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ISOPERIMETRIC AND WEINGARTEN SURFACES

IN THE SCHWARZSCHILD MANIFOLD

Simon Brendle & Michael Eichmair

Abstract

We show that any star-shaped convex hypersurface with con-
stant Weingarten curvature in the deSitter-Schwarzschild manifold
is a sphere of symmetry. Moreover, we study an isoperimetric prob-
lem for bounded domains in the doubled Schwarzschild manifold.
We prove the existence of an isoperimetric surface for any value of
the enclosed volume, and we completely describe the isoperimetric
surfaces for very large enclosed volume. This complements work in
H. Bray’s thesis, where isoperimetric surfaces homologous to the
horizon are studied.

1. Introduction

The classical Alexandrov theorem asserts that any closed embedded
hypersurface in R

n with constant mean curvature is a round sphere.
This theorem has been generalized by many authors. In particular, an
analogue of Alexandrov’s theorem holds in hyperbolic space (cf. [10],
[13]), as well as in pseudo-hyperbolic space (see [12]). In a recent paper
[4], the first-named author proved a uniqueness theorem for constant
mean curvature hypersurfaces in the deSitter-Schwarzschild manifold.
Let us recall the definition of the deSitter-Schwarzschild manifold. Fix
an integer n ≥ 3, a real number m > 0, and a real number κ such that

either κ ≤ 0 or nnm2κn−2

4(n−2)n−2 < 1. Moreover, let

I = {s > 0 : 1−ms2−n − κ s2 > 0}.

Note that I is a non-empty open interval, so we may write I = (s, s).
The deSitter-Schwarzschild manifold (M, ḡ) is defined by M = Sn−1×I
and

ḡ =
1

1−ms2−n − κ s2
ds⊗ ds+ s2 gSn−1 .

Note that the metric extends smoothly to Sn−1 × [s, s), and that the
boundary component Sn−1 × {s} is totally geodesic. We will refer to
this boundary component as the horizon of (M, ḡ).
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Theorem 1 (S. Brendle [4]). Let Σ be a closed, embedded hypersur-
face in the deSitter-Schwarzschild manifold (M, ḡ). If Σ has constant
mean curvature, then Σ is a slice Sn−1 × {s}.

We note that surfaces of constant mean curvature play an important
role in general relativity; see e.g. [2], [5], [11], [6], [7], [8], [16].

It is interesting to replace the mean curvature of Σ by other func-
tions of the principal curvatures. In this direction, Ros [19] showed that
any closed, embedded hypersurface in R

n with constant σp is a round
sphere. Here, σp denotes the p-th elementary symmetric polynomial in
the principal curvatures. This result was generalized to hyperbolic space
by Montiel and Ros [13]. Finally, He, Li, Ma, and Ge [9] studied the
case of anisotropic higher order mean curvatures.

We first analyze surfaces in deSitter-Schwarzschild space with con-
stant higher order mean curvature. Under some extra assumptions, we
are able to show that such surfaces are spheres of symmetry:

Theorem 2. Let Σ be a closed, embedded hypersurface in the deSitter-
Schwarzschild manifold (M, ḡ) that is star-shaped and convex. More-
over, suppose that σp = constant, where σp denotes the p-th elementary
symmetric polynomial in the principal curvatures. Then Σ is a slice
Sn−1 × {s}.

The convexity assumption is needed to control certain curvature terms
arising in the Codazzi equations. Theorem 2 is a special case of a
stronger result that applies to more general warped product manifolds.
We will explain this in Section 2.

We now consider the case when κ = 0. In this case, s = ∞ and
(M, ḡ) is the standard Schwarzschild manifold. By reflection across the
totally geodesic boundary component Sn−1×{s}, we obtain a complete
manifold (M̄, ḡ) which, up to scaling, is isometric to R

n \ {0} equipped

with the metric ḡij = (1 + |x|2−n)
4

n−2 δij . In this representation, the
horizon is the coordinate sphere ∂B1(0). We will refer to (M̄ , ḡ) as the
doubled Schwarzschild manifold. In his thesis, Bray [2] studied isoperi-
metric surfaces in the Schwarzschild manifold which are homologous to
the horizon (see also [3]):

Theorem 3 (H. Bray [2]). Let Σ be a sphere of symmetry in the
doubled Schwarzschild manifold. Then Σ has least area among all com-
parison surfaces that are homologous to Σ and which enclose the same
oriented volume with the horizon.

In view of this result, it is natural to wonder about isoperimetric sur-
faces in the doubled Schwarzschild manifold that are null-homologous.
Our first result here establishes that isoperimetric regions exist in (M̄ , ḡ)
for every volume:
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Theorem 4. Given any V > 0, there exists a bounded Borel set Ω
of finite perimeter and volume V in the doubled Schwarzschild manifold
that has least perimeter amongst all such sets.

Classical results in geometric measure theory show that the reduced
boundary ∂∗Ω of a set Ω as in Theorem 4 is a smooth volume preserving
stable constant mean curvature hypersurface, such that ∂∗Ω is relatively
open in ∂∗Ω, and such that the Hausdorff dimension of ∂∗Ω \ ∂∗Ω does
not exceed n − 8. Moreover, one can (and we always will) choose a
representative of Ω such that ∂Ω = ∂∗Ω.

