
j. differential geometry

97 (2014) 349-375

CONCAVITY AND RIGIDITY IN NON-NEGATIVE

CURVATURE

Luigi Verdiani & Wolfgang Ziller

Dedicated to D.V. Alekseevsky on his 70th birthday

Abstract

We show that for a manifold with non-negative curvature one
obtains a collection of concave functions, special cases of which are
the concavity of the length of a Jacobi field in dimension 2, and the
concavity of the volume in general. We use these functions to show
that there are many cohomogeneity one manifolds which do not
carry an analytic invariant metric with non-negative curvature.
This implies in particular, that one of the candidates in [GWZ]
does not carry an invariant metric with positive curvature.

There are few known examples of manifolds with positive sectional
curvature in Riemannian geometry. Until recently, they were all ho-
mogeneous spaces [Be, Wa, AW] and biquotients [E1, E2, Ba], i.e.,
quotients of compact Lie groups G by a free isometric “two sided” action
of a subgroupH ⊂ G×G. See [Zi1] for a survey of the known examples.
Recently a new example of a positively curved 7-manifold, homeomor-
phic but not diffeomorphic to T1S

4, was constructed in [GVZ], see also
[De] for a different approach. A new method has also been proposed in
[PW] to construct a metric of positive curvature on the Gromoll-Meyer
exotic 7-sphere. The new example in [GVZ] is part of a larger family
of “candidates” for positive curvature discovered in [GWZ]. One of the
applications of this paper is to exclude one of these candidates.

The obstruction that we use to do this turns out to be of a general
nature that does not require the presence of a group action. It comes
from a new concavity property of Jacobi fields in positive curvature.
The method also gives rise to certain rigidity properties in nonnegative
curvature.
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Let c(t) be a geodesic in Mn+1 and J(t) a Jacobi field along c. For
a surface it is well known that positive curvature is equivalent to re-
quiring that the length of all Jacobi fields is strictly concave. In higher
dimensions, the length |J | satisfies the differential equation

|J |′′

|J |
= − secM (ċ, J) +

|J ′|2

|J |2
sin2(∢(J

′

, J)).

Thus in negative curvature |J | is a strictly convex function. But in
positive curvature |J | does not have any distinctive properties. For
example, the Hopf action on a round sphere induces a Killing vector
field of constant length.

For positive curvature we suggest the concept of a “virtual” Jacobi
field. For this it is best to study Jacobi fields via Jacobi tensors. Let
At be a solution of the differential equation

A′′ +RA = 0

where Et = ċ(t)⊥ ⊂ Tc(t)M and, after a choice of a base point t0,
At : Et0 → Et and R = R(·, ċ)ċ : Et → Et. A is uniquely determined by
At0 and A′

t0 . Thus for any v ∈ Et0 , J(t) = Atv is a Jacobi field along c.
We denote by A∗ the adjoint of A and call a point c(t∗) regular if At∗ is
invertible. The Jacobi tensor A is called a Lagrange tensor if A is non-
degenerate (i.e. Av is not the 0-Jacobi field for all v) and S := A′A−1

is symmetric at regular points. Equivalently, S is the shape operator of
a family of parallel hypersurfaces orthogonal to c.

Theorem A. Let A be a Lagrange tensor along the geodesic c and

v ∈ Et0 non-zero. Define Zt = (A∗
t )

−1v and let g = gv(t) =
||v||2

||Zt||
. Then

(a) gv(t) ≤ ||Atv|| and at regular points

g′′

g
= − secM (ċ, Z)− 3

|SZ|2

|Z|2
sin2(∢(SZ,Z)).

(b) gv(t) is continuous for all t. Furthermore, it is smooth (and posi-
tive) at t = t∗ iff v⊥ kerAt∗ .

(c) If secM ≥ 0 (resp. secM > 0), then gv is concave (resp. strictly
concave) on any interval where gv is positive. If gv is constant,
then the virtual Jacobi field Z is a parallel Jacobi field, and if
At0 = Id, then Zt = Atv.

Notice that for a surface gv = ||Atv|| is simply the length of the Jacobi
field.

As an immediate consequence one has the following result by B.Wil-
king [Wi] which was crucial in proving the smoothness of the Shara-
fudinov projection in the soul theorem: If M has non-negative sectional
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curvature and A is a Lagrange tensor defined along c for all t, normalized
so that At0 = Id, then one has an orthogonal splitting

Et0 =span{v ∈ Et0 | ∃t ∈ R, Atv = 0}⊕{v ∈ Et0 |Atv is parallel ∀t ∈ R}.

There is another well known concave function in positive curvature
given in terms of the volume along the geodesic: if A is Lagrange, then
(detAt)

1/n is concave if Ric ≥ 0. One of the advantages of the class
of concave functions in Theorem A is that by part (b) and (c), some
of them are well defined and concave at singular points of A, whereas
detA vanishes at such points. This property of gv is crucial in our
applications.

There exists a sequence of concave functions interpolating between
gv and the volume. For each p-dimensional subspace W ⊂ Et0 set

gW (t) = (detMt)
−1/2p

where

〈Mtei, ej〉 = 〈(A∗
t )

−1ei, (A
∗
t )

−1ej〉 = 〈 (A∗A)−1ei, ej〉

and e1, . . . , ep is an orthonormal basis of W . If W is one dimensional,
gW = gv with v a unit vector in W , and if W = Et0 then gW =

(detAt)
1/n.

Recall that a manifold is said to have p-positive Ricci curvature if
the sum of the p smallest eigenvalues of R(·, v)v is positive for all v.
Thus p = 1 is positive sectional curvature and p = n is positive Ricci
curvature.

Theorem B. Let A be a Lagrange tensor along the geodesic c and
W ⊂ Et0 a p-dimensional subspace.

(a) If M has p-non-negative Ricci curvature (resp. p-positive), then
gW is concave (resp. strictly concave) on any interval where gW
is positive.

(b) gW is smooth (and positive) at t = t∗ iff W⊥ kerAt∗.
(c) If M has p-non-negative Ricci curvature and gW is constant, then

(A∗
t )

−1v is a parallel Jacobi field for all v ∈ W .

The example of positive curvature in [GVZ] arose from a systematic
study of cohomogeneity one manifolds, i.e., manifolds with an isometric
action whose orbit space is one dimensional, or equivalently the principal
orbits have codimension one. A classification of positively curved coho-
mogeneity one manifolds was carried out in even dimensions in [V1,V2]
and in odd dimensions an exhaustive description was given in [GWZ]
of all simply connected cohomogeneity one manifolds that can possi-
bly support an invariant metric with positive curvature. In addition
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to some of the known examples of positive curvature which admit iso-
metric cohomogeneity one actions, two infinite families, P 7

k , Q
7
k, k ≥ 1,

and one exceptional manifold R7, all of dimension seven and admitting
a cohomogeneity one action by SO(4), appeared as the only possible
new candidates, see Section 4 (as well as [Zi2] for a more detailed de-
scription). Here P 7

1 is the 7-sphere and Q7
1 is the normal homogeneous

positively curved Aloff-Wallach space. The manifold P 7
2 is the new ex-

ample of positive curvature in [GVZ].
These candidates belong to two much larger classes of cohomogene-

ity one manifolds depending on 4 integers, described in terms of the
isotropy groups, see Section 4. One is denoted by P(p−,q−),(p+,q+), a fam-
ily of cohomogeneity one manifolds with π1 = π2 = 0, and a second by
Q(p−,q−),(p+,q+), where π1 = 0, π2 = Z. They all admit a cohomogeneity
one action by G = SO(4). In terms of these, the candidates for positive
curvature are given by Pk = P(1,1),(1+2k,1−2k), Qk = Q(1,1),(k,k+1), with

k ≥ 1, and the exceptional manifold R7 = Q(3,1),(1,2).

Theorem C. Let M be one of the 7-manifolds Q(p−,q−),(p+,q+) with
its cohomogeneity one action by G = SO(4) and assume that M is not of
type Qk, k ≥ 0. Then there exists no analytic metric with non-negative
sectional curvature invariant under G, although there exists a smooth
one.

The existence of a smooth metric with non-negative curvature follows
from a more general result on cohomogeneity one manifolds in [GZ1].
In particular we obtain:

Corollary. The exceptional cohomogeneity one manifold R7 does not
admit an invariant metric with positive sectional curvature.

