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MEAN CURVATURE FLOW

WITHOUT SINGULARITIES

Mariel Sáez & Oliver C. Schnürer

Abstract

We study graphical mean curvature flow of complete solutions
defined on subsets of Euclidean space. We obtain smooth long time
existence. The projections of the evolving graphs also solve mean
curvature flow. Hence this approach allows us to smoothly flow
through singularities by studying graphical mean curvature flow
in one additional dimension.

1. Introduction

1.1. Results. We start by stating a simplified version of our main re-
sult, which holds for bounded domains. Let us consider mean curvature
flow for graphs defined on a relatively open set

(1.1) Ω ≡
⋃

t≥0

Ωt × {t} ⊂ R
n+1 × [0,∞).

We have the following result.

Theorem 1.1 (Existence on bounded domains). Let A ⊂ R
n+1 be a

bounded open set and u0 : A → R a locally Lipschitz continuous function
with u0(x) → ∞ for x → x0 ∈ ∂A.

Then there exists (Ω, u), where Ω ⊂ R
n+1 × [0,∞) is relatively open,

such that u solves graphical mean curvature flow

u̇ =
√

1 + |Du|2 · div
(

Du
√

1 + |Du|2

)

in Ω \ (Ω0 × {0}).

The function u is smooth for t > 0 and continuous up to t = 0, Ω0 = A,
u(·, 0) = u0 in A, and u(x, t) → ∞ as (x, t) → ∂Ω, where ∂Ω is the
relative boundary of Ω in R

n+1 × [0,∞).

Such smooth solutions yield weak solutions to mean curvature flow.
To describe the relation, we use the measure theoretic boundary ∂µΩt

as introduced in Appendix A. We have the following informal version of
our main theorem concerning the level set flow:
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Theorem 1.2 (Weak flow). Let (A, u0) and (Ω, u) be as in Theo-
rem 1.1. Assume that the level set evolution of ∂Ω0 does not fatten.
Then it coincides with (∂µΩt)t≥0.

For the general version of our existence theorem see Theorem 8.2.
Theorem 9.1 is our main result concerning the connection between the
smooth graphical flow and the weak flow (in the level set sense) of the
projections. In general, we do not know whether the solutions (Ω, u)
are level set solutions. We note, however, that such a statement would
imply uniqueness of (Ω, u) in Theorem 8.2.

The previous theorems also provide a way to obtain a weak evolution
of a set E ⊂ R

n+1 with E = ∂A for some open set A: Consider a
function u0 : A → R as described in Theorem 8.2, for example u0(x) :=

1
dist(x,∂A) + |x|2, and apply our existence theorem. Then we define as the

weak evolution of E the family (∂Ωt)t≥0 with the notation from above.

1.2. Illustrations. We illustrate our main theorems by some figures.
In the description, we assume for the sake of simplicity that Ωt = Et.

Figure 1. Graph over a ball

In Figure 1 we study the evolution of a graph over B1(0) (drawn with
thick lines) that is asymptotic to the cylinder Sn ×R (drawn with grey
lines). The thinner lines indicate how the graph looks at some later time.
We remark that it continues to be asymptotic to the evolving cylinder,
which contracts in finite time. As we prove in Theorem 8.2, the evolving
graph does not become singular, but disappears to infinity at or before
the time the cylinder contracts. Theorem 9.1 implies that the evolving
graph and the evolving cylinder disappear at the same time. Note that
near the singular time, the lowest point covers arbitrarily large distances
in arbitrarily small time intervals.

Figure 2 illustrates a graph over a set that develops a “neck-pinch”
at t = T . This is projected onto lower dimensions. For t ր T , the
graph splits above the “neck-pinch” into two disconnected components
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Figure 2. Graph over a set that develops a “neck-pinch”

without becoming singular. The thinner lines illustrate the graph for
t > T . The rest of the evolution is similar to the situation above.

Figure 3. Graph defined initially over an annulus

Next, we consider a rotationally symmetric graph over an annulus,
centered at the origin; see Figure 3. The inner boundary of the annulus
converges to a point as t ր T . At t = T a “cap at infinity” is being added
to the evolving graph. This cap moves down very quickly. By comparison
with compact solutions we see that u(0, t) is finite for any t > T . This
is illustrated with thin lines. Finally, once again the evolution becomes
similar to the evolution in Figure 1.

Similarly, when a graph over a domain as in Figure 4 evolves, “caps
at infinity” are being added at the times when the small “holes” shrink
to points.

1.3. Strategy of proof. In order to prove existence of smooth solu-
tions, we start by deriving a priori estimates. The proof of these a priori
estimates is based on the observation that powers of the height function
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Figure 4. Domain with nontrivial topology

can be used to localize derivative estimates in space. Then the result
follows by applying these estimates to approximate solutions and em-
ploying an Arzelà-Ascoli-type theorem to pass to a limit.

The connection between singularity resolving and weak solutions is
obtained as follows: We observe that the cylinder (∂Ωt × R)t acts as
an outer barrier for graphu(·, t). Furthermore, since graphu(·, t) − R
converges to the cylinder as R → ∞, we conclude that graphu(·, t) does
not detach from the evolving cylinder near infinity.

1.4. Literature. The existence of entire graphs evolving by mean cur-
vature flow was proved by K. Ecker and G. Huisken [11] for Lips-
chitz continuous initial data and by J. Clutterbuck [6], T. Colding and
W. Minicozzi [8] for continuous initial data. K. Ecker, G. Huisken [10],
and N. Stavrou [29] have studied convergence to homothetically ex-
panding solutions; J. Clutterbuck, O. Schnürer, F. Schulze [5], and A.
Hammerschmidt [20] have investigated stability of entire solutions.

Many authors have worked on weak formulations for mean curvature
flow, e.g. K. Brakke [3]; K. Ecker [9]; L. C. Evans and J. Spruck [12,
13, 14, 15]; Y. Chen, Y. Giga, and S. Goto [4]; and T. Ilmanen [25]. In
what follows we will use the term weak flow to refer to level set solutions
of mean curvature flow in the sense of Appendix A; see also [4, 12].

Smooth solutions and one additional dimension have been used by
S. Altschuler and M. Grayson [1] for curves to extend the evolution
past singularities and by T. Ilmanen [24] for the ε-regularization of
mean curvature flow.

Several people have studied mean curvature flow after the first sin-
gularity. We mention a few papers addressing this issue: J. Head [21]
and J. Lauer [26] have shown that an appropriate limit of mean curva-
ture flows with surgery (see G. Huisken and C. Sinestrari [22] for the
definition of mean curvature flow with surgery) converges to a weak
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solution. T. Colding and W. Minicozzi [7] consider generic initial data
that develop only singularities that look spherical or cylindrical. In the
rotationally symmetric case, Y. Giga, Y. Seki, and N. Umeda consider
mean curvature flow that changes topology at infinity [17, 18].

