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EMBEDDEDNESS OF PROPER MINIMAL

SUBMANIFOLDS IN HOMOGENEOUS SPACES

Sung-Hong Min

Abstract

We prove the three embeddedness results as follows. (i) Let
Γ2m+1 be a piecewise geodesic Jordan curve with 2m+ 1 vertices
in R

n, where m is an integer ≥ 2. Then the total curvature of
Γ2m+1 < 2mπ. In particular, the total curvature of Γ5 < 4π and
thus any minimal surface Σ ⊂ R

n bounded by Γ5 is embedded.
Let Γ5 be a piecewise geodesic Jordan curve with 5 vertices in H

n.
Then any minimal surface Σ ⊂ H

n bounded by Γ5 is embedded.
If Γ5 is in a geodesic ball of radius π

4
in S

n
+, then Σ ⊂ S

n
+ is

also embedded. As a consequence, Γ5 is an unknot in R
3, H3, and

S
3
+. (ii) Let Σ be an m-dimensional proper minimal submanifold

in H
n with the ideal boundary ∂∞Σ = Γ in the infinite sphere

S
n−1 = ∂∞H

n. If the Möbius volume of Γ Ṽol(Γ) < 2Vol(Sm−1),

then Σ is embedded. If Ṽol(Γ) = 2Vol(Sm−1), then Σ is embedded
unless it is a cone. (iii) Let Σ be a proper minimal surface in
H

2 × R. If Σ is vertically regular at infinity and has two ends,
then Σ is embedded.

1. Introduction

To decide whether a minimal submanifold is embedded or not is one
of the significant problems in minimal surface theory. The first well-
known embeddedness theorem is given by Radó [16]. He proved that
if a Jordan curve Γ in R

n has a 1-1 projection onto the boundary of a
convex domain D in a plane then any minimal surface bounded by Γ
is a graph over D. In the 1970’s Tomi and Tromba [21] and Almgren
and Simon [1] showed that an extremal Jordan curve Γ in R

3 spans an
embedded minimal surface. A curve is extremal if it lies in the boundary
of a convex domain. Moreover Meeks and Yau [12] proved that the
Douglas-Morrey solution of the Plateau problem is embedded under the
same condition.

In 1929, Fenchel [7] proved that the total curvature of any closed
curve in R

3 is always greater than or equal to 2π and is equal to 2π if
and only if it is a convex curve in a plane. He observed that the total
curvature of a regular curve Γ is measured by the length of spherical
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image of the unit tangent vectors to Γ. Fáry [6] and Milnor [13] proved
independently that the total curvature of a knot in R

3 is greater than
4π. For minimal surfaces, it had been open for a long time whether
a minimal surface bounded by a Jordan curve with total curvature at
most 4π is embedded or not.

In 2002, Ekholm, White, and Wienholtz [4] proved the embeddedness
of any minimal surface bounded by a Jordan curve Γ in R

n with total
curvature at most 4π. This gives a simple proof of the Fáry-Milnor theo-
rem. Choe and Gulliver [3] generalized this result for minimal surfaces in
an n-dimensional complete simply connected Riemannian manifold with
sectional curvature bounded above by a non-positive constant and for
minimal surfaces in S

n
+. In particular, they proved that any minimal sur-

face bounded by a Jordan curve Γ in H
n (Sn+, resp.) with total curvature

less than or equal to 4π + infp∈ΣArea(p××Γ) (4π − supp∈ΣArea(p××Γ),
resp.) is always embedded unless it is a cone. It follows that a Jor-
dan curve in H

3 (S3+, resp.) with total curvature less than or equal to
4π + infp∈ΣArea(p××Γ) (4π − supp∈ΣArea(p××Γ), resp.) is unknotted.

In this paper we will prove three embeddedness results for some
proper minimal submanifolds in homogeneous manifolds. In order to
obtain embeddedness of a minimal submanifold Σ, we are going to get
an estimate

ΘΣ(p) < 2,

where ΘΣ(p) is the density of Σ at p.
In section 2, we will first deal with the following two problems.

Problem 1.1. Let Γk be a piecewise geodesic Jordan curve with k
vertices in R

n. What is the upper bound for the total curvature of Γk?

If k = 3, then Fenchel’s theorem [7] implies that the total curvature
of Γ3 is equal to 2π. If k ≥ 4 is an even integer, then it is not difficult to
show that the total curvature of Γk is less than kπ and that kπ is sharp.
We will find the sharp upper bound for the total curvature of Γk, where
k ≥ 5 is an odd integer. In case of this, k = 2m + 1 for some integer
m ≥ 2. The theorem we will prove is as follows:

TotalCurvature(Γ2m+1) < 2mπ.

In particular,

TotalCurvature(Γ5) < 4π,

and thus any minimal surface Σ bounded by Γ5 is embedded by [4], and
Γ5 is an unknot in R

3 by [6] and [13]. This leads us to Problem 1.2 in
a very natural way.

Problem 1.2. Let Γ5 be a piecewise geodesic Jordan curve with 5
vertices in H

n or S
n
+. If Σ is a minimal surface bounded by Γ5, is Σ

embedded? Is Γ5 an unknot in H
3 or S3+?
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We will prove the following. Any minimal surface Σ bounded by Γ5 is
embedded in H

n. In case of hemisphere Sn+, if Γ5 is a piecewise geodesic
Jordan curve lying in a geodesic ball of radius π

4 , then Σ ⊂ S
n
+ is also

embedded. As a consequence, Γ5 is an unknot in H
3 and S

3
+.

Figure 1. Non-existence of a star-shaped knotted piece-
wise geodesic Jordan curve with 5 vertices in R

3, H3, and
S
3
+. (This picture cannot exist!)

Unlike [3], there is no need to assume that the total curvature of
Γ5 ⊂ H

n or Sn+ is bounded above by a constant and additional terms. In
fact, the total curvature and the additional term including Area(p××Γ)
are very difficult to compute in H

n or S
n
+. In this regard, we can see

that these results are intuitive and efficient when we consider piecewise
geodesic Jordan curves.

In particular, there does not exist a star-shaped knotted piecewise
geodesic Jordan curve with 5 vertices in R

n, Hn, and S
n
+ (Figure 1).

Here, n = 5 is the largest number for a piecewise geodesic Jordan curve
Γn with n vertices to be unknotted.

While these results deal with the embeddedness of a compact surface,
it was Schoen [20] who dealt with the embeddedness of a complete
minimal surface. He proved that a complete minimal hypersurface in
R
n which has two ends and is regular at infinity is embedded and that

it is actually the catenoid. He also proved that if a minimal surface in
R
3 is regular at infinity then it has finite total curvature and thus it is

proper [5]. Levitt and Rosenberg [10] showed that a connected minimal
hypersurface in H

n which has ideal boundary Γ = S1 ∪S2, where S1, S2
are disjoint round spheres in S

n−1 = ∂∞H
n, and is regular at infinity is

the catenoid. Here, Σ being regular at infinity implies Σ = Σ ∪ Γ.
In section 3, we will prove the embeddedness of any m-dimensional

proper minimal submanifold in H
n which has an ideal boundary Γ in

the infinite sphere S
n−1 = ∂∞H

n whose Möbius volume is at most
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2Vol(Sm−1). The Möbius volume Ṽol(Γ) of Γ is defined to be

Ṽol(Γ) = sup{VolR(g(Γ)) | g ∈ Möb(Sn−1)},
where VolR(g(Γ)) denotes the volume of g(Γ) in S

n−1.
Consider a 2-dimensional cone 0××Γ in R

n. The total geodesic curva-
ture of Γ is less than or equal to the length of the radial projection of
Γ onto the unit sphere, and this length is equal to 2π times the density
of 0××Γ at 0, as shown in [4] and [3]. In view of this, we think of the
Möbius volume or the volume in a sphere as a kind of total curvature
and in this way we can obtain a suitable estimate of the density of a
minimal submanifold.