The method also applies to the family P(p−,q−),(p+,q+). Here we will
show that if the manifold is not one of the candidates Pk or of type
P(1, q),(p , 1), then there exists a G-invariant metric with non-negative sec-
tional curvature, but no G-invariant analytic metric with non-negative
curvature. On the other hand, the exceptional family P(1, q),(p,1) con-
tains several G-invariant analytic metrics with non-negative curvature
since P(1,1),(−3,1) is S

7, P(1,−3),(−3,1) is the positively curved Berger space

and P(1,1),(1,1) = S
3 × S

4. We do not know if any of the other manifolds
P(1, q),(p , 1) carry analytic metrics with non-negative curvature.

The proof of Theorem C is obtained as follows. For a cohomogene-
ity one G-manifold one chooses a geodesic c orthogonal to all orbits.
Then the action of G induces Killing vector fields on M , which along
c are Jacobi fields. They give rise to a Lagrange tensor A, to which
we can apply Theorem A. One then shows that there exists a Jacobi
field Atv, and an interval [a, b], such that the corresponding function
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gv has derivatives equal to 0 at the endpoints, and is positive on [a, b].
Thus, if the curvature is non-negative, Theorem A implies that gv is
constant on [a, b]. On the other hand, one shows that gv must vanish
at other singular points along c due to smoothness conditions imposed
by the group action. This implies that there exists a Jacobi field which
is parallel on [a, b], but is not parallel at all points along c.

We finally discuss an application of Theorem B. There is a third
family of 7-dimensional manifolds Np,q on which G = S3 × S3 acts by
cohomogeneity one, see Section 4. We will show:

Theorem D. The cohomogeneity one manifolds Np,q have no invari-
ant metric with 2-positive Ricci curvature, and N1,1 has no invariant
metric with 3-positive Ricci curvature.

In contrast, it was shown in [GZ2] that every simply connected coho-
mogeneity one manifold carries an invariant metric with positive Ricci
curvature.

The differential equation and its applications also hold if we consider
Jacobi fields only in a subbundle invariant under parallel translation.
This arises frequently in the presence of an isometric group action. For
example, a group action is called polar if there exists a so called section
Σ, which is an immersed submanifold orthogonal to all orbits. Such
a section must be totally geodesic, and hence the group action gives
rise to a self adjoint family of Jacobi fields in the parallel subbundle
orthogonal to Σ.

In Section 1 we recall properties of the Riccati equation and prove
Theorem A. In Section 2 we prove Theorem B and in Section 3 we
discuss rigidity properties. Finally, in Section 4, we prove Theorems C
and D.

As B.Wilking pointed out to us, one can also prove the concavity
of the functions in Theorem A and B by using the transverse Jacobi
equation [Wi].

1. Concavity

In this section we present a new concavity result about Jacobi fields,
and first recall some standard notation, see e.g. [E3, EH, EO].

Let c be a geodesic in a Riemannian manifold Mn+1 defined on an
interval t1 ≤ t ≤ t2 and let Et = ċ⊥ be the orthogonal complement of
ċ(t) ⊂ Tc(t)M . For a vector field X along c, orthogonal to ċ, we denote
by X ′ the covariant derivative ∇ċX.

Let V be an n-dimensional vector space of Jacobi fields along c or-
thogonal to ċ. Along the geodesic we have that 〈X ′, Y 〉 − 〈X,Y ′〉 is
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constant for any X,Y ∈ V . If this constant is 0, V is called self adjoint,
i.e.

(1.1) 〈X ′, Y 〉 = 〈X,Y ′〉, for all X,Y ∈ V.

We call t regular if X(t), X ∈ V span E and singular otherwise. One
easily sees that
(1.2)
Et = {X(t) | X ∈ V } ⊕ {X ′(t) | X ∈ V with X(t) = 0} =: V1(t)⊕ V2(t)

for all t ∈ [t1, t2]. Notice that self adjointness implies that the decom-
position is orthogonal. In particular, the singular points are isolated.

We fix a base point t0 ∈ [t1, t2]. We can then describe the set of
Jacobi fields V by a (smooth) family of linear maps At : Et0 → Et. It
is standard to do this by assuming the base point is regular and define
Atv = X(t) for X ∈ V with X(t0) = v. In this case At0 = Id. But in
the applications it will be useful to allow the base point t0 to be singular
as well.

Definition 1.3. Let V be self adjoint family of Jacobi fields and fix
t0 ∈ [t1, t2]. Decompose v ∈ Et0 as v = v1 + v2, vi ∈ Vi(t0), and define:

At : Et0 → Et : Atv = X1(t) +X2(t)

where X1,X2 ∈ V with X1(t0) = v1, X ′
1(t0) ∈ V1, and X2(t0) =

0, X ′
2(t0) = v2.

For this we observe:

Lemma 1.4. Let V be self adjoint family of Jacobi fields and choose
a base point t0.

(a) Given v ∈ Et0 , the Jacobi fields X1 and X2 in Definition 1.3 are
well defined and unique.

(b) Given X ∈ V , there exists a unique v ∈ Et0 such that X = Atv.
(c) At the base point t0 we have, with respect to the orthogonal decom-

position V1 ⊕ V2:

At0 =

(

Id 0
0 0

)

A′
t0 =

(

B 0
0 Id

)

with B self adjoint.

Proof. (a) Existence of X2 is clear. As for X1, first choose Y1 ∈ V
with Y1(t0) = v1 and set Y ′

1(t0) = w1 + w2 with wi ∈ Vi(t0). By (1.2),
there exists a Y2 ∈ V such that Y2(t0) = 0 and Y ′

2(t0) = w2. Then set
X1 = Y1 − Y2. Uniqueness clearly follows from (1.2) as well.

(b) Given X ∈ V , set v1 := X(t0) and X ′(t0) = w1 + w2 with wi ∈
Vi(t0). There exists a unique X2 ∈ V with X2(t0) = 0 and X ′

2(t0) = w2.
Setting X1 := X −X2 we see that X = Atv with v = v1 + w2.

Part (c) is clear from the definition and self adjointness. q.e.d.
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Thus V is indeed uniquely described in terms of At. Notice though that
At0v = v for all v ∈ Et0 if only if t0 is regular.

A point t is regular for V if and only if At is invertible. At regular
points t one defines the Riccati operator St : Et → Et where

(1.5) Stv = X ′(t) for X ∈ V with X(t) = v, i.e. A′
t = StAt .

Thus the family of Jacobi fields V is self adjoint iff St is self adjoint. At

satisfies the Jacobi equation and St the Riccati equation:

(1.6) A′′ +RA = 0 if and only if S′ + S2 +R = 0 and A′ = SA

where R = Rt : Et → Et is the self adjoint curvature endomorphism
R( · , ċ), ċ.

Conversely, let At : Et0 → Et be a solution of (1.6). We say that At

is non-degenerate, if kerAt0 ∩ kerA′
t0 = 0. Furthermore, At is called

a Lagrange tensor if At is non-degenerate and St is self adjoint. A
Lagrange tensor defines an n-dimensional family of Jacobi fields V =
{Atv | v ∈ Et0} which is self adjoint.

We point out that if At is Lagrange, then At ◦F , for any fixed linear
isomorphism F : Et0 → Et0 , is also a Lagrange tensor, in fact with the
same tensor S. Furthermore, if St is self adjoint at one point, it is self
adjoint at all points. Notice also that if two Lagrange tensors At and
Ãt, with base points t0 and t̃0, give rise to the same self adjoint family
V , they differ from each other by a linear isomorphism F : Et0 → Et̃0

.
Indeed, if v ∈ Et0 and hence Atv ∈ V , then Lemma 1.4 implies that

there exists a unique w ∈ Et̃0
with Atv = Ãtw. Then F (v) = w clearly

defines an isomorphism with Ãt ◦ F = At. This applies in particular
if we choose a different base point when defining At in terms of V .
Thus Lagrange tensors, modulo composing with F , are in one to one
correspondence with n-dimensional vector spaces of Jacobi fields which
are self adjoint.

From now on let A be a Lagrange tensor. Thus for any v ∈ Et0 ,
Atv is a Jacobi field, and t is regular if and only if At is invertible.
Furthermore,

(1.7) 〈A′
tv,Atw〉 = 〈Atv,A

′
tw〉 for all t and v,w ∈ Et0 .

Notice that here we do not assume that At0 has any special form as is
the case when A is associated to V . When clear from context we simply
write A = At, S = St.

Let A∗
t be defined by 〈A∗

t v,w〉 = 〈v,Atw〉 for all v ∈ Et, w ∈ Et0

and for simplicity set (A∗
t )

−1 = A−∗
t : Et0 → Et.

The main purpose of this section is to study the functions

gv(t) =
||v||2

||A−∗
t v||

, v ∈ Et0 .
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The scaling guarantees that gλv = λgv. We first discuss smoothness
properties.

Proposition 1.8. Let At be a Lagrange tensor and fix a vector v ∈
Et0 . Then

(a) The vector field A−∗
t v, and hence the function gv, is smooth outside

of the singular set. If t∗ is a singular point, then A−∗
t v has a

smooth extension at t = t∗ if and only if v is orthogonal to kerAt∗ .
(b) gv is continuous for all t and gv(t) > 0 if and only if v is orthogonal

to kerAt.