The height function has been used before in [19] to localize a priori
estimates for Monge-Ampère equations.

1.5. Organization of the paper. The classical formulation Ẋ = −Hν
of mean curvature flow does not allow for changes in the topology of
the evolving hypersurfaces. Hence in Section 2 we introduce a notion
of graphical mean curvature flow that allows for changing domains of
definition for the graph function and hence also changes in the topology
of the evolving submanifold.

We fix our geometric notation in Section 3 and state evolution equa-
tions of geometric quantities in Section 4.

The key ingredients for proving smooth existence are the a priori
estimates in Section 5 that use the height function in order to localize
the estimates.

In Section 8 we prove existence of smooth solutions. That result fol-
lows from combining the Hölder estimates of Section 6 and the com-
pactness result that we prove in Section 7 (a version of the theorem of
Arzelà-Ascoli). In Section 9 we discuss the relationship of our solution
and the level set flow solution; we prove Theorem 9.1. Finally, we include
an appendix that summarizes some of the results used in Section 9.

1.6. Open problems. We wish to mention a few open problems:

1) What is a good description of solutions disappearing at infinity?
2) If the projected solution becomes symmetric, e.g. spherical, does

the graph inherit this symmetry?
3) What are optimal a priori estimates?
4) Is the solution (Ω, u) unique?
5) Does the level set solution of graphu0 fatten? If so, is this fattening

related to that of the level set solution of ∂A?

Acknowledgments. We want to thank many colleagues for their in-
terest in our work and inspiring discussions: G. Bellettini, K. Ecker,
G. Huisken, T. Ilmanen, H. Koch, J. Metzger, F. Schulze, J. Spruck, and
B. White. Some of these discussions were made possible due to invita-
tions to Barcelona, Berlin, Oberwolfach, and Potsdam. We are grateful
to the referee for numerous suggestions that helped us to improve the
exposition of the paper.

The first author was partially supported by Conicyt under grants
Fondecyt regular 1110048 and proyecto Anillo ACT-125, CAPDE.
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2. Definition of a solution

Definition 2.1.

(i) Domain of definition: Let Ω ⊂ R
n+1 × [0,∞) be a (relatively)

open set. Set

Ωt := πRn+1

(

Ω ∩
(

R
n+1 × {t}

))

,

where πRn+1 : Rn+2 → R
n+1 is the orthogonal projection onto the

first n+1 components. Note that the first n+1 components on the
domain Ω are spatial, while the last component can be understood
as the time component.

Observe that for each fixed t the section Ωt ⊂ R
n+1 is relatively

open.
(ii) The solution: A function u : Ω → R is called a classical solution

to graphical mean curvature flow in Ω with continuous initial value
u0 : Ω0 → R, if

u ∈ C2;1
loc (Ω \ (Ω0 × {0})) ∩ C0

loc(Ω)

where we recall the definition of the spaces below and

(MCF)







u̇ =
√

1 + |Du|2 · div
(

Du
√

1 + |Du|2
)

in Ω \ (Ω0 × {0}),

u(·, 0) = u0 in Ω0.

(iii) Maximality condition: A function u : Ω → R fulfills the maxi-
mality condition if u ≥ −c for some c ∈ R and if u|Ω∩(Rn+1×[0,T ])

is proper for every T > 0.
An initial value u0 : Ω0 → R, Ω0 ⊂ R

n+1, is said to fulfill the
maximality condition if w : Ω0 × [0,∞) → R defined by w(x, t) :=
u0(x) fulfills the maximality condition.

(iv) Singularity resolving solution: A function u : Ω → R is called a
singularity resolving solution to mean curvature flow in dimension
n with initial value u0 : Ω0 → R if
a) Ω and Ω0 are as in (i),
b) u is a classical solution to graphical mean curvature flow with

initial value u0 as in (ii), and
c) u fulfills the maximality condition.

(v) We do not only call u a singularity resolving solution but also the
pair (Ω, u) and the family (Mt)t≥0 with Mt = graphu(·, t) ⊂ R

n+2.

Remark 2.2.

(i) Note that the domain of definition will depend on the solution.
The dimensions seem to be artificially increased by one. This is

due to the fact that we wish to study the evolution of (∂Ωt)t≥0,
which in the smooth case (see Remark 9.9 (v)) is a family of n-
dimensional hypersurfaces in R

n+1 solving mean curvature flow.
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(ii) If Ω = R
n+1 then condition (ii) in Definition 2.1 coincides with the

definition in [11].
We avoid writing a solution as a family of embeddings X : M →

R
n+2 as in general, the topology of M may change when Ωt be-

comes singular.
We expect similar results for other normal velocities, for exam-

ple, if u is a singularity resolving solution for the normal velocity
Sk in dimension n then

u̇ =
√

1 + |Du|2 · Sk[u] in Ω \ (Ω0 × {0}),

where Sk[u] denotes the k-th elementary symmetric function of the
n + 1 principal curvatures of graph u(·, t) ⊂ R

n+2 and Ω is as in
Definition 2.1 (i).

(iii) a) The maximality condition implies that u tends to infinity if we
approach a point in the relative boundary ∂Ω. It also ensures
that u(x, t) tends to infinity as |x| tends to infinity. Hence the
maximality allows us to use the height function u for localizing
our a priori estimates.

b) Our maximality condition implies that each graph

Mt = graphu(·, t) ⊂ R
n+2

is a complete submanifold.
c) If u fulfills the maximality condition then u0(x) := u(x, 0) also

fulfills the maximality condition.
d) The maximality condition prevents solutions from stopping or

starting suddenly. Furthermore, in general, restricting the do-
main of definition Ω of a singularity resolving solution (Ω, u)
does not provide a singularity resolving solution; i.e. for gen-
eral open sets B ⊂ R

n+1 × [0,∞), the pair (Ω ∩ B,u|B) does
not fulfill the maximality condition.

(iv) It suffices to study classical solutions to mean curvature flow to
obtain singularity resolving solutions. Nevertheless, this allows us
to obtain weak solutions starting with ∂Ω0 by considering the pro-
jections of the evolving graphs.

3. Differential geometry of submanifolds

We use X = X(x, t) = (Xα)1≤α≤n+2 to denote the time-dependent

embedding vector of a manifold Mn+1 into R
n+2 and d

dtX = Ẋ for

its total time derivative. Set Mt := X(M, t) ⊂ R
n+2. We will often

identify an embedded manifold with its image. We will assume that
X is smooth. Assume furthermore that Mn+1 is smooth, orientable,
complete and ∂Mn+1 = ∅. We also use this notation if we have that
situation only locally, e.g. when the topology changes at spatial infinity.
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We choose ν = ν(x) = (να)1≤α≤n+2 to be the downward pointing

unit normal vector to Mt at x. The embedding X(·, t) induces at each
point of Mt a metric (gij)1≤i, j≤n+1 and a second fundamental form
(hij)1≤i, j≤n+1. Let

(

gij
)

denote the inverse of (gij). These tensors are
symmetric and the principal curvatures (λi)1≤i≤n+1 are the eigenvalues
of the second fundamental form with respect to that metric. As usual,
eigenvalues are well-defined up to permutations and repeated according
to their multiplicity.