In section 4, we will deal with minimal surfaces in H
2 × R. H2 × R

is a homogeneous 3-dimensional Riemannian manifold and is one of
Thurston’s eight geometries. In 2002, Rosenberg [18] constructed in-
finitely many disk type minimal surfaces in H

2 × R which are graphs
over ideal polygons in H

2 by generalizing the Jenkins-Serrin type the-
orem to H

2 × R. After that, many mathematicians have been working
on the theory of minimal surfaces in H

2 × R. In particular, they have
constructed many minimal surfaces in H

2 × R, such as the catenoid with
the vertical axis of revolution, ruled minimal surfaces, the Riemann type
minimal surface which is foliated by horizontal curves of constant cur-
vature, and vertical minimal graphs over an unbounded domain in H

2

which are not necessarily convex and not necessarily bounded by convex
arcs ([14], [8], [19]). Recently Pyo [15] constructed complete annular
minimal surfaces with finite total curvature.

The last theorem we will prove is as follows: A proper minimal surface
in H

2 × R which is vertically regular at infinity and has two ends is
embedded.

Acknowledgments. The problems of this paper were proposed by Jai-
gyoung Choe. I would like to thank him for his precious help and en-
couragement over the years. I also would like to thank Harold Rosenberg
and Joaqúın Pérez for their valuable comments on this work.

2. On minimal surfaces bounded by Γ5

Let k be a positive integer ≥ 2. A geodesic polygonal curve (we will
just use the term polygon in R

n) is a piecewise length-minimizing geo-
desic curve Γk with k vertices v0(= vk), v1, · · · , vk−1 such that vi+1 6= vi
for i = 0, · · · , k − 1. Denote Γk by v0v1 · · · vk−1. In particular, if Γk is a
closed geodesic polygonal curve, i.e. vk = v0, then we will denote it as
v0v1 · · · vk−1v0.

2.1. Total curvature of Γk in R
n. Let Γk be a closed polygon in R

n

with k vertices. Fenchel’s theorem [7] implies that the total curvature
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of Γ3 is equal to 2π. If Γk is simple, i.e. it is a Jordan curve, then

TotalCurvature(Γk) < kπ.

Here, kπ is sharp if k is an even integer. Consider a closed polygon

Γ̃ = v0v1 · · · vk−1v0 where veven = v0 and vodd = v1 (Γ̃ is a line segment
as a set). We can make it a polygonal Jordan curve Γ arbitrarily close

to Γ̃ by moving the vertices of Γ̃ slightly. This implies that there is a
polygonal Jordan curve Γ of the total curvature kπ − ǫ for small ǫ > 0.

The main goal of this section is to find the sharp upper bound for the
total curvature of Γk, where k is an odd integer ≥ 5, in R

n.
In the following lemma, we will call a closed geodesic polygonal curve

with 3 vertices a geodesic triangle.

Lemma 2.1. Let ∆ be a geodesic triangle p0p1p2p0 in S
n−1. Then

Length(∆) ≤ 2π.

The equality holds if and only if either {p0, p1, p2} contains antipodal
points or ∆ = p0p1p2p0 is a great circle.

Proof. Suppose that {p0, p1, p2} contains antipodal points. We may
assume that p0 and p1 are antipodal. Then p1p2p0 is a geodesic of length
π no matter where p2 lies. Therefore

Length(∆) = Length(p0p1) + Length(p1p2p0) = 2π.

On the other hand, if any two points in {p0, p1, p2} are not antipodal,
then each geodesic segment of ∆ has the length < π. Observe that
p0, p1, p2 lie in a hemisphere. There are two possibilities: either p0, p1, p2
lie in an (n− 1)-dimensional open hemisphere or completely in S

n−2. If
p0, p1, p2 ∈ S

n−2, then either p0, p1, p2 lie in an (n−2)-dimensional open
hemisphere or in S

n−3 for the same reason mentioned above. Even in
the worst case, in a finite step we can conclude that p0, p1, p2 lie in the
same open hemisphere unless p0, p1, p2 are contained in a great circle S.

Suppose that p0, p1, p2 lie in the same k-dimensional open hemisphere.
Let O be the origin and O××∆ be the cone over ∆ with the vertex O in
R
n. Note that the length of pipi+1 is the same as the angle between line

segments Opi and Opi+1, i = 0, 1, 2. We can develop the tetrahedron
O − p0p1p2 ⊂ R

n into a plane since O − p0p1p2 is flat. But to make
the tetrahedron O − p0p1p2 from a development drawing described in
a plane, the angle around O must be strictly less than 2π. Therefore
Length(∆) < 2π.

If p0, p1, p2 are contained in a great circle S, then it is easy to show
that Length(∆) ≤ Length(S) = 2π. Moreover, Length(∆) = Length(S)
if and only if ∆ = p0p1p2p0 is a great circle S itself. q.e.d.

Proposition 2.2. Let p0 and p2 be points in S
n−1. Let Λ be a geodesic

polygonal curve p0p1p2 in S
n−1 which is made by adding one point p1.
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If Length(p0p2) = θ, then

Length(Λ) ≤ 2π − θ.

The equality holds if and only if either {p0, p1, p2} contains antipodal
points or p0p1p2p0 is a great circle.

Proof. Let ∆ be the geodesic triangle p0p1p2p0 in S
n−1. Then

Length(p0p1p2p0) = Length(Λ) + Length(p2p0).

The conclusion follows Lemma 2.1. q.e.d.

Proposition 2.3. Let p0 and p3 be points in S
n−1. Let Λ be a geodesic

polygonal curve p0p1p2p3 in S
n−1 which is made by adding two points

p1 and p2. If Length(p0p3) = θ, then

Length(Λ) ≤ 2π + θ.

If we further assume that each geodesic segment of Λ has the length < π

and θ < π, then the equality holds if and only if p0p3p1p2p0 is a great
circle and Length(p2p0p3) < π.

If θ = π and the equality holds, then p1 = p3 is the antipodal point of
p2 = p0.

In general (without assumptions mentioned above), p0, p1, p2, p3 lie in
the same great circle if equality holds.

Proof. Let α be the length of p2p3 and β be the distance between p0
and p2. Then we have

Length(Λ) = Length(p0p1p2) + Length(p2p3)

≤ (2π − β) + α(2.1)

≤ 2π + θ.

Here, (2.1) comes from Proposition 2.2. The second inequality holds
because p2p3 is a length-minimizing geodesic.

Suppose that the equality holds. Then α = β + θ.
One of the following holds.

(i) If α = π, then p2 and p3 are antipodal;
(ii) If α < π, then Length(p2p3) = Length(p2p0p3) < π.

If we further assume that each geodesic segment of Λ has the length < π

and θ < π, then we have 0 < β < π, because if β = π then θ = 0 and
Length(p2p3) = α = π, and if β = 0 then Length(p0p1) is equal to π
from the equality condition of (2.1). That is a contradiction. Thus there
is the unique great circle S determined by p0 and p2. Since p1 ∈ S by
(2.1), p0p1p2p0 = S. Together with (ii), this implies that p0p3p1p2p0 = S

and Length(p2p0p3) < π. The converse can be shown directly.
In the case θ = π, Length(Λ) = 3π. Therefore each geodesic segment

of Λ has the length π.
Lastly, we will prove that p0, p1, p2, p3 lie in the same great circle

when the equality holds. There is a trichotomy.
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• If 0 < β < π, then we already know that there is the unique great
circle S determined by p0 and p2 and that p1 ∈ S. We only need
to consider the case (i). But in this case p3 is the antipodal point
of p2.