In the 1980s, S.T. Yau asked whether there exist constant mean cur-
vature surfaces in the doubled Schwarzschild manifold other than the
spheres of symmetry. By choosing V > 0 very small in Theorem 4, we
obtain examples of such surfaces that are even isoperimetric. We ob-
serve that the existence of small surfaces of constant mean curvature in
the doubled Schwarzschild manifold can alternatively be deduced from
general perturbation results of Pacard and Xu [14]. The construction in
[14] neither implies nor indicates that their surfaces are isoperimetric.

Finally, we give a precise description of the large volume isoperimetric
regions in the doubled Schwarzschild manifold. A crucial ingredient in
the proof is an effective version of Theorem 4 established in [6] (when
n = 3) and [8] (for n ≥ 3).

Theorem 5. Let Ω be an isoperimetric region in the doubled Schwarz-
schild manifold. If the volume of Ω is sufficiently large, then Ω is bounded
by two spheres of symmetry.

In fact, there are exactly two isoperimetric regions for every given
large volume, and they are obtained from each other by reflection across
the horizon. Under the extra assumption that Ω has smooth boundary,
we can prove the following:

Theorem 6. Suppose that Ω is a smooth isoperimetric region in
the doubled Schwarzschild manifold. Then either Ω is bounded by two
spheres of symmetry, or the boundary of Ω is connected and intersects
the horizon.

If 3 ≤ n < 8, the smoothness assumption in Theorem 6 is always
satisfied. We expect that Theorem 1 can be generalized to constant mean
curvature surfaces with a small singular set, so that the smoothness
assumption in Theorem 6 can be dropped.

We note that similar results for the cylinder have been obtained by
Pedrosa [15] using symmetrization techniques.
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2. Weingarten surfaces in warped product manifolds

Let us fix an integer n ≥ 3. We consider the manifold M = Sn−1 ×
[0, r̄) equipped with a Riemannian metric of the form ḡ = dr ⊗ dr +
h(r)2 gSn−1 . We assume that the warping function h : [0, r̄) → R satisfies
the following conditions:

(H1) h′(0) = 0 and h′′(0) > 0.
(H2) h′(r) > 0 for all r ∈ (0, r̄).
(H3) The function

2
h′′(r)

h(r)
− (n− 2)

1− h′(r)2

h(r)2

is non-decreasing for r ∈ (0, r̄).

(H4) We have h′′(r)
h(r) + 1−h′(r)2

h(r)2
> 0 for all r ∈ (0, r̄).

We note that the Ricci and scalar curvature of (M, ḡ) are given by

Ric =−
(h′′(r)

h(r)
− (n − 2)

1− h′(r)2

h(r)2

)

ḡ

− (n− 2)
(h′′(r)

h(r)
+

1− h′(r)2

h(r)2

)

dr ⊗ dr(1)

and

(2) R = −(n− 1)
(

2
h′′(r)

h(r)
− (n− 2)

1− h′(r)2

h(r)2

)

.

Hence, condition (H3) is equivalent to saying that the scalar curvature
is a non-increasing function of r. Moreover, condition (H4) is equivalent
to saying that the Ricci curvature is smallest in the radial direction. In
particular, the conditions (H1)–(H4) are all satisfied on the deSitter-
Schwarzschild manifolds.

Note that a closed hypersurface Σ in M is either null-homologous or
bounds a compact region together with Sn−1 × {0}. We say that Σ is
star-shaped if there is a choice of unit normal ν such that 〈 ∂

∂r , ν〉 ≥ 0
on Σ. We say that Σ is convex if there is a choice of unit normal such
that all its principal curvatures are non-negative.
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The following is the main result of this section:

Theorem 7. Let (M, ḡ) be a warped product manifold satisfying
conditions (H1)–(H4) above. Let Σ be a closed, embedded hypersur-
face in (M, ḡ) that is star-shaped and convex. Moreover, suppose that
σp = constant, where σp denotes the p-th elementary symmetric polyno-
mial in the principal curvatures. Then Σ is a slice Sn−1 ×{r} for some
r ∈ (0, r̄).

As in [4], we define a function f and a vector field X by f = h′(r) and
X = h(r) ∂

∂r . Note that X is a conformal vector field; in fact, D̄X = f ḡ.
We now consider a hypersurface Σ in M . Let {e1, . . . , en−1} be a

local orthonormal frame on Σ, and let ν denote the unit normal to Σ.
Moreover, let hij = 〈D̄eiν, ej〉 denote the second fundamental form of
Σ, and let σp denote the p-th elementary symmetric polynomial in the

eigenvalues of h. Finally, we put T
(p)
ij = ∂

∂hij
σp. We may view T

(p)
ij as a

symmetric two-tensor on Σ. It turns out that the divergence of T
(p)
ij has

a special structure (see also [20]):

Proposition 8. Suppose that Σ is star-shaped and convex. Then

n−1
∑

i,j=1

〈X, ei〉 (DejT
(p))(ei, ej) ≥ 0.

Here, D denotes the Levi-Civita connection on Σ.

Proof. We may write

n−1
∑

p=0

tp σp = det(I + th).

