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ON THE DISCRETENESS OF THE SPECTRUM

OF THE LAPLACIAN ON NONCOMPACT

RIEMANNIAN MANIFOLDS

Andrea Cianchi & Vladimir Maz’ya

Abstract

Necessary and sufficient conditions for the discreteness of the
Laplacian on a noncompact Riemannian manifold M are estab-
lished in terms of the isocapacitary function of M . The relevant
capacity takes a different form according to whether M has fi-
nite or infinite volume. Conditions involving the more standard
isoperimetric function of M can also be derived, but they are only
sufficient in general, as we demonstrate by concrete examples.

1. Introduction

Let M be an n-dimensional connected Riemannian manifold. We
denote by ∆M the semi-definite self-adjoint Laplace operator in the
Hilbert space L2(M) associated with the closed bilinear form

(1.1) a(u, v) =

∫

M
∇u · ∇v dHn,

defined for u and v in the Sobolev spaceW 1,2(M). This definition of ∆M

encompasses various special instances. For example, if the space C∞
0 (M)

of smooth compactly supported functions on M is dense in W 1,2(M),
the operator ∆M agrees with the Friedrichs extension of the classical
Laplacian, regarded as an unbounded operator on L2(M) with domain
C∞
0 (M). This is certainly the case when M is complete [Ch, Ro, St],

and, in particular, ifM is compact. A different situation occurs whenM
is an open subset of Rn, or, more generally, of a Riemannian manifold;
in this case, ∆M corresponds to the so-called Neumann Laplacian on M .

We are concerned with the problem of the discreteness of the spec-
trum of ∆M . This property is well known when M is compact, or when
M is an open subset of Rn with finite measure and sufficiently regular
boundary. However, the spectrum of ∆M need not be discrete in general.
Special situations, which are not included in this standard framework,
have been considered in the literature. For instance, conditions for the
discreteness of the spectrum of the Laplacian on noncompact complete
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manifolds with a peculiar structure are the object of several contribu-
tions, including [Ba,Bro, Brü, DL, Es, Kl1, Kl2]. On the other hand,
a characterization, involving capacities, of open subsets of Rn with fi-
nite measure whose Neumann Laplacian has a discrete spectrum was
established in [Ma2, Ma3].

It is the aim of the present paper to provide a necessary and sufficient
condition, in a spirit similar to [Ma2, Ma3], on an arbitrary Riemann-
ian manifold M for the spectrum of ∆M to be discrete. Our charac-
terization involves a function associated with M , which will be called
the isocapacitary function of M . Its name stems from the fact that it
is the optimal function of the measure of any subset E of M which can
be estimated by a suitable capacity of E. The relevant capacity takes a
different form according to whether Hn(M) < ∞ or Hn(M) = ∞. Here,
Hn denotes the n-dimensional Hausdorff measure on M , i.e. the volume
measure on M induced by its Riemannian metric, and hence Hn(M) is
the volume of M . As a corollary of our capacitary characterization, we
derive a sufficient condition for the discreteness of the spectrum of the
Laplacian on M involving the isoperimetric function of M , namely the
optimal function in the isoperimetric inequality on M . Our conditions
depend only on the asymptotic behavior at 0, and also at infinity if
Hn(M) = ∞, of the isocapacitary or isoperimetric function of M .

Isoperimetric inequalities have a transparent geometric character, and
their applications to the study of eigenvalue problems on Riemannian
manifolds is quite classical—see e.g. [BGM, Cha, CF, Che, Ga,Ma5,
Ya]. One aspect of our discussion that we would like to emphasize is
that, although quite effective when dealing with spectral properties of
manifolds with a sufficiently regular geometry, the use of isoperimet-
ric inequalities yields results that are not the best possible in general.
The criterion in terms of the isoperimetric function of M that will be
established is sharp, in a sense, for the discreteness of the spectrum of
∆M . However, isocapacitary inequalities are a more appropriate tool,
since they enable us to provide a full characterization of Riemannian
manifolds where ∆M is discrete. Such a characterization applies to cer-
tain manifolds with complicated geometric configurations for which the
approach by the isoperimetric function fails. This will be shown by an
explicit example of a family of manifolds with a sequence of clustering
submanifolds.