Latin indices range from 1 to n+1 and refer to geometric quantities on
the surface; Greek indices range from 1 to n+2 and refer to components
in the ambient space Rn+2. In R

n+2, we will always choose Euclidean co-
ordinates with fixed en+2-axis. We use the Einstein summation conven-
tion for repeated upper and lower indices. Latin indices are raised and
lowered with respect to the induced metric or its inverse

(

gij
)

, while for
Greek indices we use the flat metric (gαβ)1≤α,β≤n+2 = (δαβ)1≤α,β≤n+2

of Rn+2.
Denoting by 〈·, ·〉 the Euclidean scalar product in R

n+1, we have

gij = 〈X, i, X, j〉 = Xα
, iδαβX

β
, j,

where we use indices preceded by commas to denote partial derivatives.
We write indices preceded by semicolons, e.g. hij; k or v;k, to indicate
covariant differentiation with respect to the induced metric. Later, we
will also drop the semicolons and commas, if the meaning is clear from
the context. We set Xα

;i ≡ Xα
,i and

(3.1) Xα
; ij = Xα

, ij − Γk
ijX

α
, k,

where

Γk
ij =

1
2g

kl(gil, j + gjl, i − gij, l)

are the Christoffel symbols of the metric (gij). So Xα
;ij is a tensor.

The Gauß formula relates covariant derivatives of the position vector
to the second fundamental form and the normal vector

(3.2) Xα
; ij = −hijν

α.

The Weingarten equation allows us to compute derivatives of the
normal vector

(3.3) να; i = hkiX
α
; k.

We can use the Gauß formula (3.2) or the Weingarten equation (3.3)
to compute the second fundamental form.

Symmetric functions of the principal curvatures are well-defined. We
will use the mean curvature H = λ1 + . . .+ λn+1 and the square of the
norm of the second fundamental form |A|2 = λ2

1 + . . .+ λ2
n+1.

Our sign convention implies that H > 0 for the graph of a strictly
convex function.
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The space Ck,α;k/2,α/2, interpreted appropriately for odd values of k,
denotes the space of functions for which derivatives of up to k-th order
are continuous, where time derivatives count twice. These derivatives
are Hölder continuous with exponent α in space and α/2 in time, and
the corresponding Hölder norm is finite. The space Ck

loc(Ω) consists of

the functions u : Ω → R which are in Ck(K) for every K ⋐ Ω. We use
similar definitions for other (Hölder) spaces.

Finally, we use c to denote universal constants arising in our esti-
mates.

4. Evolution equations for mean curvature flow

Definition 4.1. If M is given as an embedding and a graph, we use
η = (0, . . . , 0, 1) to denote the vector en+2. The definitions of ν, H, and
|A|2 are as introduced in the previous section. We denote the induced
connection by ∇ and the associated Laplace-Beltrami operator by ∆.

We define v = (−ηαν
α)−1 and u = ηαX

α. The function u can be
regarded as a function defined on a subset of R

n+1 × [0,∞) or as a
function defined on the evolving manifold M . It should be clear from
the context which definition of u is being used.

Theorem 4.2. Let X be a solution to mean curvature flow. Then we
have the following evolution equations:

(

d
dt −∆

)

u =0,(4.1)
(

d
dt −∆

)

v = − v|A|2 − 2
v |∇v|2,(4.2)

(

d
dt −∆

)

|A|2 = − 2|∇A|2 + 2|A|4,(4.3)
(

d
dt −∆

)

|∇mA|2 ≤ − 2
∣

∣∇m+1A
∣

∣

2

+ c(m,n)
∑

i+j+k=m

|∇mA|
∣

∣∇iA
∣

∣

∣

∣∇jA
∣

∣

∣

∣∇kA
∣

∣,(4.4)

(

d
dt −∆

)

G ≤ − 2kG2 − 2ϕv−3〈∇v,∇G〉,(4.5)

where G = ϕ|A|2 ≡ v2

1−kv2 |A|2 and k > 0 is chosen so that kv2 ≤ 1
2 in

the domain considered.

We remark that whenever we use evolution equations from this the-
orem, we consider u as a function defined on the evolving manifold.

Proof. See [9, 11]. q.e.d.

5. A priori estimates

The following assumption shall guarantee that we can prove local a
priori estimates for the part of graphu where u < 0. Note that, via con-
sidering the evolution given by u−a (where a is a constant abbreviating
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the Spanish word “altura”), this is equivalent to obtaining bounds in
the set where u < a.

In this section we will consider the set Ω̂ = {u < 0}. More precisely,
we will work under the following assumption:

Assumption 5.1. Let Ω̂ ⊂ R
n+1×[0,∞) be an open set. Let u : Ω̂ →

R be a smooth graphical solution to

u̇ =
√

1 + |Du|2 · div
(

Du
√

1 + |Du|2

)

in Ω̂ ∩
(

R
n+1 × (0,∞)

)

.

Suppose that u(x, t) → 0 as (x, t) → (x0, t0) ∈ ∂Ω̂. Assume that all
derivatives of u are uniformly bounded and can be extended continu-
ously across the boundary for all domains Ω̂ ∩

(

R
n+1 × [0, T ]

)

and that
these sets are bounded for any T > 0.

Remark 5.2.

(i) Assumption 5.1 is fulfilled for smooth entire solutions u to graphi-
cal mean curvature flow that fulfill u ≥ L ≥ 1 outside a compact set
when we restrict u to Ω̂ =

{

(x, t) ∈ Rn+1 × [0,∞) : u(x, t) < 0
}

.

(ii) The solutions uLε,R in Lemma 8.1 fulfill Assumption 5.1 for L > 0.

(iii) The following a priori estimates extend to the situation when

Ω̂ = {(x, t) : u(x, t) < a}

for any a ∈ R instead of 0. We only have to replace u by (u − a)
in the theorems below.

(iv) The boundedness assumption on the sets follows from the proper-
ness of the function u.

Theorem 5.3 (C1-estimates). Let u be as in Assumption 5.1. Then

vu2 ≤ max
t=0

{u<0}

vu2

at points where u < 0.

Here and in what follows, it is often possible to increase the exponent
of u.