Differentiating this identity with respect to hij , we obtain

n−1
∑

p=1

tp T
(p)
ij = t det(I + th)G(t)ij ,

where G(t) denotes the inverse of I + th. We now take the divergence
on both sides of this identity. This yields
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n−1
∑

j,p=1

tpDjT
(p)
ij = t det(I + th)

n−1
∑

j=1

DjG(t)ij

+ t2 det(I + th)

n−1
∑

j,k,l=1

G(t)ij G(t)kl Djhkl

= −t2 det(I + th)

n−1
∑

j,k,l=1

G(t)ik G(t)jl Djhkl

+ t2 det(I + th)

n−1
∑

j,k,l=1

G(t)ij G(t)kl Djhkl

= −t2 det(I + th)

n−1
∑

j,k,l=1

G(t)ik G(t)jl (Djhkl −Dkhjl).

Using the Codazzi equations, we obtain

Djhkl −Dkhjl = R(ej , ek, el, ν),

where R denotes the Riemann curvature tensor of (M, ḡ). Since ḡ is
locally conformally flat, the curvature tensor of ḡ is given by 1

n−2 A ©∧ ḡ,
where A is the Schouten tensor of ḡ. Therefore,

Djhkl −Dkhjl = −
1

n− 2
(Ric(ej , ν) ḡ(ek, el)− Ric(ek, ν) ḡ(ej , el)).

Putting these facts together, we obtain

(n− 2)

n−1
∑

j,p=1

tpDjT
(p)
ij

= t2 det(I + th)

n−1
∑

j,k=1

G(t)ik G(t)jk Ric(ej , ν)

− t2 det(I + th) tr(G(t))

n−1
∑

j=1

G(t)ij Ric(ej , ν),
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and hence

(n− 2)
n−1
∑

i,j,p=1

tp 〈X, ei〉DjT
(p)
ij

= t2 det(I + th)

n−1
∑

i,j,k=1

G(t)ik G(t)jk 〈X, ei〉Ric(ej , ν)

− t2 det(I + th) tr(G(t))
n−1
∑

i,j=1

G(t)ij 〈X, ei〉Ric(ej , ν).

Without loss of generality, we may assume that hij is diagonal with
eigenvalues λ1, . . . , λn−1 ≥ 0. Then

(n− 2)

n−1
∑

i,j,p=1

tp 〈X, ei〉DjT
(p)
ij

= −t2 det(I + th)
∑

i 6=j

1

(1 + tλi)(1 + tλj)
〈X, ej〉Ric(ej , ν)

= −t2
∑

i 6=j

(

∏

k∈{1,...,n−1}\{i,j}

(1 + tλk)

)

〈X, ej〉Ric(ej , ν)

= −
n−1
∑

p=2

n−1
∑

j=1

(n− p) tp σp−2(λ1, . . . , λj−1, λj+1, . . . , λn−1) 〈X, ej〉Ric(ej , ν).

Comparing coefficients gives

n−1
∑

i,j=1

〈X, ei〉DjT
(p)
ij

= −
n− p

n− 2

n−1
∑

j=1

σp−2(λ1, . . . , λj−1, λj+1, . . . , λn−1) 〈X, ej〉Ric(ej , ν)

for each p ∈ {2, . . . , n − 1}. On the other hand, it follows from (1)
and (H4) that Ric(ej , ν) is a negative multiple of 〈X, ej〉 〈X, ν〉. Since
〈X, ν〉 ≥ 0, we conclude that 〈X, ej〉Ric(ej , ν) ≤ 0 for j = 1, . . . , n − 1.
From this, the assertion follows. q.e.d.

The following result can be viewed as an analogue of the Minkowski-
type formula established in [4] (see also [1], Section 8):

Proposition 9. Suppose that Σ is star-shaped and convex. Then

p

∫

Σ
〈X, ν〉σp ≥ (n− p)

∫

Σ
f σp−1.
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Proof. Let ξ denote the orthogonal projection of X to the tangent
space of Σ, i.e.

ξ = X − 〈X, ν〉 ν.

Then

Diξj = D̄iXj − 〈X, ν〉hij = f gij − 〈X, ν〉hij .

Hence
n−1
∑

i,j=1

Di(ξj T
(p)
ij ) = f

n−1
∑

i=1

T
(p)
ii −

n−1
∑

i,j=1

T
(p)
ij 〈X, ν〉hij +

n−1
∑

i,j=1

ξj DiT
(p)
ij .

Since σp is a homogeneous function of degree p, we have

n−1
∑

i,j=1

hij T
(p)
ij = p σp

by Euler’s theorem. Moreover, it is easy to see that

n−1
∑

i=1

T
(p)
ii = (n− p)σp−1.

Finally, we have
n−1
∑

i,j=1

ξj DiT
(p)
ij ≥ 0

by Proposition 8. Putting these facts together, we obtain

n−1
∑

i,j=1

Di(ξj T
(p)
ij ) ≥ (n− p) f σp−1 − p 〈X, ν〉σp.

Hence, the assertion follows from the divergence theorem. q.e.d.

After these preparations, we are now able to complete the proof of
Theorem 7. Suppose that Σ is a star-shaped and convex hypersurface
with the property that σp is constant. By Proposition 9, we have

p

∫

Σ
〈X, ν〉σp ≥ (n− p)

∫

Σ
f σp−1.