Key steps in our approach are criteria, of independent interest, for
the compactness of the embedding of the Sobolev space W 1,2(M) into
L2(M) in terms of the isocapacitary function of the manifold M .
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2. Manifolds with finite volume

In this section we are concerned with the case when Hn(M) < ∞.

2.1. Discreteness of the spectrum. Given sets E ⊂ G ⊂ M , the
capacity C(E,G) of the condenser (E,G) is defined as

C(E,G) = inf

{
∫

M
|∇u|2 dx : u ∈ W 1,2(M), u ≥ 1 in E and u ≤ 0

(2.1)

in M \G (up to a set of standard capacity zero)

}

.

Here, W 1,2(M) denotes the Sobolev space defined as

W 1,2(M) = {u ∈ L2(M) : u is weakly differentiable in M

and |∇u| ∈ L2(M)},
and

‖u‖W 1,2(M) =
√

‖u‖2
L2(M)

+ ‖∇u‖2
L2(M)

for u ∈ W 1,2(M). We refer to [He] for a comprehensive treatment of
the theory of Sobolev spaces on Riemannian manifolds.

The isocapacitary function νM : [0,Hn(M)/2] → [0,∞] is given by

νM (s) = inf{C(E,G) : E and G are measurable subsets of M such that

(2.2)

E ⊂ G ⊂ M and s ≤ Hn(E), Hn(G) ≤ Hn(M)/2}
for s ∈ [0,Hn(M)/2].

The function νM is clearly non-decreasing. The isocapacitary inequality
on M is a straightforward consequence of definition (2.2), and tells us
that

(2.3) νM (Hn(E)) ≤ C(E,G)

for any measurable sets E ⊂ G ⊂ M with Hn(G) ≤ Hn(M)/2. A ver-
sion of the isocapacitary function on open subsets of Rn was introduced
in [Ma2, Ma3], and employed to provide necessary and sufficient con-
ditions for embeddings in the Sobolev space of functions with gradient
in L2.

Our characterization of Riemannian manifolds of finite volume with
a discrete spectrum reads as follows.
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Theorem 2.1. Let M be a Riemannian manifold such that Hn(M) <
∞. Then the spectrum of ∆M is discrete if and only if

(2.4) lim
s→0

s

νM (s)
= 0 .

Incidentally, let us mention that condition (2.4) turns out also to
be optimal for the existence of eigenfunction estimates in Lq(M), with
q ∈ (2,∞) [CM, theorem 2.1]. On the other hand, eigenfunctions of
the Laplacian need not be in L∞(M) under (2.4). The boundedness of
eigenfunctions is only guaranteed provided that (2.4) is strengthened to

∫

0

ds

νM (s)
< ∞

—see [CM, theorem 2.3].
Theorem 2.1 can be used to derive a sufficient condition for the

discreteness of the spectrum of ∆M in terms of another function, of
genuinely geometric nature, associated with M . This is called the
isoperimetric function of M and will be denoted by λM . The function
λM : [0,Hn(M)/2] → [0,∞] is given by

(2.5) λM (s) = inf{P (E) : s ≤ Hn(E) ≤ Hn(M)/2} .
Here, P (E) is the perimeter of E, which can be defined as

P (E) = Hn−1(∂∗E) ,

where ∂∗E stands for the essential boundary of E in the sense of geomet-
ric measure theory, and Hn−1 denotes the (n−1)-dimensional Hausdorff
measure on M , namely the surface measure on M induced by its Rie-
mannian metric. Recall that ∂∗E agrees with the topological boundary
∂E of E when E is regular enough, e.g. an open subset of M with a
smooth boundary.

