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QUANTITATIVE EMBEDDED CONTACT HOMOLOGY

Michael Hutchings

Abstract

Define a “Liouville domain” to be a compact exact symplectic
manifold with contact-type boundary. We use embedded contact
homology to assign to each four-dimensional Liouville domain (or
subset thereof) a sequence of real numbers, which we call “ECH ca-
pacities”. The ECH capacities of a Liouville domain are defined in
terms of the “ECH spectrum” of its boundary, which measures the
amount of symplectic action needed to represent certain classes in
embedded contact homology. Using cobordism maps on embedded
contact homology (defined in joint work with Taubes), we show
that the ECH capacities are monotone with respect to symplectic
embeddings. We compute the ECH capacities of ellipsoids, poly-
disks, certain subsets of the cotangent bundle of T 2, and disjoint
unions of examples for which the ECH capacities are known. The
resulting symplectic embedding obstructions are sharp in some
interesting cases, for example for the problem of embedding an
ellipsoid into a ball (as shown by McDuff-Schlenk) or embedding
a disjoint union of balls into a ball. We also state and present ev-
idence for a conjecture under which the asymptotics of the ECH
capacities of a Liouville domain recover its symplectic volume.

1. Introduction

Define a Liouville domain to be a compact symplectic manifold (X,ω)
such that ω is exact, and there exists a contact form λ on ∂X with dλ =
ω|∂X . In this paper we introduce a new obstruction to symplectically
embedding one four-dimensional Liouville domain into another, which
turns out to be sharp in some interesting cases. For background on
symplectic embedding questions more generally we refer the reader to
[3] for an extensive discussion.

1.1. The main theorem. If (X,ω) is a four-dimensional Liouville do-
main, we use embedded contact homology to define a sequence of real
numbers

0 = c0(X,ω) < c1(X,ω) ≤ c2(X,ω) ≤ · · · ≤ ∞
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which we call the (distinguished) ECH capacities of (X,ω). The precise
definition of these numbers is given in §4.1. Our main result is:

Theorem 1.1. Let (X0, ω0) and (X1, ω1) be four-dimensional Liou-
ville domains. Suppose there is a symplectic embedding of (X0, ω0) into
the interior of (X1, ω1). Then

ck(X0, ω0) ≤ ck(X1, ω1)

for each positive integer k, and the inequality is strict when ck(X0, ω0) <
∞.

Note that in Theorem 1.1, the four-manifolds X0 and X1 and their
boundaries are not assumed to be connected. The proof of Theo-
rem 1.1 uses cobordismmaps on embedded contact homology induced by
“weakly exact symplectic cobordisms”, which are defined using Seiberg-
Witten theory by the construction in [12, 13].

1.2. Examples of ECH capacities. To see what Theorem 1.1 tells us,
we now present some computations of ECH capacities. Given positive
real numbers a, b, define the ellipsoid

(1.1) E(a, b) :=

{
(z1, z2) ∈ C

2

∣∣∣∣
π|z1|2
a

+
π|z2|2

b
≤ 1

}
.

In particular, define the ball

B(a) := E(a, a).

Also define the polydisk

(1.2) P (a, b) :=
{
(z1, z2) ∈ C

2
∣∣ π|z1|2 ≤ a, π|z2|2 ≤ b

}
.

All of these examples are given the restriction of the standard symplectic
form ω =

∑2
i=1 dxi dyi on R

4 = C
2. The first two are Liouville domains,

because the 1-form

(1.3) λ =
1

2

2∑

i=1

(xi dyi − yi dxi)

restricts to a contact form on the boundary of any smooth star-shaped
domain. The polydisk is not quite a Liouville domain because its bound-
ary is only piecewise smooth. However, as explained in §4.2, the defi-
nition of ECH capacities and Theorem 1.1 extend to arbitrary subsets
of symplectic four-manifolds. (One expects to still get decent symplec-
tic embedding obstructions for examples such as polydisks that can be
approximated by Liouville domains.)

To describe the ECH capacities of the ellipsoid, let (a, b)k denote the
kth smallest entry in the matrix of real numbers (am + bn)m,n∈N. We
then have:
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Proposition 1.2. The ECH capacities of an ellipsoid are given by

ck(E(a, b)) = (a, b)k+1.

Note that in the definition of “kth smallest” we count with repetitions.
For example:

Corollary 1.3. The ECH capacities of a ball are given by

ck(B(a)) = da,

where d is the unique nonnegative integer such that

d2 + d

2
≤ k ≤ d2 + 3d

2
.

Next we have:

Theorem 1.4. The ECH capacities of a polydisk are given by

ck(P (a, b)) = min
{
am+ bn

∣∣ (m,n) ∈ N
2, (m+ 1)(n + 1) ≥ k + 1

}
.

Finally, to compute the ECH capacities of a disjoint union of examples
whose ECH capacities are known, one can use:

Proposition 1.5. Let (Xi, ωi) be four-dimensional Liouville domains
for i = 1, . . . , n. Then

ck

(
n∐

i=1

(Xi, ωi)

)
= max

{
n∑

i=1

cki (Xi, ωi)

∣∣∣∣
n∑

i=1

ki = k

}
.

1.3. Examples of symplectic embedding obstructions. One can
now plug the above numbers into Theorem 1.1 to get explicit (but subtle,
number-theoretic) obstructions to symplectic embeddings.

1.3.1. An ellipsoid into a ball (or ellipsoid). For example, con-
sider the problem of symplectically embedding an ellipsoid into a ball.
By scaling, we can encode this problem into a single function as fol-
lows: Given a > 0, define f(a) to be the infimum over c ∈ R such
that the ellipsoid E(a, 1) symplectically embeds into the ball B(c). By
Theorem 1.1, Proposition 1.2, and Corollary 1.3, we have

(1.4) f(a) ≥ sup
k=2,3,...

(a, 1)k
(1, 1)k

= sup
d=1,2,...

1

d
(a, 1)(d2+3d+2)/2.

On the other hand, McDuff-Schlenk [19] computed the function f ex-
plicitly, obtaining a beautiful and complicated answer involving Fi-
bonacci numbers. Using their result, they confirmed that the reverse
inequality in (1.4) holds. Thus the ECH capacities give a sharp embed-
ding obstruction in this case.

Update 1.6. More recently, McDuff [17] has shown that the ECH
obstruction to symplectically embedding one ellipsoid into another is
sharp: int(E(a, b)) symplectically embeds into E(c, d) if and only if
(a, b)k ≤ (c, d)k for all k.
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1.3.2. A polydisk into a ball. Next let us consider the problem of
symplectically embedding a polydisk into a ball. Given a > 0, define
g(a) to be the infimum over c ∈ R such that the polydisk P (a, 1) sym-
plectically embeds into the ball B(c). By Theorems 1.1 and 1.4 and
Corollary 1.3, we have

g(a) ≥ sup
d=1,2,...

min

{
am+ n

d

∣∣∣∣ (m,n) ∈ N
2,(1.5)

(m+ 1)(n + 1) ≥ (d+ 1)(d + 2)

2

}
.

Simple calculations in §7.2 then deduce:

Proposition 1.7. The obstruction to symplectically embedding a poly-
disk into a ball satisfies

(1.6) g(a) ≥





2, 1 ≤ a ≤ 2,
1 + a

2 , 2 ≤ a ≤ 3,
3
2 + a

3 , 3 ≤ a ≤ 4.

Note that when a 6= 2 this is better than the lower bound g(a) ≥
√
2a

obtained by considering volumes. For a slightly larger than 4, a more
complicated calculation which we omit shows that the best bound that
can be obtained from (1.5) is

g(a) ≥ 19

12
+

5a

16
,

which comes from taking d = 48 in (1.5). We do not know much about
the right hand side of (1.5) for larger a, although we do know that it

is always at least
√
2a, see §1.5 below. By analogy with [19] one might

guess that g(a) =
√
2a when a is sufficiently large.

Remark 1.8. We do not know to what extent the bound (1.5) is
sharp. In general, the obstruction from Theorem 1.1 to embedding a
polydisk into an ellipsoid is not always sharp. For example, Proposi-
tion 1.2 and Theorem 1.4 imply that P (1, 1) and E(1, 2) have the same
ECH capacities, namely

0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, . . . .

Thus the ECH capacities give no obstruction to symplectically embed-
ding P (1, 1) into E(a, 2a) for any a > 1, and in particular tell us
nothing more than volume comparison. However the Ekeland-Hofer
capacities give an obstruction to symplectically embedding P (1, 1) into
E(a, 2a) whenever a < 3/2. (The Ekeland-Hofer capacities of P (1, 1)
are 1, 2, 3, . . ., while those of E(a, 2a) are a, 2a, 2a, 3a, 4a, 4a, . . ., see
[3].) Note that P (1, 1) does symplectically embed into E(a, 2a) when-
ever a ≥ 3/2. Indeed, with the conventions of (1.1) and (1.2), P (1, 1)
is a subset of E(3/2, 3).
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1.3.3. A disjoint union of balls into a ball. The ECH capacities
give the following obstruction to symplectically embedding a disjoint
union of balls into a ball:

Proposition 1.9. Suppose there is a symplectic embedding of∐n
i=1B(ai) into the interior of B(1). Then

(1.7)

n∑

i=1

diai < d

whenever (d1, . . . , dn, d) are nonnegative integers (not all zero) satisfying
n∑

i=1

(d2i + di) ≤ d2 + 3d.

Proof. Let ki := (d2i + di)/2 for i = 1, . . . , n, let k :=
∑n

i=1 ki, and
let k′ := (d2 + 3d)/2. By Corollary 1.3 we have cki(B(ai)) = diai and
ck′(B(1)) = d. Then

n∑

i=1

diai =

n∑

i=1

cki(B(ai)) ≤ ck

(
n∐

i=1

B(ai)

)
< ck(B(1)) ≤ ck′(B(1)) = d.

Here the first inequality holds by Proposition 1.5, the second inequality
by Theorem 1.1, and the third inequality by our assumption that k ≤ k′.

q.e.d.

Remark 1.10. Proposition 1.9 is not new and, as explained to me
by Dusa McDuff, can also be deduced by applying Taubes’s “Seiberg-
Witten = Gromov” theorem [20] to a symplectic blowup of CP 2. The
interesting point is that Proposition 1.9, and thus ECH, gives a sharp
obstruction. Indeed, it follows from work of Biran [1, Thm. 3.2] that
there exists a symplectic embedding of

∐n
i=1 B(ai) into B(1 + ε) for all

ε > 0 if:

(i)
∑n

i=1 a
2
i ≤ 1, i.e. the volume of

∐
iB(ai) is less than or equal to

that of B(1), and
(ii) the inequality

∑n
i=1 diai ≤ d holds for all tuples of nonnegative

integers (d1, . . . , dn, d) satisfying
∑n

i=1 di = 3d− 1 and
∑n

i=1 d
2
i =

d2 + 1.

