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KOHN–ROSSI COHOMOLOGY

AND ITS APPLICATION TO THE

COMPLEX PLATEAU PROBLEM, III

Rong Du & Stephen Yau

Abstract

LetX be a compact connected strongly pseudoconvex CR man-
ifold of real dimension 2n − 1 in CN . It has been an interesting
question to find an intrinsic smoothness criteria for the complex
Plateau problem. For n ≥ 3 and N = n+1, Yau found a necessary
and sufficient condition for the interior regularity of the Harvey–
Lawson solution to the complex Plateau problem by means of
Kohn–Rossi cohomology groups on X in 1981. For n = 2 and
N ≥ n + 1, the problem has been open for over 30 years. In
this paper we introduce a new CR invariant g(1,1)(X) of X . The
vanishing of this invariant will give the interior regularity of the
Harvey–Lawson solution up to normalization. In the case n = 2
and N = 3, the vanishing of this invariant is enough to give the
interior regularity.

Dedicated to Professor Blaine Lawson on the occasion of his 68th Birthday.

1. Introduction

One of the natural fundamental questions of complex geometry is
to study the boundaries of complex varieties. For example, the famous
classical complex Plateau problem asks which odd-dimensional real sub-
manifolds of CN are boundaries of complex sub-manifolds in C

N . In
their beautiful seminal paper, Harvey and Lawson [Ha-La] proved that
for any compact connected CR manifold X of real dimension 2n − 1,
n ≥ 2, in C

N , there is a unique complex variety V in C
N such that the

boundary of V is X. In fact, Harvey and Lawson proved the following
theorem.

Theorem (Harvey–Lawson [Ha-La1, Ha-La2]) Let X be an embed-
dable strongly pseudoconvex CR manifold. Then X can be CR embed-

ded in some C
Ñ and X bounds a Stein variety V ⊆ C

Ñ with at most
isolated singularities.
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The above theorem is one of the deepest theorems in complex geome-
try. It relates the theory of strongly pseudoconvex CR manifolds on the
one hand and the theory of isolated normal singularities on the other
hand.

The next fundamental question is to determine whenX is a boundary
of a complex sub-manifold in C

N , i.e., when V is smooth. In 1981, Yau
[Ya] solved this problem for the case n ≥ 3 by calculation of Kohn–Rossi
cohomology groups Hp,q

KR(X). More precisely, suppose X is a compact
connected strongly pseudoconvex CR manifold of real dimension 2n−1,
n ≥ 3, in the boundary of a bounded strongly pseudoconvex domain D
in C

n+1. ThenX is a boundary of the complex sub-manifold V ⊂ D−X
if and only if Kohn–Rossi cohomology groups Hp,q

KR(X) are zeros for
1 ≤ q ≤ n− 2 (see Theorem 4.1).

Kohn–Rossi cohomology introduced by Kohn and Rossi [Ko-Ro] in
1965 is a fundamental invariant of CR manifold. In the recent work
of Huang, Luk, and Yau [H-L-Y], it was shown that the Kohn–Rossi
cohomology plays an important role in the simultaneous CR embedding
of a family of strongly pseudoconvex CR manifolds of dimension at
least 5.

For n = 2, i.e., X is a 3-dimensional CR manifold, the intrinsic
smoothness criteria for the complex Plateau problem remains unsolved
for over a quarter of a century even for the hypersurface case. The
main difficulty is that the Kohn–Rossi cohomology groups are infinite-
dimensional in this case. Let V be a complex variety with X as its
boundary. Then the singularities of V are surface singularities. In [Lu-
Ya2], the holomorphic De Rham cohomology, which is derived form
Kohn–Rossi cohomology, is considered to determine what kind of sin-
gularities can happen in V . In fact, in [Ta], Tanaka introduced a spec-
tral sequence Ep,q

r (X) with Ep,q
1 (X) being the Kohn–Rossi cohomology

group and Ek,0
2 (X) being the holomorphic De Rham cohomology de-

noted by Hk
h(X). So consideration of De Rham cohomology is natural

in the case of n = 2. Motivated by the deep work of Siu [Si], Luk and
Yau introduced the Siu complex and s-invariant (see Definition 3.2, be-
low) for isolated singularity (V, 0) and proved a theorem in [Lu-Ya2] that
if (V, 0) is a Gorenstein surface singularity with vanishing s-invariant,
then (V, 0) is a quasihomogeneous singularity whose link is rational ho-
mology sphere. In [Lu-Ya2], they proved that if X is a strongly pseu-
doconvex compact Calabi–Yau CR manifold of dimension 3 contained
in the boundary of a strongly pseudoconvex bounded domain D in C

N

and the holomorphic De Rham cohomology H2
h(X) vanishes, then X is

a boundary of a complex variety V in D with boundary regularity and
V has only isolated singularities in the interior and the normalizations
of these singularities are Gorenstein surface singularities with vanishing
s-invariant (see Theorem 4.4). As a corollary of this theorem, they get
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that if N = 3, the variety V bounded by X has only isolated quasi-
homogeneous singularities such that the dual graphs of the exceptional
sets in the resolution are star shaped and all the curves are rational (see
Corollary 4.5). Even though one cannot judge when X is a boundary
of a complex manifold with the vanishing of H2

h(X), it is a fundamental
step toward the solution of the regularity of the complex Plateau prob-
lem. In this paper, we introduce a new CR invariant g(1,1)(X) which
has independent interest besides its application to the complex Plateau
problem. Roughly speaking, our new invariant g(1,1)(X) is the number
of independent holomorphic 2-forms on X which cannot be written as
a linear combination of those elements of the form holomorphic 1-form
wedge with holomorphic 1-form on X . This new invariant will allow
us to solve the intrinsic smoothness criteria up to normalization for the
classical complex Plateau problem for n = 2.