• If β = π, then p0 = p3 and p2 is the antipodal point of p0.
• If β = 0, then p0 = p2 and p1 is the antipodal point of p0.

For all of these three cases, we can conclude that p0, p1, p2, p3 lie in the
same great circle. q.e.d.

Before stating the general case, we are going to deal with Γ5 ⊂ R
n.

Theorem 2.4. Let Γ5 be a piecewise geodesic Jordan curve with 5
vertices in R

n. Then

TotalCurvature(Γ5) < 4π.

Proof. Let v0(= v5), v1, v2, v3, v4 be the vertices of Γ5 and let T be
the tangent indicatrix of Γ5, that is, the spherical image of the unit
tangent vectors to Γ5. Then T is a closed geodesic polygonal curve (in
general, not simple) in S

n−1 with 5 vertices pi, where pi is the unit
vector parallel to vivi+1, for i = 0, 1, 2, 3, 4. It is known that the length
of pipi+1 in S

n−1 is the same as the turning angle around vi+1 in R
n

([13]). Since Γ5 cannot have a cuspidal point, the length of a geodesic
segment of T is strictly less than π and thus T is length-minimizing.

One can make a closed geodesic polygonal curve T in S
n−1 with 5

vertices as follows: For two given points p0 and p2 in S
n−1, T can be

identified with p0p1p2p3p4p0 by adding three points p1, p3, p4.
Let the distance between p0 and p2 be θ. Joining Proposition 2.2 and

Proposition 2.3, we have the following inequality:

TotalCurvature(Γ5) = Length(T )

= Length(p0p1p2) + Length(p0p4p3p2)

≤ (2π − θ) + (2π + θ) = 4π.

By a contradiction argument, we will prove that the inequality is strict.
Suppose that the equality holds. If θ = π, then p0 = p3, p2 = p4, and
moreover p2 and p3 are antipodal points from Proposition 2.3. It is a
contradiction. Hence θ < π. Then the equality condition implies that
p0p1p2p0 and p0p2p4p3p0 are great circles, respectively. Actually they
coincide. Denote this great circle by S. Since p0p1p2p0 and p0p2p4p3p0
have an opposite direction, the tangent indicatrix T = p0p1p2p3p4p0 of
Γ5 winds S twice. Therefore Γ5 is a planar curve and of rotation index
2. It implies that Γ5 has self-intersection. But it is a contradiction. q.e.d.

The next proposition is a bridge to the general theorem about the
total curvature for a piecewise geodesic Jordan curve Γk, where k is an
odd integer ≥ 5. For convenience, write k = 2m+ 1 for m ≥ 2.
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Proposition 2.5. I(m): Let Γ2m+1 be a closed geodesic polygonal
curve in S

n−1 with 2m+ 1 vertices. Then

(2.2) Length(Γ2m+1) ≤ 2mπ.

If the equality holds, then every vertex of Γ2m+1 lies in the same great
circle S. Moreover, if every geodesic segment of Γ2m+1 has the length
< π, then Γ2m+1 winds S m-times.

J(m): Let p0 and p2m be points in S
n−1. Let Λ2m+1 be a geodesic

polygonal curve p0p1 · · · p2m−1p2m which is made by adding 2m−1 points
p1, · · · , p2m−1. If Length(p0p2m) = θ, then

Length(Λ2m+1) ≤ 2mπ − θ.

If the equality holds, then every vertex of Λ2m+1 lies in the same great
circle S. Moreover, if θ < π and every geodesic segment of Λ2m+1 has
the length < π, then p0p1 · · · p2mp0 winds S m-times.

Proof. Use the mathematical induction in m ≥ 2 as follows:

• We already proved I(2) on the way to prove Theorem 2.4.
• If I(m) holds, then so does J(m) for m ≥ 2.
• For two given points p0 and p3 in S

n−1, a closed geodesic polygonal
curve Γ2m+3 is made by adding 2m + 1 points as follows: Add
two points p1, p2 and 2m − 1 points p4, · · · , p2m+2, respectively.
And then identify Γ2m+3 with p0p1 · · · p2m+2p0. Joining J(m) and
Proposition 2.3, we have I(m+1) in the same manner as Theorem
2.4.

q.e.d.

Theorem 2.6. Let m be an integer ≥ 2. Let Γ2m+1 be a piecewise
geodesic Jordan curve with 2m+ 1 vertices in R

n. Then

(2.3) TotalCurvature(Γ2m+1) < 2mπ.

Proof. The tangent indicatrix T of Γ2m+1 is a closed geodesic polyg-
onal curve in S

n−1 with 2m+ 1 vertices. By (2.2), we have

TotalCurvature(Γ2m+1) = Length(T ) ≤ 2mπ.

Since Γ2m+1 is a Jordan curve, every geodesic segment of T has the
length < π. If the equality holds, then T is a great circle S as a set and
winds itself m-times. It is a contradiction. q.e.d.

In (2.3), the upper bound 2mπ is sharp. Let Γ̃ = v0v1 · · · v2m−1v0 be a
closed polygon in R

n with 2m vertices, where veven = v0 and vodd = v1.
Take new point v2m, which is different from v0 and v2m−1, in a geodesic

segment of Γ̃. We can move vertices v0, · · · , v2m−1, v2m slightly to make

Γ̃ a polygonal Jordan curve Γ with 2m + 1 vertices. It is possible to

construct such a Γ arbitrarily close to Γ̃. Therefore there is a polygonal
Jordan curve Γ of the total curvature 2mπ − ǫ for small ǫ > 0.

In particular, Γ5 ⊂ R
n has interesting properties as follows:
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Corollary 2.7. Let Γ5 be a piecewise geodesic Jordan curve with 5
vertices in R

n. Then any minimal surface Σ in R
n bounded by Γ5 is

embedded. If Γ5 ⊂ R
3, then it is an unknot.

Proof. See [4] for embeddedness, and see the Fáry-Milnor theorem
([6], [13]) for unknottedness. (For reference, the latter one can also be
obtained in a different way using Theorem 4.8 in [13].) q.e.d.

Corollary 2.7 leads us to the following problem in a very natural way.

Problem 2.8. Let Γ5 be a piecewise geodesic Jordan curve with 5
vertices in H

n or S
n
+. If Σ is a minimal surface bounded by Γ5, is Σ

embedded? Is Γ5 an unknot in H
3 or S3+?

In the next section, we will give an answer to Problem 2.8.

2.2. On minimal surfaces bounded by Γ5 in H
n and S

n
+. Let N be

an n-dimensional Riemannian manifold. The injectivity radius i(N) of
N is the largest r such that the exponential map is an embedding on an
open ball of radius r in TpN for all p. Observe that i(Rn) = i(Hn) = ∞
and i(Sn) = π.

Definition 2.9. ([2]) Let N be an n-dimensional space form. Let
Γ ⊂ N be a k-dimensional rectifiable set in N and let p be a point in N
such that dist(p, q) < i(N) for all q ∈ Γ. Let J(ρ) be a radial function
on N as follows: J(ρ) = sin ρ in S

n, ρ in R
n, and sinh ρ in H

n. The
k-dimensional angle Ak(Γ, p) of Γ viewed from p is defined by setting

Ak(Γ, p) =
Vol((p××Γ) ∩ Sρ(p))

J(ρ)k
,

where Sρ(p) is the geodesic sphere of radius ρ < dist(p,Γ) centered at
p, and the volume is measured counting multiplicity. Clearly the angle
does not depend on ρ.

Note that

(2.4) Ak(Γ, p) = (k + 1)ωk+1Θp××Γ(p).