(As explained in [19, §1.2], results of [15, 18] imply that one can replace
the inequalities (ii) above by a certain subset thereof.) But Proposi-
tion 1.9 implies that conditions (i) and (ii) are also necessary for the
existence of a symplectic embedding. Note here that by Proposition 8.4
below, the inequalities (1.7) imply the volume constraint (i).

1.4. More examples of ECH capacities. We can also compute the
ECH capacities of certain subsets of the cotangent bundle of T 2 =
R
2/Z2, such as the unit disk bundle, using results from [8]. Let ‖ · ‖ be

a norm on R
2, regarded as a translation-invariant norm on TT 2. Let
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‖ · ‖∗ denote the dual norm on (R2)∗, which we regard as a translation-
invariant norm on T ∗T 2. That is, if ζ ∈ T ∗

q T
2, then

‖ζ‖∗ = max
{
〈ζ, v〉

∣∣ v ∈ TqT
2, ‖v‖ ≤ 1

}
.

Define
T‖·‖∗ :=

{
ζ ∈ T ∗T 2

∣∣ ‖ζ‖∗ ≤ 1
}
,

with symplectic form obtained by restricting the standard symplectic
form ω =

∑2
i=1 dpi dqi on T ∗T 2. Here q1, q2 denote the standard coor-

dinates on T 2, and p1, p2 denote the corresponding coordinates on the
cotangent fibers.

If ‖ · ‖ is smooth, then the unit ball in the dual norm ‖ · ‖∗ on R
2

is smooth, and T‖·‖∗ is a Liouville domain, because λ =
∑2

i=1 pidqi
restricts to a contact form on the boundary. For example, if ‖ · ‖ is
the Euclidean norm, then T‖·‖∗ is the unit disk bundle in the cotangent

bundle of T 2 with the standard flat metric.

Theorem 1.11. If ‖ · ‖ is a norm on R
2, then

(1.8) ck
(
T‖·‖∗

)
= min

{
ℓ‖·‖(Λ)

∣∣ |PΛ ∩ Z
2| = k + 1

}
.

Here the minimum is over convex polygons Λ in R
2 with vertices in Z

2,
and PΛ denotes the closed region bounded by Λ. Also ℓ‖·‖(Λ) denotes
the length of Λ in the norm ‖ · ‖.

It is an interesting problem to understand the ECH capacities of the
unit disk bundle in the cotangent bundle of more general surfaces than
flat T 2.

1.5. Volume conjecture. In all of the examples considered above, it
turns out that the asymptotic behavior of the symplectic embedding
obstruction given by Theorem 1.1 as k → ∞ simply recovers the neces-
sary condition that the volume of (X0, ω0) be less than or equal to that
of (X1, ω1). Here the volume of a four-dimensional Liouville domain
(X,ω) is defined by

vol(X,ω) =
1

2

∫

X
ω ∧ ω.

The conjectural more general phenomenon is that the asymptotics of
the ECH capacities are related to volume as follows:

Conjecture 1.12. Let (X,ω) be a four-dimensional Liouville domain
such that ck(X,ω) < ∞ for all k. Then

lim
k→∞

ck(X,ω)2

k
= 4vol(X,ω).

It is not hard to check this for an ellipsoid, cf. Remark 3.13. It is
also easy to check this for a polydisk (even though the conjecture is
not applicable here since a polydisk is not quite a Liouville domain).
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In §8 we further confirm that this conjecture holds for the examples
in Theorem 1.11, as well as for any disjoint union or subset of ex-
amples for which the conjecture holds. Note that the hypothesis that
ck(X,ω) < ∞ for all k holds only if the first Chern class (not the ECH
capacity) c1(X,ω) ∈ H2(X;Z) restricts to a torsion class in H2(∂X;Z),
see Remark 4.4.

Conjecture 1.12 is related to the question of whether the Weinstein
conjecture in three dimensions [21] can be refined to show that a closed
contact 3-manifold has a Reeb orbit with an explicit upper bound on
the symplectic action, see Remark 8.5.

1.6. Contents of the paper. There are in fact two basic ways to
define ECH capacities of a four-dimensional Liouville domain (X,ω):
in addition to the “distinguished” ECH capacities ck(X,ω) discussed
above, there is also a more rudimentary notion which we call the “full
ECH capacities” and which we denote by c̃k(X,ω). The full ECH capac-
ities satisfy an analogue of Theorem 1.1, but only under the additional
assumption that if ϕ denotes the symplectic embedding in question,
then X1 \ ϕ(int(X0)) is diffeomorphic to a product [0, 1] × Y 3. The
numbers ck(X,ω) are a certain carefully selected subset of the numbers
c̃k(X,ω) for which the more general statement of Theorem 1.1 is true.

Both the full and distinguished ECH capacities of a four-dimensional
Liouville domain (X,ω) with boundary Y are defined in terms of the
embedded contact homology of (Y, λ), where λ is a contact form on Y
with dλ = ω|Y . In §2 we recall the necessary material about embedded
contact homology.

In §3 we associate to a closed contact 3-manifold (Y, λ) a sequence of
numbers c̃k(Y, λ), which we call its “full ECH spectrum”; these numbers
measure the amount of symplectic action needed to represent certain
classes in the embedded contact homology of (Y, λ). The full ECH
capacities of a four-dimensional Liouville domain are then defined to be
the full ECH spectrum of its boundary. Proposition 1.2 above regarding
the ECH capacities of ellipsoids is equivalent to Proposition 3.12 which
is proved in this section.

In §4 we give the crucial definition of the “distinguished ECH spec-
trum” of a closed contact 3-manifold (Y, λ) with nonvanishing ECH
contact invariant (e.g. the boundary of a Liouville domain). The dis-
tinguished ECH capacities of a four-dimensional Liouville domain are
then defined to be the distinguished ECH spectrum of its boundary.
This section also gives the proof of Theorem 1.1; once the correct defi-
nitions are in place, this is a simple application of the machinery of ECH
cobordism maps from [13]. Finally, this section explains how to extend
the definition of (distinguished) ECH capacities and Theorem 1.1 to
arbitrary subsets of symplectic four-manifolds.
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In §5 we compute the (distinguished) ECH spectrum of a disjoint
union of contact 3-manifolds, which implies Proposition 1.5 above on
the ECH capacities of a disjoint union of Liouville domains. In §6 we
prove Theorem 1.11 regarding the ECH capacities of certain subsets of
T ∗T 2. In §7 we prove Theorem 1.4 on the ECH capacities of a polydisk.
Proposition 1.7 above on the obstruction to symplectically embedding
a polydisk into a ball is also proved in this section. Finally, in §8 we
discuss the volume conjecture 1.12 and two generalizations, and present
some evidence for them.

Acknowledgments. I thank Dusa McDuff for introducing me to this
problem and for helpful discussions, Felix Schlenk and Cliff Taubes for
additional helpful discussions, and MSRI for its hospitality.

2. ECH preliminaries

We now review the necessary background on embedded contact ho-
mology.

2.1. Definition of ECH. Let Y be a closed oriented 3-manifold. A
contact form on Y is a 1-form λ on Y with λ ∧ dλ > 0 everywhere.
This determines a contact structure, namely the oriented 2-plane field
ξ = Ker(λ). We call the pair (Y, λ) a “contact 3-manifold”, although it
is perhaps more usual to refer to the pair (Y, ξ) this way.

The contact form λ determines the Reeb vector field R characterized
by dλ(R, ·) = 0 and λ(R) = 1. A Reeb orbit is a closed orbit of the
Reeb vector field R, i.e. a map γ : R/TZ → Y for some T > 0 with
γ′(t) = R(γ(t)), modulo reparametrization. A Reeb orbit is nondegen-
erate if its linearized return map, regarded as an endomorphism of the
2-dimensional symplectic vector space (ξγ(0), dλ), does not have 1 as an
eigenvalue. A nondegenerate Reeb orbit is called hyperbolic if its lin-
earized return map has real eigenvalues; otherwise it is called elliptic.
We say that the contact form λ is nondegenerate if all Reeb orbits are
nondegenerate.

If Y is a closed oriented 3-manifold with a nondegenerate contact
form λ, and if Γ ∈ H1(Y ), then the embedded contact homology with
Z/2-coefficients, which we denote by ECH(Y, λ,Γ), is defined. (ECH
can also be defined over Z, see [10, §9], but Z/2 coefficients are sufficient
for the applications in this paper.) This is the homology of a chain com-
plex which is generated over Z/2 by finite sets of pairs α = {(αi,mi)}
where the αi’s are distinct embedded Reeb orbits, the mi’s are positive
integers, mi = 1 whenever αi is hyperbolic, and

∑

i

mi[αi] = Γ ∈ H1(Y ).
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We call such an α an ECH generator . We often use the multiplica-
tive notation α =

∏
i α

mi

i , even though the grading and differential on
the chain complex do not behave simply with respect to this sort of
multiplication.

To define the chain complex differential ∂ one chooses a generic almost
complex structure J on R×Y which is “admissible”, meaning that J is
R-invariant, J(∂s) = R where s denotes the R coordinate, and J sends ξ
to itself, rotating positively with respect to the orientation dλ on ξ. The
coefficient 〈∂α, β〉 of the differential is then a count of J-holomorphic
curves in R × Y which have ECH index 1 and which as currents are
asymptotic to R × α as s → ∞ and asymptotic to R × β as s → −∞.
The detailed definition of the differential is given for example in [9, §7],
using the ECH index defined in [5, 6]. We denote this chain complex
by ECC(Y, λ,Γ, J), and its homology by ECH(Y, λ,Γ).

The Z/2-module ECH(Y, λ,Γ) has a relative Z/d-grading, where d
denotes the divisibility of c1(ξ) + 2PD(Γ) in H2(Y ;Z)/Torsion. The
detailed definition of the grading will not be needed here and can be
found in [5, 6].

Although the differential on the chain complex ECC(Y, λ,Γ, J) de-
pends on J , the homology ECH(Y, λ,Γ) does not. This follows from a
much stronger theorem of Taubes [22, 23, 24, 25] asserting that there
is a canonical isomorphism between embedded contact homology and a
version of Seiberg-Witten Floer cohomology as defined by Kronheimer-
Mrowka [14]. Namely, if Y is connected then there is a canonical iso-
morphism of relatively graded Z/2-modules

(2.1) ECH∗(Y, λ,Γ)
≃−→ ĤM

−∗
(Y, sξ + PD(Γ)),

where the right hand side denotes Seiberg-Witten Floer cohomology
with Z/2-coefficients, and sξ is a spin-c structure determined by the
contact structure. (This is also true with Z coefficients.) As shown in
[13], it follows from Taubes’s proof of (2.1) and the invariance properties

of ĤM that the versions of ECH(Y, λ,Γ) defined using different almost
complex structures J are canonically isomorphic to each other.

In this paper we are almost exclusively concerned with the case Γ = 0.