Proof. According to Theorem 4.2, w := vu2 fulfills

ẇ = v̇u2 + 2vuu̇,

wi = viu
2 + 2vuui,

wij = viju
2 + 2vuuij + 2vuiuj + 2u(viuj + vjui),
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(

d
dt −∆

)

w =u2
(

d
dt −∆

)

v − 2v|∇u|2 − 4u〈∇v,∇u〉

=u2
(

−v|A|2 − 2
v |∇v|2

)

− 2v|∇u|2 − 4
〈

u√
v
∇v,

√
v∇u

〉

≤ − u2v|A|2 ≤ 0.

The estimate follows from the maximum principle applied to w in the
domain where u < 0. q.e.d.

Remark 5.4. If the reader prefers to consider the positive cut-off
function (−u), we recommend rewriting Theorem 5.3 as an estimate for
v · (−u)2.

Corollary 5.5. Let u be as in Assumption 5.1. Then

v ≤ max
t=0

{u<0}

vu2

at points where u ≤ −1.

Remark 5.6. Similar corollaries also hold for all higher derivatives
of u. We do not write them down explicitly.

Remark 5.7. For later use, we estimate derivatives of u and v,

|∇u|2 = ηαX
α
i g

ijXβ
j ηβ = ηα

(

δαβ − νανβ
)

ηβ = 1− v−2 ≤ 1

and, using (3.3),

|∇v|2 =
(

(−ηαν
α)−1

)

i
gij
(

(

−ηβν
β
)−1

)

j

= v4ηαX
α
k h

k
i g

ijhljX
β
l ηβ ≤ v4|A|2

≤ v2ϕ|A|2 = v2G.

So we get

|〈∇u,∇v〉| ≤ |∇u| · |∇v| ≤ v2|A| ≤ v
√
G.

Theorem 5.8 (C2-estimates). Let u be as in Assumption 5.1.

(i) Then there exist λ > 0, c > 0, and k > 0, depending on the C1-
estimates, such that

tu4G + λu2v2 ≤ sup
t=0

{u<0}

λu2v2 + ct

at points where u < 0 and 0 < t ≤ 1. Here, k is the constant
appearing in the definition of ϕ and implicitly in the definition
of G.
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(ii) Moreover, if u is in C2 initially, we get C2-estimates up to t = 0.
Then there exists c > 0, depending only on the C1-estimates, such
that

u4G ≤ sup
t=0

{u<0}

u4G + ct

at points where u < 0.

Proof. In order to prove both parts simultaneously, we underline some
terms and factors that can be dropped everywhere. The first part is
obtained by including the underlined terms in the calculations below,
while the second part is derived by ignoring them and by setting λ = 0.

We define

w := tu4G + λu2v2

and obtain

ẇ =u4G + 4tu3Gu̇+ tu4Ġ + 2λv2uu̇+ 2λu2vv̇,

wi =4tu3Gui + tu4Gi + 2λv2uui + 2λu2vvi,

wij =4tu3Guij + tu4Gij + 2λv2uuij + 2λu2vvij + 12tu2Guiuj
+ 4tu3(Giuj + Gjui) + 2λv2uiuj + 2λu2vivj

+ 4λvu(uivj + ujvi),

tu3∇G =
1

u
∇w − 4tu2G∇u− 2λv2∇u− 2λuv∇v,

(

d
dt −∆

)

w ≤u4G + tu4
(

−2kG2 − 2ϕv−3〈∇v,∇G〉
)

+ 2λu2v
(

−v|A|2 − 2
v |∇v|2

)

− 12tu2G|∇u|2

− 8tu3〈∇G,∇u〉 − 2λv2|∇u|2 − 2λu2|∇v|2

− 8λuv〈∇u,∇v〉.

In the following, we will use the notation 〈∇w, b〉 for generic gradient
terms involving the test function w. The constants c are allowed to
depend on sup{|u| : u < 0} (which does not exceed its initial value) and
the C1-estimates which are uniform as we may consider v · (u − 1)2 in
Theorem 5.3. In case (i), it may also depend on an upper bound for t,
but we assume that 0 < t ≤ 1. That is, we refrain from displaying the
explicit dependence on already estimated quantities.

We estimate the terms involving ∇G separately. Let ε > 0 be a con-
stant. We fix its value below. Using Remark 5.7 for estimating some of
the terms, we obtain

−2ϕtu4v−3〈∇v,∇G〉 = − 2
ϕu

v3

〈

∇v,
1

u
∇w − 4tu2G∇u

〉

− 2
ϕu

v3
〈

∇v,−2λv2∇u− 2λuv∇v
〉
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≤〈∇w, b〉 + 8t
ϕu3

v
G|A|+ 4λϕ|u|v|A|

+ 4
λϕu2

v2
|∇v|2

≤〈∇w, b〉 + εtu4G2 + ελu2v2|A|2

+ λu2|∇v|2 · 4 ϕ

v2
+ c(ε, λ),

−8tu3〈∇G,∇u〉 = − 8

〈

∇u,
1

u
∇w − 4tu2G∇u

〉

− 8
〈

∇u,−2λv2∇u− 2λuv∇v
〉

≤〈∇w, b〉 + 32tu2G + 16λv2 + 16λ|u|v3|A|
≤ 〈∇w, b〉 + εtu4G2 + ελu2v2|A|2 + c(ε, λ).

We arrive at
(

d
dt −∆

)

w ≤u4G + tu4G2(−2k + 2ε) + 〈∇w, b〉

+ λu2v2|A|2(−2 + 3ε) + λu2|∇v|2
(

4
ϕ

v2
− 6
)

+ c(ε, λ).

Let us assume that k > 0 is chosen so small that kv2 ≤ 1
3 in {u < 0}.

This implies ϕ ≤ 2v2. We may assume that λ ≥ 2u2 in {u < 0}, resulting
in

u4G ≤ 1

2
λu2ϕ|A|2 ≤ λu2v2|A|2.

Thus,

4
ϕ

v2
− 6 =

4

1− kv2
− 6 ≤ 0.

Finally, fixing ε > 0 sufficiently small, we obtain
(

d
dt −∆

)

w ≤ 〈∇w, b〉 + c.

Now, both claims follow from the maximum principle. q.e.d.

Theorem 5.9 (Cm+2-estimates). Let u be as in Assumption 5.1.

(i) There exists λ > 0, depending on the Cm+1-estimates, such that

tu2 |∇mA|2 + λ
∣

∣∇m−1A
∣

∣

2 ≤ c · λ · t+ sup
t=0

{u<0}

λ
∣

∣∇m−1A
∣

∣

2

at points where u < 0 and 0 < t ≤ 1.
(ii) As in Theorem 5.8, initial smoothness is preserved.

Remark 5.10.

(i) This implies a priori estimates for arbitrary derivatives and any t >
0: It is known that estimates for u, v, |A|, and |∇mA| for 1 ≤ m ≤
M imply (spatial) CM+2-estimates for the function that represents
the evolving hypersurface as a graph. Using the equation, we can
bound time derivatives.
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(ii) For estimates at time t0 > 1, we can use the previous theorems
with t = 0 replaced by t = t0 − 1/2.