Before stating the theorem, we will sketch models of Sn (see Section
3 for the Hn case). Note that Sn is isometrically immersed onto the unit
sphere S1, x

2
0+x

2
1+ · · ·+x2n = 1 in R

n+1 endowed with the usual metric,
ds2 = dx20+dx21+ · · ·+dx2n. Let ρ be the distance in S

n measured from

the south pole, (−1, 0, · · · , 0). Then |x| =
√
x21 + · · ·+ x2n = sin ρ and

d|x| = cos ρ · dρ. We can consider Sn as Rn ∪ {∞} via the stereographic
projection Φ : S1 ⊂ R

n+1 → R
n ∪ {∞} of S1 onto R

n ∪ {∞} which is
given by

Φ (x0, x1, · · · , xn) = (u1, · · · , un) where ui =
xi

1− x0
, i = 1, · · · , n.
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Since Φ is 1-1 and onto, there is the inverse Φ−1 : Rn ∪ {∞} → S1 such

that (u1, · · · , un) 7→ (x0, x1, · · · , xn) where x0 = r2−1
r2+1

, xi =
2ui
1+r2

, i =

1, · · · , n. Then Φ−1 induces on R
n∪{∞} the metric ds2B =

4ds2
R

(1+r2)2
where

ds2
R
= du21 + · · · + du2n is the Euclidean metric and r2 = u21 + · · · + u2n.

Note that

sin ρ =
2r

1 + r2
, ρ = arcsin

2r

1 + r2
, and r = cot

1

2
ρ.

To estimate the density, we need the following proposition.

Proposition 2.10. ([3]) (Density comparison)
(1) Let Γ be a (piecewise) C2 immersed closed curve in S

n
+. p ∈ S

n
+

such that dist(p,Γ) ≤ π
2 . Let Σ be a branched minimal surface in S

n
+

with boundary Γ. Then

(2.5) ΘΣ(p) < Θp××Γ(p),

unless Σ is totally geodesic.
(2) Let Γ be a (piecewise) C2 immersed closed curve in H

n. Let Σ be
a branched minimal surface in H

n with boundary Γ in H
n. Then

ΘΣ(p) < Θp××Γ(p),

unless Σ is totally geodesic.

Proof. See [3]. The original proof in [3] only deals with a regular
C2 curve Γ. However, the density comparison (which is shown by using
monotonicity) at the vertex of Γ can be obtained in the same manner
even though Γ is a piecewise C2 curve. q.e.d.

The original version of the second part of Proposition 2.10 is more
powerful. It is proved for Σ which is a branched minimal surface in an
n-dimensional simply connected Riemannian manifold with sectional
curvature ≤ −κ2.

Theorem 2.11. Let Γ5 be a piecewise geodesic Jordan curve with 5
vertices in a geodesic ball Br ⊂ S

n
+ of radius r < π

4 . Then any minimal
surface Σ ⊂ Br bounded by Γ5 is embedded.

Proof. Let p ∈ Σ ⊂ Br ⊂ S
n
+. Since Br is convex, p ∈ Conv(Γ5) where

Conv(Γ5) is the convex hull of Γ5. Thus dist(p,Γ5) <
π
2 . We may assume

that p is identified with the origin in R
n ∪ {∞} via the stereographic

projection. Joining (2.5) with (2.4) we get

(k + 1)ωk+1ΘΣ(p) ≤ Ak(Γ, p).
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Therefore

ΘΣ(p) ≤ LengthS((p××Γ5) ∩ Sρ(p))
2π sin ρ

=
1

2π

∫

(p××Γ5)∩Sρ(p)

1

sin ρ
dσS

=
1

2π

∫

Φ(p××Γ5)∩Sρ∗(0)

1

r
·
(
1 + r2

2

)
dσS

=
1

2π

∫

Φ(p××Γ5)∩Sρ∗(0)

1

r
dσR

=
1

2π
LengthR(Φ(p××Γ5) ∩ S1(0)),

where ρ∗ = cot 1
2ρ.

There are three cases. (From now on, we will consider Sn+ as a subset
of Rn ∪ {∞} through the stereographic projection Φ. For convenience,
we will omit Φ if it is not ambiguous.)

Case I. p ∈ Σ \ Γ5.
Observe that (p××Γ5) ∩ S1(0) is a piecewise length-minimizing geo-

desic closed curve with 5 vertices in the unit sphere in R
n. Therefore

Proposition 2.5 implies LengthR((p××Γ5) ∩ S1(0)) ≤ 4π. Now we claim
that the equality cannot occur. If the equality holds, then all of the ver-
tices of (p××Γ5) ∩ S1(0) lie in the same great circle S. This implies that
all of the vertices of Φ(Γ5) are in the plane P containing the origin and
S. Since each geodesic segment (this is not a line segment, in general)
of Φ(Γ5) minimizes length, Γ5 ⊂ P and thus (p××Γ5) ∩ S1(0) ⊂ P also.
This implies that (p××Γ5) ∩ S1(0) is a geodesic circle S as a set and
winds S twice. But it is a contradiction since Φ(Γ5) is a Jordan curve.
Therefore we have

ΘΣ(p) < 2.

Case II. p ∈ Γ5 \ {vertices}.
TpΓ5 intersects S1(0) at two points a, b which are antipodal. And thus

(p××Γ5) ∩ S1(0) is a piecewise length-minimizing geodesic curve with 5
vertices and a, b are end points of (p××Γ5)∩S1(0). Proposition 2.5 implies
that LengthR((p××Γ5)∩S1(0)) ≤ 3π. In the same manner as in the first
case, we can show that the equality cannot occur. Therefore we have

ΘΣ(p) <
3

2
.

Case III. p is a vertex of Γ5.
Let θ be an exterior angle of Γ5 at p. Then Proposition 2.3 implies

that LengthR((p××Γ5)∩S1(0)) ≤ 2π+(π−θ) = 3π−θ. In a similar way
to the first two cases, we have

ΘΣ(p) <
3

2
− θ

2π
.
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These three density estimates complete the proof. q.e.d.

We can also prove the following in H
n.

Theorem 2.12. Let Γ5 be a piecewise geodesic Jordan curve with 5
vertices in H

n. Then any minimal surface Σ bounded by Γ5 is embedded.

Proof. The proof is similar to Theorem 2.11. q.e.d.

Corollary 2.13. There does not exist a star-shaped knotted piecewise
geodesic Jordan curve in H

3 or in a geodesic ball of radius < π
4 ⊂ S

3
+

which consists of 5 geodesic segments (see Figure 1 in Introduction).

Figure 2. Five is critical! Existence of a knotted piece-
wise geodesic Jordan curve Γ6 with 6 vertices.

Proof. Note that a minimal disk in a 3-dimensional manifold bounded
by a knotted Jordan curve always has not only self-intersections but also
a branch point. It is a direct consequence of Theorem 2.12 and Theorem
2.11. q.e.d.

In Corollary 2.13, n = 5 is the critical number for a piecewise geodesic
Jordan curve Γn with n vertices to be unknotted. It is not difficult to find
a knotted piecewise geodesic Jordan curve Γ6 with 6 vertices (Figure 2).

3. Embeddedness of proper minimal submanifolds in H
n

Let us sketch two models of hyperbolic space Hn. First, Hn is isomet-
rically immersed onto the hyperboloid H, −x20 + x21 + · · · + x2n = −1,
x0 > 0, in R

n+1 endowed with the Minkowski metric, ds2
L
= −dx20 +

dx21 + · · · + dx2n, which is denoted by L
n+1. Let ρ be the distance in

H
n measured from (1, 0, · · · , 0). Then |x| =

√
x21 + · · · + x2n = sinh ρ

and d|x| = cosh ρ · dρ. Second, one can consider H
n as the unit ball
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Bn = {(u1, · · · , un)|u21 + · · ·+ u2n < 1} ⊂ R
n. Define a mapping Ψ : H ⊂

L
n+1 → Bn ⊂ R

n by

Ψ (x0, x1, · · · , xn) = (u1, · · · , un) where ui =
xi

1 + x0
, i = 1, · · · , n.