Since σp is constant, it follows that

p

∫

Σ
〈X, ν〉 ≥ (n− p)

∫

Σ
f
σp−1

σp
.

Using the Newton inequality, we obtain

(n− p)σp−1 σ1 ≥ (n− 1)p σp.

Therefore,

(3)

∫

Σ
〈X, ν〉 ≥ (n− 1)

∫

Σ

f

H
,
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where H = σ1 denotes the mean curvature of Σ. On the other hand, it
was shown in [4], Section 3, that

(4) (n− 1)

∫

Σ

f

H
≥

∫

Σ
〈X, ν〉.

Therefore, equality holds in (3) and (4). Since equality holds in (4), it
follows from results in [4] that Σ is a slice Sn−1×{r} for some r ∈ (0, r̄).

3. Null-homologous isoperimetric surfaces in the

doubled Schwarzschild manifold

In this section, we consider the doubled Schwarzschild manifold

(M̄, ḡ) = (Rn \ {0}, (1 + |x|2−n)
4

n−2 δij) discussed in the introduction.

Given any V > 0, we define Aḡ(V ) as the infimum of H
n−1
ḡ (∂∗Ω)

where Ω ranges over all Borel subsets of (M̄, ḡ) with finite perimeter and
volḡ(Ω) = V . If such a set Ω realizes the infimum, i.e. if Aḡ(volḡ(Ω)) =

H
n−1
ḡ (∂∗Ω), then Ω is called an isoperimetric region.

Lemma 10. If Ω is an isoperimetric region, then Ω is bounded.

Proof. Suppose that Ω is unbounded. Then we can find a sequence of
points pk in the support of Ω such that distḡ(pk, pl) > 2 for k 6= l. Let

Bk denote the geodesic ball of radius k−
1

n−1 centered at pk. It follows
from the monotonicity formula that lim infk→∞ kH

n−1
ḡ (Bk ∩ ∂∗Ω) >

0. This implies that H
n−1
ḡ (∂∗Ω) ≥

∑∞
k=1 H

n−1
ḡ (Bk ∩ ∂∗Ω) = ∞, a

contradiction. q.e.d.

The behavior of minimizing sequences for the isoperimetric problem
in general is described in [18], Theorem 2.1. In conjunction with the
characterization of isoperimetric regions in Euclidean space, the follow-
ing result was obtained in [6], Proposition 4.2:

Proposition 11. Given any V > 0, there exists a (possibly empty)
isoperimetric region Ω ⊂ M̄ and a real number ρ ≥ 0 such that

volḡ(Ω) +
1

n
ωn−1 ρ

n = V

and
H

n−1
ḡ (∂∗Ω) + ωn−1 ρ

n−1 = A(V ).

We now establish the existence of isoperimetric regions in (M̄ , ḡ) of
any given volume. We note that in [17], M. Ritoré has constructed
examples of complete rotationally symmetric Riemannian surfaces in
which no solutions of the isoperimetric problem exist for any volume.
We first establish an auxiliary result:

Proposition 12. Given V > 0 and any compact set K ⊂ M̄ , we
can find a smooth region D ⊂ M̄ \ K such that volḡ(D) = V and

H
n−1
ḡ (∂D) < (nn−1 ωn−1)

1
n V

n−1
n .
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Proof. Let us consider a ball B = {x : |x−a| ≤ r}, where r is bounded
and |a| is large compared to r. By Corollary 20, we can perturb B in a
suitable way to obtain a region D with

H
n−1
ḡ (∂D) = (nn−1 ωn−1)

1
n volḡ(D)

n−1
n

·

[

1−
2(n − 2)(n − 1)2

(n + 1)(n+ 2)(n + 4)

r4

|a|2n
+O(|a|−2n−1)

]

.

In particular, we have that

H
n−1
ḡ (∂D) < (nn−1 ωn−1)

1
n volḡ(D)

n−1
n

provided |a| is sufficiently large. The construction of D in Appendix
A is continuous in r, and the volume of D converges to 1

n ωn−1 r
n as

|a| → ∞. Hence, given any a sufficiently large, we can choose r such
that volḡ(D) = V . q.e.d.

Theorem 13. For every V > 0, the infimum A(V ) is achieved.

Proof. By Proposition 11, we can find an isoperimetric region Ω ⊂ M̄
and a real number ρ ≥ 0 such that

volḡ(Ω) +
1

n
ωn−1 ρ

n = V

and

H
n−1
ḡ (∂∗Ω) + ωn−1 ρ

n−1 = A(V ).

By Lemma 10, Ω is bounded.
We claim that ρ = 0. Indeed, if ρ > 0, Proposition 12 implies

the existence of a smooth bounded region D whose closure is disjoint
from the closure of Ω, and which satisfies volḡ(D) = 1

n ωn−1 ρ
n and

H
n−1
ḡ (∂D) < ωn−1 ρ

n−1. Consequently, we have

volḡ(Ω ∪D) = volḡ(Ω) +
1

n
ωn−1 ρ

n = V

and

H
n−1
ḡ (∂∗Ω ∪ ∂D) < H

n−1
ḡ (∂∗Ω) + ωn−1 ρ

n−1 = A(V ).