(iii) To control the m-th (spatial) derivative at time t0 > 0, we can
apply the result iteratively and control the k-th derivatives at time
kt0
m , where 1 ≤ k ≤ m.

(iv) Theorem 5.9 implies smoothness for t > 0. We do not expect,

however, that the decay rates obtained for |∇mA|2 are optimal
near t = 0.

Proof of Theorem 5.9. Once again, we underline terms and factors that
can be dropped to obtain uniform estimates up to t = 0. We define

w := tu2 |∇mA|2 + λ
∣

∣∇m−1A
∣

∣

2

for a constant λ > 0 to be fixed. We will assume that
∣

∣∇kA
∣

∣

2
is already

estimated for any 0 ≤ k ≤ m− 1. Suppose that 0 ≤ t ≤ 1. The constant
c is allowed to depend on quantities that we have already estimated.
Thus the evolution equation for |∇mA|2 with m ≥ 1 in Theorem 4.2
becomes

(

d
dt −∆

)

|∇mA|2 ≤ − 2
∣

∣∇m+1A
∣

∣

2
+ c |∇mA|2 + c,

(

d
dt −∆

)
∣

∣∇m−1A
∣

∣

2 ≤ − 2 |∇mA|2 + c.

Then compute

ẇ =u2 |∇mA|2 + 2tuu̇ |∇mA|2 + tu2
d

dt
|∇mA|2

+ λ
d

dt

∣

∣∇m−1A
∣

∣

2
,

wi =2tuui |∇mA|2 + tu2
(

|∇mA|2
)

i
+ λ

(

∣

∣∇m−1A
∣

∣

2
)

i
,

wij =2tuuij |∇mA|2 + tu2
(

|∇mA|2
)

ij
+ λ

(

∣

∣∇m−1A
∣

∣

2
)

ij

+ 2tuiuj |∇mA|2

+ 2tu

(

ui

(

|∇mA|2
)

j
+ uj

(

|∇mA|2
)

i

)

,

(

d
dt −∆

)

w ≤u2 |∇mA|2 + tu2
(

−2
∣

∣∇m+1A
∣

∣

2
+ c |∇mA|2 + c

)

+ λ
(

−2 |∇mA|2 + c
)

− 2t|∇u|2 |∇mA|2

− 4tu
〈

∇u,∇ |∇mA|2
〉

.

Observing that

−4tu
〈

∇u,∇ |∇mA|2
〉

≤ t · |u| · c ·
∣

∣∇m+1A
∣

∣ · |∇mA|

≤ tu2
∣

∣∇m+1A
∣

∣

2
+ c |∇mA|2
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we arrive at
(

d
dt −∆

)

w ≤ (c− 2λ) |∇mA|2 + c(λ)

whence the result follows from the maximum principle for fixed λ ≥ 1
2c.

q.e.d.

6. Hölder estimates in time

We will use the following Hölder estimates to prove maximality of a
limit of solutions.

Lemma 6.1. Let u : Rn+1 × [0,∞) → R be a graphical solution to
mean curvature flow and M ≥ 1 such that

|Du(x, t)| ≤ M for all (x, t) where u(x, t) ≤ 0.

Fix any x0 ∈ R
n+1 and t1, t2 ≥ 0. If u(x0, t1) ≤ −1 or u(x0, t2) ≤ −1,

then |t1 − t2| ≥ 1
8(n+1)M2 or

|u(x0, t1)− u(x0, t2)|
√

|t1 − t2|
≤
√

2(n+ 1)(M + 1).

The previous lemma implies that u is locally uniformly Hölder con-
tinuous in time. Although Lemma 6.1 follows from the bounds for H
provided by [11, Theorem 3.1], we include below an independent and
more elementary proof which employs spheres as barriers.

Proof. We may assume that t1 ≤ t2.

(i) Assume first that u(x0, t1) ≤ −1. As |Du(x, t)| ≤ M for u(x, t) ≤
0, we deduce for any 0 < r ≤ 1

M

u(x0, t1)−Mr ≤ u(y, t1) ≤ u(x0, t1) +Mr for all y ∈ Bn+1
r (x0).

Hence the sphere

∂Bn+2
r (x0, u(x0, t1) + (M + 1)r)

lies above graphu(·, t1) and ∂Bn+2
r (x0, u(x0, t1) − (M + 1)r) lies

below graphu(·, t1). When the spheres evolve by mean curvature
flow, their radii are given by

r(t) =
√

r2 − 2(n+ 1)(t− t1)

for t1 ≤ t < t1 +
r2

2(n+1) . Both spheres are compact solutions to

mean curvature flow. Hence they are barriers for graphu(·, t). In
particular, we get

u(x0, t1)− (M + 1)r ≤ u

(

x0, t1 +
r2

2(n + 1)

)

≤ u(x0, t1) + (M + 1)r.
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Set r :=
√

2(n + 1)(t2 − t1). We may assume |t1 − t2| ≤ 1
2(n+1)M2 .

Hence r ≤ 1
M and the considerations above apply. We obtain

u(x0, t1)− (M + 1)
√

2(n + 1)(t2 − t1) ≤ u(x0, t2)

≤u(x0, t1) + (M + 1)
√

2(n + 1)(t2 − t1).

Rearranging implies the Hölder continuity claimed above.
(ii) Assume now that u(x0, t2) ≤ −1 and u(x0, t1) > −1. We argue by

contradiction: Suppose that t2 ≥ t1 ≥ t2 − 1
8(n+1)M2 and

(6.1)
u(x0, t1)− u(x0, t2)√

t2 − t1
≥
√

2(n + 1)(M + 1).

Set r :=
√

2(n + 1)(t2 − t1). We claim that

(6.2) min{u(x0, t1), 0} −Mr ≥ u(x0, t2) + r.

If u(x0, t1) < 0, (6.2) follows by rearranging (6.1). Otherwise, we
have that

u(x0, t2) + (M + 1)r

≤ − 1 + (M + 1)
√

2(n + 1)(t2 − t1)

≤ − 1 + (M + 1)

√

2(n+ 1)

8(n + 1)M2

≤ − 1 +
M + 1

2M
≤ 0

as M ≥ 1. This proves claim (6.2).
Now, using (6.2), we can proceed similarly as in (i):

For some small ε > 0, the sphere ∂Bn+2
r (x0, u(x0, t2) + ε) lies

below graphu(·, t1) (for the positivity of ε consider in (6.2) the
terms −Mr near the center and +r near the boundary). Under
mean curvature flow, the sphere shrinks to a point as t ր t2 and
stays below graphu(·, t). We obtain u(x0, t2)+ε ≤ u(x0, t2), which
is a contradiction. q.e.d.