Actually Ψ is known as the stereographic projection of H onto the unit
ball in the hyperplane {x0 = 0}. Since Ψ is 1-1 and onto, there is the
inverse Ψ−1 : Bn → H such that (u1, · · · , un) 7→ (x0, x1, · · · , xn) where
x0 =

1+r2

1−r2 , xi =
2ui
1−r2 , i = 1, · · · , n. Then Ψ−1 induces on Bn the metric

ds2B =
4ds2

R

(1−r2)2 where ds2
R
= du21 + · · ·+du2n is the Euclidean metric and

r2 = u21 + · · ·+u2n. Such a ball Bn is called the Poincaré ball, one of the
models of Hn. Note that

sinh ρ =
2r

1− r2
, ρ = log

1 + r

1− r
, and r = tanh

1

2
ρ.

If we employ the Poincaré ball, then the ideal boundary ∂∞Σ of Σ ⊂
H
n is defined to be the set of all accumulation points of Σ in S

n−1. Here
∂∞H

n, the ideal boundary of Hn, is identified with S
n−1.

Definition 3.1. Let Γ be an (m− 1)-dimensional submanifold in an
n-dimensional Riemannian manifold M and let p be a point of M . The
m-dimensional cone over Γ with the vertex p is defined as the union of
the geodesic segment from p to q, over all q ∈ Γ, and is denoted by p××Γ.

From now on, VolR(Γ) denotes the volume of Γ in S
n−1 ⊂ R

n. In
particular VolR(S

m−1) = mωm, where ωm is the volume of the m-
dimensional unit ball in R

m.

Proposition 3.2. (Density estimation) Let Γ be an (m − 1)-
dimensional compact submanifold of Sn−1. Let Σ be an m-dimensional
proper minimal submanifold in H

n with ∂∞Σ = Γ ⊂ S
n−1 = ∂∞H

n and
let q be a point of Σ. Let ψ be an isometry of H

n such that ψ(q) =
(1, 0, · · · , 0) ∈ H in the hyperboloid model of Hn. Then

(3.1) mωmΘΣ(q) ≤ VolR(Γ̃),

where Γ̃ denotes the ideal boundary of ψ(Σ). If the equality holds, then
Σ = q××Γ.

The properness of Σ in Proposition 3.2 can be replaced by the hy-
pothesis that Σ = Σ ∪ Γ.

Proof. Let G(x) be Green’s function of H
m, whose derivative is

sinh1−m x for 0 < x < ∞, where x is the distance from a fixed point in
H
m. Choe and Gulliver [2] proved that if Σ is an m-dimensional mini-

mal submanifold of Hn and q ∈ Σ, then G◦ρ is subharmonic on Σ \{q}
and is harmonic except q if Σ is a cone with the vertex q. That is,

△ΣG(ρ) = m
cosh ρ

sinhm ρ

(
1− |∇Σρ|2

)
≥ 0,
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where ρ(·) is the distance from q in H
n.

Let Br(q) denote the geodesic ball in H
n of radius r centered at q.

Integrate △ΣG(ρ) over Σ ∩ BR(q) \ Bǫ(q) for small ǫ > 0 and large R
and then apply the divergence theorem. Since ∂(Σ ∩BR(q) \Bǫ(q)) =
(Σ ∩ ∂Bǫ(q)) ∪ (Σ ∩ ∂BR(q)), it implies

0 ≤
∫

Σ∩BR(q)\Bǫ(q)
△ΣG(ρ) =

∫

Σ∩∂Bǫ(q)
∇ΣG(ρ)·ν+

∫

Σ∩∂BR(q)
∇ΣG(ρ)·ν,

where ν is the outward unit conormal vector to Σ.
Recall that ∇ΣG(ρ) = sinh1−m ρ · ∇Σρ. Hence

(3.2) −
∫

Σ∩∂Bǫ(q)

1

sinhm−1 ρ

∂ρ

∂ν
≤
∫

Σ∩∂BR(q)

1

sinhm−1 ρ

∂ρ

∂ν
.

Along Σ ∩ ∂Bǫ(q), ∂ρ∂ν → −1 uniformly and

Vol(Σ ∩ ∂Bǫ(q))
sinhm−1 ǫ

→ mωmΘΣ(q) as ǫ→ 0.

It follows that

lim
ǫ→0

∫

Σ∩∂Bǫ(q)

1

sinhm−1 ρ

∂ρ

∂ν
= −mωmΘΣ(q).

Then (3.2) yields

(3.3) mωmΘΣ(q) ≤
∫

Σ∩∂BR(q)

1

sinhm−1 ρ

∂ρ

∂ν
.

Let us write dσH as the hyperbolic volume form of Σ∩∂BR(q) in the

hyperboloid and Poincaré ball model in common. Since |∂ρ
∂ν
| ≤ 1,

∫

Σ∩∂BR(q)

1

sinhm−1 ρ

∂ρ

∂ν
≤
∫

Σ∩∂BR(q)

1

sinhm−1 ρ
.

On the other hand, we can obtain some interesting equalities as fol-
lows:
∫

Σ∩∂BR(q)

1

sinhm−1 ρ
dσH =

∫

ψ(Σ)∩∂BR(ψ(q))

(
1√
x20 − 1

)m−1

dσH

=

∫

ψ(Σ)∩∂B̃R∗ (0)

1

rm−1

(
1− r2

2

)m−1

dσH

=

∫

ψ(Σ)∩∂B̃R∗ (0)

1

rm−1
dσR,(3.4)

where R∗ = tanh 1
2R, B̃R∗(0) is a geodesic ball in Bn ⊂ R

n centered at

the origin, and dσR is the volume form of ψ(Σ) ∩ ∂B̃R∗(0) in R
n. The

last equality holds because ds2
H
is conformal to ds2

R
.

Note that the last integral equals just Vol(ψ(Σ) ∩ ∂B̃R∗(0)) divided
by R∗m−1. In fact it is the volume of the radial projection of ψ(Σ) ∩
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∂B̃R∗(0) in R
n onto Sn−1. And it converges to VolR(∂∞ψ(Σ)) as R∗ → 1,

that is, as R→ ∞. Hence from (3.3) and (3.4) we have (3.1).
If equality holds, then △ΣG(ρ) vanishes on the whole Σ with respect

to the fixed point q ∈ Σ. It implies that |∇Σρ| ≡ 1 on Σ. Let s ∈ Σ and
let γ be a geodesic such that γ(0) = q and γ(1) = s. Then γ′(1) ∈ TsΣ
for all s ∈ Σ because ∇Σρ ∈ TsΣ. It then follows that Σ is a cone with
the vertex q. q.e.d.

Definition 3.3. Let Γ be an (m− 1)-dimensional compact submani-
fold of Sn−1. Let Möb(Sn−1) be the group of all Möbius transformations
of Sn−1. The Möbius volume of Γ is defined to be

Ṽol(Γ) = sup{VolR(g ◦ Γ) | g ∈ Möb(Sn−1)}.
Remark. According to the definition of Li and Yau [11], the Möbius

volume of Γ is the same as the (n−1)-conformal volume of the inclusion
of Γ into S

n−1.

Proposition 3.4. Let Γ be an (m − 1)-dimensional compact sub-

manifold of Sn−1. Then Ṽol(Γ) ≥ mωm. And equality holds if Γ is an
(m− 1)-dimensional sphere. In particular, if Γ is a closed curve in S

2,

then Ṽol(Γ) = 2π if and only if Γ is a circle.

