‖C2 is
arbitrarily small. Choose a cutoff function ϕ : M → R such that ϕ ≡ 1
on U 1

2
ε, and ϕ ≡ 0 outside U 3

4
ε. Let

g = ϕf + (1− ϕ)f̃ = f + (1− ϕ)(f̃ − f).

Hence g ≡ f in U 1
2
ε, and g ≡ f̃ outside U 3

4
ε. In order to check that g is

a Morse function, we only need to check that in the middle region. Now

∇g = ∇f + (1− ϕ)(∇f̃ −∇f)−∇ϕ(f̃ − f).

Since |∇f | is bounded away from 0 on Uε, we can take ‖f̃ − f‖C2 small
enough to make sure that |∇g| is bounded away from 0, and hence g is
a Morse function.
Now take {Σ̃s} to be the sweepout given by the level surface of g (by

Proposition 2.3). Σ̃s = Σs since g ≡ f in U 1
2
ε. Σ̃s ⊂M1, 1

2
ε (or ⊂M2, 1

2
ε)

when s > 1
2ε (or s < −

1
2ε) follows from the fact that g > 1

2ε on M1, 1
2
ε

(or g < −1
2ε on M2, 1

2
ε). A reparameterization gives the sweepout in the

claim. q.e.d.

Now we give the proof of Claim 4 in the proof of Proposition 6. The
proof is elementary, but does not appear in standard reference, so we
add it here for completeness.

Proof. (of Claim 4 in Proposition 6) Denote Σ0 = ∪l
i=1Σi. First we

show that T0 is an integral current in Σ0. Since T0 is an integral current
in M , it is represented as T0 = τ(N, θ, ξ) (see [Si, §27.1]), where N is a
countably n-rectifiable set, θ is an integer-valued locally Hn integrable
function, and ξ equals the orienting n-form of the approximated tangent
plane TxN for Hn a.e. x ∈ N . As N lies in the support of T0, and hence
in Σ0, T0 also represents an integral current in Σ0, and we denote it as
T ′0.
Now let us show that ∂T ′0 = 0 as current in Zn(Σ0). We only need to

show that for any compactly supported smooth n−1 form ψ ∈ Λn−1
c (Σ0),
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we have ∂T ′0(ψ) = 0. By using partition of unity, we can restrict to the
case when ψ is supported in a local coordinate chart.
Assume that the support of ψ lies in U ∩Σ0, where U is a coordinates

chart for M , with coordinates {x1, · · · , xn−1, y}, and U ∩Σ0 is given by
y = 0. We can easily extend ψ smoothly to a neighborhood of U ∩ Σ0,
denoting by ψ̃ ∈ Λn−1

c (U), such that L∂yψ̃ = 0 near U ∩Σ0. In fact, this
can be achieved by extending the coefficients of ψ to U trivially, so that
those coefficients do not depend on y near U ∩Σ0. Hence dψ̃|U∩Σ0 = dψ.
So

∂T ′0(ψ) = T ′0(dψ) = T ′0(dψ̃|U∩Σ0) = T0(dψ̃) = ∂T0(ψ̃) = 0,

where the third “ = ” follows from the integral formula ([Si, page 146])
for integral currents. Writing T ′0 as T0 again, we finish the proof. q.e.d.
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