The very definition of λM leads to the isoperimetric inequality on M ,
which reads

(2.6) λM (Hn(E)) ≤ P (E)

for every measurable set E ⊂ M with Hn(E) ≤ Hn(M)/2.
The isoperimetric function of an open subset of Rn was introduced in

[Ma1] (see also [Ma4]) in view of the characterization of Sobolev em-
beddings for functions with gradient in L1. In more recent years, isoperi-
metric inequalities and corresponding isoperimetric functions have been
intensively investigated on Riemannian manifolds as well—see e.g. [BC,
CF, CGL, GP, Gr, MHH, Kle, MJ, Pi, Ri].

The functions νM and λM are related by the inequality

(2.7) νM (s) ≥ 1
∫ Hn(M)/2
s

dr
λM (r)2

for s ∈ (0,Hn(M)/2),
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which follows along the same lines as in [Ma4, proposition 4.3.4/1].
Since M is connected, by an analogous argument as in [Ma4, lemma
3.2.4] one can show that λM (s) > 0 for s > 0. Owing to inequality
(2.7), νM (s) > 0 for s > 0 as well.

The following result is easily seen to follow from Theorem 2.1, via
(2.7).

Corollary 2.2. Let M be a Riemannian manifold such that Hn(M) <
∞. Assume that

(2.8) lim
s→0

s

λM (s)
= 0 .

Then the spectrum of ∆M is discrete.

Observe that both Theorem 2.1 and Corollary 2.2 recover, in par-
ticular, the classical result on the discreteness of the spectrum of the
Laplacian on any compact Riemannian manifold M . Indeed, if M is
compact, then

(2.9) λM (s) ≈ s
n−1

n near 0,

and

(2.10) νM (s) ≈
{

s
n−2

n if n ≥ 3,
(

log 1
s

)−1
if n = 2,

near 0. Here, and in what follows, the notation

(2.11) f ≈ g near 0

for functions f, g : (0,∞) → [0,∞) means that there exist positive
constants c1, c2, and s0 such that

(2.12) c1g(c1s) ≤ f(s) ≤ c2g(c2s) if s ∈ (0, s0).

Remark 2.3. Assumption (2.8) is essentially minimal in terms of λM

for the spectrum of ∆M to be discrete, in the sense that (2.8) is sharp in
the class of all manifolds M with prescribed isoperimetric function λM .
To be more specific, consider any non-decreasing function λ : [0,∞) →
[0,∞), vanishing only at 0, and such that

(2.13)
λ(s)

s
n−1

n

≈ a non-decreasing function near 0.

By [CM, proposition 4.3], there exists an n-dimensional Riemannian
manifold of revolution M fulfilling

(2.14) λM (s) ≈ λ(s) near 0.

Note that assumption (2.13) is required in the light of the fact that (2.9)
holds for any compact manifold M , and that λM (s) cannot decay more
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slowly to 0 as s → 0 in the noncompact case. Now, if λ is such that
lim sups→0

s
λ(s) > 0, then

(2.15) lim sup
s→0

s

λM (s)
> 0

as well. Owing to [CM, corollary 4.2], condition (2.15) is equivalent to

lim sup
s→0

s

νM (s)
> 0,

when M is the manifold of revolution in question and, by Theorem 2.1,
the latter condition implies that the spectrum of ∆M is not discrete.

2.2. Compactness of a Sobolev embedding. We shall deduce The-
orem 2.1 via Theorem 2.4 below, showing the equivalence of condition
(2.4) and of the compactness of the embedding

(2.16) W 1,2(M) → L2(M).

Indeed, a standard result in the theory of positive-definite self-adjoint
operators in Hilbert spaces (see e.g. [BS, chapter 10, section 1, theo-
rem 5]) ensures that the discreteness of the spectrum of the operator
−∆M + Id, and hence of −∆M , on M is equivalent to the compactness
of embedding (2.16).

Theorem 2.4. Let M be a Riemannian manifold such that Hn(M) <
∞. Then embedding (2.16) is compact if and only if (2.4) holds.