Proof. Let p be a point of Γ. There is ϕǫ ∈ Möb(Sn−1) fixing p and
corresponding to the homothety ϕ̃ǫ in R

n−1 which is defined as ϕ̃ǫ(x) :=
x
ǫ
. Then ϕǫ(Γ) converges to an (m − 1)-dimensional great sphere as ǫ

goes to 0. Therefore Ṽol(Γ) ≥ mωm.
Let Γ be an (m − 1)-dimensional sphere. Since the Möbius trans-

formation of Sn−1 maps the spheres to the spheres, obviously we have

Ṽol(Γ) = mωm.

Let Γ be a closed curve in S
2. We only need to prove that if Ṽol(Γ) =

2π then Γ is a circle. If Γ has a self-intersection then we can take a
closed embedded subarc γ from Γ and clearly Ṽol(γ) ≤ Ṽol(Γ). Thus it
is enough to consider an embedded Γ of length ≤ 2π. Then Γ lies in a
closed hemisphere by Horn’s theorem [9].

Suppose Γ is not a circle. Let D1, D2 ⊂ S
2 be the domains bounded

by Γ. Then there is a largest circle Si in Closure(Di), i = 1, 2, such
that Γ∩Si consists of at least two points. Choose ϕ ∈ Möb(S2) in such
a way that ϕ(S1) and ϕ(S2) become two parallels of equal latitude in
the northern and southern hemisphere, respectively. Let A ⊂ S

2 be the
annulus between ϕ(S1) and ϕ(S2).

Now we claim that no closed hemisphere in S
2 can contain ϕ(Γ).

Suppose, on the contrary, that ϕ(Γ) lies in a closed hemisphere U . Since
ϕ(Γ) is not null-homotopic in A, U ∩ A cannot be simply connected,
and so ∂U lies in A and is not null-homotopic in A. Moreover, assuming
that ϕ(S1) ⊂ U , we have ∂U ∩ ϕ(S2) 6= ∅ since Γ ∩ Si 6= ∅ for i = 1, 2.
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However, we should note that ∂U intersects ϕ(Si) only at one point, for
i = 1, 2. But this contradicts the hypothesis that Γ ∩ Si consists of at
least two points.

Therefore no closed hemisphere in S
2 can contain ϕ(Γ) and hence it

follows from [9] that Vol(ϕ(Γ)) > 2π. This is a contradiction to our

hypothesis Ṽol(Γ) = 2π, and thus we can conclude that Γ is a circle.
q.e.d.

The following is a non-trivial example of a Jordan curve having

Ṽol(Γ) < 4π.

Example 3.5. Let S and S⊥ be great circles in S
2 and let p1 and

p2 be the intersection points of S and S⊥. We can choose four points
pij different from p1 and p2 as follows: pij ∈ S, dist(pi, pij) = ǫ < π

2 ,
and p1j and p2j are antipodal for i, j = 1, 2. Then we have new piece-

wise smooth Jordan curve Γ from S ∪ S⊥ removing length-minimizing
geodesic segments connecting pi1 and pi2 and adding semi-circles Sj of
length π with the end points p1j and p2j which intersect S at a right
angle for i, j = 1, 2.

Let ϕ be any Möbius transformation of S2. Then S and Sj remain
still part of circles under ϕ and the intersection angle between ϕ(S) and
ϕ(Sj) is π

2 from the conformality, j = 1, 2. It is not difficult to show
that

Length(ϕ(S1)) + Length(ϕ(S2)) ≤ 2π

and thus Length(ϕ(Γ)) < 4π. It follows that Ṽol(Γ) < 4π.

Theorem 3.6. Let Γ be an (m−1)-dimensional compact submanifold
of Sn−1. Let Σ be an m-dimensional proper minimal submanifold in H

n

with ∂∞Σ = Γ. If Ṽol(Γ) < 2mωm, then Σ is embedded. If Ṽol(Γ) =
2mωm, then Σ is embedded unless it is a cone.

Proof. Let p be a point on Σ in H
n. In accordance with Proposition

3.2,

(3.5) mωmΘΣ(p) ≤ VolR(Γ̃).

Let Isom(Hn) be the group of all isometries of Hn. Let Möb(Bn) be the
group of all Möbius transformations of Bn. Then (Chapter 4 in [17]),

Isom(Hn) ≃ Möb(Bn) ≃ Möb(Sn−1).

Given ψ ∈ Isom(Hn), we may consider it as in Möb(Sn−1). Then it
follows that

(3.6) VolR(Γ̃) ≤ Ṽol(Γ) < 2mωm.

Therefore combining (3.5) and (3.6), we have

ΘΣ(p) < 2,

and hence Σ is embedded.
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If Ṽol(Γ) = 2mωm, then ΘΣ(p) ≤ 2 for every p ∈ Σ. Let q ∈ Σ be a
point of density 2. Since equality holds in (3.1), then it is a cone with
the vertex q. This completes the proof. q.e.d.

4. Embeddedness of proper minimal surfaces in H
2 × R

Proposition 4.1. Let Σ be a complete minimal surface in H
2 × R

and p ∈ Σ. Let ρ be the distance from p in H
2 × R. Then

△Σ log ρ ≥ 0

on Σ \ {p}.
Before proving Proposition 4.1, we will determine the Jacobi fields

along a unit speed geodesic inH
2 ×R. In this section we use the Poincaré

disk model of H2,

H
2 = {(u1, u2) ∈ R

2|r2 = u21 + u22 < 1}.
As the product space, H2 × R has the coordinates (u1, u2, z) endowed
with the metric

ds̃2 =
4(du21 + du22)

(1− r2)2
+ dz2,

where (u1, u2) ∈ H
2 and z ∈ R. Let p be a point in H

2 × R and γ

be a unit speed geodesic in H
2 × R emanating from p with γ(0) =

p and γ′(0) = v ∈ TpH
2 × R. Since H

2 × R is a homogeneous space,
there exists the isometry ϕ of H2 × R so that ϕ(p) = 0 and dϕ(v) =

(c, 0,
√
1− 4c2) =: w for some c ∈ [0, 12 ]. For convenience denote by γ

the geodesic ϕ ◦ γ, i.e. γ(0) = 0 and γ′(0) = w.
To find the geodesic γ explicitly, recall the geodesic equation as fol-

lows:

(4.1) γ′′k (t) +
3∑

i,j=1

Γkijγ
′
i(t)γ

′
j(t) = 0, k = 1, 2, 3.

Since the Christoffel symbols of the Riemannian connection are given
by

Γkij =
3∑

l=1

1

2
gkl(gil,j + gjl,i − gij,l), i, j, k ∈ {1, 2, 3},

we have

(4.2)





Γ1
11 = Γ2

21 = Γ2
12 = −Γ1

22 =
2u1
1−r2 ,

Γ2
22 = Γ1

12 = Γ1
21 = −Γ2

11 =
2u2
1−r2 ,

Γkij = 0 if 3 ∈ {i, j, k}.
It is a well known fact that the canonical projections of a geodesic in the
product Riemannian manifold are also geodesics. In particular, a pro-
jection of γ onto the horizontal totally geodesic plane in H

2 × R is also
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a geodesic. Therefore γ2(t) = 0 because the only geodesics emanating
from the origin in H

2 are the rays. Putting (4.2) in (4.1), we get
{
γ′′1 (t) + Γ1

11(γ
′
1(t))

2 = 0,
γ′′3 (t) = 0.

With the given initial conditions, one may obtain as follows:

γ(t) =
(
tanh ct, 0,

√
1− 4c2t

)
.

Lemma 4.2. The Jacobi field along γ with the initial condition J(0) =
(0, 0, 0) and J ′(0) = ω(0) in H

2 × R is given by

(4.3) J(t) =

(
tω1(t),

sinh 2ct

2c
ω2(t), tω3(t)

)
,

where ω(t) = (ω1(t), ω2(t), ω3(t)) is a parallel vector field along γ with
γ′(t) · ω(t) = 0 and |ω(t)| = 1.