7. Compactness results

Lemma 7.1. Let Ω ⊂ B ⊂ R
n+2 and consider a function u : Ω → R.

Assume that for each a ∈ R there exists r(a) > 0 such that for each
x ∈ Ω with u(x) ≤ a we have Br(a)(x) ∩ B ⊂ Ω. Then Ω is relatively
open in B and u(xk) → ∞ if xk → x ∈ ∂Ω, where ∂Ω is the relative
boundary of Ω in B.

Proof. It is clear that Ω ⊂ B is relatively open. If u did not tend to
infinity near the boundary, we could find xk ∈ Ω such that xk → x ∈ ∂Ω
as k → ∞ and u(xk) ≤ a for some a ∈ R. The triangle inequality implies
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x ∈ Br(a)(xk) for k sufficiently large. Since Br(a)(xk) ∩ B ⊂ Ω, this
contradicts the assumption x ∈ ∂Ω. q.e.d.

Remark 7.2. A maximal graph of a continuous function is a closed
set and—if sufficiently smooth—a complete manifold.

Lemma 7.3 (Variation on the Theorem of Arzelà-Ascoli). Let B ⊂
R
n+2 and 0 < α ≤ 1. Let ui : B → R ∪ {∞} for i ∈ N. Suppose that

there exist strictly decreasing functions r, −c : R → R+ such that for
each x ∈ B and i ≥ i0(a) with ui(x) ≤ a < ∞ we have

|ui(x)− ui(y)|
|x− y|α ≤ c(a) for all y ∈ Br(a)(x) ∩B.

Then there exists a function u : B → R ∪ {∞} such that a subsequence
(uik)k∈N converges to u locally uniformly in Ω := {x ∈ B : u(x) < ∞}
and uik(x) → ∞ for x ∈ B \Ω. Moreover, for each x ∈ Ω with u(x) ≤ a
we have Br(a+1)(x) ∩B ⊂ Ω and

|u(x)− u(y)|
|x− y|α ≤ c(a+ 1) for all y ∈ Br(a+1)(x) ∩B.

Proof. We adapt the proof of the Theorem of Arzelà-Ascoli to our
situation. Let D := {xl : l ∈ N} be dense in B.

If lim inf
i→∞

ui(x0) < ∞, we choose a subsequence (uik)k∈N, such that

lim
k→∞

uik(x0) = lim inf
i→∞

ui(x0). If lim inf
i→∞

ui(x0) = ∞, we do not need to

pass to a subsequence.
Proceed similarly with x1, x2, . . . instead of x0. We denote the di-

agonal sequence of this sequence of subsequences by (ũi)i∈N. Define
u(xk) := lim

i→∞
ũi(xk) ∈ R ∪ {∞} for k ∈ N. This limit exists by the

construction of the subsequence (ũi)i∈N. By passing to the limit in the
Hölder estimate for ũi, we obtain the claimed Hölder estimate with a+ 1

2
for u and x = xk, y = xl, k, l ∈ N. Set u(x) := lim

k→∞
u(xk) for x ∈ B,

xk ∈ D, and xk → x as k → ∞. The Hölder estimate ensures that
u is well-defined and fulfills the claimed Hölder estimate with a + 1.
Set Ω := {x ∈ B : u(x) < ∞}. There, pointwise convergence and local
Hölder estimates imply locally uniform convergence in Ω. q.e.d.

Remark 7.4.

(i) This result extends to families of locally equicontinuous functions.
(ii) Note that the functions ui in the previous lemma are not neces-

sarily finite on all of B. Hence the lemma can also be applied to
functions ui which are not defined in all of B: It suffices to set
ui := +∞ outside its original domain of definition.

(iii) Observe that the domain Ω obtained in Lemma 7.3 may be empty.
However, for the existence result (Theorem 8.2), the fact that
Ω 6= ∅ is ensured by the choice of initial condition for the approx-
imating solutions and Lemma 6.1.
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8. Existence

In this section we will use approximate solutions to prove existence
of a singularity resolving solution to mean curvature flow.

We start by constructing a mollification of min{·, ·}. Choose a smooth
monotone approximation f of min{·, 0} such that f(x) = min{x, 0} for
|x| > 1, f ′ ≤ 1 and set minε{a, b} := εf

(

1
ε (a− b)

)

+ b.
We will set minε{u(x), L} := L at x if u is not defined at x.

Lemma 8.1 (Existence of approximating solutions). Let A ⊂ R
n+1

be an open set. Assume that u0 : A → R is locally Lipschitz continuous
and maximal.

Let L > 0, R > 0, and 1 ≥ ε > 0. Then there exists a smooth solution
uLε,R to



















u̇ =
√

1 + |Du|2 · div
(

Du
√

1 + |Du|2

)

in BR(0)× [0,∞),

u = L on ∂BR(0)× [0,∞),

u(·, 0) = minε
{

u0,ε, L
}

in BR(0),

where u0,ε is a standard mollification of u0. We always assume that
R ≥ R0(L, ε) is so large that L+ 1 ≤ u0,ε on ∂BR(0).

Proof. The initial value problem for uLε,R involves smooth data which
fulfill the compatibility conditions of any order for this parabolic prob-
lem. Hence we obtain a smooth solution uLε,R for some positive time

interval. According to [23], this solution exists for all positive times.
q.e.d.

Observe that the approximate solutions of Lemma 8.1 fulfill Assump-
tion 5.1 with

Ω̂ =
{

(x, t) : uLε,R < a
}

and 0 there replaced by a for any a < L.

Theorem 8.2 (Existence). Let A ⊂ R
n+1 be an open set. Assume

that u0 : A → R is maximal and locally Lipschitz continuous.
Then there exists Ω ⊂ R

n+1 × [0,∞) such that Ω ∩
(

R
n+1 × {0}

)

=
A × {0} and a (classical) singularity resolving solution u : Ω → R with
initial value u0.

Proof. Consider the approximate solutions uLε,R given by Lemma 8.1.
The a priori estimates of Theorem 5.3 and Lemma 6.1 apply to this
situation in

{

(x, t) ∈ BR(0) × [0,∞) : uLε,R(x, t) ≤ L − 1
}

. According

to [11], we get uL1/i,i → uL as i → ∞ and uL is a solution to mean

curvature flow with initial condition min{u,L}.
Let us derive lower bounds for uL that will ensure maximality of

the limit when L → ∞. As the initial value u0 fulfills the maximality
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condition for every r > 0 we can find d = d(r) such that Br((x,L−r−1))
lies below graphmin{u,L} if |x| ≥ d. Hence uL(x, t) ≥ L − 2 for 0 ≤
t ≤ 1

n+1r− 1
2(n+1) if |x| ≥ d. Therefore for any T > 0 there exists d ≥ 0

such that uL(x, t) ≥ L− 2 for |x| ≥ d and 0 ≤ t ≤ T .
The estimates of Theorem 5.3, Theorem 5.8, and Theorem 5.9 sur-

vive the limiting process and continue to hold for uL: We get locally
uniform estimates on arbitrary derivatives of uL in compact subsets of
Ω ∩

(

R
n+1 × (0,∞)

)

. The estimate of Lemma 6.1 also survives the lim-

iting process and we obtain uniform bounds for
∥

∥uL
∥

∥

C0,1;0,1/2 in compact
subsets of Ω.