In our proof of Theorem 2.4, we need to consider an auxiliary Sobolev
type space V 1,2(M) defined as

V 1,2(M) = {u : u is weakly differentiable in M and |∇u| ∈ L2(M)}.
Given any open set ω ⊂ M such that ω is compact, the expression

√

‖∇u‖2
L2(M)

+ ‖u‖2
L2(ω)

defines a norm in V 1,2(M). Different choices of ω result in equivalent
norms in V 1,2(M). Clearly,

W 1,2(M) = V 1,2(M) ∩ L2(M) .

Note that W 1,2(M) may be strictly contained in V 1,2(M), due to the
lack of a Poincaré type inequality between infc∈R ‖u − c‖L2(M) and
‖∇u‖L2(M) on noncompact manifolds with an irregular geometry.

Our first result is concerned with the equivalence of the compactness
of the embeddings W 1,2(M) → L2(M) and V 1,2(M) → L2(M).

Lemma 2.5. Let M be a Riemannian manifold such that Hn(M) <
∞. Then the embedding

(2.17) V 1,2(M) → L2(M)
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is compact if and only if the embedding

(2.18) W 1,2(M) → L2(M)

is compact.

Proof. The compactness of (2.17) trivially implies the compactness
of (2.18).

Conversely, assume that (2.18) is compact. Then there exists an
increasing function ζ : [0,Hn(M)] → [0,∞) fulfilling lims→0 ζ(s) = 0,
and such that for any measurable E ⊂ M with |E| ≤ s

(2.19)

∫

E
u2dHn ≤ ζ(s)

(
∫

M
|∇u|2dHn +

∫

M
u2dHn

)

for every u ∈ W 1,2(M). Given any s ∈ (0,Hn(M)) such that ζ(s) < 1,
let ω be any open set as in the definition of the norm in V 1,2(M) such
that Hn(M \ ω) ≤ s. Such a set ω exists since M is, in particular, a
locally compact, separable topological space with a countable basis. We
deduce from (2.19) that

(2.20)

∫

M\ω
u2dHn ≤ ζ(s)

1− ζ(s)

(
∫

M
|∇u|2dHn +

∫

ω
u2dHn

)

for every u ∈ W 1,2(M). Inequality (2.20) continues to hold for every
u ∈ V 1,2(M), as it is easily seen on truncating any such function at
levels t and −t, applying (2.20) to the resulting function (which belongs
to W 1,2(M)), and then letting t → ∞.

Now, let {uk} be any bounded sequence in V 1,2(M). Thus, there
exists C > 0 such that

(2.21)

∫

M
|∇uk|2 dHn +

∫

ω
u2k dHn ≤ C.

From (2.20) and (2.21), we obtain that
∫

M
|∇uk|2 dHn +

∫

M
u2k dHn ≤ C

1− ζ(s)
.

By the compactness of embedding (2.18), there exists a subsequence
of {uk} converging in L2(M). The compactness of embedding (2.17)
follows. q.e.d.

The next lemma shows that the embedding V 1,2(M) → L2(M) is
equivalent to a Poincaré type inequality. In what follows, med(u) de-
notes the median of the function u, given by

med(u) = sup{t : Hn{u > t} ≥ Hn(M)/2},
and mv(u) stands for the mean value of u, defined as

(2.22) mv(u) =
1

Hn(M)

∫

M
u dHn .
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Lemma 2.6. Let M be a Riemannian manifold such that Hn(M) <
∞. Then the embedding

(2.23) V 1,2(M) → L2(M)

holds if and only if there exists a constant C such that

(2.24) ‖u−med(u)‖L2(M) ≤ C‖∇u‖L2(M)

for every u in V 1,2(M).