2.2. Some additional structure on ECH. There is a canonical ele-
ment

c(ξ) := [∅] ∈ ECH(Y, λ, 0),

called the ECH contact invariant , represented by the ECH generator
consisting of the empty set of Reeb orbits. This is a cycle in the ECH
chain complex because any holomorphic curve counted by the differen-
tial must have at least one positive end, c.f. §2.3 below. The homology
class [∅] depends only on the contact structure ξ (although not just on
Y ), and agrees with an analogous contact invariant in Seiberg-Witten
Floer cohomology [26].
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If Y is connected, then there is a degree −2 map

(2.2) U : ECH(Y, λ,Γ) −→ ECH(Y, λ,Γ).

This is induced by a chain map which is defined similarly to the differ-
ential, but instead of counting holomorphic curves in R× Y with ECH
index one modulo translation, it counts holomorphic curves in R × Y
with ECH index two that pass through a chosen generic point z ∈ R×Y ,
see [11, §2.5]. Under the isomorphism (2.1), the U map (2.2) agrees with
an analogous map on Seiberg-Witten Floer cohomology [26].

If (Y, λ) has connected components (Yi, λi) for i = 1, . . . , n, then
there are n different U maps U1, . . . , Un, where Ui is defined by taking
z ∈ R×Yi. The different maps Ui commute. Note also that in this case
one has a canonical isomorphism of chain complexes
(2.3)

ECC(Y1, λ1,Γ1, J1)⊗ · · · ⊗ ECC(Yn, λn,Γn, Jn)
≃−→ ECC(Y, λ,Γ, J),

which sends a tensor product of ECH generators on the left hand side
to their union on the right, where Γ =

∑n
i=1 Γi and J restricts to Ji on

R×Yi. Since we are working with field coefficients, this gives a canonical
isomorphism on homology

(2.4) ECH(Y, λ,Γ) = ECH(Y1, λ1,Γ1)⊗ · · · ⊗ ECH(Yn, λn,Γn).

Under this identification, Ui is the tensor product of the U map for
(Yi, λi) with the identity maps on the other factors.

2.3. Filtered ECH. If α = {(αi,mi)} is a generator of the ECH chain
complex, its symplectic action is defined by

A(α) :=
∑

i

mi

∫

αi

λ.

The ECH differential (for any generic admissible J) decreases the action,
i.e. if 〈∂α, β〉 6= 0 then A(α) ≥ A(β). This is because if C is a J-
holomorphic curve counted by 〈∂α, β〉, then dλ|C ≥ 0 everywhere. (In
fact if 〈∂α, β〉 6= 0 then the strict inequality A(α) > A(β) holds, because
dλ vanishes identically on C if and only if the image of C is R-invariant,
in which case C has ECH index zero and so does not contribute to the
differential.) Thus for any real number L, it makes sense to define the
filtered ECH

ECHL(Y, λ,Γ)

to be the homology of the subcomplex ECCL(Y, λ,Γ, J) of the ECH
chain complex spanned by generators with action (strictly) less than L.
It is shown in [13] that ECHL(Y, λ,Γ) does not depend on the choice
of generic admissible J (although unlike the usual ECH it can change
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when one deforms the contact form λ). For L < L′ the inclusion of
chain complexes (for a given J) induces a map

ı∗ : ECHL(Y, λ,Γ) −→ ECHL′

(Y, λ,Γ).

It is shown in [13] that this map does not depend on the choice of J .
The usual ECH is recovered as the direct limit

ECH(Y, λ,Γ) = lim
→

ECHL(Y, λ,Γ).

Also, if c is a positive constant, then there is a canonical “scaling”
isomorphism

(2.5) s : ECHL(Y, λ,Γ)
≃−→ ECHcL(Y, cλ,Γ).

The reason is that an admissible almost complex structure J for λ de-
termines an admissible almost complex structure for cλ, such that the
obvious identification of Reeb orbits gives an isomorphism of chain com-
plexes. Again, it is shown in [13] that the resulting map (2.5) does not
depend on the choice of J .

2.4. Weakly exact symplectic cobordisms. Let (Y+, λ+) and
(Y−, λ−) be closed contact 3-manifolds.

Definition 2.1. An exact symplectic cobordism from (Y+, λ+) to
(Y−, λ−) is a compact symplectic 4-manifold (X,ω) with ∂X = Y+−Y−,
such that there exists a 1-form λ on X with dλ = ω and λ|Y±

= λ±.

It is shown in [13] that if the contact forms λ± are nondegenerate,
then an exact symplectic cobordism as above induces maps of ungraded
Z/2-modules

(2.6)
⊕

Γ+∈H1(Y+)

ECHL(Y+, λ+,Γ+) −→
⊕

Γ−∈H1(Y−)

ECHL(Y−, λ−,Γ−)

satisfying various axioms. The idea of the construction is as follows.
Consider the “symplectization completion” of X defined by

(2.7) X := ((−∞, 0]× Y−) ∪Y−
X ∪Y+

([0,∞) × Y+).

As reviewed after Definition 2.2 below, the symplectic form ω on X
extends over X as d(esλ−) on (−∞, 0]×Y−, where s denotes the (−∞, 0]
coordinate, and as d(esλ+) on [0,∞) × Y+. A suitable almost complex
structure J on X determines, via ω, a metric onX . One then modifies ω
and the metric on the ends to obtain a 2-form ω̂ and a metric which are
R-invariant on the ends. The map (2.6) is now induced by a chain map
which is defined by counting solutions to the Seiberg-Witten equations
on X perturbed using a large multiple of the 2-form ω̂. In the limit as
the perturbation gets large, the relevant Seiberg-Witten solutions give
rise to (possibly broken) J-holomorphic curves in X . The restriction of
ω to any such J-holomorphic curve is pointwise nonnegative. The key
fact needed to get a well-defined map on filtered ECH is then that if
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α± are smooth 1-chains in Y±, and if Z is a smooth 2-chain in X with
∂Z = α+ − α−, then

(2.8)

∫

Z
ω =

∫

α+

λ+ −
∫

α−

λ−.

Of course this holds by the exactness assumption and Stokes’s theorem.
We now show that the Γ± = 0 component of the map (2.6) can still

be defined under a slightly weaker assumption, in which we take d of
the last equation in Definition 2.1:

Definition 2.2. A weakly exact symplectic cobordism from (Y+, λ+)
to (Y−, λ−) is a compact symplectic 4-manifold (X,ω) with ∂X = Y+−
Y−, such that ω is exact and ω|Y±

= dλ±.

For example, a four-dimensional Liouville domain as we have defined
it is a weakly exact symplectic cobordism from a contact 3-manifold to
the empty set. Note that for any weakly exact symplectic cobordism
X as above, by a standard lemma there is an identification of a neigh-
borhood of Y+ in X with (−ε, 0] × Y+ such that on this neighborhood
we have ω = d(esλ+), where s denotes the (−ε, 0] coordinate. Like-
wise a neighborhood of Y− in X can be identified with [0, ε) × Y− so
that on this neighborhood λ = d(esλ−). Thus one can still define the
symplectization completion X as in (2.7).

Theorem 2.3. Let (X,ω) be a weakly exact symplectic cobordism
from (Y+, λ+) to (Y−, λ−), where Y+ and Y− are closed and the contact
forms λ± are nondegenerate. Then there exist maps

(2.9) ΦL(X,ω) : ECHL(Y+, λ+, 0) −→ ECHL(Y−, λ−, 0)

of ungraded Z/2-modules, for each L ∈ R, with the following properties:

(a) If L < L′ then the following diagram commutes:

ECHL(Y+, λ+, 0)
ΦL(X,ω)−−−−−→ ECHL(Y−, λ−, 0)

ı∗

y
yı∗

ECHL′

(Y+, λ+, 0)
ΦL′

(X,ω)−−−−−−→ ECHL′

(Y−, λ−, 0).

In particular, it makes sense to define the direct limit

Φ(X,ω) := lim
→

ΦL(X,ω) : ECH(Y+, λ+, 0) −→ ECH(Y−, λ−, 0).

(b) Φ(X,ω)[∅] = [∅].
(c) If X is diffeomorphic to a product [0, 1] × Y , then Φ(X,ω) is an

isomorphism.
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(d) The diagram

ECH(Y+, λ+, 0)
Φ(X,ω)−−−−→ ECH(Y−, λ−, 0)yU+

yU−

ECH(Y+, λ+, 0)
Φ(X,ω)−−−−→ ECH(Y−, λ−, 0)

commutes, where U± is the U map for any of the connected com-
ponents of Y±, as long as U+ and U− correspond to the same
component of X.

Proof. Suppose first that Y+ and Y− are connected and that (X,ω)
is exact as in Definition 2.1. In this case we define ΦL(X,ω) from
the map (2.6) by restricting to the Γ+ = 0 component and projecting
to the Γ− = 0 component. It follows from the main theorem in [13]
that ΦL(X,ω) satisfies properties (a) and (b), and Φ(X,ω) agrees with
the Γ± = 0 component of the induced map on Seiberg-Witten Floer
cohomology via the isomorphisms (2.1) on both sides. Items (c) and (d)
then follow from analogous results in Seiberg-Witten Floer theory [14].

If (X,ω) is only weakly exact, then one can no longer define a map
(2.6), but one can still define a map on Γ± = 0 components as in (2.9),
again by perturbing the Seiberg-Witten equations on the symplectiza-
tion completion X using a large multiple of ω̂. One just needs to check
that (2.8) holds when α± is nullhomologous in Y±. To do so, let λ
be a 1-form on X with dλ = ω. Then by Stokes’s theorem we have∫
Z ω =

∫
α+

λ−
∫
α−

λ. On the other hand, since λ|Y±
−λ± is a closed 1-

form on Y± and α± is nullhomologous in Y±, by Stokes’s theorem again
we have

∫
α±

(λ− λ±) = 0. Properties (a)–(d) hold as before.

When Y+ and Y− are not required to be connected, one can still con-
struct the maps ΦL(X,ω) and prove properties (a) and (b) by deforming
the Seiberg-Witten equations on X using a large multiple of ω̂ as above
(and we already know property (c) in this case). One can then prove
property (d) by using the interpretation of the Seiberg-Witten U map in
[26] (which counts index 2 Seiberg-Witten solutions in R×Y satisfying
a codimension 2 constraint at a chosen point) to construct a chain ho-
motopy between the chain maps defining U+◦Φ(X,ω) and Φ(X,ω)◦U−

(by counting index 1 Seiberg-Witten solutions in the completed cobor-
dism satisfying a codimension 2 constraint at any point along a suitable
path). q.e.d.

3. Full ECH spectrum and capacities

We now introduce the full ECH spectrum and capacities, as a warmup
for the distinguished ECH spectrum and capacities to be defined in §4.
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3.1. The full ECH spectrum. Let Y be a closed oriented 3-manifold
with a nondegenerate contact form λ.