Proof. We derive the Riemannian curvature tensor of H2 × R using
that of H2 as follows:

Rlijk =

{ (
2

1−r2
)2

(−δikδjl + δjkδil) , i, j, k, l = 1, 2,

0, otherwise.

Since γ2(t) = 0, the Jacobi equation

Jl
′′(t) +

3∑

i,j,k=1

Rlijkγi
′(t)γk

′(t)Jj(t) = 0, l = 1, 2, 3,

becomes 



J1
′′(t) = 0,

J2
′′(t) +R2

121 · (γ1′(t))2J2(t) = 0,
J3

′′(t) = 0.

Along the geodesic γ, R2
121 · (γ1′(t))2 = −

(
2

1−r2
)2

·
(
c(1 − x2)

)2
= −4c2.

Solving the equation




J1
′′(t) = 0,

J2
′′(t)− 4c2J2(t) = 0,

J3
′′(t) = 0

with the given initial conditions J(0) = (0, 0, 0) and J ′(0) = ω(0), we
can obtain (4.3). q.e.d.

Lemma 4.3. ([2], Lemma 2) Let f be a smooth function on an n-
dimensional Riemannian manifold M and Σ an m-dimensional sub-
manifold of M . Let ∇ and △ be the connection and Laplacian on M
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respectively, and △Σ the Laplacian on Σ. If H is the mean curvature
vector of Σ in M , then

(4.4) △Σf = (△f)|Σ+Hf −
n∑

α=m+1

∇2
f(eα, eα),

where Hf is the directional derivative of f in the direction of the mean
curvature vector H and em+1, · · · , en are orthonormal vectors which are
perpendicular to Σ.

Proof of Proposition 4.1. Let γ be a unit speed geodesic emanating
from 0 and Sρ(0) be a geodesic sphere of radius ρ centered at 0 inH

2 × R.
It is convenient to use the exponential coordinates (ρ, φ, θ), where φ is
the angle between γ′(0) and the z-axis in T0H

2 × R and θ is the angle

around the z-axis. Note that cosφ =
√
1− 4c2 and hence 2c = sinφ. In

terms of φ one can rewrite γ(t) and J(t).
There are globally defined coordinate vector fields corresponding to

these coordinates. Now define new vector fields {V1, V2, V3} to be parallel
to the above-mentioned coordinate vector fields on a neighborhood of
q = γ(ρ) ∈ Sρ(0) such that

V1(q) = γ′(ρ) =
∂

∂ρ
, Vi · Vj = 0

and

|V1| = 1, |V2| = ρ, |V3| =
sinh(ρ sin φ)

sinφ
.

By Lemma 4.3 and the minimality of Σ, (4.4) yields

(4.5) △Σ log ρ = △ log ρ−∇2
log ρ(n, n) = tr∇2

log ρ−∇2
log ρ(n, n),

where n is the unit normal vector field of Σ in H
2 × R.

Let {hij} and {Γ̃kij} be the metric and Christoffel symbols correspond-

ing to the vector fields {Vi}. If F is a smooth function on H
2 × R, then

the Hessian of F satisfies

(4.6) ∇2
F (Vi, Vj) =

3∑

k=1

1√
hii
√
hjj

(Fij − Γ̃kijFk).

Rewrite the metric {hij} by the matrix form,

(hij) =




1 0 0
0 ρ2 0

0 0 sinh2(ρ sinφ)

sin2 φ


 .
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In the case that F = log ρ, two out of the three directional derivatives
vanish. Substituting {hij} into (4.6), we get

∇2
log ρ(Vi, Vj) =





1
h11

(
(log ρ)11 − Γ̃1

11(log ρ)1

)
, i = j = 1,

1√
hii
√
hjj

(
−Γ̃1

ij(log ρ)1

)
, otherwise.

Hence it is enough to compute the terms {Γ̃1
ij}. If i 6= j then Γ̃1

ij = 0.
The only non-zero terms are

{
Γ̃1
22 = −1

2h22,1 = −ρ,
Γ̃1
33 = −1

3h33,1 = − sinh(ρ sinφ) cosh(ρ sinφ)
sinφ .

Therefore

∇2
log ρ(V1, V1) = 1

h11

(
(log ρ)11 − Γ̃1

11(log ρ)1

)
= − 1

ρ2
,

∇2
log ρ(V2, V2) = − 1

h22
Γ̃1
22(log ρ)1 =

1
ρ2
,

∇2
log ρ(V3, V3) = − 1

h33
Γ̃1
33(log ρ)1 =

1
ρ
sinφ coth(ρ sinφ).

In conclusion, the Hessian of log ρ in H
2 × R is obtained:

(4.7) ∇2
log ρ =

1

ρ2
·




−1 0 0
0 1 0
0 0 ρ sinφ coth(ρ sin φ)


 .

Putting n = (n1, n2, n3) and applying (4.5) together with (4.7),

ρ2△Σ log ρ = ρ2 ·
(
tr∇2

log ρ−∇2
log ρ(n, n)

)

= (1− n23)ρ sin φ coth(ρ sinφ)− (n22 − n21).

Now we claim ρ sinφ coth(ρ sinφ) ≥ 1. If we define f(s) = s coth s,
0 ≤ s ≤ ρ then f ′(s) = coth s− s

sinh2 s
= 1

sinh2 s
(sinh s · cosh s− s). Since

d
ds(sinh s ·cosh s−s) = cosh 2s−1 ≥ 0 and lims→0(sinh s ·cosh s−s) = 0,
f is a monotonically increasing function. Since lims→0 f(s) = lims→0 s ·
es+e−s

es−e−s = 1, one can conclude f(s) ≥ 1. Hence

ρ2△Σ log ρ ≥ 1 + n21 − (n22 + n23) ≥ 1 + n21 − |n|2 = n21 ≥ 0.

q.e.d.

Remark 4.4. If the equality holds in Proposition 4.1 at a point
q ∈ Σ then either n = (0, 0, 1) or both n1 and sinφ at q vanish. In
particular, if Σ is a totally geodesic vertical plane containing p and q,
then n = (0, 0, 1) at any q ∈ Σ and thus △Σ log ρ ≡ 0 on Σ, and vice
versa. Note that sinφ vanishes at q if and only if q lies in the vertical
geodesic through p in H

2 × R.
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Definition 4.5. Let Π0 be a totally geodesic vertical plane in H
2 × R

such that Π0 = {(u1, u2, z) ∈ H
2 × R|u2 = 0}. A surface Σ in H

2 × R is
a horizontal graph of a function f over Π if

Σ =
{
(u1, u2, z) ∈ H

2 × R|ϕ2 = f
(
ϕ1, ϕ3

)}
,

where ϕ = (ϕ1, ϕ2, ϕ3) is an isometry in H
2 × R such that ϕ(Π) = Π0.

Definition 4.6. Let Σ be a complete minimal surface in H
2 × R. Σ

is said to be vertically regular at infinity in H
2 × R if there is a compact

subset K ⊂ H
2 × R such that

1) Σ ∼ K consists of k components Σ1, · · · ,Σk;
2) each Σi is the horizontal graph of a function fi over the exterior of a

bounded region in some totally geodesic vertical plane Πi ≃ H×R;
3) each fi has the following asymptotic behavior for r large and α >

0:

fi → 0, ∂xifi = O

(
1

rα

)
→ 0, and ∂zifi = O

(
1

sinh1+α r

)
→ 0,

as r → ∞, where xi, zi are the coordinates on Πi ≃ H × R and r
is the distance from (0, 0) ∈ Πi.

We call these Σi the ends of Σ.