Proof. The first claim in part (a) is clear. For simplicity assume that
the singular point is t∗ = 0. Choose an orthonormal basis {e1, . . . , en}
of Et0 such that {e1, . . . , ek} is a basis of kerA0.

Choose ǫ such that At is non-singular for t ∈ (0, ǫ]. Then At has a
block form (with respect to a parallel basis)

At =

(

tX Y + tY2

tZ W + tW2

)

+ o(t2)

and hence

A∗
t =

(

tXT tZT

Y T + tY T
2 W T + tW T

2

)

+ o(t2).

We first claim that the matrix

N =

(

X Y
Z W

)

is non-singular. This is equivalent to saying that

{A′e1, . . . , A
′ek, Aek+1, . . . , Aen}

are linearly independent. If not, there exists a v ∈ kerA0 and w ∈
(kerA0)

⊥ such that A′v = Aw. Using self adjointness, 〈Aw,Aw〉 =
〈A′v,Aw〉 = 〈Av,A′w〉 = 0. Thus Aw = 0 and hence A′v = 0, which
contradicts non-degeneracy. In particular, detAt = atk + o(tk+1) with
a nonzero. It follows that the matrix of minors of A∗

t has the form

M =

(

tk−1X tk−1Y
tkZ tkW

)

+ o(tk) where N =

(

X Y
Z W

)

is the matrix of minors of NT , and hence non-singular. Thus

A−∗
t =

1

detA∗
MT =

1

detA

(

tk−1X
T

tkZ
T

tk−1Y
T

tkW
T

)

+ o(1).

Hence A−∗
t v is smooth, and non-zero, if v is orthogonal to kerA0. If

v ∈ Et0 is not orthogonal to kerA0, we have limt→0 ||A
−∗
t v|| = ∞ since

R is non-singular. Hence gv(0) = 0 which finishes (b) as well. q.e.d.
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Remark. The function gv provides a lower bound for the norm of
the corresponding Jacobi field, i.e.

gv ≤ ||Atv||

since
〈v, v〉 = 〈A−1Av, v〉 = 〈Av,A−∗v〉 ≤ ||Av|| · ||A−∗v||.

Our main tool is the following differential equation for gv(t):

Proposition 1.9. Let A be a Lagrange tensor and S = A′A−1. Then
at regular points we have

(1.10) g′′v + rgv = 0

where

r = 〈Rz, z〉 + 3( ||Sz||2 − 〈Sz, z〉2 ) and z =
A−∗

t v

||A−∗
t v||

.

Proof. To simplify the notation we assume ||v|| = 1 (which does not
effect the differential equation) and set

fv =
1

g2v
= ||A−∗

t v||2.

First observe that

(A−∗
t )′ = −A−∗

t (A∗
t )

′A−∗
t = −(A′

tA
−1
t )∗A−∗

t = −S∗A−∗
t = −SA−∗

t

and hence
f ′
v = −2〈SA−∗

t v,A−∗
t v〉.

Furthermore

f ′′
v = −2〈S′A−∗

t v,A−∗
t v〉+ 4〈S2A−∗

t v,A−∗
t v〉

= −2〈(−S2 −R)A−∗
t v,A−∗

t v〉+ 4〈SA−∗
t v, SA−∗

t v〉

= 2〈RA−∗
t v,A−∗

t v〉+ 6||SA−∗
t v||2.

and thus

g′′v =

(

3

4
f ′2
v −

1

2
f ′′
v fv

)

f−5/2

=
(

3〈SA−∗
t v,A−∗

t v〉2−

− 〈RA−∗
t v,A−∗

t v〉||A−∗
t v||2 − 3||SA−∗

t v||2||A−∗
t v||2

)

f−5/2

= −rgv.

q.e.d.

Remark. Notice that A−∗
t itself satisfies the differential equation

(A−∗
t )′′ = (2S2 +R)A−∗

t .

Proposition 1.9 implies certain concavity properties in non-negative cur-
vature.
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Corollary 1.11. Let A be a Lagrange tensor. If R ≥ 0 (resp. R > 0),
then for any v ∈ Et0 , gv is a concave (resp. strictly concave) function
on any interval where gv > 0.

Remark. The concavity of gv implies the convexity of fv = ||A−∗
t v||2

(but not conversely). Since fv = 〈(A∗A)−1v, v〉, this can also be in-
terpreted as saying the operator (A∗A)−1 is convex. The zeros of gv
correspond to vertical asymptotes of fv.

Example 1. If dimM = 2, then gv(t) = ||Atv|| and hence the con-
cavity of gv is indeed a generalization of the concavity of Jacobi fields
in dimension two.

Example 2. Let M = S3 ⊂ C
2 with the standard metric. The

restriction of the action field of the Hopf action of S1 to a geodesic
is a Jacobi field J1 with unit length. Consider the geodesic c(t) =
(cos(t), sin(t)), then J1 = i c(t) = (i cos(t), i sin(t)). Let J2 = (0, i sin(t))
then span{J1, J2} is a self-adjoint family of Jacobi fields V along c(t).
The singular points along c(t) are t = nπ

2 , n ∈ Z, since J2 = 0 for t = nπ
and J1−J2 = 0 for t = (2n+1)π2 . Now t0 =

π
4 is a regular point and, if

v = J1(t0), one easily sees that gv(t) = | sin(2t)| ≤ ||J1(t)|| = 1. Notice
also that gw with w = J2(t0) is smooth across the singularity at π

2 .

Example 3. If secM ≥ δ, then g′′v + rgv = 0 with r ≥ δ. Thus Sturm
comparison implies that gv ≤ fδ with f ′′

δ + δf = 0 and fδ(t0) = gv(t0) =
|J |(t0), f

′
δ(t0) = g′v(t0) = |J |′(t0) (see Proposition 1.12 below). This

comparison holds up to the first point where gv vanishes.
In contrast, the usual Rauch comparison theorem implies that |J | ≤

fδ, but only holds up to the first singularity of At, i.e. there could be
other Jacobi fields Atw which vanish before |J |.

For gv one obtains an upper bound on [t0, t1] as long v is orthogonal
to the kernels of At , t ∈ [t0, t1], or equivalently gv > 0. Of course a zero
of gv also corresponds to a singularity of At. For example, if secM ≥ 1,
this implies that the index of the geodesic is at least n− 1 after length
π.

We remark that for an upper curvature bound secM ≤ µ, one can
analogously use the differential equation for |J | in the Introduction to
get the usual lower bound on |J |, without having to prove a Rauch
comparison theorem.

It is useful to compare the higher derivatives of gv with those of
||Atv||.

Proposition 1.12. Let A be the Lagrange tensor defined by a self
adjoint family of Jacobi fields V as in (1.3) with base point t0 and v ⊥
kerAt0 . Then for t = t0 we have:

gv = ||Av|| , g′v = ||Av||′ , g′′v = ||Av||′′−4
(

||A′v||2 − 〈A′v, v〉2
)

≤ ||Av||′′.
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Proof. The assumption v ⊥ kerAt0 implies that gv is smooth and
non-zero at t0. But to determine its value and derivatives at t = t0 we
need to carefully take the limit as t → t0.

Since the equations are scale invariant, we can assume ||v|| = 1.
Recall that at the base point we have At0 |V1

= Id, At0 |V2
= 0 and

V1 ⊥ V2. Thus v ∈ V1 and hence At0v = v, as well as A∗
t0v = v.

To compute the derivatives of g, recall that Proposition 1.8 also im-
plies that A−∗

t v is smooth at t = t0. We begin by showing that:

(1.13) lim
t→t0

A−∗
t v = v, lim

t→t0
(A−∗

t v)′ = −A′
t0v .

For the first claim, observe that Lemma 1.4 implies that A′
t0w = w if w ∈

V2. Thus, in the language of the proof of Proposition 1.8, it follows that
N = Id and hence N = Id as well. Furthermore, detAt = tk + o(tk+1)
and thus the formula for the inverse implies that limt→t0 A

−∗
t v = v.

For the second claim we first observe that limt→t0(A
−∗
t v)′ ∈ V1 since

for w ∈ V2 we have that A′
tw and w have the same limit and

〈w, lim
t→t0

A−∗
t v〉 = lim

t→t0
〈A′

tw,A
−∗
t v〉 = − lim

t→t0
〈Atw, (A

−∗
t v)′〉

= −〈At0w, limt→t0
(A−∗

t v)′〉 = 0

where the second equality follows by differentiating 〈w, v〉 = 〈A−1
t Atw, v〉

= 〈Atw,A
−∗
t v〉. Now, if w ∈ V1 we have

lim
t→t0

〈(A−∗
t v)′, Atw〉 = − lim

t→t0
〈A−∗

t v,A′
tw〉 = − lim

t→t0
〈Atv,A

′
tw〉

= − lim
t→t0

〈A′
tv,Atw〉

where we have used the fact that A−∗
t v and Atv have the same limit.