Definition 3.1. For each positive integer k, define c̃k(Y, λ) to be
the infimum over all L ∈ R such that the image of ECHL(Y, λ, 0) in
ECH(Y, λ, 0) has dimension at least k. The sequence {c̃k(Y, λ)}k=1,2,...

is called the full ECH spectrum of (Y, λ).

Remark 3.2. (a) It follows from the definition that

0 ≤ c̃1(Y, λ) ≤ c̃2(Y, λ) ≤ · · · ≤ ∞.

Note that if Y is connected, then c̃k(Y, λ) < ∞ for all k if and
only if c1(ξ) ∈ H2(Y ;Z) is torsion. This is because Taubes’s
isomorphism (2.1), together with results of Kronheimer-Mrowka
[14], imply that if Y is connected, then ECH(Y, λ,Γ) is infinitely
generated if and only if c1(ξ) + 2PD(Γ) ∈ H2(Y ;Z) is torsion.

(b) It follows immediately from the definition that

c̃1(Y, λ) > 0 ⇐⇒ c(ξ) = 0 ∈ ECH(Y, λ, 0).

(c) If c is a positive constant, then c̃k satisfies the scaling property

(3.1) c̃k(Y, cλ) = c · c̃k(Y, λ).
This follows from the commutative diagram

ECHL(Y, λ, 0) −−−−→ ECH(Y, λ, 0)

s

y≃ s

y≃

ECHcL(Y, cλ, 0) −−−−→ ECH(Y, cλ, 0),

where s is the scaling isomorphism (2.5). And commutativity of
the above diagram is immediate from the definitions.

(d) One can also define analogues of the full ECH spectrum using
ECH(Y, λ,Γ) for Γ 6= 0. However restricting to Γ torsion is nec-
essary to obtain well-defined capacities, see Lemma 3.9 below.

Lemma 3.3. Let (X,ω) be a weakly exact symplectic cobordism from
(Y+, λ+) to (Y−, λ−). Assume that the contact forms λ± are nondegen-
erate and that X is diffeomorphic to a product [0, 1]×Y . Then for every
positive integer k we have

c̃k(Y−, λ−) ≤ c̃k(Y+, λ+).

Proof. Fix L ∈ R and let I± denote the image of ECHL(Y±, λ±, 0)
in ECH(Y±, λ±, 0). We need to show that dim(I−) ≥ dim(I+). By
Theorem 2.3(a) we have a commutative diagram

(3.2)

ECHL(Y+, λ+, 0) −−−−→ ECH(Y+, λ+, 0)yΦL(X,ω)

yΦ(X,ω)

ECHL(Y−, λ−, 0) −−−−→ ECH(Y−, λ−, 0).
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It follows from this diagram that Φ(X,ω)(I+) ⊂ I−. By Theorem 2.3(c)
the map Φ(X,ω) is an isomorphism, so dim(I+) ≤ dim(I−) as desired.

q.e.d.

We now extend the definition of the full ECH spectrum to arbitrary
(possibly degenerate) contact forms λ on Y .

Definition 3.4. Let (Y, λ) be any closed contact 3-manifold. Define

(3.3) c̃k(Y, λ) := sup{c̃k(Y, f−λ)} = inf{c̃k(Y, f+λ)},
where the supremum is over smooth functions f− : Y → (0, 1] such that
the contact form f−λ is nondegenerate, and the infimum is over smooth
functions f+ : Y → [1,∞) such that f+λ is nondegenerate.

To confirm that this definition makes sense, we have:

Lemma 3.5. The supremum and infimum in (3.3) are equal.

Proof. We first show that sup{c̃k(Y, f−λ)} ≤ inf{c̃k(Y, f+λ)}. If
f−, f+ are as in Definition 3.4, then

([0, 1] × Y, d(((1 − s)f− + sf+)λ))

is an exact symplectic cobordism from (Y, f+λ) to (Y, f−λ), where s
denotes the [0, 1] coordinate. Thus by Lemma 3.3 we have c̃k(Y, f−λ) ≤
c̃k(Y, f+λ).

We now show that sup{c̃k(Y, f−λ)} ≥ inf{c̃k(Y, f+λ)}. Fix ε > 0.
We can find a function φ : Y → (0, ε) such that if f+ = eφ, then the
contact form f+λ is nondegenerate. Define f− = e−εf+. Then by the
scaling property (3.1) we have

c̃k(Y, f+λ) = eεc̃k(Y, f−λ).

Thus inf{c̃k(Y, f+λ)} ≤ eε sup{c̃k(Y, f−λ)}. Now take ε → 0. q.e.d.

Lemma 3.3 then extends to the possibly degenerate case:

Proposition 3.6. Let (X,ω) be a weakly exact symplectic cobordism
from (Y+, λ+) to (Y−, λ−). Assume that X is diffeomorphic to a product
[0, 1] × Y . Then for every positive integer k we have

c̃k(Y−, λ−) ≤ c̃k(Y+, λ+).

Proof. If f+ and f− are functions as in Definition 3.4, then

({(s, y) ∈ R× Y+ | 1 ≤ es ≤ f+(y)}, d(esλ+))

is an exact symplectic cobordism from (Y+, f+λ+) to (Y+, λ), and

({(s, y) ∈ R× Y− | f−(y) ≤ es ≤ 1}, d(esλ−))

is an exact symplectic cobordism from (Y−, λ−) to (Y−, f−λ−). At-
taching these cobordisms to the positive and negative boundaries of
X defines a subset of the symplectization completion (2.7) which is a
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weakly exact symplectic cobordism, diffeomorphic to a product, from
(Y+, f+λ+) to (Y−, f−λ−). By Lemma 3.3 we have

c̃k(Y−, f−λ−) ≤ c̃k(Y+, f+λ+).

Taking the supremum over f− on the left hand side and the infimum
over f+ on the right hand side completes the proof. q.e.d.

3.2. Full ECH capacities.

Definition 3.7. Let (X,ω) be a 4-dimensional Liouville domain with
boundary Y . If k is a positive integer, define

c̃k(X,ω) := c̃k(Y, λ),

where λ is a contact form on Y with dλ = ω|Y . We call the numbers
{c̃k(X,ω)}k=1,2,... the full ECH capacities of (X,ω).

Lemma 3.8. c̃k(X,ω) does not depend on the choice of contact form
λ.

Proof. Let λ′ be another contact form on Y with dλ′ = ω|Y . We need
to show that

(3.4) c̃k(Y, λ) = c̃k(Y, λ
′).

By modifying X slightly as in the proof of Proposition 3.6, we may
assume that λ and λ′ are nondegenerate. Equation (3.4) then follows
immediately from Definition 3.1 and Lemma 3.9 below. q.e.d.

Lemma 3.9. Let Y be a closed oriented 3-manifold. Let λ, λ′ be
nondegenerate contact forms on Y with dλ = dλ′. Then there is an
isomorphism ECH(Y, λ, 0) ≃ ECH(Y, λ′, 0), which is the direct limit
of isomorphisms

ECHL(Y, λ, 0) ≃ ECHL(Y, λ′, 0),

and which respects the U maps.

(The part about U maps is not needed here, but will be used in §4.1.)

Proof. Let R and R′ denote the Reeb vector fields for λ and λ′ re-
spectively. Since dλ = dλ′, we have R′ = fR for some positive function
f : Y → R. In particular there is a canonical bijection between the
ECH generators of λ and those of λ′.

Now define a diffeomorphism

φ : R× Y −→ R× Y,

(s, y) 7−→ (f(y)s, y).

If J is an almost complex structure on R×Y as needed to define the ECH
of λ, then J ′ = φ−1

∗ ◦J ◦φ∗ is an almost complex structure as needed to
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define the ECH of λ′. The canonical bijection on ECH generators then
gives an isomorphism of chain complexes

(3.5) ECC(Y, λ,Γ, J) ≃ ECC(Y, λ′,Γ, J ′),

because φ by definition induces a bijection on the relevant holomorphic
curves. For the same reason, this isomorphism respects the U maps.

When Γ = 0, the isomorphism (3.5) further respects the symplectic
action filtrations, because if α = {(αi,mi)} is an ECH generator with
[α] = 0, then since λ− λ′ is a closed 1-form on Y , by Stokes’s theorem
we have

∑
i mi

∫
αi

λ =
∑

imi

∫
αi

λ′. q.e.d.

Remark 3.10. We always have c̃1(X,ω) = 0, by Remark 3.2(b),
because the ECH contact invariant [∅] ∈ ECH(Y, λ, 0) is nonzero by
Theorem 2.3(b).

We can now prove a symplectic embedding obstruction, which is a
warmup to Theorem 1.1:

Proposition 3.11. Let (X0, ω0) and (X1, ω1) be four-dimensional Li-
ouville domains. Suppose there is a symplectic embedding ϕ : (X0, ω0) →
(int(X1), ω1) such that X1 \ int(ϕ(X0)) is diffeomorphic to a product
[0, 1] × Y . Then c̃k(X0, ω0) ≤ c̃k(X1, ω1) for all positive integers k.

Proof. For i = 0, 1, write Yi = ∂Xi, and let λi be a contact form on Yi

with dλi = ωi|Yi
. Then (X1\int(ϕ(X0)), ω1) is a weakly exact symplectic

cobordism from (Y1, λ1) to (Y0, λ0). Now apply Proposition 3.6. q.e.d.

3.3. The full ECH capacities of an ellipsoid. Recall the notation
from Proposition 1.2.

Proposition 3.12. The full ECH capacities of an ellipsoid are given
by

c̃k(E(a, b)) = (a, b)k.

Proof. For the contact form on ∂E(a, b) obtained by restricting (1.3),
the Reeb vector field is given by

R = 2π

(
a−1 ∂

∂θ1
+ b−1 ∂

∂θ2

)
,

where ∂/∂θj := xj∂/∂yj − yj∂/∂xj .
Suppose that the ratio a/b is irrational. In this case there are just

two embedded Reeb orbits γ1 = (z2 = 0) and γ2 = (z1 = 0). These
are elliptic and nondegenerate and have action a and b respectively. In
particular λ|∂E(a,b) is nondegenerate, and the ECH generators have the
form γm1 γn2 where m,n ∈ N. Of course these all correspond to Γ = 0
since H1(∂E(a, b)) = 0. The action of such a generator is given by

A(γm1 γn2 ) = am+ bn.
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Since all Reeb orbits are elliptic, all ECH generators have even grading
(see [5, Prop. 1.6(c)]), so the differential on the ECH chain complex
vanishes for any J . (The full calculation of the grading on the ECH chain
complex in this example is given in [11, Ex. 4.2], but we do not need
this here.) Thus the dimension of the image of ECHL(∂E(a, b), λ, 0) in
ECH(∂E(a, b), λ, 0) is

∣∣{(m,n) ∈ N
2
∣∣ma+ nb < L

}∣∣ .