Theorem A Let X be a strongly pseudoconvex compact Calabi–
Yau CR manifold of dimension 3. Suppose that X is contained in the
boundary of a strongly pseudoconvex bounded domain D in C

N with
H2

h(X) = 0. Then X is a boundary of the complex sub-manifold up
to normalization V ⊂ D − X with boundary regularity if and only if
g(1,1)(X) = 0.

Thus, the interior regularity of the complex Plateau problem is solved
up to normalization. As a corollary of Theorem A, we have solved the
interior regularity of the complex Plateau problem in case X is of real
codimension 3 in C

3.

Theorem B Let X be a strongly pseudoconvex compact CR mani-
fold of dimension 3. Suppose that X is contained in the boundary of
a strongly pseudo-convex bounded domain D in C

3 with H2
h(X) = 0.

Then X is a boundary of the complex sub-manifold V ⊂ D −X if and
only if g(1,1)(X) = 0.

In Section 2, we shall recall the definition of holomorphic De Rham
cohomology for a CR manifold. In Section 3, after recalling several local
invariants of isolated singularity, we introduce some new invariants of
singularities and new CR invariants for CR manifolds. In Section 4, we
prove the main theorem of this paper.

Finally, we would like to thank Professor Lawrence Ein and Professor
Anatoly Libgober for helpful discussions.

Acknowledgments. R. Du’s research was supported by the National
Natural Science Foundation of China and the Innovation Foundation
of East China Normal University. S. Yau’s research was partially sup-
ported by NSF and Department of Mathematical Sciences, Tsinghua
University, Beijing, P.R. China.
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2. Preliminaries

Kohn–Rossi cohomology was first introduced by Kohn–Rossi. Fol-
lowing Tanaka [Ta], we reformulate the definition in a way independent
of the interior manifold.

Definition 2.1. Let X be a connected orientable manifold of real
dimension 2n − 1. A CR structure on X is an (n − 1)-dimensional
sub-bundle S of CT (X) (complexified tangent bundle) such that:

1 . S
⋂

S̄ = {0}.
2 . If L, L′ are local sections of S, then so is [L,L′].

Such a manifold with a CR structure is called a CR manifold. There
is a unique sub-bundleH of T (X) such that CH = S

⊕
S̄. Furthermore,

there is a unique homomorphism J : H −→ H such that J2 = −1 and
S = {v − iJv : v ∈ H}. The pair (H, J) is called the real expression of
the CR structure.

Let X be a CR manifold with structure S. For a complex valued C∞

function u defined on X, the section ∂̄bu ∈ Γ(S̄∗) is defined by

∂̄bu(L̄) = L̄(u), L ∈ S.

The differential operator ∂̄b is called the (tangential) Cauchy–Riemann
operator, and a solution u of the equation ∂̄bu = 0 is called a holomor-
phic function.

Definition 2.2. A complex vector bundle E over X is said to be
holomorphic if there is a differential operator

∂̄E : Γ(E) −→ Γ(E ⊗ S̄∗)

satisfying the following conditions:

1 . ∂̄E(fu)(L̄1) = (∂̄bf)(L̄1)u+ f(∂̄Eu)(L̄1) = (L̄1f)u+ f(∂̄Eu)(L̄1).
2. (∂̄Eu)[L̄1, L̄2] = ∂̄E(∂̄Eu(L̄2))(L̄1) − ∂̄E(∂̄Eu(L̄1))(L̄2), where u ∈

Γ(E), f ∈ C∞(X), and L1, L2 ∈ Γ(S).

The operator ∂̄E is called the Cauchy–Riemann operator and a solu-
tion u of the equation ∂̄Eu = 0 is called a holomorphic cross section.