This implies the second part of (1.13) since At0w = w.
We now apply (1.13) to g. First, note that gv(t0) = 1 = ||At0v||. For

the derivative, using fv(t) = ||A−∗
t v||2, we see that

g′v(t0) = −
1

2
lim
t→t0

f ′
v(t)

fv(t)
3

2

= −
limt→t0〈(A

−∗
t v)′, A−∗

t v〉

limt→t0 ||A
−∗
t v||3

= − lim
t→t0

〈(A−∗
t v)′, A−∗

t v〉

and thus
g′v(t0) = 〈A′v, v〉 = 〈A′v,Av〉 = ||Av||′t0 .

For the second derivative, we use the differential equation from Propo-
sition 1.9 for gv:

g′′v (t0) = − lim
t→t0

rgv = − lim
t→t0

{

3(||Sz||2 − 〈Sz, z〉2)− 〈Rz, z〉
}

where z = A−∗
t v/||A−∗

t v||. From the proof of Proposition 1.9, recall that
at regular points we have SA−∗

t v = −(A−∗
t v)′ and hence (1.13) implies

that limt→t0 Sz = A′
t0v. Thus
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g′′v (t0) = −3(||A′v||2 − 〈A′v, v〉2)− 〈Rv, v〉

and since

||Av||′′ =
−〈RAv,Av〉||Av||2 + ||A′v||2||Av||2 − 〈A′v,Av〉2

||Av||3

we have

g′′v (t0) = ||Av||′′ − 4(||A′v||2 − 〈A′v, v〉2).

q.e.d.

2. Concavity of Volumes

We construct a collection of concave functions which contain gv as
a special case. For this we fix a p-dimensional subspace W ⊂ Et0 and
choose an orthonormal basis e1, . . . , ep of W . Define M : W → W
with

(2.1) 〈Mtei, ej〉 = 〈A−∗
t ei, A

−∗
t ej〉 = 〈(A∗A)−1ei, ej〉, 1 ≤ i, j ≤ p .

Thus M represents the upper p × p block of the matrix (A∗A)−1.
Furthermore, we decompose S = A′A−1, where we have set Wt :=
A−∗

t W , as

S1 : Wt → Wt, S2 : Wt → W⊥
t with Sw = S1w + S2w

for all w ∈ Wt. Notice that S1 is again a symmetric endomorphism.
Notice also that since (A∗A)−1 is positive definite at regular points, so
is the upper p× p block by Sylvester’s theorem and thus detMt > 0.

Proposition 2.2. Let A be a Lagrange tensor and W ⊂ Et0 a p-
dimensional subspace. Then at regular points the function

gW (t) = (detMt)
−1/2p

satisfies the differential equation

p
g′′

g
=

1

p
(trS1)

2 − tr(S2
1)− 3 tr(ST

2 S2)−

i=p
∑

i=1

〈Rwi, wi〉

where wi is an orthonormal basis of Wt.

Proof. As in the proof of Proposition 1.9, one easily sees that

〈M ′ei, ej〉 = −2 〈SA−∗ei, A
−∗ej〉,

〈M ′′ei, ej〉 = 〈 (6S2 + 2R)A−∗ei, A
−∗ej〉.

For convenience, set f = detMt. Differentiating we obtain:

(2.3) f ′ = (detM)′ = detM tr(M−1M ′), or
f ′

f
= tr(M−1M ′)
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and hence

f ′′

f
=

[

tr(M−1 M ′)
]2

+ tr((M−1)′ M ′) + tr(M−1 M ′′)

=
[

tr(M−1 M ′)
]2

+ tr(−M−1M ′ M−1M ′) + tr(M−1 M ′′)

=
[

tr(M−1 M ′)
]2

− tr(
[

M−1M ′
]2
) + tr(M−1 M ′′).

We now examine each term separately. For this, fix a regular point
t∗ and choose an orthonormal basis e1, . . . , ep of W which diagonalizes
the symmetric matrix Mt∗ , i.e. 〈A−∗

t∗ ei, A
−∗
t∗ ej〉 = ||A−∗

t∗ ei||
2 δi,j . Thus

Zi :=
A−∗

t∗
ei

||A−∗

t∗
ei||

is an orthonormal basis of Wt∗ .

Dropping the index t∗ from now on, the entries of M−1M ′ are given
by −2

||A−∗ei||2
〈SA−∗ei, A

−∗ej〉 and thus

tr(M−1 M ′) = −2

i=p
∑

i=1

1

||A−∗ei||2
〈SA−∗ei, A

−∗ei〉

= −2

i=p
∑

i=1

〈SZi, Zi〉 = −2 trS1.

For a general matrix B = (bij) we have trB2 =
∑

i,j bijbji and hence

tr(
[

M−1 M ′
]2
) = 4

∑

i,j

〈SA−∗ei, A
−∗ej〉〈SA

−∗ej , A
−∗ei〉

||A−∗ei||2||A−∗ej ||2

= 4
∑

i,j

〈SZi, Zj〉
2 = 4

∑

i,j

〈S1Zi, Zj〉
2 = 4 tr(S2

1).

Finally

tr(M−1M ′′) =
∑

i

1

||A−∗ei||2
〈 (6S2 + 2R)A−∗ei, A

−∗ei〉

= 6
∑

i

〈S2Zi, Zi〉+ 2
∑

i

〈RZi, Zi〉

= 6
∑

i

〈SZi, SZi〉+ 2
∑

i

〈RZi, Zi〉

= 6
∑

i

〈S1Zi, S1Zi〉+ 6
∑

i

〈S2Zi, S2Zi〉+

+ 2
∑

i

〈RZi, Zi〉

= 6 tr(S2
1) + 6 tr(ST

2 S2) + 2
∑

i

〈RZi, Zi〉.
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Altogether

f ′

f
= −2 trS1 ,

f ′′

f
= 4(trS1)

2+2 tr(S2
1)+6 tr(ST

2 S2)+2
∑

i

〈RZi, Zi〉.

For the function g = f−1/2p we have

2p
g′′

g
= −

f ′′

f
+

2p+ 1

2p

(

f ′

f

)2

=
2

p
(trS1)

2 − 2 tr(S1)
2 − 6 tr(ST

2 S2)− 2
∑

i

〈RZi, Zi〉

which proves our claim. q.e.d.

Remark. If W is one dimensional, clearly gW = gv for v a unit
vector in W . If W = Et0 , we have detM = det(A∗A)−1 = 1/(detA)2

and thus gW = (detA)1/n. The differential equation in this case reduces
to n g′′/g = 1

n(trS)
2 − tr(S2) − Ric(ċ, ċ) giving rise to the well known

concavity of the volume in positive Ricci curvature. Notice also that
the concavity of gW already holds under the assumption that the Ricci
curvature is p -positive, i.e. the sum of the p smallest eigenvalues of R
are positive.

Proof of Theorem B : We first prove part (b). If W ⊥ kerAt∗ , then
Proposition 1.8 implies that A−∗v is smooth at t∗ for any v ∈ W , and
henceMt is smooth at t∗ as well. The proof of Proposition 1.8 also shows
that if e1, . . . , ep is a basis of W , then A−∗e1, . . . , A

−∗ep are linearly
independent at t = t∗ and hence gW (t∗) > 0. It also follows that if W
is not orthogonal to kerAt∗ , then gW (t∗) = 0.

To prove part (a), first recall that (x1 + · · · + xp)
2 ≤ p(x21 + · · · +

x2p) with equality if and only if all xi are equal to each other. Thus

(trS1)
2 − p tr(S2

1) ≤ 0 with equality iff S1 = λ Id. Furthermore, if
the sum of the p smallest eigenvalues of R are non-negative, one easily

sees that
∑i=p

i=1〈Rwi, wi〉 ≥ 0 if w1, . . . , wp is an orthonormal basis of

any p dimensional subspace of Eto . Finally, ST
2 S2 is clearly positive

semi-definite. Altogether, Proposition 2.2 implies that gW is concave.
If g is constant, the differential equation implies that for any v ∈

Wt we have S1v = λv for some function λ(t). Furthermore, 0 =
〈ST

2 S2v, v〉 = 〈S2v, S2v〉 and hence S2v = 0. In other words, Sv = λv
for all v ∈ Wt. But if g is constant f is constant as well and f ′ = 0
implies that trS1 = 0 and hence λ = 0. Thus (A−∗v)′ = −SA−∗v = 0,
for all v ∈ W , which implies that the function gv is constant, and hence
by Proposition 3.1 below, A−∗v is a parallel Jacobi field. This proves
part (c). q.e.d.
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3. Rigidity

We now use the results in Section 1 to prove the existence of parallel
Jacobi fields in non-negative curvature, i.e. vectors v ∈ Et0 with A′

tv =
0. We allow endpoints and interior points of the geodesic to be singular.