The proposition in this case follows immediately.
To prove the proposition when a/b is rational, choose real numbers

a− < a < a+ and b− < b < b+ with a−/b− and a+/b+ irrational. By
Proposition 3.11 we have

(a−, b−)k = c̃k(E(a−, b−)) ≤ c̃k(E(a, b)) ≤ c̃k(E(a+, b+)) = (a+, b+)k.

For any given k, taking a limit as a± → a and b± → b proves that
c̃k(E(a, b)) = (a, b)k as claimed. q.e.d.

If E(a, b) symplectically embeds into the interior of E(c, d), then
Propositions 3.11 and 3.12 tell us that

(3.6) (a, b)k ≤ (c, d)k

for all k. To understand this condition in examples, the following alter-
nate description of (a, b)k is useful. Given (m,n) ∈ N

2, let Ta/b(m,n)

denote the triangle in R
2 whose edges are the coordinate axes together

with the line through (m,n) of slope −a/b. Then

(a, b)k = am+ bn

where

k =
∣∣Ta/b(m,n) ∩N

2
∣∣ .

For example, we have (a, b)1 = 0, as we already knew from Re-
mark 3.10. Next, we have

(a, b)2 =

{
a, a/b ≤ 1,
b, a/b ≥ 1.

Thus the condition (3.6) for k = 2 recovers the well-known fact that if
E(a, b) symplectically embeds into E(c, d) then min(a, b) ≤ min(c, d).
Next, assuming a ≥ b, we have

(3.7) (a, b)3 =

{
2b, 2 ≤ a/b,
a, 1 ≤ a/b ≤ 2.
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Another example is

(3.8) (a, b)6 =





5b, 5 ≤ a/b,
a, 4 ≤ a/b ≤ 5,
4b, 3 ≤ a/b ≤ 4,

a+ b, 2 ≤ a/b ≤ 3,
3b, 3/2 ≤ a/b ≤ 2,
2a, 1 ≤ a/b ≤ 3/2.

For example, return to the function f defined in §1.3.1 that measures
the obstruction to symplectically embedding an ellipsoid into a ball.
It is computed in [16] that f(2) = 2 and f(5) = 5/2. On the other
hand, equation (3.7) implies that (2, 1)3/(1, 1)3 = 2, and equation (3.8)
implies that (5, 1)6/(1, 1)6 = 5/2. This is how one confirms that the
bound (1.4) (which we have already justified) is sharp for a = 2, 5.

Remark 3.13. If we write L = am+bn, then the triangle Ta/b(m,n)

has area L2/2ab, so when L is large,

∣∣Ta/b(m,n) ∩ N
2
∣∣ = L2

2ab
+O(L).

Note also that E(a, b) has volume ab/2. It follows that

(3.9) lim
k→∞

c̃k(E(a, b))2

k
= 4vol(E(a, b)).

In particular, the condition (3.6) for k large simply tells us that the
volume of E(a, b) is less than or equal to that of E(c, d). (But the
equality in (3.9) only holds in the limit, so that for given (a, b) and
(c, d), taking suitable small values of k often gives stronger conditions.)

4. Distinguished ECH spectrum and capacities

We now define modified versions of the full ECH spectrum and full
ECH capacities which give obstructions to symplectic embeddings for
non-product cobordisms.

4.1. Definitions and basic properties.

Definition 4.1. If λ is a nondegenerate contact form on a closed
oriented three-manifold Y , and if 0 6= σ ∈ ECH(Y, λ,Γ), define cσ(Y, λ)
to be the infimum over L ∈ R such that σ is contained in the image of
the map ECHL(Y, λ,Γ) → ECH(Y, λ,Γ). As in §3.1, if λ is degenerate,
define

cσ(Y, λ) := sup{cσ(Y, fλ)},
where the supremum is over functions f : Y → (0, 1] such that fλ
is nondegenerate. This definition makes sense because ECH(Y, fλ,Γ)
does not depend on f . (The cobordism maps (2.6) for product cobor-
disms define a canonical isomorphism ECH(Y, fλ,Γ) = ECH(Y, f ′λ,Γ)
whenever fλ and f ′λ are nondegenerate.)
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It follows from Lemma 5.2 below that if σ ∈ ECH(Y, λ, 0), then
cσ(Y, λ) is one of the numbers in the full ECH spectrum {c̃k(Y, λ)}.

Lemma 4.2. Let (X,ω) be a weakly exact symplectic cobordism
from (Y+, λ+) to (Y−, λ−), where λ± are nondegenerate. Let σ ∈
ECH(Y+, λ+, 0). Then

cσ(Y+, λ+) ≥ cΦ(X,ω)(σ)(Y−, λ−).

Proof. Let L ∈ R. Suppose σ is in the image of the map

ECHL(Y+, λ+, 0) → ECH(Y+, λ+, 0).

Then it follows from the diagram (3.2) that Φ(X,ω)(σ) is in the image
of the map

ECHL(Y−, λ−, 0) → ECH(Y−, λ−, 0).

q.e.d.

Definition 4.3. If (Y, λ) is a closed connected contact three-manifold
with c(ξ) 6= 0, and if k is a nonnegative integer, define

(4.1) ck(Y, λ) := min
{
cσ(Y, λ)

∣∣ σ ∈ ECH(Y, λ, 0), Ukσ = [∅]
}
.

More generally, if (Y, λ) is a closed contact three-manifold with con-
nected components Y1, . . . , Yn, and if c(ξ) 6= 0, define

ck(Y, λ) := min
{
cσ(Y, σ)

∣∣ σ ∈ ECH(Y, λ, 0),

Ui1 · · ·Uikσ = [∅] ∀i1, . . . , ik ∈ {1, . . . , n}
}
.

The sequence {ck(Y, λ)}k=0,1,... is called the (distinguished) ECH spec-
trum of (Y, λ).

Remark 4.4. (a) Any choice of chain map used to define the U
map decreases the symplectic action, for the same reason that the
differential does, see §2.3. It follows that

0 = c0(Y, λ) < c1(Y, λ) ≤ c2(Y, λ) ≤ · · · ≤ ∞.

Here ck(Y, λ) = ck+1(Y, λ) < ∞ is possible when λ is degenerate.
(b) We have ck(Y, λ) < ∞ for all k only if c1(ξ) ∈ H2(Y ;Z) is tor-

sion. Proof: Without loss of generality Y is connected. Recall
from Remark 3.2 that if c1(ξ) is not torsion then ECH(Y, λ, 0) is
finitely generated. But if σ ∈ ECH(Y, λ, 0) and Ukσ = [∅] then
dim(ECH(Y, λ, 0)) > k, because it follows from U [∅] = 0 that the
classes σ,Uσ, . . . , Ukσ are linearly independent.

In simple examples the distinguished ECH spectrum is related to the
full ECH spectrum defined previously as follows. Recall from [4] that
there is a unique tight contact structure on S3, which is the one induced
by a Liouville domain with boundary diffeomorphic to S3.
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Proposition 4.5. If Y is diffeomorphic to S3 and if Ker(λ) is the
tight contact structure on Y , then

ck(Y, λ) = c̃k+1(Y, λ).

We also have:

Proposition 4.6. If (Yi, λi) are closed contact 3-manifolds with non-
vanishing ECH contact invariant for i = 1, . . . , n, then

(4.2) ck

(
n∐

i=1

(Yi, λi)

)
= max

{
n∑

i=1

cki(Yi, λi)

∣∣∣∣
n∑

i=1

ki = k

}
.

The proofs of the above two propositions require an algebraic digres-
sion which is deferred to §5.

Proposition 4.7. If (X,ω) is a weakly exact symplectic cobordism
from (Y+, λ+) to (Y−, λ−), then

ck(Y+, λ+) ≥ ck(Y−, λ−)

for each nonnegative integer k.

Proof. By the approximation argument in the proof of Proposition 3.6,
we may assume that λ+ and λ− are nondegenerate.

Let Y 1
±, . . . , Y

n±

± denote the connected components of Y±. Let σ+ ∈
ECH(Y+, λ+, 0) be a class with Ui1 · · ·Uikσ = [∅] for all i1, . . . , ik ∈
{1, . . . , n+}. Let σ− := Φ(X,ω)(σ+) ∈ ECH(Y−, λ−, 0). Since each
component of the cobordism X has at least one positive boundary com-
ponent, it follows from Theorem 2.3(b),(d) that Ui1 · · ·Uikσ− = [∅] for
all i1, . . . , ik ∈ {1, . . . , n−}. By Lemma 4.2 we have cσ+

(Y+, λ+) ≥
cσ−

(Y−, λ−). q.e.d.

Definition 4.8. By analogy with Definition 3.7, if (X,ω) is a 4-
dimensional Liouville domain with boundary Y , and if k is a nonnegative
integer, define

ck(X,ω) := ck(Y, λ),

where λ is a contact form on Y with dλ = ω|Y . Lemma 3.9 shows that
this does not depend on the choice of contact form λ, just like the full
ECH capacities. The numbers ck(X,ω) are called the (distinguished)
ECH capacities of (X,ω).

We can now prove the main symplectic embedding obstruction:

Proof of Theorem 1.1. For i = 0, 1, let Yi = ∂Xi and let λi be a contact
form on Yi with dλi = ωi|Xi

. Then X1 minus the interior of the image of
X0 defines a weakly exact symplectic cobordism from (Y1, λ1) to (Y0, λ0).
By Proposition 4.7, ck(X0, ω0) ≤ ck(X1, ω1). But in fact the inequality
is strict when ck(X0, ω0) < ∞, because the embedding sends X0 into
the interior of X1, so we can extend the embedding over [0, ε] × Y0 in
the symplectization completion (2.7) of X0 for some ε > 0. The above
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argument together with the scaling isomorphism (2.5) then shows that
eεck(X0, ω0) ≤ ck(X1, ω1). q.e.d.

4.2. More general domains. We now explain how to extend the
definition of the (distinguished) ECH capacities to some more general
spaces.

Definition 4.9. Let (X,ω) be a subset of a symplectic four-manifold.
If k is a positive integer, define

ck(X,ω) := sup{ck(X−, ω)},
where the supremum is over subsets X− ⊂ int(X) such that (X−, ω) is
a four-dimensional Liouville domain.

By definition, ck(X,ω) depends only on the symplectic form on int(X),
and not on the symplectic four-manifold of whichX is a subset. If (X,ω)
is already a four-dimensional Liouville domain, then by Theorem 1.1 the
above definition of ck(X,ω) agrees with the previous one.

Remark 4.10. One could also try to define the full ECH capacities
of a subset of a symplectic four-manifold as in Definition 4.9. However it
is not clear if this would agree with the previous definition for Liouville
domains, because of the extra assumption in Proposition 3.11. This is
another way in which distinguished ECH capacities work better than
full ECH capacities.

We now have the following extension of Theorem 1.1:

Proposition 4.11. Suppose that (Xi, ωi) is a subset of a symplectic
four-manifold for i = 0, 1. If there is a symplectic embedding ϕ : X0 →
int(X1), then ck(X0, ω0) ≤ ck(X1, ω1) for all k.