This contradicts the definition of A(V ). Hence ρ = 0 and Ω is an isoperi-
metric region of volume V . q.e.d.

We next describe the isoperimetric regions with large volume. We
need the following effective version of Theorem 3:

Proposition 14 ([8], Proposition 3.4). Given (τ, η) ∈ (1,∞)×(0, 1),
there exists V0 > 0 so that the following holds: Let Ω be a bounded
Borel set with finite perimeter in the doubled Schwarzschild manifold

(M̄, ḡ) = (Rn \ {0}, (1 + |x|2−n)
4

n−2 δij), and let r ≥ 1 be such that

volḡ(Ω \B1(0)) = volḡ(Br(0) \B1(0)) ≥ V0.
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If Ω is (τ, η)-off-center, i.e. if H
n−1
ḡ (∂∗Ω \Bτr(0)) ≥ ηH

n−1
ḡ (∂Br(0)),

then

(5) H
n−1
ḡ (∂∗Ω \B1(0)) ≥ H

n−1
ḡ (∂Br(0)) + cη

(

1−
1

τ

)2
r.

Here, c > 0 is a constant that only depends on n.

Theorem 15. There exists V1 > 0 with the following property: If Ω
is an isoperimetric region in the doubled Schwarzschild manifold (M̄ , ḡ)
with volḡ(Ω) ≥ V1, then ∂∗Ω is a union of two spheres of symmetry.

Proof. Suppose this is false. Let Ωk be a sequence of isoperimetric
regions with volḡ(Ωk) → ∞ such that ∂∗Ωk is not a union of two spheres
of symmetry. Reflecting across the horizon if necessary, we may assume
that volḡ(Ωk \B1(0)) → ∞. Let rk ≥ 1 be such that volḡ(Ωk \B1(0)) =
volḡ(Brk(0) \B1(0)). Since Ωk is an isoperimetric region, it follows that

(6) H
n−1
ḡ (∂∗Ωk \B1(0)) ≤ H

n−1
ḡ (∂Brk(0)) + H

n−1
ḡ (∂B1(0)).

We now consider two cases:
Case 1: Suppose first that

lim inf
k→∞

r−n
k volḡ(Ωk \Bτrk(0)) = 0

for every τ > 1. As in the proof of Theorem 5.1 in [6] we see that,
possibly after passing to a subsequence, Ωk ⊂ B2rk(0) and that the

rescaled regions r−1
k Ωk converge to the unit ball in Euclidean space

away from the origin. In particular, we have

Brk/2(0) \Brk/4(0) ⊂ Ωk ⊂ B2rk(0)

for some large integer k. Let r̂k = inf{r ∈ (0, rk/2) : Brk/2(0) \Br(0) ⊂
Ωk}. By the half-space theorem, the coordinate sphere ∂Br̂k(0) inter-

sects ∂∗Ωk in the regular set ∂∗Ωk. The maximum principle then implies
that r̂k < 1. Thus, the horizon ∂B1(0) lies in the interior of Ωk. Conse-
quently, the regions Ωk ∩ B1(0) and Ωk \ B1(0) are minimizers for the
isoperimetric problem studied in Bray’s thesis [2]. Using Theorem 3, we
conclude that ∂∗Ωk ∩ B1(0) and ∂∗Ωk \ B1(0) are centered coordinate
spheres. Therefore, Ωk is smooth and its boundary is a union of two
coordinate spheres. This contradicts the choice of Ωk.

Case 2: We now assume that there exists a real number τ > 1 such
that

lim inf
k→∞

r−n
k volḡ(Ωk \Bτrk(0)) > 0.

This implies that

lim inf
k→∞

r1−n
k H

n−1
ḡ (∂∗Ωk \Bτrk(0)) > 0

for some number τ > 1. Consequently, we can find a real number η ∈
(0, 1) with the property that the sets Ωk are (τ, η)-off-center when k is
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sufficiently large. Using Proposition 14, we obtain

H
n−1
ḡ (∂∗Ωk \B1(0)) ≥ H

n−1
ḡ (∂Brk(0)) + cη

(

1−
1

τ

)2
rk

for k sufficiently large. This contradicts (6). q.e.d.

Corollary 16. Let Ω be an isoperimetric region in the doubled
Schwarzschild manifold. If the volume of Ω is sufficiently large, then
Ω = Br1(0) \ Br0(0) for suitable real numbers r1 > 1 > r0. Moreover,
r0r1 6= 1 and

r1 (r
n−2
1 − 1)

(rn−2
1 + 1)

n
n−2

=
r0 (1− rn−2

0 )

(1 + rn−2
0 )

n
n−2

.

Proof. By Theorem 15, the boundary ∂∗Ω is a union of two spheres
of symmetry. Since the components of ∂∗Ω have the same positive mean
curvature, we conclude that Ω = Br1(0) \ Br0(0) where r1 > 1 > r0.
Moreover, we have

r1 (r
n−2
1 − 1)

(rn−2
1 + 1)

n
n−2

=
r0 (1− rn−2

0 )

(1 + rn−2
0 )

n
n−2

=
H

n− 1
,

where H denotes the mean curvature of ∂∗Ω. It remains to show that
r0r1 6= 1. Indeed, if r0r1 = 1, then r1 is large, and we have volḡ(Ω) =
2
n ωn−1 r

n
1 +O(rn−1

1 ) and H
n−1
ḡ (∂∗Ω) = 2ωn−1 r

n−1
1 +O(rn−2

1 ). On the

other hand, by Corollary 20, we have that A(V ) < (nn−1 ωn−1)
1
n V

n−1
n .