Proposition 3.1. Let A be a Lagrange tensor along the geodesic
c : [t0, t1] → M . If R ≥ 0 and if there exists a non-zero vector v ∈ Et0

such that

(a) g′v(t0) = g′v(t1) = 0,
(b) v is orthogonal to kerAt for all t0 ≤ t ≤ t1,

then w = A−1
t A−∗

t v ∈ Et0 is constant and A′
tw = 0 for all t. Thus

A−∗
t v = Atw is a parallel Jacobi field.

Proof. By Proposition 1.8, assumption (b) implies that gv(t) is smooth
and positive for all t0 ≤ t ≤ t1, and by Corollary 1.11, gv is concave
and hence constant. Thus fv = ||A−∗

t v|| is constant as well. At regular
points we thus have

0 = f ′′
v = 2〈RA−∗v,A−∗v〉+ 6||SA−∗v||2

and hence SA−∗v = 0. Thus (A−∗v)′ = −SA−∗v = 0 and hence

(A−1A−∗v)′ = −A−1A′A−1A−∗v = −A−1SA−∗v = 0.

Therefore, on any connected component of the regular pointsA−1A−∗v =
w is constant and Aw = A−∗v is parallel. Since A−∗v is continuous, Aw
is parallel for all t. q.e.d.

Here is one possibility to translate Proposition 3.1 into a statement
about Jacobi fields only, which is what we will use for the obstruction
in Section 4.

Proposition 3.2. Let Mn+1 be a manifold with non-negative sec-
tional curvature and V a self adjoint family of Jacobi fields along the
geodesic c : [t0, t1] → M . Assume there exists X ∈ V such that

(a) ||X||t 6= 0, ||X||′t = 0 for t = t0 and t = t1,
(b) If Y ∈ V and 〈X(t1), Y (t1)〉 = 0 then 〈X(t0), Y (t0)〉 = 0,
(c) If Y ∈ V and Y (t) = 0 for some t ∈ (t0, t1) then 〈X(t0), Y (t0)〉 =

0,
(d) If Y (t0) = 0, then 〈X ′(t0), Y

′(t0)〉 = 0,

Then X is a parallel Jacobi field along c.

Proof. We choose as a base point t = t0. Then V defines Lagrange
tensor At as in (1.3) with At0 |V1

= Id, At0 |V2
= 0 and V1 ⊥ V2. By

(a) we have that X(t0) 6= 0 and we set v := X(t0) ∈ V1. If Y ∈ V
and Y (t0) = 0 then Y ′(t0) ∈ V2 and V2 is spanned by such vectors.
Thus (d) implies X ′(t0) ∈ V1 and hence by the definition (1.3) we have
X(t) = Atv, and At0v = v.
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We now want to show that the assumptions of Proposition 3.1 are
satisfied by At. We start with the second part.

Let w ∈ ker(At), i.e. Atw = 0 for t ∈ (t0, t1). Set w = w1 + w2

with wi ∈ Vi(t0) and hence At0w = w1. Assumption (c) implies that
〈At0v,At0w〉 = 〈v,w1〉 = 0. Since 〈v, V2〉 = 0 as well, we have 〈v,w〉 = 0
and hence v ⊥ kerAt. The same argument shows that v ⊥ kerAt1 by
using (b). If At0w = 0, then w ∈ V2 and hence 〈v,w〉 = 0. Thus
Proposition 1.8 implies that At

−∗v and hence gv is smooth for all t ∈
[t0, t1].

We now show that g′v vanishes at the endpoints. By Proposition 1.12,
g′v(t0) = ||Av||′ = ||X||′(t0) = 0. For t = t1 the proof is similar to the
proof of Proposition 1.12. We first claim that

(3.3) lim
t→t1

A−∗
t v = λAt1v for some λ ∈ R.

To see this, we begin by showing that limt→t1 A
−∗
t v ∈ V1(t1). But

V1(t1) ⊥ V2(t1) and V2(t1) is spanned by A′
t1w for some w ∈ Et0 with

At1w = 0. By differentiating 〈w, v〉 = 〈A−∗
t v,Atw〉 we obtain

〈 lim
t→t1

A−∗
t v,A′

t1w〉 = lim
t→t1

〈A−∗
t v,A′

tw〉 = − lim
t→t1

〈(A−∗
t )′v,Atw〉

= −〈 lim
t→t1

(A−∗
t )′v,At1w〉 = 0.

Next, we show that 〈limt→t1 A
−∗
t v,At1w〉 = 0 whenever 〈At1v,At1w〉 =

0, which clearly implies (3.3) since ImAt1 = V1(t1). To see this, we
observe that (b) implies 0 = 〈At0w,At0v〉 = 〈w1, v〉 = 〈w1 + w2, v〉 =
〈w, v〉 and hence

〈 lim
t→t1

A−∗
t v,At1w〉 = lim

t→t1
〈A−∗

t v,Atw〉 = 〈v,w〉 = 0.

We now use (3.3) to show that g′v(t1) = 0. Since gv(t1) 6= 0 by (a),
this is equivalent to f ′

v(t1) = 0. By (3.3), A−∗
t v and λAtv have the same

limit and thus

f ′
v(t1) = 2 lim

t→t1
〈(A−∗

t v)′, A−∗
t v〉 = 2 lim

t→t1
〈(A−∗

t v)′, λAtv〉

=− 2λ lim
t→t1

〈A−∗
t v,A′

tv, 〉 = −2λ2〈At1v,A
′
t1v〉 = −λ2(||Av||2)′t=t1

which is 0 since ||Av||′(t1) = ||X||′(t1) = 0.
Proposition 3.1 now implies that At

−∗v = Aw, for some w ∈ Et0 ,
is a parallel Jacobi field in V and A−∗

t0 v = v = At0w by (1.13). Since
A′

t0w = 0, (1.3) implies that At0w = w, and hence w = v and thus
Atw = Atv = X is a parallel Jacobi field. q.e.d.

Remark. (a) Notice that the first three conditions are necessary for
X to be parallel, using, for (b) and (c) that in a self adjoint family
of Jacobi fields, 〈X,Y 〉′ = 〈X,Y ′〉 = 〈X ′, Y 〉 = 0 for all X,Y ∈ V
with X parallel. If there are no interior singular points, (b) is the only
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global condition and relates the Jacobi fields at t0 and t1. Some global
condition is clearly necessary since there are Jacobi fields of constant
length (restricted to a geodesic with no singularities) which are not
parallel.

Also notice that assumption (d) is necessary since on M = S
1 × S

2

with the product metric we can take the geodesic c(t) = (1, γ(t)) with
γ a great circle from north pole to south pole. Then V = span{Z1, Z2}
with Z1 = (1, 0), Z2 = (0, Y (t)) and Y a Jacobi field vanishing at north
and south pole is a self adjoint family along c. Setting X = Z1+Z2 one
sees that all conditions in Proposition 3.2, except for (d), are satisfied,
but X is not parallel.

(b) The fact that assumption (d) makes the Proposition asymmetric
is due to the fact that the definition of gv involves the choice of a base
point. This turns out to be quite useful since for the manifolds in Section
3, (d) is sometimes satisfied at one endpoint, but not necessarily at the
other. Of course, if t0 is regular, condition (d) is empty.

Proposition 3.4. Let V and X ∈ V satisfy the conditions in Propo-
sition 3.2 and assume that V is defined on a larger interval [t0, t2] ⊃
[t0, t1]. If there exists a Jacobi field Y ∈ V such that Y (t∗) = 0 for some
t∗ ∈ (t1, t2] and 〈X(t0), Y (t0)〉 6= 0, then X is not parallel on [t0, t2].

Proof. Let At be the Lagrange tensor associated to V with base
point t0. Recall that in the proof of Proposition 3.2 we showed that
X(t) = Atv with v = X(t0). The assumption that 〈X(t0), Y (t0)〉 6= 0
means that v is not orthogonal to kerAt∗ and hence gv(t

∗) = 0 by
Proposition 1.8 (b). Now assume that X is parallel on [t0, t2]. We claim
that in that case gv(t) would be constant on [t0, t2], contradicting that
fact that gv(t

∗) = 0.
To see this, we show that A′

tv = 0 with At0v = v implies gv(t) =
||Atv||. First observe that by self adjointness 〈Atv,Atw〉

′ = 〈A′
tv,Atw〉+

〈Atv,A
′
tw〉 = 2〈A′

tv,Atw〉 = 0. Thus if 〈v,w〉 = 0, we have 〈Atv,Atw〉 =
〈At0v,At0w〉 = 〈v,w1〉 = 〈v,w〉 = 0. Furthermore, at regular points
〈v,w〉 = 〈A−∗

t v,Atw〉 and hence A−∗
t v = λAtv for some function λ.