A basic holomorphic vector bundle over a CR manifoldX is the vector

bundle T̂ (X) = CT (X)/S̄. The corresponding operator ∂̄ = ∂̄
T̂ (X) is

defined as follows. Let p be the projection from CT (X) to T̂ (X). Take

any u ∈ Γ(T̂ (X)) and express it as u = p(Z), Z ∈ Γ(CT (X)). For any

L ∈ Γ(S), define a cross section (∂̄u)(L̄) of T̂ (X) by (∂̄u)(L̄) = p([L̄, Z]).
One can show that (∂̄u)(L̄) does not depend on the choice of Z and that

∂̄u gives a cross section of T̂ (X)⊗ S̄∗. Furthermore, one can show that
the operator u 7−→ ∂̄u satisfies (1) and (2) of Definition 2.2, using the
Jacobi identity in the Lie algebra Γ(CT (X)). The resulting holomorphic

vector bundle T̂ (X) is called the holomorphic tangent bundle of X.
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If X is a real hypersurface in a complex manifold M , we may iden-

tify T̂ (X) with the holomorphic vector bundle of all (1, 0) tangent vec-

tors to M and T̂ (X) with the restriction of T̂ (M) to X. In fact,
since the structure S of X is the bundle of all (1, 0) tangent vec-
tors to X, the inclusion map CT (X) −→ CT (M) induces a natural

map T̂ (X)
φ

−−→ T̂ (M)|X which is a bundle isomorphism satisfying

∂̄(φ(u))(L̄) = φ(∂̄u(L̄)), u ∈ Γ(T̂ (X)), L ∈ S.
For a holomorphic vector bundle E over X, set

Cq(X,E) = E ⊗ ∧qS̄∗,C q(X,E) = Γ(Cq(X,E))

and define a differential operator

∂̄q
E : C

q(X,E) −→ C
q+1(X,E)

by

(∂̄q
Eφ)(L̄1, . . . , L̄q+1) =

∑

i

(−1)i+1∂̄E(φ(L̄1, . . . ,
̂̄Li, . . . , L̄q+1))(L̄i)

+
∑

i<j

(−1)i+jφ([L̄i, L̄j], L̄1, . . . ,
̂̄Li, . . . , L̄q+1)

for all φ ∈ C q(X,E) and L1, . . . , Lq+1 ∈ Γ(S). One shows by standard

arguments that ∂̄q
Eφ gives an element of C q+1(X,E) and that ∂̄q+1

E ∂̄q
E =

0. The cohomology groups of the resulting complex {C q(X,E), ∂̄q
E} is

denoted by Hq(X,E).
Let {A k(X), d} be the De Rham complex of X with complex coef-

ficients, and let Hk(X) be the De Rham cohomology groups. There
is a natural filtration of the De Rham complex, as follows. For any
integer p and k, put Ak(X) = ∧k(CT (X)∗) and denote by F p(Ak(X))
the sub-bundle of Ak(X) consisting of all φ ∈ Ak(X) which satisfy the
equality

φ(Y1, . . . , Yp−1, Z̄1, . . . , Z̄k−p+1) = 0

for all Y1, . . . , Yp−1 ∈ CT (X)0 and Z1, . . . , Zk−p+1 ∈ S0, 0 being the
origin of φ. Then

Ak(X) = F 0(Ak(X)) ⊃ F 1(Ak(X)) ⊃ · · ·

⊃ F k(Ak(X)) ⊃ F k+1(Ak(X)) = 0.

Setting F p(A k(X)) = Γ(F p(Ak(X))), we have

A
k(X) = F 0(A k(X)) ⊃ F 1(A k(X)) ⊃ · · ·

⊃ F k(A k(X)) ⊃ F k+1(A k(X)) = 0.

Since clearly dF p(A k(X)) ⊆ F p(A k+1(X)), the collection {F p(A k(X))}
gives a filtration of the De Rham complex.
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We denote by Hp,q
KR(X) the groups Ep,q

1 (X) of the spectral sequence

{Ep,q
r (X)} associated with the filtration {F p(A k(X))}. We callHp,q

KR(X)
the Kohn–Rossi cohomology group of type (p, q). More explicitly, let

Ap,q(X) = F p(Ap+q(X)),A p,q(X) = Γ(Ap,q(X)),

Cp,q(X) = Ap,q(X)/Ap+1,q−1(X),C p,q(X) = Γ(Cp,q(X)).

Since d : A p,q(X) −→ A p,q+1(X) maps A p+1,q−1(X) into A p+1,q(X),
it induces an operator d′′ : C p,q(X) −→ C p,q+1(X). Hp,q

KR(X) are then
the cohomology groups of the complex {C p,q(X), d′′}.

Alternatively, Hp,q
KR(X) may be described in terms of the vector bun-

dle Ep = ∧p(T̂ (X)∗). If for φ ∈ Γ(Ep), u1, . . . , up ∈ Γ(T̂ (X)), Y ∈ S,
we define (∂̄Epφ)(Ȳ ) = Ȳ φ by

Ȳ φ(u1, . . . , up) = Ȳ (φ(u1, . . . , up)) +
∑

i

(−1)iφ(Ȳ ui, u1, . . . , ûi, . . . , up)

where Ȳ ui = (∂̄
T̂ (X)ui)(Ȳ ), then we easily verify that Ep with ∂̄Ep is

a holomorphic vector bundle. Tanaka [Ta] proves that Cp,q(X) may be
identified with Cq(X,Ep) in a natural manner such that

d′′φ = (−1)p∂̄Epφ, φ ∈ C
p,q(X).

Thus, Hp,q
KR(X) may be identified with Hq(X,Ep).