Proof. This is a tautology. Let X− be a subset of int(X0) such that
(X−, ω0) is a four-dimensional Liouville domain. Then ϕ restricts to a
symplectic embedding of X− into int(X1), so by Definition 4.9,

ck(X−, ω0) ≤ ck(X1, ω1).

Taking the supremum over X− on the left hand side completes the proof.
q.e.d.

Note also that Proposition 1.5 extends to the case when each (Xi, ωi)
is a subset of a symplectic four-manifold.

5. Algebraic interlude

The goal of this section is to prove Propositions 4.5 and 4.6. To
simplify the notation, in this section write H(Y, λ) := ECH(Y, λ, 0),
and let HL(Y, λ) denote the image of ECHL(Y, λ, 0) in ECH(Y, λ, 0).
Also write C∗(Y, λ, J) := ECC(Y, λ, 0, J), and let C∗(Y, λ, J) denote
the dual chain complex Hom(C∗(Y, λ, J),Z/2).
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Definition 5.1. Let λ be a nondegenerate contact form on a closed
3-manifold Y . A basis {σk}k=1,2,... for H(Y, λ) is action-minimizing if

(5.1) cσk
(Y, λ) = c̃k(Y, λ)

for all k.

Lemma 5.2. Let λ be a nondegenerate contact form on a closed 3-
manifold Y . Then:

(a) There exists an action-minimizing basis for H(Y, λ).
(b) If {σk} is an action-minimizing basis for H(Y, λ), and if 0 6= σ =∑

j ajσj ∈ H(Y, λ), then

(5.2) cσ(Y, λ) = c̃k(Y, λ)

where k is the largest integer such that ak 6= 0.

Proof. (a) To construct an action-minimizing basis, increase L start-
ing from 0, and whenever the dimension of HL(Y, λ) jumps, add new
basis elements to span the rest of it. More precisely, there is a discrete
set of nonnegative real numbers L such that

dim(HL+ε(Y, λ)) > dim(HL(Y, λ))

for all ε > 0. Denote these real numbers by 0 ≤ L1 < L2 < · · · . There
are then integers 0 = k0 < k1 < k2 < · · · such that

(5.3) ki−1 < k ≤ ki =⇒ c̃k(Y, λ) = Li.

Now define a basis by taking {σk | ki−1 < k ≤ ki} to be elements of
HLi+1(Y, λ) that project to a basis for HLi+1(Y, λ)/HLi(Y, λ). Then
equation (5.1) follows from the construction.

To prepare for the proof of (b), note also that conversely, by (5.3),
any action-minimizing basis is obtained by the above construction.

(b) Continuing the notation from the proof of part (a), we have
c̃k(Y, λ) = Li for some i. By equation (5.1), σ ∈ HL(Y, λ) whenever
L > Li, so cσ(Y, λ) ≤ Li. To prove the reverse inequality, suppose to
get a contradiction that σ ∈ HLi(Y, λ). Let σ′ denote the contribution
to σ from basis elements σj with cσj

(Y, λ) < Li. Then σ′ ∈ HLi(Y, λ),

so σ − σ′ ∈ HLi(Y, λ) as well. Now σ − σ′ is a linear combination of
the basis elements {σk | ki−1 < k ≤ ki}. Since the latter are linearly
independent in HLi+1(Y, λ)/HLi(Y, λ), it follows that σ−σ′ = 0, which
is the desired contradiction. q.e.d.

Remark 5.3. One has to be careful in the proof of Lemma 5.2(b),
because the equality

(5.4) cσ1+···+σn(Y, λ) = max{cσi
(Y, λ) | i = 1, . . . , n}

does not always hold for linearly independent elements σ1, . . . , σn of
H(Y, λ). However (5.4) does hold if the maximum on the right hand side
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is realized by a unique i ∈ {1, . . . , n}, or if all of the classes σ1, . . . , σn
have (definite and) distinct gradings.

Proof of Proposition 4.5. By the usual approximation arguments we
may assume that λ is nondegenerate. Since Y is a homology sphere,
the relative grading on ECH has a canonical refinement to an absolute
Z-grading in which the empty set of Reeb orbits has grading zero. With
this grading convention, the ECH with Z/2-coefficients is given by

ECH∗(Y, λ, 0) =

{
Z/2, ∗ = 0, 2, . . . ,
0, otherwise.

In addition, U : ECH∗(Y, λ, 0) → ECH∗−2(Y, λ, 0) is an isomorphism
whenever ∗ 6= 0. These facts follow from the isomorphism (2.1), together
with the computation of the Seiberg-Witten Floer homology of S3 in
[14]. Finally, [∅] generates ECH0(Y, λ, 0). This follows from the above
facts, or from direct computations for a standard tight contact form on
S3, see [11, Ex. 4.2].

Now let σk denote the generator of ECH2k(Y, λ, 0). Since the U map
decreases symplectic action we have

(5.5) 0 = cσ0
(Y, λ) < cσ1

(Y, λ) < · · · < ∞.

It follows from (5.5) and Remark 5.3 that cσk
(Y, λ) = c̃k+1(Y, λ). Now

a class σ =
∑

j ajσj satisfies Ukσ = [∅] if and only if ak = 1 and aj = 0

for j > k. By Lemma 5.2(b), each such class σ satisfies cσ(Y, λ) =
c̃k+1(Y, λ). q.e.d.

Before continuing, we need to recall the following elementary fact:

Lemma 5.4. Let (C∗, ∂) be a chain complex over a field F, and let
C ′
∗ ⊂ C∗ be a subcomplex. Suppose α1, . . . , αn ∈ H∗(C∗) are linearly

independent in H∗(C∗)/H∗(C
′
∗), and let y1, . . . , yn ∈ F. Then there

exists a cocycle ζ ∈ Hom(C∗,F) which annihilates C ′
∗ and sends αi 7→ yi

for each i.

Proof. Let xi ∈ C∗ be a cycle representing the homology class αi.
By hypothesis, x1, . . . , xn project to linearly independent elements of
C∗/(C

′
∗ + ∂(C∗)). Hence there is a linear map ζ : C∗ → F sending

xi 7→ yi for each i and annihilating the subspace C ′
∗ + ∂(C∗). This is

the desired cocycle. q.e.d.

Proof of Proposition 4.6. By the usual approximation argument,we may
assume that the contact forms λi are nondegenerate. We can also as-
sume that each Yi is connected. We now proceed in three steps.

Step 1. We first show that the left hand side of (4.2) is less than or
equal to the right hand side. We can assume that the right hand side
is finite. For each i = 1, . . . , n and j ≥ 0 with cj(Yi, λi) < ∞, choose
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a class σi,j ∈ H(Yi, λi) with U jσi,j = [∅], such that σi,j ∈ HL(Yi, λi)
whenever L > cj(Yi, λi). Recalling the identification (2.4), define a class

σ :=
∑

j1+···+jn=k

σ1,j1 ⊗ · · · ⊗ σn,jn ∈ H

(
n∐

i=1

(Yi, λi)

)
.

Since symplectic action is additive under tensor product, σ ∈
HL (

∐
i(Yi, λi)) whenever L is greater than the right hand side of (4.2).

So we just need to show that Ui1 · · ·Uikσ = [∅] for all i1, . . . , ik ∈
{1, . . . , n}. Equivalently, since the different maps Ui commute, we need
to show that if

∑n
i=1 ki = k then

Uk1
1 · · ·Ukn

n σ = [∅].
To prove this last statement, observe that if

∑n
i=1 ji = k then

Uk1
1 · · ·Ukn

n (σ1,j1 ⊗ · · · ⊗ σn,jn) =

{
[∅], (j1, . . . , jn) = (k1, . . . , kn),
0, otherwise.

This is because if (j1, . . . , jn) 6= (k1, . . . , kn) then ki > ji for some i, so
that

Uki
i σi,ji = Uki−ji

i [∅] = 0,

where the last equality holds since Ui decreases symplectic action.
Step 2. We claim now that

(5.6) HL

(
n∐

i=1

(Yi, λi)

)
= span

{
n⊗

i=1

HLi(Yi, λi)

∣∣∣∣
n∑

i=1

Li ≤ L

}
.

To prove this, for each i = 1, . . . , n, let {σi,j}j=1,2,... be an action-
minimizing basis for H(Yi, λi). By Lemma 5.2(b), for each i and Li we
have

HLi(Yi, λi) = span{σi,j | cσi,j
(Yi, λi) < Li}.

Thus equation (5.6) is equivalent to
(5.7)

HL

(
n∐

i=1

(Yi, λi)

)
= span

{
σ1,j1 ⊗ · · · ⊗ σn,jn

∣∣∣∣
n∑

i=1

cσi,ji
(Yi, λi) < L

}
.

The right hand side of (5.7) is a subset of the left, as in Step 1, because
in the identification (2.3) the symplectic action is additive under tensor
product. To prove the reverse inclusion, consider a class

(5.8) σ =
∑

j1,...,jn

aj1,...,jnσ1,j1 ⊗ · · · ⊗ σn,jn ∈ H

(
n∐

i=1

(Yi, λi)

)
.

Let

L′ := max

{
n∑

i=1

cσi,ji
(Yi, λi)

∣∣∣∣ aj1,...,jn 6= 0

}
.

We need to show that σ /∈ HL′

(
∐

i(Yi, λi)).
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To do so, choose (j1, . . . , jn) with aj1,...,jn 6= 0 and cσi,ji
(Yi, λi) = Li

where
∑n

i=1 Li = L′. Choose an almost complex structure Ji on R× Yi

as needed to define the ECH of λi. By Lemmas 5.2(b) and 5.4, there is a
cocycle ζi ∈ C∗(Yi, λi, Ji) sending σi,ji 7→ 1, annihilating all other basis
elements σi,j with cσi,j

(Yi, λi) = Li, and annihilating all ECH generators
with action less than Li. Then

ζ1 ⊗ · · · ⊗ ζn ∈ C∗

(
n∐

i=1

(Yi, λi, Ji)

)

sends σ 7→ 1 and annihilates HL′

(
∐

i(Yi, λi)). Therefore σ /∈
HL′

(
∐

i(Yi, λi)).
Step 3. We now show that the left hand side of (4.2) is greater than

or equal to the right hand side. We need to show that if
∑n

i=1 ki = k
then

ck

(
n∐

i=1

(Yi, λi)

)
≥

n∑

i=1

cki(Yi, λi).

To do so, let L :=
∑n

i=1 cki(Yi, λi). We will show that if σ ∈
HL (

∐
i(Yi, λi)), then Uk1

1 · · ·Ukn
n σ 6= [∅].

Expand σ as in (5.8). By Step 2,

(5.9) aj1,...,jn 6= 0 =⇒
n∑

i=1

cσji
(Yi, λi) < L.

Next, for each i = 1, . . . , n, we can choose ζi ∈ Hom(H(Yi, λi),Z/2)
with the following two properties:

(i) ζi([∅]) = 1.