This gives a contradiction. q.e.d.

Finally, we describe the proof of Theorem 6. Let Ω be an isoperimet-
ric region in the doubled Schwarzschild manifold (M̄, ḡ) with smooth
boundary. We consider two cases:

Case 1: Suppose that one of the components of ∂Ω does not intersect
the horizon. By Theorem 1, this component must be a centered coordi-
nate sphere. A maximum principle argument as in the proof of Theorem
15 shows Ω is bounded by two spheres of symmetry.

Case 2: Suppose next that every component of ∂Ω intersects the hori-
zon. If Ω is disconnected, we may take one connected component of Ω
and rotate it until it touches another connected component of Ω. This
process does not change the isoperimetric property of the region since
volume and boundary area stay unchanged. Clearly, the final configura-
tion is not optimal for the isoperimetric problem. This is a contradiction.
Therefore, Ω must be connected. If one of the connected components of
∂Ω is homologous to the horizon, then the maximum principle implies
that this component lies on one side of the horizon, contrary to our as-
sumption. Thus, every connected component of ∂Ω is null-homologous.
Since Ω is connected and mean convex, it follows that ∂Ω has only one
connected component. This completes the proof of Theorem 6.
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Appendix A. The isoperimetric ratio of coordinate balls in

the doubled Schwarzschild manifold

Let us consider the Riemannian metric

ḡij = (1 + |y + a|2−n)
4

n−2 δij

on R
3 \ {−a}. Let Br denote the coordinate ball of radius r centered

at the origin. We want to analyze the isoperimetric ratio of Br with
respect to the metric ḡ when r is bounded and |a| is large compared to
r.

Proposition 17. We have

H
n−1
ḡ (∂Br) = ωn−1 r

n−1 (1 + |a|2−n)
2(n−1)
n−2

·

[

1 +
(n− 1) r2

|a|2n−2
(1 + |a|2−n)−2 +

n(n− 1)2

2(n + 2)

r4

|a|2n
+O(|a|−2n−1)

]

and

volḡ(Br) =
1

n
ωn−1 r

n (1 + |a|2−n)
2n
n−2

·

[

1 +
n r2

|a|2n−2
(1 + |a|2−n)−2 +

n2(n− 1)

2(n+ 4)

r4

|a|2n
+O(|a|−2n−1)

]

as |a| → ∞.

Proof. It follows from Taylor’s theorem that

(1 + |y + a|2−n)
2(n−1)
n−2

= (1 + |a|2−n)
2(n−1)
n−2

+
2(n− 1)

n− 2
(1 + |a|2−n)

n
n−2 (|a+ y|2−n − |a|2−n)

+
n(n− 1)

(n− 2)2
(1 + |a|2−n)

2
n−2 (|a+ y|2−n − |a|2−n)2(7)

+
2n(n− 1)

3 (n − 2)3
(1 + |a|2−n)−

n−4
n−2 (|a+ y|2−n − |a|2−n)3

+O
(

(|a+ y|2−n − |a|2−n)4
)
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and

(1 + |y + a|2−n)
2n
n−2

= (1 + |a|2−n)
2n
n−2

+
2n

n− 2
(1 + |a|2−n)

n+2
n−2 (|a+ y|2−n − |a|2−n)

+
n(n+ 2)

(n− 2)2
(1 + |a|2−n)

4
n−2 (|a+ y|2−n − |a|2−n)2(8)

+
4n(n+ 2)

3 (n − 2)3
(1 + |a|2−n)−

n−6
n−2 (|a+ y|2−n − |a|2−n)3

+O
(

(|a+ y|2−n − |a|2−n)4
)

.

The mean value property of harmonic functions implies that

(9)

∫

∂Br

(|y + a|2−n − |a|2−n) = 0

and

(10)

∫

Br

(|y + a|2−n − |a|2−n) = 0.

We next observe that

|y + a|2−n − |a|2−n

= −(n− 2)
〈a, y〉

|a|n
−

n− 2

2

|a|2 |y|2 − n 〈a, y〉2

|a|n+2

+
n(n− 2)

6

3 |a|2 |y|2 〈a, y〉 − (n+ 2) 〈a, y〉3

|a|n+4
+O(|a|−n−2).