Remark 4.7. Schoen [20] defines the following. A complete minimal
surface Σ ⊂ R

3 is said to be regular at infinity if there is a compact
subset K ⊂ Σ such that Σ ∼ K consists of r components Σ1, · · · ,Σr
such that each Σi is the graph of a function fi with bounded slope
over the exterior of a bounded region in some plane Πi. Moreover, if x1
and x2 are coordinates in Πi, we require the fi to have the following
asymptotic behavior for r = |x| large:

fi(x) = a log r + b+
c1x1

r2
+
c2x2

r2
+O(r−2)

for constants a, b, c1, c2 depending on i.
As the distance r from the origin, (0, 0) ∈ Πi, goes to infinity, fi

is dominated by log r. It comes from the profile curve of an end of a
catenoid in R

3. Note that log r → ∞ as r → ∞, so Σ goes apart from
any plane parallel to Πi. However, since

log r
r

→ 0 as r → ∞, Σ tends to

approach a plane. In other words, the radial projection onto S
2 of the

intersection of Σ and a geodesic sphere of radius ρ converges uniformly
as ρ→ ∞ to an equator, with multiplicities, of S2.

But in H
2 ×R we have a different situation as follows:

H
2 × R is not isotropic and homotheties are not isometries. So

the behaviors of the components of a minimal surface outside a
compact set in H

2 × R are different depending on whether they are
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vertical, horizontal, or mixed. In this section we deal with only the
vertical cases.

The following theorem is the main result of Section 4.

Theorem 4.8. Let Σ be a proper minimal surface in H
2 × R. If Σ

is vertically regular at infinity in H
2 ×R and has two ends, then Σ is

embedded.

Proof. Let p be a point in Σ and ρ(·) = dist(p, ·) in H
2 × R. Since Σ is

proper in H
2 × R, though p is not in K, we can find new compact subset

K̃ ⊂ H
2 × R satisfying all conditions in Definition 4.6. For convenience,

denote K̃ by K, i.e. without loss of generality we may assume that
p ∈ K. Since H

2 × R is homogeneous, we may also assume that p =
(0, 0, 0) ∈ H

2 × R.
By definition, each Σi is the horizontal graph of the function fi over

the exterior of a bounded region in Πi. Let xi, zi be the coordinates on
Πi ≃ H× R and let pi = (0, 0) with respect to these coordinates. Then
we can assume that pi ∈ H

2 × {0}. Let ϕi be the isometry in H
2 × R

such that ϕi(Πi) = Π0, ϕi(pi) = p ∈ H
2 × R, and ϕi preserves the R-

axis. Let Sr(pi) be the geodesic circle of radius r centered at pi on Πi.
Define Chr (pi) to be

Chr (pi) := ϕ−1
i

({
(u1, u2, z) ∈ H

2 × R

∣∣∣∣
(u1, 0, z) ∈ ϕi(Sr(pi)),

u2 ∈ [−h, h]

})
.

Put Kh
r = K ∪Chr (p1)∪Chr (p2). The fact that fi → 0 as r → ∞ implies

that for sufficiently large r there is h > 0, which does not depend on r,
such that Σ ∼ Kh

r consists of only two connected components of Σ. If
necessary, we can enlarge K since Σ is proper. Furthermore, we consider
Σ ∩ ∂Chr (pi) as a horizontal graph over Sr(pi).

Integrating △Σ log ρ in Σ ∩Kh
r ∼ Bǫ(p) and applying the divergence

theorem gives
∫

Σ∩Kh
r ∼Bǫ(p)

△Σ log ρ =

∫

Σ∩∂Ch
r (p1)

1

ρ

∂ρ

∂ν
+

∫

Σ∩∂Ch
r (p2)

1

ρ

∂ρ

∂ν

+

∫

Σ∩∂Bǫ(p)

1

ρ

∂ρ

∂ν
,

where ν is the outward unit conormal vector to Σ ∩Kh
r ∼ Bǫ(p).

Near p, sinh ρ→ ρ uniformly and Σ is close to TpΣ. Hence

Vol(Σ ∩ ∂Bǫ(p)) → 2πǫΘΣ(p)

and ∂ρ
∂ν

→ −1 uniformly as ǫ→ 0. So

2πΘΣ(p) ≤ −
∫

Σ∩∂Bǫ(p)

1

ρ

∂ρ

∂ν
.
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Therefore
(4.8)

2πΘΣ(p) ≤
∫

Σ∩∂Ch
r (p1)

1

ρ

∂ρ

∂ν
+

∫

Σ∩∂Ch
r (p2)

1

ρ

∂ρ

∂ν
−
∫

Σ∩Kh
r ∼Bǫ(p)

△Σ log ρ.

Since dist(pi, q) ≤ dist(p, q) for q ∈ Σi sufficiently far from p, we have
r ≤ ρ and hence

∫

Σ∩∂Ch
r (pi)

1

ρ

∂ρ

∂ν
≤

∫

Σ∩∂Ch
r (pi)

1

ρ

≤
∫

Σ∩∂Ch
r (pi)

1

r
=

1

r
Length(Σ ∩ ∂Chr (pi)).

Parameterize Σ ∩ ∂Chr (pi) by t, 0 ≤ t ≤ 2π, as follows:

(x(t), fi(x(t), z(t)), z(t)) =

(
tanh

1

2
r cos t, fi(x(t), z(t)), r sin t

)
,

where xi(t) and zi(t) are denoted by x(t) and z(t), respectively, for
convenience. Then we can compute directly

1

r
Length(Σ ∩ ∂Ch

r (pi))

=
1

r

∫ 2π

0

√√√√x′(t)2 + (∂xfi · x′(t) + ∂zfi · z′(t))2(
1−x∗2

2

)2 + z′(t)2

=

∫ 2π

0

√√√√
(

1−x2

2
· sin t

1−x∗2

2

)2

+

(
1−x2

2
· ∂xfi · (− sin t) + ∂zfi · cos t

1−x∗2

2

)2

+ cos2 t,

where x∗ is determined by an orthogonal projection of the graph onto
H

2. From the vertical regularity of Σ,

|∂zfi| ·
(
1− x∗2

2

)−1

= O

(
1

sinh1+α r

)
·
(

x∗

sinh r∗

)−1

= O

(
1

sinh1+α r

)
· (1 + cosh r∗) −→ 0,

|∂xfi| ·
(

1− x2

1− x∗2

)
= O

(
1

rα

)
·
(
1 + cosh r∗

1 + cosh r

)
−→ 0,

as r → ∞, where r∗ = log 1+x∗

1−x∗ the distance from pi in H
2.

It implies not only that Σ ∩ ∂Chr (pi) converges to Sr(pi) as a set but
also that the tangent vectors of Σ ∩ ∂Chr (pi) converge to those of Sr(pi)
uniformly. Therefore

(4.9)
1

r
Length(Σ ∩ ∂Chr (pi)) →

1

r
Length(Sr(pi)) = 2π,

as r → ∞. Note that the last equality holds because Πi ≃ H × R is
isometric to R

2. Then (4.9) implies that for every δ > 0, there exists R
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such that
∣∣∣∣∣

∫

Σ∩∂Ch
r (p1)

1

ρ

∂ρ

∂ν
+

∫

Σ∩∂Ch
r (p2)

1

ρ

∂ρ

∂ν
− 4π

∣∣∣∣∣ < δ if r > R.

Remark 4.4 implies that
∫

Σ∩Kh
r ∼Bǫ(p)

△Σ log ρ

is strictly positive since Σ cannot be a union of two totally geodesic
vertical planes. Then there is δ0 > 0 which does not depend on r such
that ∫

Σ∩Kh
r ∼Bǫ(p)

△Σ log ρ > δ0.

If we take δ < δ0
2 then (4.8) deduces

2πΘΣ(p) < 4π + δ − δ0 < 4π +
δ0

2
− δ0 < 4π.

This completes the proof. q.e.d.
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