(ii) ζi annihilates U
ki
(
Hcki(Yi,λi)(Yi, λi)

)
.

Now let

ζ = ζ1 ⊗ · · · ⊗ ζn ∈ Hom

(
H

(∐

i

(Yi, λi)

)
,Z/2

)
.

By property (i) we have ζ([∅]) = 1. On the other hand,

ζ
(
Uk1
1 · · ·Ukn

n σ
)
=
(
ζ1 ◦ Uk1

1

)
⊗ · · · ⊗

(
ζn ◦ Ukn

n

)
σ

=
∑

j1,...,jn

aj1,...,jn

n∏

i=1

ζi

(
Uki
i σi,ji

)

= 0,

where the last equality follows from (5.9) and (ii). Thus Uk1
1 · · ·Ukn

n σ 6=
[∅] as desired. q.e.d.
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6. The 3-torus

We now compute the distinguished ECH spectrum of the 3-torus with
various contact forms.

6.1. Distinguished ECH spectrum of the standard 3-torus. Con-
sider the 3-torus

(6.1) Y = T 3 = (R/2πZ)θ × (R2/Z2)x,y

with the standard contact form

(6.2) λ = cos θ dx+ sin θ dy.

The ECH of this example was studied in detail in [8]. Using these
results, we can now compute the distinguished ECH spectrum:

Proposition 6.1. If k is a nonnegative integer then

(6.3) ck(T
3, λ) = min

{
ℓ(Λ)

∣∣ |PΛ ∩ Z
2| = k + 1

}
.

Here the minimum is over convex polygons Λ in R
2 with vertices in Z

2,
and PΛ denotes the closed region bounded by Λ. Also ℓ(Λ) denotes the
Euclidean length of Λ.

Proof. The proof has three steps.
Step 1. We first review what we need to know about the ECH of T 3.

The relative grading on ECH∗(T
3, λ, 0) has a canonical refinement to

an absolute Z-grading in which the empty set has grading 0. With this
convention, we have (by [8], or using the isomorphism (2.1) and [14,
Prop. 3.10.1])

(6.4) ECH∗(T
3, λ, 0) ≃

{
(Z/2)3, ∗ ≥ 0,

0, otherwise.

In addition, the map

U : ECH∗(T
3, λ, 0) −→ ECH∗−2(T

3, λ, 0)

is an isomorphism whenever ∗ ≥ 2. Finally, the contact invariant [∅]
is nonzero (by [8], or because (T 3, λ) is the boundary of a Liouville
domain).

We also need to know a bit about the ECH chain complex. The Reeb
vector field is given by

R = cos θ
∂

∂x
+ sin θ

∂

∂y
.

It follows that for every pair of relatively prime integers (m,n) there is
a Morse-Bott circle of embedded Reeb orbits Om,n sweeping out {θ} ×
(R2/Z2) where

(6.5) cos θ =
m√

m2 + n2
, sin θ =

n√
m2 + n2

.
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Each Reeb orbit γ ∈ Om,n has symplectic action

(6.6) A(γ) =
√

m2 + n2.

There are no other embedded Reeb orbits.
Fix L ∈ R. For any ε > 0, we can perturb the contact form λ to

fλ where f : Y → [1 − ε, 1], such that each Morse-Bott circle Om,n

with
√
m2 + n2 < L splits into an elliptic orbit em,n and a hyperbolic

orbit hm,n, and these are the only embedded Reeb orbits with action
less than L. As in [8, §11.3], a generator α of the ECH chain complex
for fλ with action less than L and with Γ = 0 then corresponds to a
convex lattice polygon Λα, modulo translation, in which each edge is
labeled ‘e’ or ‘h’. Note here that 2-gons and 0-gons are allowed, with
the latter corresponding to the empty set of Reeb orbits.

By (6.6), the action of a generator α as above is given by

(6.7) A(α) = ℓ(Λα)−O(ε).

Furthermore, it is shown in [8, §11.3] that with the above grading con-
ventions, the grading of the generator α is given by

(6.8) I(α) = 2(|PΛα ∩ Z
2| − 1)−#h(α),

where #h(α) denotes the number of edges of Λα that are labeled ‘h’.
Step 2. We now prove that the left hand side of (6.3) is less than or

equal to the right hand side.
Fix a nonnegative integer k. Let Λ0 be a length-minimizing convex

polygon with |PΛ0
∩ Z

2| = k + 1. Let α0 denote the ECH generator
consisting of the polygon Λ0 with all edges labeled ‘e’. (Assume that
L above is chosen sufficiently large with respect to k so that this is
defined.) The differential on the ECH chain complex in action less than
L for suitable perturbation function f and almost complex structure J
is computed in [8]: roughly speaking, the differential of a generator is
the sum over all ways of “rounding a corner” and “locally losing one
‘h”’. Since the generator α0 has no ‘h’ labels, it follows immediately
that ∂α0 = 0. In addition, it follows from the computation of the U map
in [8, §12.1.4] that the chain map U applied to a generator with all edges
labeled ‘e’ is obtained by rounding a distinguished corner (depending on
the choice of point z ∈ Y used to define the chain map U) and leaving
all edges labeled ‘e’. It follows that Ukα0 = ∅. Thus [α0] is a class in
ECH with Uk[α0] = [∅], so

ck(T
3, fλ) ≤ A(α0) = ℓ(Λ0)−O(ε).

Taking ε → 0 proves the desired inequality.
Step 3. We now prove that the left hand side of (6.3) is greater than

or equal to the right hand side.
Let σ ∈ ECH(T 3, fλ, 0) be a class with Ukσ = [∅]. Since U is an

isomorphism in grading ≥ 2, it follows that σ = [α0] + σ′ where σ′ is a
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sum of classes of grading less than 2k. Thus by Remark 5.3,

(6.9) cσ(T
3, fλ) = max(c[α0](T

3, fλ), cσ′(T 3, fλ)) ≥ c[α0](T
3, fλ).

Next we observe that

(*) ℓ(Λ0) is (up to O(ε) error) the minimum of A(α) where α is a
generator with Γ = 0 and I(α) = 2k.

This is because by (6.7), the above minimum of A(α) is (up to O(ε)
error) the minimum of ℓ(Λα) where α is a generator with Γ = 0 and
I(α) = 2k. But it follows immediately from (6.8) that the latter mini-
mum is realized by a generator α in which all edges of Λα are labeled
‘e’ and |PΛα ∩ Z

2| = k + 1.
It follows from (*) that

c[α0](T
3, fλ) ≥ ℓ(Λ0)−O(ε).

Combining with (6.9) and taking ε → 0 proves the desired inequality.
q.e.d.

Remark 6.2. In principle one could compute the full ECH spectrum
of T 3 from [8, Prop. 8.3], although this is not so simple. The latter
proposition semi-explicitly describes a basis for the ECH consisting of
elements pk, uk, vk of grading 2k and sk, tk, wk of grading 2k+1 for each
nonnegative integer k. Here pk is the unique class of grading 2k with
Ukpk = [∅]. In particular, it follows from this description that in the
notation of Definition 4.1,

cwk
> cuk

= cvk = csk = ctk > cpk−1
.

In addition it follows from the computation of the U map in [8, Lem.
8.4] that cpk > cpk−1

, cuk
> cuk−1

, and so forth. The beginning of
the full ECH spectrum is cp0 = 0, cp1 = cu0

= cv0 = cs0 = ct0 = 2,

cp2 = cu1
= cv1 = cs1 = ct1 = cw0

= 2 +
√
2, cp3 = 4, cu2

= cv2 = cs2 =

ct2 = cw1
= 2 + 2

√
2.

6.2. Distinguished ECH spectrum of some nonstandard 3-tori.
We now prove Theorem 1.11, computing the distinguished ECH capac-
ities of the examples T‖·‖∗ defined in §1.4. Note that this generalizes

Proposition 6.1, because if ‖ · ‖ is the Euclidean norm on R
2, then λ

restricts to ∂T‖·‖∗ as the standard contact form (6.2) on T 3.

Proof of Theorem 1.11. We may assume without loss of generality that
the norm ‖·‖ is smooth. This follows from Proposition 4.11, because an
arbitrary norm can be approximated from above and below by smooth
norms, and for a given positive integer k the right hand side of (1.8)
depends continuously on the norm.

Since the norm ‖ · ‖ is smooth, T‖·‖∗ is a Liouville domain. We now
follow the proof of Proposition 6.1 with appropriate modifications.
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To start we compute the Reeb vector field of λ =
∑2

i=1 pidqi on ∂T‖·‖∗ .
Let B denote the unit ball of the dual norm ‖ · ‖∗; observe that ∂B is
a smooth convex curve in (R2)∗. Identify (R2)∗ = R

2 using the usual
coordinates p1, p2. Suppose (p1, p2) ∈ ∂B. There is a unique θ ∈ R/2πZ
such that the outward unit normal vector to ∂B at (p1, p2) (with respect
to the Euclidean metric) is given by (cos θ, sin θ). The Reeb vector field
at (q1, q2, p1, p2) is then

R = (p1 cos θ + p2 sin θ)
−1

(
cos θ

∂

∂q1
+ sin θ

∂

∂q2

)
.

It follows that for every pair of relatively prime integers (m,n) there
is a Morse-Bott circle of embedded Reeb orbits Om,n, sweeping out
T 2 × {(p1, p2)} where (p1, p2) corresponds as above to the unique θ
satisfying (6.5). There are no other embedded Reeb orbits. Each Reeb
orbit γ ∈ Om,n has symplectic action

A(γ) = p1m+ p2n.

Now observe that since ‖ · ‖ is the dual norm of ‖ · ‖∗, we have

‖(m,n)‖ = max
{
〈ζ, (m,n)〉

∣∣ ζ ∈ B
}
.

By the definition of θ, this maximum is realized by ζ = (p1, p2). In
conclusion, each Reeb orbit γ ∈ O(m,n) has symplectic action

(6.10) A(γ) = ‖(m,n)‖ .
The rest of the proof is now the same as the proof of Proposition 6.1,

with equation (6.6) replaced by (6.10), and ℓ replaced by ℓ‖·‖. q.e.d.

7. The polydisk

7.1. The ECH capacities of a polydisk. We now prove Theorem 1.4
on the (distinguished) ECH capacities of a polydisk. One can calculate
the ECH capacities of a polydisk by understanding the ECH chain com-
plex of an appropriately smoothed polydisk, similarly to the calculations
in [8] for T 3 as outlined in §6.1. However this is a long story, and we
will instead take a shortcut using Theorems 1.1 and 1.11.

Proof of Theorem 1.4. The proof has two steps.
Step 1. Define a norm ‖ · ‖ on R

2 by

(7.1) ‖(q1, q2)‖ =
a|q1|
2

+
b|q2|
2

.