This implies

∫

∂Br

(|y + a|2−n − |a|2−n)2

= (n− 2)2
∫

∂Br

〈a, y〉2

|a|2n
+

(n− 2)2

4

∫

∂Br

(|a|2 |y|2 − n 〈a, y〉2)2

|a|2n+4

−
n(n− 2)2

3

∫

∂Br

3 |a|2 |y|2 〈a, y〉2 − (n+ 2) 〈a, y〉4

|a|2n+4
+O(|a|−2n−1)

(11)

=
(n− 2)2

n
ωn−1

rn+1

|a|2n−2
+

(n− 1)(n− 2)2

2(n + 2)
ωn−1

rn+3

|a|2n
+O(|a|−2n−1)
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and

∫

Br

(|y + a|2−n − |a|2−n)2

= (n− 2)2
∫

Br

〈a, y〉2

|a|2n
+

(n− 2)2

4

∫

Br

(|a|2 |y|2 − n 〈a, y〉2)2

|a|2n+4

−
n(n− 2)2

3

∫

Br

3 |a|2 |y|2 〈a, y〉2 − (n+ 2) 〈a, y〉4

|a|2n+4
+O(|a|−2n−1)

(12)

=
(n− 2)2

n(n+ 2)
ωn−1

rn+2

|a|2n−2
+

(n − 1)(n− 2)2

2(n + 2)(n + 4)
ωn−1

rn+4

|a|2n
+O(|a|−2n−1).

Moreover, we have

(13)

∫

∂Br

(|a+ y|2−n − |a|2−n)3 = O(|a|2−3n)

and

(14)

∫

Br

(|a+ y|2−n − |a|2−n)3 = O(|a|2−3n).

Using (7), (9), (11), and (13), we obtain

H
n−1
ḡ (∂Br) =

∫

∂Br

(1 + |y + a|2−n)
2(n−1)
n−2

= ωn−1 r
n−1 (1 + |a|2−n)

2(n−1)
n−2

+
n(n− 1)

(n− 2)2
(1 + |a|2−n)

2
n−2

∫

∂Br

(|a+ y|2−n − |a|2−n)2

+O(|a|2−3n)

= ωn−1 r
n−1 (1 + |a|2−n)

2(n−1)
n−2

+ (n − 1)ωn−1 (1 + |a|2−n)
2

n−2
rn+1

|a|2n−2

+
n(n− 1)2

2(n+ 2)
ωn−1 (1 + |a|2−n)

2
n−2

rn+3

|a|2n
+O(|a|−2n−1).
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Similarly, it follows from (8), (10), (12), and (14) that

volḡ(Br) =

∫

Br

(1 + |y + a|2−n)
2n
n−2

=
1

n
ωn−1 r

n (1 + |a|2−n)
2n
n−2

+
n(n+ 2)

(n− 2)2
(1 + |a|2−n)

4
n−2

∫

Br

(|a+ y|2−n − |a|2−n)2

+O(|a|2−3n)

=
1

n
ωn−1 r

n (1 + |a|2−n)
2n
n−2

+ (1 + |a|2−n)
4

n−2 ωn−1
rn+2

|a|2n−2

+
n(n− 1)

2(n + 4)
ωn−1 (1 + |a|2−n)

4
n−2

rn+4

|a|2n
+O(|a|−2n−1).

This completes the proof. q.e.d.

Lemma 18. The mean curvature of ∂Br is given by

H =
n− 1

r

[

(1 + |a|2−n)−
2

n−2 −
|a|2 |y|2 − n 〈a, y〉2

|a|n+2

]

+O(|a|−n−1).

Proof. The standard formula for the change of the mean curvature
under a conformal change of the metric gives

H =
n− 1

r
(1+ |y+a|2−n)−

2
n−2

[

1+
2

n− 2

n
∑

i=1

yi
∂

∂yi
log(1+ |y+a|2−n)

]

.

Note that

(1 + |y + a|2−n)−
2

n−2

= (1 + |a|2−n)−
2

n−2

[

1 + (1 + |a|2−n)−1
(

2
〈a, y〉

|a|n
+

|a|2 |y|2 − n 〈a, y〉2

|a|n+2

)

]

+O(|a|−n−1).

Similarly,

log(1 + |y + a|2−n)

= log(1 + |a|2−n)− (n− 2) (1 + |a|2−n)−1
(〈a, y〉

|a|n
+

|a|2 |y|2 − n 〈a, y〉2

2 |a|n+2

)

+O(|a|−n−1).
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Hence

n
∑

i=1

yi
∂

∂yi
log(1 + |y + a|2−n)

= −(n− 2) (1 + |a|2−n)−1
( 〈a, y〉

|a|n
+

|a|2 |y|2 − n 〈a, y〉2

|a|n+2

)

+O(|a|−n−1).

Putting these facts together, we obtain

(1 + |y + a|2−n)−
2

n−2

[

1 +
2

n− 2

n
∑

i=1

yi
∂

∂yi
log(1 + |y + a|2−n)

]

= (1 + |a|2−n)−
2

n−2

[

1− (1 + |a|2−n)−1 |a|
2 |y|2 − n 〈a, y〉2

|a|n+2

]

+O(|a|−n−1).

From this, the assertion follows. q.e.d.

Proposition 17 shows that the isoperimetric ratio of the ball Br ⊂
(M̄, ḡ) is greater than the isoperimetric ratio of a ball in Euclidean
space. We overcome this obstacle by perturbing the coordinate ball Br

in a suitable way. Let us define a function f : ∂Br → R by

f(y) =
(n− 1) r

n+ 1

|a|2 r2 − n 〈a, y〉2

|a|n+2
+ c,

where the constant c is chosen such that
∫

∂Br
f dµḡ = 0. Clearly, c =

O(|a|−n−1) and f = O(|a|−n). We now consider the graph

Σ = {expy(f(y) ν(y)) : y ∈ ∂Br},

where exp denotes the exponential map with respect to ḡ and ν denotes
the unit normal to ∂Br with respect to ḡ. Moreover, let Ω denote the
region enclosed by Σ.