We denote by Hk
h(X) the groups Ek,0

2 (X) of the spectral sequence

{Ep,q
r (X)} associated with the filtration {F p(A k(X))}. We call Hk

h(X)

the holomorphic De Rham cohomology groups. The groups Hk
h(X)

are the cohomology groups of the complex {S k(X), d}, where we put

S k(X) = Ek,0
1 (X) and d = d1 : E

k,0
1 −→ Ek+1,0

1 . Recall that S k(X) is
the kernel of the following mapping:

d0 : E
k,0
0 = F k

A
k = A

k,0(X)

→ Ek,1
0 = F k

A
k+1/F k+1

A
k+1 = A

k,1(X)/A k+1,0.

Note that S may be characterized as the space of holomorphic k-
forms, namely holomorphic cross sections of Ek. Thus, the complex
{S k(X), d} (respectively, the groups Hk

h(X)) will be called the holo-
morphic De Rham complex (respectively, the holomorphic De Rham
cohomology groups).

Definition 2.3. Let L1, . . . , Ln−1 be a local frame of the CR structure
S on X so that L̄1, . . . , L̄n−1 is a local frame of S̄. Since S ⊕ S̄ has
complex codimension 1 in CT (X), we may choose a local section N of
CT (X) such that L1, . . . , Ln−1, L̄1, . . . , L̄n−1, N span CT (X). We may
assume that N is purely imaginary. Then the matrix (cij) defined by

[Li, L̄j ] =
∑

k

aki,jLk +
∑

k

bki,jL̄k + ci,jN

is Hermitian, and it is called the Levi form of X.



COMPLEX PLATEAU PROBLEM 257

Proposition 2.4. The number of nonzero eigenvalues and the abso-
lute value of the signature of (cij) at each point are independent of the
choice of L1, . . . , Ln−1, N .

Definition 2.5. X is said to be strongly pseudoconvex if the Levi
form is positive definite at each point of X.

Definition 2.6. Let X be a CR manifold of real dimension 2n−1. X
is said to be Calabi–Yau if there exists a nowhere vanishing holomorphic

section in Γ(∧nT̂ (X)∗), where T̂ (X) is the holomorphic tangent bundle
of X.

Remark:

1 . Let X be a CR manifold of real dimension 2n− 1 in C
n. Then X

is a Calabi–Yau CR manifold.
2 . Let X be a strongly pseudoconvex CR manifold of real dimension

2n−1 contained in the boundary of bounded strongly pseudocon-
vex domain in C

n+1. Then X is a Calabi–Yau CR manifold.

3. Invariants of singularities and CR-invariants

Let V be a n-dimensional complex analytic subvariety in C
N with only

isolated singularities. In [Ya2], Yau considered four kinds of sheaves of
germs of holomorphic p-forms:

1 . Ω̄p
V := π∗Ω

p
M , where π : M −→ V is a resolution of singularities

of V .
2 . ¯̄Ωp

V := θ∗Ω
p

V \Vsing
where θ : V \Vsing −→ V is the inclusion map

and Vsing is the singular set of V .
3 . Ωp

V := Ωp

CN/K
p, where K p = {fα + dg ∧ β : α ∈ Ωp

CN ;β ∈

Ωp−1
CN ; f, g ∈ I } and I is the ideal sheaf of V in C

N .

4 . Ω̃p
V := Ωp

CN/H
p, where H p = {ω ∈ Ωp

CN : ω|V \Vsing
= 0}.

Clearly Ωp
V , Ω̃

p
V are coherent. Ω̄p

V is a coherent sheaf because π is

a proper map. ¯̄Ωp
V is also a coherent sheaf by a theorem of Siu (see

Theorem A of [Si]). If V is a normal variety, the dualizing sheaf ωV of

Grothendieck is actually the sheaf ¯̄Ωn
V .

Definition 3.1. The Siu complex is a complex of coherent sheaves J•

supported on the singular points of V which is defined by the following
exact sequence:

(3.1) 0 −→ Ω̄• −→ ¯̄Ω• −→ J• −→ 0.

Definition 3.2. Let V be a n-dimensional Stein space with 0 as its
only singular point. Let π : (M,A) → (V, 0) be a resolution of the
singularity with A as exceptional set. The geometric genus pg and the
irregularity q of the singularity are defined as follows (see [Ya2, St-St]):

(3.2) pg := dimΓ(M\A,Ωn)/Γ(M,Ωn),
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(3.3) q := dimΓ(M\A,Ωn−1)/Γ(M,Ωn−1),

(3.4) g(p) := dimΓ(M,Ωp
M )/π∗Γ(V,Ωp

V ).

The s-invariant of the singularity is defined as follows:

(3.5) s := dimΓ(M\A,Ωn)/[Γ(M,Ωn) + dΓ(M\A,Ωn−1)].

Lemma 3.3. ([Lu-Ya2]) Let V be a n-dimensional Stein space with
0 as its only singular point. Let π : (M,A) → (V, 0) be a resolution of
the singularity with A as exceptional set. Let J• be the Siu complex of
coherent sheaves supported on 0. Then:

1 . dimJn = pg.
2 . dimJn−1 = q.
3 . dimJ i = 0, for 1 ≤ i ≤ n− 2.