But then 〈v, v〉 = 〈A−∗
t v,Atv〉 = λ〈Atv,Atv〉 = λ〈v, v〉 and thus λ =

1, i.e. A−∗
t v = Atv for all regular t. Thus gv(t) = ||v||2/||A−∗

t v|| =
||v||2/||Atv|| = ||v|| = ||Atv|| for all regular t and hence for all t. q.e.d.

4. Proof of Theorem C and D

We now use Proposition 3.2 and Proposition 3.4 to prove Theorem C
and D.

A simply connected compact cohomogeneity one manifold is the union
of two homogeneous disc bundles. Given compact Lie groupsH, K−, K+
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and G with inclusions H ⊂ K± ⊂ G satisfying K±/H = S
ℓ± , the tran-

sitive action of K± on S
ℓ± extends to a linear action on the disc D

ℓ±+1.
We can thus define M = G×K− D

ℓ−+1 ∪G×K+ D
ℓ++1 glued along the

boundary ∂(G ×K± D
ℓ±+1) = G ×K± K±/H = G/H via the identity.

G acts on M on each half via left action in the first component. This
action has principal isotropy group H and singular isotropy groups K±.
One possible description of a cohomogeneity one manifold is thus simply
in terms of the Lie groups H ⊂ {K−,K+} ⊂ G (see e.g. [AA]).

We denote by P(p−,q−),(p+,q+) the first family of cohomogeneity one
manifolds and is given by the group diagram

H = {±(1, 1),±(i, i),±(j, j),±(k, k)},

H ⊂ {(eip−t, eiq−t) ·H , (ejp+t, ejq+t) ·H} ⊂ S3 × S3 .

where gcd(p−, q−) = gcd(p+, q+) = 1 and all 4 integers are congruent
to 1 mod 4.

The second family Q(p−,q−),(p+,q+) is given by the group diagram

H = {(±1,±1), (±i,±i)},

H ⊂ {(eip−t, eiq−t) ·H , (ejp+t, ejq+t) ·H} ⊂ S3 × S3,

where gcd(p−, q−) = gcd(p+, q+) = 1, q+ is even, and p−, q−, p+ are
congruent to 1 mod 4.

The candidates for positive curvature in [GWZ] are the manifolds
Pk = P(1,1),(1+2k,1−2k), Qk = Q(1,1),(k,k+1) with k ≥ 1, and the excep-

tional manifold R7 = Q(−3,1),(1,2).

We now describe the geometry of a general cohomogeneity one action.
A G invariant metric is determined by its restriction to a geodesic c
normal to all orbits. At the points c(t) which are regular with respect
to the action of G, the isotropy is constant and we denote it by H. In
terms of a fixed biinvariant inner product Q on the Lie algebra g and
corresponding Q-orthogonal splitting g = h⊕ h⊥ we identify, at regular
points, ċ⊥ ⊂ Tc(t)M with h⊥ via action fields: X ∈ h⊥ → X∗(c(t)). H

acts on h⊥ via the adjoint representation and a G invariant metric on
G/H is described by an Ad(H) invariant inner product on h⊥. Along c
the metric on M is thus described by a collection of functions, which at
the endpoint must satisfy certain smoothness conditions.

Since G acts by isometries, X∗, X ∈ g, are Killing vector fields
and hence the restriction to a geodesic is a Jacobi field. This gives
rise to an (n − 1)-dimensional family of Jacobi fields along c defined
by V := {X∗(c(t)) | X ∈ h⊥}. The self adjoint shape operator St of
the regular hypersurface orbit G/H at c(t) satisfies ∇ċ(t)X

∗ = ∇X∗ ċ =

St(X
∗(c(t))), i.e. X ′ = St(X), X ∈ h⊥. Hence V is self adjoint.
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A singular point of V is a point c(t0) such that there exists an X∗ ∈ V
with X∗(c(t0)) = 0, i.e. the isotropy group Gc(t0) satisfies dimGc(t0) >
dimH and is thus a singular isotropy group of the action. For simplicity
set K := Gc(t0) and define a Q-orthogonal decompositions

g = k⊕m, k = h⊕ p and thus h⊥ = p⊕m.

Here m can be viewed as the tangent space to the singular orbit G/K at
c(t0). The slice D, i.e. the vector space normal to G/K at c(t0), can be
identified with D := ċ(t0) ⊕ p where p ⊂ D via X ∈ p → (X∗)′(c(t0)).
Notice that X∗(c(t0)) = 0. Since the slice is orthogonal to the orbit, we
have 〈(X∗)′, Y ∗〉c(t0) = 0 for X ∈ p and Y ∈ m. K acts via the isotropy
action Ad(K)|m of G/K on m and via the slice representation onD. The
second fundamental form of the singular orbit can be viewed as a linear
map B : D → S2(m), N → {(X,Y ) → 〈SN (X), Y 〉}. Since K acts by
isometries, B is equivariant with respect to the slice representation of
K on D and the action on S2(m) induced by its isotropy representation
on m. An Ad(K) invariant irreducible splitting m = m1 ⊕ · · · ⊕ mr

induces a splitting of S2(m) into irreducible summands. If for some i, the
slice representation (which is irreducible) is not a subrepresentation of
S2(mi), this implies that 〈Sċ(t0)X,Y 〉 = 〈X ′, Y 〉c(t0) = 0 for X,Y ∈ mi.
In particular, ||X||′c(t0) = 0. This describes some of the smoothness

conditions that must be satisfied at the endpoints.

We now apply this to the P family and show:

Proposition 4.1. Let M be one of the 7-manifolds P(p−,q−),(p+,q+)

with its cohomogeneity one action by G = S3 × S3. Assume that M is
not one of the candidates for positive curvature Pk or P(1,q),(p,1). Fur-
thermore, let c : (−∞,∞) → M be a geodesic orthogonal to all orbits.
Then for any invariant metric with non-negative curvature there exists
a Jacobi field along c, given by the restriction of a Killing vector field
X∗, X ∈ g, such that X∗ is parallel on some interval but not for all t.
In particular, the metric is not analytic.

Proof. Since H is finite, we have h⊥ = p ⊕ m = g. Regarding S3 as
the unit quaternions, we choose the basis of g given by the left invariant
vector fields Xi and Yi on G = S3 × S3 corresponding to i, j and k in
the Lie algebras of the first and second S3 factor of G. Then the action
fields X∗

i , Y
∗
i are Jacobi fields along the geodesic c(t), ∞ < t < ∞ and

are a basis of a self adjoint family V .

We start with three general observations.

Observation 1. Non-trivial irreducible representations of the iden-
tity component K0 = S1 = {eiθ | θ ∈ R} consist of two dimensional
representations given by multiplication by einθ on C, called a weight
n representation. If K0 = (eipθ, eiqθ) ⊂ S3× S3 has slope (p, q) with
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gcd(p, q) = 1, and H is finite, the vector space p is given by p =
span{pX1+qY1}. The tangent space m to the singular orbit G/K (which
is spanned by the action fieldsX∗) splits up intoK irreducible subspaces
W

0
= span{X1, Y1}, W1 = span{X2,X3} and W2 = span{Y2, Y3}. No-

tice that W
0
is one dimensional since pX1 + qY1 = 0. Thus we can

also write W
0
= span{−qX1 + pY1}. The isotropy action on m, which

is given by conjugation on imaginary quaternions in each component,
is trivial on W

0
and has weight 2p on W1 and 2q on W2 since e.g.

eipθje−ipθ = e2ipθj. If p 6= q 6= 0, all representations in m are in-
equivalent and hence orthogonal by Schur’s Lemma. Furthermore, the
metric on Wi is a multiple of the Killing form, again by Schur’s Lemma,
and since Xi, Yi are orthogonal in the Killing form, they are orthogo-
nal in the metric as well. Thus, unless (p, q) = (1, 1), the vector fields
−qX1 + pY1,X2,X3, Y2, Y3 are orthogonal and pX1 + qY1 vanishes.

Observation 2. In order to determine the derivatives ||X||′(0), we
will use equivariance of the second fundamental form B : S2m → D
under K0, where D = R

2 is the slice. If H ∩K0 = Zk, then the action of
K0 on the slice has Zk as its ineffective kernel since it acts via rotation
of a circle and if it fixes one point, as does H, then it acts trivially on D.
Hence the slice representation has weight k = |H∩K0|. The vector space
S2m splits as S2W0 ⊕S2W1 ⊕S2W2 ⊕W1 ⊗W2 ⊕W0 ⊗W1 ⊕W0 ⊗W2.
The action of K0 on S2m has weight 0 on S2W0, 4p on S2W1, 4q on
S2W2, and 2p ± 2q on W1 ⊗W2, 2p on W0 ⊗W1 and 2q on W0 ⊗W2.
Thus the second fundamental form vanishes on W0, on W1 if 4|p| 6= k,
on W2 if 4|q| 6= k, on W1 ⊗ W2 if |2p ± 2q| 6= k and on W0 ⊗ W1

if 2|p| resp. 2|q| 6= k. This will be used to show that in some cases
B(X,Y ) = 〈X ′, Y 〉 = 0 for X ∈ Wi, Y ∈ Wj .