Proposition 19. We have

H
n−1
ḡ (Σ) = ωn−1 r

n−1 (1 + |a|2−n)
2(n−1)
n−2

·

[

1 +
(n− 1) r2

|a|2n−2
(1 + |a|2−n)−2

+
n(n− 1)2(3n2 − 6n+ 7)

2(n + 2)(n + 1)2
r4

|a|2n
+O(|a|−2n−1)

]



404 S. BRENDLE & M. EICHMAIR

and

volḡ(Ω) =
1

n
ωn−1 r

n (1 + |a|2−n)
2n
n−2

·

[

1 +
n r2

|a|2n−2
(1 + |a|2−n)−2

+
n(n− 1)(3n4 + 6n3 − 13n2 + 24n− 8)

2(n+ 2)(n + 4)(n + 1)2
r4

|a|2n
+O(|a|−2n−1)

]

as |a| → ∞.

Proof. The surface area of Σ is given by

H
n−1
ḡ (Σ) = H

n−1
ḡ (∂Br) +

∫

∂Br

H f dµḡ

+
1

2

∫

∂Br

(

|∇f |2 +H2 f2 − |II|2 f2 − Ric(ν, ν) f2
)

dµḡ

+O(|a|−2n−1).

Moreover, the volume of Ω satisfies

volḡ(Ω) = volḡ(Br) +
1

2

∫

∂Br

H f2 dµḡ +O(|a|−2n−1).

Using the identity

H =
n− 1

r

[

(1 + |a|2−n)−
2

n−2 −
|a|2 |y|2 − n 〈a, y〉2

|a|n+2

]

+O(|a|−n−1)

and the relation
∫

∂Br
f dµḡ = 0, we obtain

∫

∂Br

H f dµḡ = −
n− 1

r

∫

∂Br

|a|2 r2 − n 〈a, y〉2

|a|n+2
f dµḡ +O(|a|−2n−1)

= −
(n− 1)2

n+ 1

∫

∂Br

(|a|2 r2 − n 〈a, y〉2)2

|a|2n+4
dµḡ +O(|a|−2n−1).

Moreover, the function f satisfies

∆∂Br
f = −

2n(n− 1)

(n+ 1)r

|a|2 r2 − n 〈a, y〉2

|a|n+2
+O(|a|−n−1).

Hence

∆∂Br
f −

(n− 2)(n − 1)

r2
f

= −
(n2 − n+ 2)(n − 1)

(n+ 1)r

|a|2 r2 − n 〈a, y〉2

|a|n+2
+O(|a|−n−1).
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Therefore, we have
∫

∂Br

(

|∇f |2 +H2 f2 − |II|2 f2 − Ric(ν, ν) f2
)

dµḡ

=

∫

∂Br

(

|∇f |2 +
(n− 2)(n − 1)

r2
f2

)

dµḡ +O(|a|−2n−1)

= −

∫

∂Br

(

∆∂Br
f −

(n− 2)(n − 1)

r2
f
)

f dµḡ +O(|a|−2n−1)

=
(n2 − n+ 2)(n − 1)2

(n+ 1)2

∫

∂Br

(|a|2 r2 − n 〈a, y〉2)2

|a|2n+4
dµḡ +O(|a|−2n−1).

Putting these facts together, we obtain

H
n−1
ḡ (Σ)

= H
n−1
ḡ (∂Br) +

∫

∂Br

H f dµḡ

+
1

2

∫

∂Br

(

|∇f |2 +H2 f2 − |II|2 f2 − Ric(ν, ν) f2
)

dµḡ +O(|a|−2n−1)

= H
n−1
ḡ (∂Br) +

n(n− 3)(n − 1)2

2(n + 1)2

∫

∂Br

(|a|2 r2 − n 〈a, y〉2)2

|a|2n+4
dµḡ

+O(|a|−2n−1)

= H
n−1
ḡ (∂Br) +

n(n− 3)(n − 1)3

(n+ 2)(n + 1)2
ωn−1

rn+3

|a|2n
+O(|a|−2n−1)

and

volḡ(Ω) = volḡ(Br) +
n− 1

2r

∫

∂Br

f2 dµḡ +O(|a|−2n−1)

= volḡ(Br) +
(n− 1)3 r

2(n+ 1)2

∫

∂Br

(|a|2 r2 − n 〈a, y〉2)2

|a|2n+4
dµḡ

+O(|a|−2n−1)

= volḡ(Br) +
(n− 1)4

(n+ 2)(n + 1)2
ωn−1

rn+4

|a|2n
+O(|a|−2n−1).

Hence, the assertion follows from Proposition 17. q.e.d.

Corollary 20. We have

H
n−1
ḡ (Σ) = (nn−1 ωn−1)

1
n volḡ(Ω)

n−1
n

·

[

1−
2(n− 2)(n − 1)2

(n + 1)(n + 2)(n + 4)

r4

|a|2n
+O(|a|−2n−1)

]

as |a| → ∞.
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