Proposition 3.4. ([Lu-Ya2]) Let V be a n-dimensional Stein space
with 0 as its only singular point. Let π : (M,A) → (V, 0) be a resolution
of the singularity with A as exceptional set. Let J• be the Siu complex
of coherent sheaves supported on 0. Then the s-invariant is given by

(3.6) s := dimHn(J•) = pg − q

and

(3.7) dimHn−1(J•) = 0.

LetX be a compact connected strongly pseudoconvex CRmanifold of
real dimension 3, in the boundary of a bounded strongly pseudoconvex
domain D in C

N . By Harvey and Lawson [Ha-La], there is a unique
complex variety V in C

N such that the boundary of V is X. Let π :
(M,A1, · · · , Ak) → (V, 01, · · · , 0k) be a resolution of the singularities
with Ai = π−1(0i), 1 ≤ i ≤ k, as exceptional sets. Then the s-invariant
defined in Definition 3.2 is CR invariant, which is also called s(X).

In order to solve the classical complex Plateau problem, we need
to find some CR-invariant which can be calculated directly from the
boundary X and the vanishing of this invariant will give the regularity
of Harvey–Lawson solution to the complex Plateau problem.

For this purpose, we define a new sheaf ¯̄Ω1,1
V .

Definition 3.5. Let (V, 0) be a Stein germ of a 2-dimensional an-
alytic space with an isolated singularity at 0. Define a sheaf of germs
¯̄Ω1,1
V by the sheaf associated to the presheaf

U 7→< Γ(U, ¯̄Ω1
V ) ∧ Γ(U, ¯̄Ω1

V ) >,

where U is an open set of V .

Lemma 3.6. Let V be a 2-dimensional Stein space with 0 as its only
singular point in C

N . Let π : (M,A) → (V, 0) be a resolution of the
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singularity with A as exceptional set. Then ¯̄Ω1,1
V is coherent and there

is a short exact sequence

(3.8) 0 −→ ¯̄Ω1,1
V −→ ¯̄Ω2

V −→ G
(1,1) −→ 0

where G (1,1) is a sheaf supported on the singular point of V . Let
(3.9)

G(1,1)(M\A) := Γ(M\A,Ω2
M )/ < Γ(M\A,Ω1

M ) ∧ Γ(M\A,Ω1
M ) >;

then dimG
(1,1)
0 = dimG(1,1)(M\A).

Proof. Since the sheaf of germ ¯̄Ω1
V is coherent by a theorem of Siu

(see Theorem A of [Si]), for any point w ∈ V there exists an open

neighborhood U of w in V such that Γ(U, ¯̄Ω1
V ) is finitely generated over

Γ(U,OV ). So Γ(U, ¯̄Ω1
V ) ∧ Γ(U, ¯̄Ω1

V ) is finitely generated over Γ(U,OV ),

which means Γ(U, ¯̄Ω1,1
V ) is finitely generated over Γ(U,OV ) – i.e., ¯̄Ω1,1

V is

a sheaf of finite type. It is obvious that ¯̄Ω1,1
V is a subsheaf of ¯̄Ω2

V which

is also coherent. So ¯̄Ω1,1
V is coherent.

Notice that the stalk of ¯̄Ω1,1
V and ¯̄Ω2

V coincide at each point different

from the singular point 0, so G (1,1) is supported at 0. And from Cartan
Theorem B

dimG
(1,1)
0 = dimΓ(V, ¯̄Ω2

V )/Γ(V,
¯̄Ω1,1
V ) = dimG(1,1)(M\A).

q.e.d.

Thus, from Lemma 3.6, we can define a local invariant of a singularity
which is independent of resolution.

Definition 3.7. Let V be a 2-dimensional Stein space with 0 as its
only singular point. Let π : (M,A) → (V, 0) be a resolution of the
singularity with A as exceptional set. Let

(3.10) g(1,1)(0) := dimG
(1,1)
0 = dimG(1,1)(M\A).

We will omit 0 in g(1,1)(0) if there is no confusion from the context.
Let π : (M,A1, · · · , Ak) → (V, 01, · · · , 0k) be a resolution of the sin-

gularities with Ai = π−1(0i), 1 ≤ i ≤ k, as exceptional sets. In this
case, we still let

G(1,1)(M\A) := Γ(M\A,Ω2
M )/ < Γ(M\A,Ω1

M ) ∧ Γ(M\A,Ω1
M ) > .

Definition 3.8. If X is a compact connected strongly pseudoconvex
CR manifold of real dimension 3 which is in the boundary of a bounded
strongly pseudoconvex domain D in C

N . Suppose V in C
N such that

the boundary of V is X. Let π : (M,A =
⋃

i Ai) → (V, 01, · · · , 0k)
be a resolution of the singularities with Ai = π−1(0i), 1 ≤ i ≤ k, as
exceptional sets. Let
(3.11)

G(1,1)(M\A) := Γ(M\A,Ω2
M )/ < Γ(M\A,Ω1

M ) ∧ Γ(M\A,Ω1
M ) >
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and

(3.12) G(1,1)(X) := S
2(X)/ < S

1(X) ∧ S
1(X) >

where S p are holomorphic cross sections of ∧p(T̂ (X)∗). Then we set

(3.13) g(1,1)(M\A) := dimG(1,1)(M\A),

(3.14) g(1,1)(X) := dimG(1,1)(X).