Observation 3. We will also use the Weyl group W ⊂ N(H)/H of
the cohomogeneity one action (see e.g. [AA], [Zi2]), which is defined as
the subgroup of G which preserves the geodesic c. One easily sees that
there exists a so called Weyl group element w− ∈ W in the normalizer of
H inK− = Gc(0), unique moduloH, which, via the action ofGc(0) on the

slice D, satisfies w−(c
′(0)) = −c′(0) and hence reverses the geodesic at

t = 0. Similarly, there exists a w+ in the normalizer of H inK+ = Gc(L),
unique modulo H, which reverses the geodesic at t = L. This implies
that conjugation by w− takes the isotropy group Gc(rL) to Gc(−rL),
r ∈ Z, and w+ takes Gc(rL) to Gc(2L−rL). Furthermore, W is the dihedral
group generated by w− and w+. The geodesic c is closed iff the Weyl
group is finite, in which case the length of c is kL where k is the order
of W . Finally, since K0 acts via rotation on the 2-dimensional slice,
the Weyl group element w− can be represented by a rotation by π and
hence can also be characterized as the unique element in K−

0
which does

not lie in H, but whose square lies in H.
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We now apply these observations to the manifold P(p−,q−),(p+,q+). The
Weyl group elements are given by

w− = (ei
π

4 , ei
π

4 ) ∈ K−

0
mod H, and w+ = (ej

π

4 , ej
π

4 ) ∈ K+

0
mod H

since e.g. w2
− = (i, i) ∈ H, but w− /∈ H. Notice that conjugation by ei

π

4

interchanges j and k and fixes i, and conjugation by ej
π

4 interchanges i
and k and fixes j. Thus w− fixes X1 and Y1 but interchanges X2 with
X3 and Y2 with Y3. One easily sees that W , which is generated by w−

and w+, has order 12 since (w−w+)
6 ∈ H but (w−w+)

3 /∈ H. Thus c
has length 12L. This easily implies that Gc(t) = Lc(t) ·H where

Lc(0) = (eip−t, eiq−t) , Lc(L) = (ejp+t, ejq+t) , Lc(2L) = (ekp−t, ekq−t)

Lc(3L) = (eip+t, eiq+t) , Lc(4L) = (ejp−t, ejq−t) , Lc(5L) = (ekp+t, ekq+t)

and Gc(rL) = Gc((r−6)L) for r = 6, . . . , 11.

At t = 0 we have H ∩ K−

0
= {±(1, 1),±(i, i)} and hence k = 4.

The tangent space to G/K− is the direct sum of W
0
= span{X1, Y1} =

span{X1} = span{Y1} (since p−, q− 6= 0), and W1 = span{X2,X3} and
W2 = span{Y2, Y3}. Observation 2 implies that the second fundamental
form vanishes on S2(W1) if p− 6= 1, on S2(W2) if q− 6= 1, and onW1⊗W2

if 2p− + 2q− 6= ±4, i.e. p− + q− 6= ±2. Notice that p− − q− = ±2 is
not possible since p−, q− ≡ 1 mod 4 and that p− 6= −1 and q− 6= −1
as well. Similarly at t = rL, r ∈ Z since in all cases k = 4.

Claim 1: If p− 6= 1 and p+ 6= 1, then X∗
3 is a parallel Jacobi field on

[0, L], but is not parallel on [0, 2L]. Similarly, if q− 6= 1 and q+ 6= 1 for
Y ∗
3 .

For this we will show that X∗
3 satisfies all properties of Proposition 3.2

on the interval [t0, t1] = [0, L]. At t = L the tangent space of G/K+

is the direct sum of W
0
= span{−q+X2 + p+Y2}, W 1 = span{X1,X3}

and W 2 = span{Y1, Y3}. Since X3 ∈ W1 ∩W 1, we have X3(t) 6= 0 for
t = 0, L, and by Observation 2, the assumptions imply that ||X3||

′
t = 0

at t = 0, L as well. Thus condition (a) is satisfied. For condition (b),
observe that p− 6= q− since p− = q− implies that (p−, q−) = (1, 1).
Thus by Observation 1, the vectors −q−X1 + p−Y1,X2,X3, Y2, Y3 are
orthogonal at t = 0 and p−X1 + q−Y1 vanishes. Similarly, p+ 6= q+ and
hence at t = L, the vectors −q+X2+p+Y2,X1,X3, Y1, Y3 are orthogonal
and p+X2 + q+Y2 vanishes. Thus any Z ∈ V orthogonal to X3 at t = 0
is also orthogonal to X3 at t = L. Condition (c) holds since there are
no interior singular points.

Finally, we come to condition (d). Here we use the action of the prin-
cipal isotropy group H = ∆Q on the tangent space of the regular orbits
G/H. It acts via conjugation and thus (i, i) acts via Id on span{X1, Y1}
and as − Id on span{X2,X3, Y2, Y3}. Similarly for (j, j) and (k, k).
Hence the representation of H on span{X1, Y1}, span{X2, Y2}, and
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span{X3, Y3} are inequivalent and thus by Schur’s Lemma these sub-
spaces are orthogonal to each other for all t. Furthermore, they are
invariant under parallel translation since parallel translation commutes
with isometries and hence with the action of H. This implies condition
(d) at t = 0 since Y = p−X1 + q−Y1 is the only element in V with
Y (0) = 0 and thus 〈X ′

3(0), Y
′(0)〉 = 0.

Altogether, Proposition 3.2 now implies that X∗
3 is parallel on [0, L].

On the other hand, Z := p−X3 + q−Y3 vanishes at 2L, but X∗
3 (0) is not

orthogonal to Z(0) since X3(0) and Y3(0) are orthogonal and p− 6= 0.
Hence Proposition 3.4 implies that X∗

3 is not parallel on [0, 2L].

Claim 2: If p− 6= 1, q− 6= 1 and p− + q− 6= ±2 and (p−, q−) 6=
(p+, q+), then a certain linear combination of X∗

3 and Y ∗
3 is a parallel

Jacobi field on [0, 2L], but not on [0, 3L]. Similarly, for p+, q+.
The only Jacobi field that vanishes at 2L is Z = p−X3 + q−Y3. In

order to satisfy condition (b), we choose X = aX3 + bY3 such that
〈X(0), Z(0)〉 = 0. We will show that X∗ satisfies all properties of Propo-
sition 3.2 on the interval [t0, t1] = [0, 2L]. Notice that at 0 and 2L the
slopes are both (p−, q−).

We start with condition (a). At t = 0 we have X ∈ W1 ⊕ W2 and
hence X 6= 0. The assumptions on the slopes imply that the second
fundamental form vanishes on S2(W0⊕W1⊕W2), i.e. the orbit G/K− is
totally geodesic. This in particular implies that ||X||′(0) = 0. Similarly,
||X||′(2L) = 0 since the slopes are the same. We also have X(2L) 6= 0
since the only Jacobi field vanishing at 2L is Z. Thus X(2L) = 0 would
contradict the orthogonality assumption at t = 0.

Condition (b) again follows from Observation 1 since (p−, q−) 6= (1, 1)
implies that p− 6= q−. Hence the vectors −q−X1 + p−Y1,X2,X3, Y2, Y3

are orthogonal at t = 0 and p−X1 + q−Y1 vanishes, and at t = 2L,
the vectors −q−X3 + p−Y3,X1,X2, Y1, Y2 are orthogonal and p−X3 +
q−Y3 vanishes. Since we have 〈X(2L), Z(2L)〉 = 0, we chose X such
that 〈X(0), Z(0)〉 = 0 as well. Notice also that 〈X(2L),−q−X3(2L) +
p−Y3(2L)〉 = 0 is not possible, since then Z(2L) would be orthogonal to
X3(2L) or Y3(2L) or both, but this is not possible since a, b, p−, q− are
all non-zero.

Condition (c) holds since the only interior singularity is at t = L, and
p+X2 + q+Y2 is the only vector that vanishes there. But this vector is
clearly orthogonal to X at t = 0.

For condition (d) we can argue as in Claim 1.