The dual norm is then

‖(p1, p2)‖∗ = max

(
2|p1|
a

,
2|p2|
b

)
,

so that

T‖·‖∗ =
{
(q1, q2, p1, p2) ∈ T ∗T 2

∣∣ |p1| ≤ a/2, |p2| ≤ b/2
}
.
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Denote this by T (a, b).
Observe now that for any ε > 0, there is a symplectic embedding

P (a, b) → T (a+ ε, b+ ε) defined by

(z1, z2) 7−→ (φ1(z1), φ2(z2)),

where φ1 = (p1, q1) is an area-preserving embedding of the disc of area
a into the cylinder [−(a + ε)/2, (a + ε)/2] × R/Z, and φ2 = (p2, q2)
is an area-preserving embedding of the disc of area b into the cylinder
[−(b + ε)/2, (b + ε)/2] × R/Z. There is also a symplectic embedding
T (a− ε, b− ε) → P (a, b) defined by

(q1, q2, p1, p2) 7−→ π−1/2
(
(a/2 + p1)

1/2e2πiq1 , (b/2 + p2)
1/2e2πiq2

)
.

Consequently, for any given k, applying Theorem 1.1 and taking ε →
0 shows that

ck(P (a, b)) = ck(T (a, b)).

So by Theorem 1.11, we need to show that

min
{
am+ bn

∣∣ (m+ 1)(n + 1) ≥ k + 1
}

(7.2)

= min
{
ℓ‖·‖(Λ)

∣∣ |PΛ ∩ Z
2| = k + 1

}
,

where in the first minimum (m,n) ∈ N
2, and in the second minimum Λ

is a convex polygon in R
2 with vertices in Z

2.
Step 2. We now prove (7.2). Given a convex polygon Λ in R

2 with
vertices in Z

2, let m denote the horizontal displacement between the
rightmost and leftmost vertices, and let n denote the vertical displace-
ment between the top and bottom vertices. Then Λ is contained in a
rectangle of side lengths m and n, so

|PΛ ∩ Z
2| ≤ (m+ 1)(n + 1).

On the other hand it follows from (7.1) that

ℓ‖·‖(Λ) = am+ bn.

Hence the left hand side of (7.2) is less than or equal to the right hand
side. But the reverse inequality also holds, because if one has k + 1 ≤
(m+1)(n+1), then inside a rectangle of side lengths m and n one can
find a convex polygon Λ with |PΛ ∩ Z

2| = k + 1. q.e.d.

7.2. Obstructions to embedding polydisks into balls. Let us now
try to more explicitly understand the bound (1.5) (which we have now
justified) for the function g defined in §1.3.2 that measures the obstruc-
tion to symplectically embedding a polydisk into a ball. The bound
(1.5) can be written as g(a) ≥ supd=1,2,... gd(a), where

gd(a) := min

{
am+ n

d

∣∣∣∣ (m,n) ∈ N
2, (m+ 1)(n + 1) ≥ (d+ 1)(d + 2)

2

}
.
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Given d, one can compute the function gd as follows. Let Λd denote the
boundary of the convex hull of the set of lattice points (m,n) ∈ N

2 with
(m + 1)(n + 1) ≥ (d + 1)(d + 2)/2. Then gd(a) = (am + n)/d, where
(m,n) is a (usually unique) vertex of the polygonal path Λd incident to
edges of slope less than or equal to −a and slope greater than or equal
to −a. Using this observation, we can now give the:

Proof of Proposition 1.7. First consider d = 1. The path Λ1 has vertices
(0, 2), (1, 1), and (2, 0). Since the vertex (0, 2) is incident to edges of
slope −1 and −∞, the above discussion shows that

g1(a) = 2, a ≥ 1.

This proves the first line of (1.6). To prove the rest of (1.6), take d = 6.
The path Λ6 has vertices (0, 27), (1, 13), (2, 9), (3, 6), (4, 5), (5, 4), (6, 3),
(9, 2), (13, 1), and (27, 0). Since the vertex (3, 6) is incident to edges of
slope −1 and −3, we get

g6(a) =
3a+ 6

6
, 1 ≤ a ≤ 3.

This implies the second line of (1.6). And since the vertex (2, 9) is
incident to edges of slope −3 and −4, we obtain

g6(a) =
2a+ 9

6
, 3 ≤ a ≤ 4.

This gives the last line of (1.6). q.e.d.

8. Volume and quantitative ECH

We now discuss and present evidence for Conjecture 1.12 and two
generalizations, relating the asymptotics of quantitative ECH to volume.

8.1. Volume conjecture for the distinguished ECH spectrum.
If (Y, λ) is a closed contact 3-manifold, define

vol(Y, λ) :=

∫

Y
λ ∧ dλ.

Conjecture 1.12 is then a special case of the following:

Conjecture 8.1. Let (Y, λ) be a closed contact 3-manifold with non-
vanishing ECH contact invariant. Suppose that ck(Y, λ) < ∞ for all k.
Then

lim
k→∞

ck(Y, λ)
2

k
= 2vol(Y, λ).

By Remark 3.13 and Proposition 4.5, this conjecture holds for ellip-
soids. Here are some more examples:
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Example 8.2. Consider T 3 as in (6.1) with the standard contact
form λ in (6.2). Let Λ be a convex polygon as in (6.3). If A(Λ) denotes
the area enclosed by Λ, then

|PΛ ∩ Z
2| = A(Λ) +O(ℓ(Λ)).

It then follows from (6.3) and the isoperimetric inequality

ℓ(Λ)2 ≥ 4πA(Λ)

that

lim inf
k→∞

ck(T
3, λ)2

k
≥ 4π.

On the other hand, approximating a circle with polygons shows that if
k is large, then we can find a polygon Λ as in (6.3) with

ℓ(Λ)2 ≤ 4πA(Λ) +O(ℓ(Λ)),

so in fact

lim
k→∞

ck(T
3, λ)2

k
= 4π.

Since vol(T 3) = 2π, Conjecture 8.1 is confirmed in this case.

Example 8.3. More generally, let ‖ · ‖ be a smooth norm on R
2,

let B denote the unit ball in the dual norm ‖ · ‖∗, and consider the
Liouville domain T‖·‖∗ from §6.2. We have vol

(
T‖·‖∗

)
= A(B), where

A(B) denotes the area of B (with respect to the Euclidean metric).
So it follows from Theorem 1.11 that Conjecture 1.12 in this case is
equivalent to a sharp isoperimetric inequality

(8.1) ℓ‖·‖(Λ)
2 ≥ 4A(B)A(Λ)

for a smooth convex curve Λ. Now (8.1) holds because if A(Λ) is fixed,
then ℓ‖·‖(Λ) is minimized when Λ is a scaling of a 90◦ rotation of ∂B,
see [2, 27]; and one can check directly that in this case equality holds
in (8.1).

Proposition 8.4. If Conjecture 8.1 holds for closed contact three-
manifolds (Yi, λi) with nonvanishing contact invariant for i = 1, . . . , n,
then it also holds for (Y, λ) :=

∐n
i=1(Yi, λi).

Proof. By Proposition 4.6, we can assume that ck(Yi, λi) < ∞ for all
i and k, and we have

lim
k→∞

ck(Y, λ)√
2k

= lim
k→∞

1√
2k

max
k1+···+kn=k

n∑

i=1

√
2ki vol(Yi, λi),

provided that the limit on the right exists. If one drops the integrality
requirement on ki, then the maximum on the right is attained when

ki =
k vol(Yi, λi)

vol(Y, λ)
.
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We then obtain

lim
k→∞

ck(Y, λ)√
2k

= lim
k→∞

n∑

i=1

(vol(Y, λ))−1/2 vol(Yi, λi) =
√

vol(Y, λ)

as required. q.e.d.

Remark 8.5. Under the assumptions of Conjecture 8.1, in many
(but not all) examples one in fact has ck(Y, λ) ≤

√
2k vol(Y, λ) for all

k. Note that upper bounds on the numbers ck(Y, λ) imply quantitative
refinements of the three-dimensional Weinstein conjecture, because by
definition, if λ is nondegenerate, then (Y, λ) has at least k nonempty
ECH generators of symplectic action at most ck(Y, λ). In particular, λ
always has a Reeb orbit of symplectic action at most c1(Y, λ). If Y is a
circle bundle over S2 of euler class e > 2 with a prequantization contact
form, then vol = 4π2e but c1 = 2πe >

√
2 vol, although there is still a

Reeb orbit of action 2π <
√
2 vol.

8.2. Volume conjecture for Liouville domains. We now confirm
Conjecture 1.12 in some more cases.

Proposition 8.6. Let (X0, ω0) be a 4-dimensional Liouville domain.
Then:

(a) lim infk→∞
ck(X0, ω0)

2

k
≥ 4 vol(X0, ω0).

(b) Suppose that (X0, ω0) can be symplectically embedded into a 4-
dimensional Liouville domain (X1, ω1) such that ck(X1, ω1) < ∞
for all k and Conjecture 1.12 holds for (X1, ω1). Then Conjec-
ture 1.12 holds for (X0, ω0).

Proof. (a) For any ε > 0, by using a finite cover of X0 by Darboux
charts, we can fill all but ε of the volume of (X0, ω0) with products
of smoothed squares which are symplectomorphic to polydisks. Since
Conjecture 1.12 is true for a polydisk, by Proposition 8.4 (applied to
boundaries of smoothed polydisks) it is also true for a disjoint union of
polydisks. Applying Theorem 1.1 then gives

lim inf
k→∞

ck(X0, ω0)
2

k
≥ 4 (vol(X0, ω0)− ε) .

Since ε > 0 was abitrary, this proves (a).
(b) Fill all but volume ε of the complement of X0 in X1 by polydisks

and apply Theorem 1.1 again. q.e.d.
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8.3. A more general volume conjecture. Conjecture 8.1 is a special
case of the following more general conjecture. Let (Y, λ) be a closed
contact 3-manifold. Recall that if Γ ∈ H1(Y ) is such that c1(ξ) +
2PD(Γ) ∈ H2(Y ;Z) is torsion, then ECH(Y, λ,Γ) has a relative Z-
grading, which can be arbitrarily normalized to an absolute Z-grading.
We then denote the grading of a generator x by I(x) ∈ Z. Recall the
notation cσ from Definition 4.1.

Conjecture 8.7. Let (Y, λ) be a closed connected contact 3-manifold,
let Γ ∈ H1(Y ), suppose that c1(ξ)+ 2PD(Γ) ∈ H2(Y ;Z) is torsion, and
choose an absolute Z-grading as above on ECH(Y, λ,Γ). Let {σk}k=1,2,...

be a sequence of elements of ECH(Y, λ,Γ) with definite gradings satis-
fying limk→∞ I(σk) = ∞. Then

(8.2) lim
k→∞

cσk
(Y, λ)2

I(σk)
= vol(Y, λ).

Note that the validity of (8.2) does not depend on the choice of abso-
lute Z-grading. Cliff Taubes has suggested to me that it may be possible
to prove Conjecture 8.7 using the spectral flow estimates involved in the
proof of (2.1).
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