Lemma 3.9. Let X be a compact connected strongly pseudoconvex
CR manifold of real dimension 3 which bounds a bounded strongly
pseudoconvex variety V with only isolated singularities {01, · · · , 0k} in
C
N . Let π : (M,A1, · · · , Ak) → (V, 01, · · · , 0k) be a resolution of the

singularities with Ai = π−1(0i), 1 ≤ i ≤ k, as exceptional sets. Then
g(1,1)(X) = g(1,1)(M\A), where A = ∪Ai, 1 ≤ i ≤ k.

Proof. Take a one-convex exhausting function φ onM such that φ ≥ 0
on M and φ(y) = 0 if and only if y ∈ A. Set Mr = {y ∈ M,φ(y) ≥ r}.
Since X = ∂M is strictly pseudoconvex, any holomorphic p-form θ ∈
S p(X) can be extended to a one-sided neighborhood of X in M . Hence,
θ can be thought of as holomorphic p-form on Mr– i.e., an element
in Γ(Mr,Ω

p
Mr

). By Andreotti and Grauert ([An-Gr]), Γ(Mr,Ω
p
Mr

) is

isomorphic to Γ(M\A,Ωp
M ). So g(1,1)(X) = g(1,1)(M\A). q.e.d.

By Lemma 3.9 and the proof of Lemma 3.6, we can get the following
lemma easily.

Lemma 3.10. Let X be a compact connected strongly pseudoconvex
CR manifold of real dimension 3, which bounds a bounded strongly
pseudoconvex variety V with only isolated singularities {01, · · · , 0k} in

C
N . Then g(1,1)(X) =

∑
i g

(1,1)(0i) =
∑

i dimG
(1,1)
0i

.

The following proposition is to show that g(1,1) is bounded above.

Proposition 3.11. Let V be a 2-dimensional Stein space with 0 as
its only singular point. Then g(1,1) ≤ pg + g(2).

Proof. Since

g(1,1) = dimΓ(M\A,Ω2
M )/ < Γ(M\A,Ω1

M ) ∧ Γ(M\A,Ω1
M ) >,

pg = dimΓ(M\A,Ω2
M )/Γ(M,Ω2

M ),

g(2) := dimΓ(M,Ω2)/π∗Γ(V,Ω2
V ),

and

π∗Γ(V,Ω2
V ) =< π∗Γ(V,Ω1

V ) ∧ π∗Γ(V,Ω1
V ) >

⊆ Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M )

⊆ Γ(M\A,Ω1
M ) ∧ Γ(M\A,Ω1

M ),

(3.15)

the result follows. q.e.d.
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The following theorem is the crucial part for the classical complex
Plateau problem.

Theorem 3.12. Let V be a 2-dimensional Stein space with 0 as its
only normal singular point with C

∗-action. Let π : (M,A) → (V, 0) be
a minimal good resolution of the singularity with A as exceptional set,
then g(1,1) ≥ 1.

Proof. If dimΓ(M\A,Ω2
M )/Γ(M,Ω2

M ) > 0, then there exists

ω0 ∈ Γ(M\A,Ω2
M )\Γ(M,Ω2

M ).

So ω0 must have pole along some irreducible component Ak of A. Sup-
pose ω has the highest order of pole along Ak and ω ∈ Γ(M\A,Ω2

M ).
Denote OrdAk

ω = r < 0. Let z1, · · · , zm be coordinate functions of Cm.
Choose a point b in Ak which is a smooth point of A. Let(x1, x2) be a
coordinate system centered at b such that Ak is given locally by x1 = 0
at b. Take the power series expansion of π∗(zj) around b:

(3.16) π∗(zj) = x
rj
1 fj, 1 ≤ j ≤ m,

where fj is holomorphic function such that fj(0, x2) 6= 0. So by the
choice of ω, min{r1, . . . , rm} > 0 > r.

Let ξV ∈ Γ(V,ΘV ), where ΘV := H omOV
(Ω1

V ,OV ), denote the gen-
erating vector field of the C

∗-action and iξV be the contraction map.

For some α ∈ Γ(V, ¯̄Ω1
V ), write α as a sum

∑
αj of quasi-homogeneous

elements where αj is a quasi-homogeous element of degree lj > 0. Let
LξV = iξV d+ diξV be the Lie derivation. Then

ljα
j = LξV α

j = iξV d(α
j) + diξV (α

j).

So

(3.17) Γ(V, ¯̄Ω1
V ) = d(Γ(V,OV )) + iξV (Γ(V,

¯̄Ω2
V )).