Thus X∗ is parallel on [0, 2L]. Finally, observe that X(0) is not
orthogonal to the kernel at t = 3L, which is spanned by p+X3 + q+Y3,
unless 〈aX3+bY3, p+X3+q+Y3〉t=0 = ap+||X3||

2+bq+||Y3||
2 = 0. Since

we also have 〈X, p−X3 + q−Y3〉 = 0, this would imply that (p−, q−) =
(p+, q+). This was excluded, and thus X∗ is not parallel on [0, 3L].
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Now we combine Claim 1 and Claim 2. Claim 1 implies that, up
to possibly switching the two S3 factors or interchanging 0 and L, we
have the desired Jacobi field, unless the slopes are (1, q−), (p−, 1) or
(p−, q−), (1, 1). The first family was excluded by assumption. In the
second family we can assume that p− 6= 1, q− 6= 1 and (p−, q−) 6=
(p+, q+), since otherwise we are in the first family. Thus Claim 2 implies
that in the second family we have the desired Jacobi field unless p− +
q− = ±2. Reversing the orientation of the circle, we can assume p− +
q− = 2. This leaves only the candidates with slopes (1+2k, 1−2k), (1, 1).

q.e.d.

Remark. The exceptional family P(1, q),(p,1) contains several G-invar-
iant analytic metrics with non-negative curvature. Indeed, the manifold
P(1,1),(−3,1) is S

7, and P(1,−3),(−3,1) is the positively curved Berger space
(see e.g. [GWZ] or [Zi2]). It also contains P(1,1),(1,1). This manifold is
not primitive, and hence does not admit positive curvature. But it does
admit an analytic metric with non-negative curvature. Indeed, we claim
that the manifold is S3×S

4 and that the product metric of round sphere
metrics is invariant. For this we identify the action of S3× S3 on S

3×S
4

as (r1, r2) ∈ S3 × S3 acting as (p, q) → (r1p r−1
2 , φ(r2)q) where φ(r2) acts

via the well known cohomogeneity one action of S3 on S
4 (effectively an

SO(3) action) with group diagram H = {±1,±i,±j,±k} ⊂ {eit ·H , ejt ·
H} ⊂ S3. One now easily identifies the isotropy groups of this action to
be those of P(1,1),(1,1).

We now prove Theorem C in the Introduction.

Proposition 4.2. Let M be one of the 7-manifolds Q(p−,q−),(p+,q+)

with its cohomogeneity one action by G = S3 × S3. Assume that M is
not of type Qk = Q(1,1),(k,k+1), k ≥ 0. Furthermore, let c : (−∞,∞) →
M be a geodesic orthogonal to all orbits. Then for any invariant metric
with non-negative curvature there exists a Jacobi field along c, given by
the restriction of a Killing vector field X∗, X ∈ g, such that X∗ is
parallel on some interval but not for all t. In particular, the metric is
not analytic.

Proof. We indicate the changes that are necessary. The first difference
is the Weyl group since the Weyl group elements are now

w− = (ei
π

4 , ei
π

4 ) ∈ K−

0
mod H, and w+ = (j,±1) ∈ K+

0
mod H

and hence |W | = 8, i.e. the closed geodesic has length 8L. The isotropy
groups are given by Gc(t) = Lc(t) ·H where

Lc(0) = (eip−t, eiq−t) , Lc(L) = (ejp+t, ejq+t) , Lc(2L) = (e−ip−t, eiq−t)

Lc(3L) = (e−kp+t, ekq+t) , Lc(4L) = (eip−t, eiq−t) , Lc(5L) = (e−jp+t, ejq+t)

Lc(6L) = (e−ip−t, eiq−t) , Lc(7L) = (ekp+t, ekq+t) , Lc(8L) = (eip−t, eiq−t).
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A second difference is the normal weights. At t = 0 we still have
H ∩ K−

0
= {±(1, 1),±(i, i)} and hence k = 4. But at t = L we have

H ∩ K+

0
= {(±1, 1)} and hence k = 2. Similarly, k = 4 at t = 2L, 4L

and k = 2 at t = 3L, 5L. In particular, Observation 2 implies that
||X3||

′ = ||Y3||
′ = 0 at t = L and t = 3L.

We first claim that (p−, q−) = (1, 1). Indeed, if e.g. p− 6= 1, then we
can apply Proposition 3.2 to X3 on the interval [t0, t1] = [0, L] as in the
proof of Claim 1 in Proposition 4.1, since k = 2 at L. For condition
(b) notice that p+ 6= q+ since p+ is odd, and q+ even. Furthermore,
notice that if q+ = 0, the vectors Y1, Y3,−q+X2 + p+Y2 do not need to
be orthogonal to each other since K+

0
acts trivially on W

0
⊕ W 2, but

they are orthogonal to X3 ∈ W 1 which is sufficient for condition (b).
For condition (d) we again use the action of the principal isotropy

group H = {(±1,±1), (±i,±i)} on the tangent space of the regular
orbits G/H. Here H acts via Id on span{X1, Y1} and as − Id on
span{X2,X3, Y2, Y3}. Thus by Schur’s Lemma these two subspaces are
orthogonal for all t and are also invariant under parallel translation.
This implies condition (d) since Y = p−X1 + q−Y1 is the only element
in V with Y (0) = 0 and thus 〈X ′

3, Y
′〉t=0 = 0. Finally, notice that Z =

−p+X3+q+Y3 satisfies Z(3L) = 0, but 〈X3(0), Z(0)〉 = p+||X3(0)||
2 6= 0

and hence by Proposition 3.4 X∗
3 is not parallel on [0, 3L].

Next, we claim that if p+ ± q+ 6= ±1, then we can argue as in the
proof of Claim 2 in Proposition 4.1. Indeed, we choose X = aX3 + bY3

so that 〈X,−p+X3 + q+Y3〉 = 0 at t = L and apply Proposition 3.2 to
X∗ on the interval [L, 3L]. At the endpoints, the second fundamental
form vanishes on S2Wi and W0⊗Wi since k = 2, and on W1⊗W2 since
p+ ± q+ 6= ±1. Thus the singular orbits at t = L and t = 3L are totally
geodesic, which implies ||X∗||′ = 0 at t = L, 3L. The orthogonality
condition on X again implies condition (b), and for (c) we use the action
of H to conclude that −p−X1+ q−Y1, the only vanishing Jacobi field at
t = 2L, is orthogonal to X at t = L. For condition (d) we argue as in the
previous case. Finally, notice that Z = p+X3+q+Y3 satisfies Z(7L) = 0,
but 〈X(L), Z(L)〉 6= 0 since otherwise ap+||X3(L)||+ bq+||Y3(L)||

2 = 0,
which contradicts 〈X(L),−p+X3+q+Y3〉 = −ap+||X3||

2+bq+||Y3||
2 = 0

since p+ 6= 0 and a 6= 0. Thus X∗
3 is not parallel on [L, 7L].

Altogether, we can now assume that (p−, q−) = (1, 1) and p+ + q+ =
±1 or p+ − q+ = ±1. We can changes the sign of p+ by conjugating
all groups with (1, j) and both signs by reversing the orientation of the
circle. Thus it is sufficient to assume q+ − p+ = 1. But this is precisely
the family Qk with slopes (1, 1), (k, k+1), k ≥ 0, after possibly switching
the two S3 factors. q.e.d.

Remark. Q1 is the positively curved Aloff Wallach space which ad-
mits an invariant analytic metric with positive curvature. It is not
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known if Qk with k > 1 admit such metrics, not even if they admit
analytic metrics with non-negative curvature.

The manifold Q0 is special. In the language of our paper, any linear
combination of Y2 and Y3 is orthogonal to all kernels, and hence a paral-
lel Jacobi field for all t. But there is no Jacobi field which is necessarily
parallel for some t but not for all t. In [GWZ] it was shown that Q0

has the cohomology of S2×S
5, but we do not know if it is diffeomorphic

to it. Furthermore, in [GZ3] it was shown that it is also the total space
of the SO(3) principle bundle over CP

2 with w2 6= 0 and p1 = 1.

We finally come to the proof of Theorem D. Here we consider the
cohomogeneity one manifolds with group diagram

H = {e} ⊂ {∆S3, (eipt, eiqt)} ⊂ S3 × S3,

where ∆S3 is embedded diagonally and p, q are arbitrary relatively
prime integers. Here we have w− = (−1,−1) and w+ is one of (±1,±1)
and thus the normal geodesic has length 4L. This implies that Gc(2L) =
Gc(0) and Gc(3L) = Gc(L). Here it is convenient to choose the base point
t0 to be regular in which case the Lagrange tensor satisfies At0 = Id
and thus X = Atv with v = X(t0). At has two kernels, at t = 0 and
at t = L (which agree with the kernels at 2L and 3L resp): kerA0 =
span{X1+Y1,X2+Y2,X3+Y3} and kerAL = span{pX1+qY1}, all eval-
uated at t0. If (p, q) = (1, 1), clearly kerAL ⊂ kerA0. There exists a
2-dimensional subspace W ⊂ Et0 (3-dimensional if (p, q) = (1, 1)) which
is orthogonal to both kernels. Thus gW is concave for all t, and hence
constant. By Theorem B, this implies that the Jacobi fields X ∈ V
with X(t0) ∈ W are parallel, and hence R vanishes on this subspace. In
particular, R cannot be 2-positive. This finishes the proof of Theorem
D.
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