Now we apply Lemma 7.3 to uL, L ∈ N, and obtain a solution (Ω, u)
and a subsequence of uL, which we assume to be uL itself, such that
uL → u locally uniformly in Ω.

According to Lemma 7.1, Ω is open in R
n+1 × [0,∞). The C0,1;0,1/2-

estimates imply that the domains of definition of u0 and u|t=0 coincide.
In particular, in Definition 2.1 we get A = Ω0(Ω) and u(·, 0) = u0.

The derivative estimates and local interpolation inequalities of the
form

‖Dw‖2C0(B) ≤ c(n,B) · ‖w‖C0(B) · ‖w‖C2(B)

for any w ∈ C2 and any ball B (see e.g. [27, Lemma A.5]) imply that
uL → u smoothly in Ω∩

(

R
n+1 × (0,∞)

)

. Hence u fulfills the differential
equation for graphical mean curvature flow.

The lower bound uL(x, t) ≥ L− 2 above for |x| ≥ d and Lemma 7.1
imply maximality.

Hence, we obtain the existence of a singularity resolving solution
(Ω, u) for each maximal Lipschitz continuous function u0 : A → R.

q.e.d.

Remark 8.3. Recall that in the proof of Theorem 8.2 we started
with the approximate solutions of Lemma 8.1 instead of uL used in the
proof of Theorem 8.2 as the former are smooth up to t = 0 and allow
us to apply our a priori estimates.

9. The level set flow and singularity resolving solutions

In this section we explore the relation between level set solutions
as defined at the beginning of Appendix A and singularity resolving
solutions given by Theorem 8.2. More precisely, we prove the following
result:

Theorem 9.1. Let (Ω, u) be a solution to mean curvature flow as in
Theorem 8.2. Let ∂Dt be the level set evolution of ∂Ω0 as defined below.
If ∂Dt does not fatten, the measure theoretic boundaries of Ωt and Dt

coincide for every t ≥ 0: ∂µΩt = ∂µDt.
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For the definition of a level set solution and fattening, we refer to
Appendix A.

In order to prove Theorem 9.1 we need a few definitions which we
summarize in Table 1. Unless stated otherwise, we will always assume
that we consider signed distance functions which are truncated between
−1 and 1, i.e. we consider max{−1,min{d, 1}}, and are negative inside
the set or above the graph considered.

(i) Let ṽ : Rn+1 × [0,∞) → R be the solution to (A.1) in R
n+1 such

that ṽ(·, 0) is the distance function to ∂Ω0. Set

Dt :=
{

x ∈ R
n+1 : ṽ(x, t) < 0

}

.

(ii) Let v : Rn+2× [0,∞) → R be the solution to (A.1) such that v(·, 0)
is the distance function to ∂Ω0 ×R. Set

Ct :=
{(

x, xn+2
)

∈ R
n+2 : v

(

x, xn+2, t
)

< 0
}

.

(iii) Let w : Rn+2×[0,∞) → R be the solution to (A.1) such that w(·, 0)
is the distance function to graphu(·, 0)|Ω0

. Set

Et :=
{(

x, xn+2
)

: w
(

x, xn+2, t
)

< 0
}

.

solution to (A.1) initial set set
w graphu0 Et

ṽ ∂Ω0 Dt

v ∂Ω0 × R Ct

Table 1. Notation for weak solutions

Theorem 9.1 will follow from

Proposition 9.2. Let (Ω, u) be a solution to mean curvature flow
as in Theorem 8.2. If the level set evolution of ∂Ω0 does not fatten,
we obtain Hn+1-almost everywhere that Ωt = Dt for all t ≥ 0, i.e.
Hn+1(Ωt△Dt) = 0 for every t ≥ 0.

We start by showing that v and ṽ are closely related.

Lemma 9.3. For v and ṽ as above, we have v
(

x, xn+2, t
)

= ṽ(x, t)

for all points
(

x, xn+2, t
)

∈ R
n+1×R× [0,∞). This implies Dt×R = Ct

and D+
t ×R = C+

t , where the sets D+
t , C

+
t are defined as in Appendix A.

Proof. This follows directly from the uniqueness of solutions to (A.1)
as v

(

x, xn+2, 0
)

= ṽ(x, 0). See Theorem A.1. q.e.d.

Lemma 9.4. We have w ≥ v. In particular, E+
t ⊂ C+

t .

Proof. This follows from w(·, 0) ≥ v(·, 0) and Theorem A.3. q.e.d.

Lemma 9.5. We have graphu(·, t) ⊂ ∂E+
t .
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Proof. Let wL : Rn+2 × [0,∞) → R be the solution to (A.1) with
wL(·, 0) equal to the distance function to graphuL, where uL is as
in the proof of Theorem 8.2. According to [2] the solution wL does
not fatten: For each ε > 0 there is a δ > 0 such that the inequality
wL(x, 0) ≥ wL

(

x+ εen+2, 0
)

+ δ holds if we truncate at appropriate

heights. By Theorem A.2 and Theorem A.3 we have that wL(x, t) ≥
wL
(

x+ εen+2, t
)

+ δ near the zero level set. Hence
{(

x, xn+2
)

∈ R
n+1 × R : wL

(

x, xn+2, t
)

= 0
}

= graphuL(·, t).
Observe that wL(·, 0) ր w(·, 0). Hence Theorem A.4 implies that

wL(·, t) ր w(·, t) for all t ≥ 0.
Let xn+2 < u(x, t). Then xn+2 < uL(x, t) for some L and hence

wL
(

x, xn+2, t
)

> 0. Since w
(

x, xn+2, t
)

≥ wL
(

x, xn+2, t
)

> 0 we have
that

(9.1)
{(

x, xn+2
)

: xn+2 < u(x, t)
}

⊂
{(

x, xn+2
)

: 0 < w
(

x, xn+2, t
)}

.

On the other hand, for every
(

x, xn+2, t
)

such that xn+2 = u(x, t) there

is a sequence
(

x, uL(x, t)
)

L
such that

(

x, uL(x, t)
)

→ (x, u(x, t)) as

L → ∞. Moreover, since the wL converge monotonically, the conver-
gence is locally uniform. We conclude that

0 = lim
L→∞

wL
(

x, uL(x, t), t
)

= w (x, u(x, t), t) .