For minimal good resolution, we have π∗ΘM = ΘV (see [Bu-Wa]),
where ΘM is the vector field on M . Thus, there exists ξM which is
a lift of ξV – i.e., π∗ξM = ξV . We know that ξM is tangential to the
exceptional set, so

ξM ⊜ xa11 p
∂

∂x1
+ xa21 q

∂

∂x2
, a1 ≥ 1, a2 ≥ 0

where p and q are holomorphic functions.
Let iξM : Γ(M\A,Ω2

M ) −→ Γ(M\A,Ω1
M ) be the contraction map

corresponding to iξV . If ζ ∈ Γ(M\A,Ω2
M ) and ζ ⊜ xu1gdx1 ∧ dx2, then

iξM (ζ) ⊜ iξM (xu1gdx1 ∧ dx2) = −xu+a2
1 qgdx1 + xu+a1

1 pgdx2.

From (3.17),

Γ(M\A,Ω1
M ) = d(Γ(M\A,OM )) + iξM (Γ(M\A,Ω2

M )).
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Since V is normal , g(0) = 0 – i.e., Γ(M,OM ) = π∗(Γ(V,OV )). Moreover,
by the normality of (V, 0), Γ(M,OM ) = Γ(M\A,OM ).

We now prove that ω is not contained in< Γ(M\A,Ω1
M )∧Γ(M\A,Ω1

M ) >.
Consider η, ϕ ∈ Γ(M\A,Ω1

M ) locally around b
Suppose η = η1 + η2 and ϕ = ϕ1 + ϕ2, where η1, ϕ1 ∈ d(Γ(M,OM )),

η2, ϕ2 ∈ iξM (Γ(M\A,Ω2
M )). Let

η2 = iξM (ζ), ζ ⊜ xu1gdx1 ∧ dx2, g(0, x2) 6= 0

and
ϕ2 = iξM (ς), ς ⊜ xv1hdx1 ∧ dx2, h(0, x2) 6= 0.

So u and v are bounded lower by r.
Then

η ∧ ϕ = η1 ∧ ϕ1 + (η1 ∧ ϕ2 + η2 ∧ ϕ1) + η2 ∧ ϕ2.

Since

dπ∗(zi) ∧ dπ∗(zj) = (rix
ri+rj−1
1 fi

∂fj
∂x2

− rjx
ri+rj−1
1 fj

∂fi
∂x2

)dx1 ∧ dx2,

OrdAk
η1 ∧ ϕ1 ≥ 2 ·min{r1, . . . , rm} − 1 > r.

Write η2 and ϕ2 locally around b:

η2 ⊜ −xu+a2
1 qgdx1 + xu+a1

1 pgdx2,

ϕ2 ⊜ −xv+a2
1 qhdx1 + xv+a1

1 phdx2.

So η2 ∧ ϕ2 =⊜ 0.
Also notice that

dπ∗(zj) = rjx
rj−1
1 fjdx1 + x

rj
1

∂fj
∂x2

dx2.

So
OrdAk

η1 ∧ ϕ2 ≥ min{r1, . . . , rm}+ v > r

and
OrdAk

η2 ∧ ϕ1 ≥ min{r1, . . . , rm}+ u > r.

From the discussion above, we can get OrdAk
η ∧ ϕ > r.

Therefore, ω is not a linear combination of elements in< Γ(M\A,Ω1
M )∧

Γ(M\A,Ω1
M ) >.

If dimΓ(M\A,Ω2
M )/Γ(M,Ω2

M ) = 0, the singularity is rational. So
irregularity q = 0 (see [Ya4]). Then

Γ(M\A,Ω2
M )

< Γ(M\A,Ω1
M ) ∧ Γ(M\A,Ω1

M ) >
=

Γ(M,Ω2
M )

< Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) >
,

g(1,1) = dim
Γ(M,Ω2

M )

< Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) >
.

From [Ya3], the canonical bundle KM is generated by its global sections
in a neighborhood of the exceptional set. So there exists ω ∈ Γ(M,Ω2

M )
such that ω does not vanish along some irreducible component Ak of
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A. The rest of the argument is same as those arguments above with
r = 0 – i.e., we can get ω is not a linear combination of elements in
< Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >. So

g(1,1) = dim
Γ(M,Ω2

M )

< Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) >
≥ 1.

q.e.d.

4. The classical complex Plateau problem

In 1981, Yau [Ya] solved the classical complex Plateau problem for
the case n ≥ 3.

Theorem 4.1. ([Ya]) Let X be a compact connected strongly pseu-
doconvex CR manifold of real dimension 2n−1, n ≥ 3, in the boundary
of a bounded strongly pseudoconvex domain D in C

n+1. Then X is
a boundary of the complex sub-manifold V ⊂ D − X if and only if
Kohn–Rossi cohomology groups Hp,q

KR(X) are zeros for 1 ≤ q ≤ n− 2

Next, we want to use our new invariants introduced in § 3 to solve
the classical complex Plateau problem for the case n = 2.

First, we present some known results from the paper [Lu-Ya2].

Theorem 4.2. ([Lu-Ya2]) Let X be a compact connected (2n− 1)-
dimensional (n ≥ 2) strongly pseudoconvex CR manifold. Suppose that
X is the boundary of an n-dimensional strongly pseudoconvex manifold
M which is a modification of a Stein space V with only isolated singu-
larities {01, . . . , 0m}. Let A be the maximal compact analytic set in M
which can be blown down to {01, . . . , 0m}. Then:

1 . Hq
h(X) ∼= Hq

h(M\A) ∼= Hq
h(M), 1 ≤ q ≤ n− 1.

2 . Hn
h (X) ∼= Hn

h (M\A), dimHn
h (M\A) = dimHn

h (M)+ s, where s =
s1 + · · ·+ sm, si is the s-invariant of the singularity (V, 0i).

Theorem 4.3. ([Lu-Ya2]) Let (V, 0) be a Gorenstein surface singu-
larity. Let π : M → V be a good resolution with A = π−1(0) as excep-
tional set. Assume that M is contractible to A. If s = 0, then (V, 0)
is a quasi-homogeneous singularity, H1(A,C) = 0, dimH1(M,Ω1) =
dimH2(A,C) + dimH1(M,O), and H1

h(M) = H2
h(M) = 0. Conversely,

if (V, 0) is a 2-dimensional quasi-homogeneous Gorenstein singularity
and H1(A,C) = 0, then the s-invariant vanishes.

Theorem 4.4. ([Lu-Ya2]) Let X be a strongly pseudoconvex com-
pact Calabi–Yau CR manifold of dimension 3. Suppose that X is con-
tained in the boundary of a strongly pseudoconvex bounded domain D
in C

N . If the holomorphic De Rham cohomology H2
h(X) = 0, then X is

a boundary of a complex variety V in D with boundary regularity and
V has only isolated singularities in the interior and the normalizations
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of these singularities are Gorenstein surface singularities with vanishing
s-invariant.

Corollary 4.5. ([Lu-Ya2]) Let X be a strongly pseudoconvex com-
pact CR manifold of dimension 3. Suppose that X is contained in the
boundary of a strongly pseudoconvex bounded domain D in C

3. If the
holomorphic De Rham cohomology H2

h(X) = 0, then X is a boundary
of a complex variety V in D with boundary regularity and V has only
isolated quasi-homogeneous singularities such that the dual graphs of
the exceptional sets in the resolution are star shaped and all the curves
are rational.

So from several theorems above we can see that, in the paper [Lu-
Ya2], Luk and Yau give a sufficient condition H2

h(X) = 0 to determine
when X can bound some special singularities. However, even if both
H1

h(X) and H2
h(X) vanish, V still can be singular.

We use CR invariants given in the last section to get sufficient and
necessary conditions for the variety bounded by X being smooth after
normalization.

Theorem 4.6. Let X be a strongly pseudoconvex compact Calabi–
Yau CR manifold of dimension 3. Suppose that X is contained in the
boundary of a strongly pseudoconvex bounded domain D in C

N . Then
X is a boundary of the complex variety V ⊂ D − X with boundary
regularity and the variety is smooth after normalization if and only if
s-invariant and g(1,1)(X) vanish.

Proof. (⇒) : Since V is smooth after normalization, g(1,1)(X) = 0
follows from Lemma 3.10.

(⇐) : It is well known that X is a boundary of a variety V in D with
boundary regularity ([Lu-Ya, Ha-La2]). Since s = 0, X is a boundary
of the complex sub-manifold V ⊂ D − X with only isolated Goren-
stein quasi-homogeneous singularities {01, · · · , 0k} after normalization.
Let πi : Mi → Vi be the minimal good resolution of a sufficiently
small neighborhood Vi of 0i in V , 1 ≤ i ≤ k. From Theorem 3.12,
dimG(1,1)(Mi) > 0, which contradicts g(1,1)(X) = 0. So V is smooth.
q.e.d.

Corollary 4.7. LetX be a strongly pseudoconvex compact CRman-
ifold of dimension 3. Suppose that X is contained in the boundary of a
strongly pseudoconvex bounded domain D in C

3. Then X is a bound-
ary of the complex sub-manifold V ⊂ D −X if and only if s-invariant
and g(1,1)(X) vanish.

From Theorem 4.2, we know that if H2
h(X) = 0, and then s = 0. So

we can get a necessary and sufficient condition in terms of boundary X,
with H2

h(X) = 0, to determine when X is a boundary of a manifold up
to normalization.
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Corollary 4.8. Let X be a strongly pseudoconvex compact Calabi–
Yau CR manifold of dimension 3. Suppose that X is contained in the
boundary of a strongly pseudoconvex bounded domain D in C

N with
H2

h(X) = 0. Then X is a boundary of the complex sub-manifold up
to normalization V ⊂ D − X with boundary regularity if and only if
g(1,1)(X) = 0.

Corollary 4.9. LetX be a strongly pseudoconvex compact CRman-
ifold of dimension 3. Suppose that X is contained in the boundary of
a strongly pseudoconvex bounded domain D in C

3 with H2
h(X) = 0.

Then X is a boundary of the complex sub-manifold V ⊂ D −X if and
only if g(1,1)(X) = 0 .
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