This concludes the proof of the statement that graphu(·, t) ⊂ ∂E+
t .

By arguments similar to those used for proving (9.1), we can show
that

{(

x, xn+2
)

: xn+2 > u(x, t)
}

⊂
{(

x, xn+2
)

: w
(

x, xn+2, t
)

≤ 0
}

.

q.e.d.

Corollary 9.6. For x 6∈ Ωt we obtain w
(

x, xn+2, t
)

> 0 for any

xn+2.

Proof. The above argument in the case xn+2 < u(x, t) also extends
to the case u(x, t) = +∞. q.e.d.

Corollary 9.7. If Ct or, equivalently, Dt does not fatten, then we
obtain Ωt ⊂ Dµ

t .

Proof. Combining Lemmata 9.3, 9.4, and 9.5 we obtain that

graphu(·, t) ⊂ D+
t × R.

This implies Ωt ⊂ D+
t . As Dt is not fattening, we see that

Hn+1
(

D+
t \ Dt

)

= 0.

Observe that Dt ⊂ Dµ
t ⊂ D+

t . As Ωt is an open set, the claim follows.
q.e.d.
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The following lemma shows that graphu(·, t) does not “detach” from
the evolving cylinder at infinity.

Lemma 9.8. We have Dt ⊂ Ωt.

Proof. Denote by wR the solution to (A.1) with initial condition given
by the distance function to the set graph(u0 −R).

Observe that wR(·, 0) ց v(·, 0) as R → ∞. Theorem A.4 implies that

(9.2) wR(·, t) ց v(·, t) as R → ∞.

Suppose there are x, t such that x ∈ Dt \ Ωt. Then by Corollary 9.6
it would hold for every R > 0 and xn+2 that

wR(x, xn+2, t) ≥ 0 and v(x, xn+2, t) < 0.

However, taking R → ∞ this contradicts (9.2). q.e.d.

Proof of Proposition 9.2. According to Corollary 9.7 and Lemma 9.8 we
have

Dt ⊂ Ωt ⊂ Dµ
t ⊂ D+

t .

If there is no fattening Hn+1
(

D+
t \ Dt

)

= 0. The claim follows. q.e.d.

Remark 9.9.

(i) From Proposition 9.2 we have that

sup {t ≥ 0: u(·, t) 6≡ ∞} = sup {t ≥ 0: Dt 6= ∅} ,
i.e. the singularity resolving solution vanishes at the same time as
the level set solution. Here u(x, t) = ∞ has to be understood as in
Lemma 7.3.

(ii) Generically, level set solutions do not fatten; see [24]. Examples
of initial conditions that do not fatten are mean convex (see [30])
and star-shaped hypersurfaces (see [2] and references therein).

(iii) Under conditions similar to [2] it is possible to prove that w does
not fatten and that (Ω, u) is unique.

(iv) Theorem 9.1 also holds if the ∂Ω0 non-fattening assumption is
replaced by non-fattening of the level set solution with initial con-
dition graphu0.

(v) If Dṽ 6= 0 along {ṽ = 0}, we have Dµ
t = Dt and hence Ωt = Dt.

Appendix A. Definitions and known results for level set flow

Different approaches have been considered in order to define a weak
solution to mean curvature flow via level set methods (see for example
[4, 12, 21, 28]). We define it as follows: Given an initial surface ∂E0,
we define a level set solution to mean curvature flow as the set ∂Et =
∂{x : w(x, t) < 0}, where w satisfies the equation

(A.1)

{

∂w
∂t −

(

δij − wiwj

|Dw|2
)

wij = 0 in R
n+2 × (0,∞),

w(·, 0) = w0(·) in R
n+2
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in the viscosity sense and where E0 = {x : w0(x) < 0}. We also set
E+

t := {x : w(x, t) ≤ 0}.
We say that a solution to (A.1) does not fatten if

Hn+2({w(·, t) = 0}) = 0

for all t ≥ 0, where Hn+2 denotes the (n + 2)-dimensional Hausdorff
measure.

Observe that our definition of solution differs from the notion in [4,
12]: There, the level set solution is defined to be {x : w(x, t) = 0}. If
there is fattening, our definition chooses the “inner boundary.” Often,
however, these definitions coincide; see e.g. [14, 21].

Let E ⊂ R
n+2 be measurable. We define the open set Eµ, the measure

theoretic interior of E, by

Eµ :=
{

x ∈ R
n+2 : ∃ r > 0: |Br(x)| = |E ∩Br(x)|

}

.

If E is open, we get E ⊂ Eµ ⊂ E. We also define the measure theoretic
boundary ∂µE of E by

∂µE :=
{

x ∈ R
n+2 : ∀ r > 0: 0 < |E ∩Br(x)| < |Br(x)|

}

.

In what follows we summarize some results in the literature that will
be used in our proofs. We will work with the class BUC(Z) which are
functions uniformly continuous and bounded in Z ⊂ R

n+2 × [0, T ).

Theorem A.1 (Existence [16, Theorem 4.3.5]).
If w0 ∈ BUC

(

R
n+2
)

then there is a unique viscosity solution w to (A.1)

such that w ∈ BUC
(

R
n+2 × [0,∞)

)

.

Theorem A.2 (Geometric Uniqueness [12, 16]). Let w1(x, t) and
w2(x, t) be viscosity solutions to (A.1) such that

{x : w1(x, 0) = 0} = {x : w2(x, 0) = 0},
then

{x : w1(x, t) = 0} = {x : w2(x, t) = 0}
for any t > 0.

Following Theorem 3.1.4 in [16] we have the following result for con-
tinuous sub- and super-solutions:

Theorem A.3 (Comparison principle). Let w and v be continuous
sub- and super-solutions of (A.1), respectively, in the viscosity sense
in R

n+2 × [0, T ). Assume that w and −v are bounded from above in
R
n+2 × [0, T ). Assume that

w(x, 0) − v(x, 0) ≤ 0,

then

w(x, t)− v(x, t) ≤ 0 for (x, t) ∈ R
n+2 × [0, T ).
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Theorem A.4 (Monotone Convergence [16, Lemma 4.2.11]). Con-
sider functions w0,m, w0 ∈ BUC(Rn) such that w0,m ր w0. Then if wm

and w are solutions to (A.1) with initial data w0,m and w0, respectively,
we have for every time that wm ր w.

Remark A.5.

(i) The (non-truncated) signed distance function to ∂E may be de-
fined as dE(x) = dist(x,E) − dist (x,Rm \E). In particular, we
assume that the signed distance function to ∂E is negative for
every x ∈ E.

(ii) In general, the initial condition considered in Section 9 will be
given by the truncated distance function to a set.

(iii) If the set ∂Ω0 is compact and evolves smoothly under mean curva-
ture flow, the level set formulation above agrees with the classical
solution.
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