Proof. We claim that embedding (2.23) is equivalent to the inequal-
ity

(2.25) inf
c∈R

‖u− c‖L2(M) ≤ C‖∇u‖L2(M)

for some constant C and for every u in V 1,2(M). Indeed, assume that
(2.23) holds. Fix any smooth open set ω such that ω is compact. From
(2.23) we obtain that

(2.26) ‖u− c‖L2(M) ≤ C
(

‖∇u‖L2(M) + ‖u− c‖L2(ω)

)

for every u ∈ V 1,2(M) and c ∈ R. Since (2.25) classically holds with M
replaced by ω, inequality (2.25) follows via (2.26). Conversely, assume
that (2.25) holds. Since any constant function c ∈ V 1,2(M), we have
that V 1,2(M) ⊂ L2(M). The identity map from V 1,2(M) into L2(M)
is linear and has a closed graph. By the closed graph theorem it is also
continuous. Hence, embedding (2.23) holds.

Owing to the equivalence of (2.23) and (2.25) just established, in-
equality (2.24) implies (2.23).

In order to prove the reverse implication, it suffices to exploit the
equivalence of (2.23) and (2.25), to recall that

‖u−mv(u)‖L2(M) = inf
c∈R

‖u− c‖L2(M) ,

and to make use of the fact that

(2.27) ‖u−med(u)‖L2(M) ≤
√
2‖u−mv (u)‖L2(M)
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for every u ∈ L2(M). To verify (2.27), observe that

‖u−mv (u)‖2L2(M) =
1

Hn(M)

∫

M

∫

M
(u(x)− u(y))2dHn(y)dHn(x)

(2.28)

≥ 1

Hn(M)

∫

{u(y)≤med(u)}

∫

{u(x)≥med(u)}
(u(x)−med(u)

+ med(u)− u(y))2dHn(y)dHn(x)

≥ 1

Hn(M)

∫

{u(y)≤med(u)}

∫

{u(x)≥med(u)}

(u(x)−med(u))2dHn(y)dHn(x)

+
1

Hn(M)

∫

{u(y)≤med(u)}

∫

{u(x)≥med(u)}

(med(u)− u(y))2dHn(y)dHn(x)

≥ 1

2

∫

{u(x)≥med(u)}
(u(x)−med(u))2dHn(x)

+
1

2

∫

{u(y)≤med(u)}
(med(u)− u(y))2dHn(y)

=
1

2

∫

M
(u(x)−med(u))2dHn(x) =

1

2
‖u−med(u)‖2L2(M) .

q.e.d.

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. Assume that (2.4) holds. Let us fix any
s ∈ (0,Hn(M)/2), and let E be any compact set in M such thatHn(M \
E) < s (such E certainly exists since M is, in particular, a locally
compact, separable topological space with a countable basis). Let η be
any smooth compactly supported function on M such that 0 ≤ η ≤ 1
and η = 1 in E. Set K = supp η.

Given any u ∈ W 1,2(M), we have that

(2.29) ‖u‖L2(M) ≤ ‖(1 − η)u‖L2(M) + ‖ηu‖L2(M) .

Let us set
v = (1− η)u.

Clearly, v ∈ W 1,2(M), and supp v ⊂ M \ E. Thus, for every t > 0,
{x ∈ M : |v| ≥ t} = {x ∈ M \E : |v| ≥ t}, and Hn({x ∈ M : |v| ≥ t}) ≤
s ≤ Hn(M)/2. Hence, by (2.3),

∫

M
v2 dHn =

∫ ∞

0
Hn({|v| ≥ t})d(t2)(2.30)

≤
(

sup
r≤s

r

νM (r)

)
∫ ∞

0
C({|v| ≥ t},M \E) d(t2).
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We now make use of a discretization argument related to that of [Ma4,
remark 2.3.1]. By the monotonicity of capacity,

∫ ∞

0
C({|v| ≥ t},M \E) d(t2) ≤ 3

∑

k∈Z

22kC({|v| ≥ 2k},M \E) .

(2.31)

Let Ψ : R → [0, 1] be the function given by Ψ(t) = 0 if t ≤ 0, Ψ(t) = 1
if t ≥ 1, and Ψ(t) = t if t ∈ (0, 1). Define vk : M → [0, 1] as

vk = Ψ(21−k|v| − 1)

for k ∈ Z. Note that vk ∈ W 1,2(M) for k ∈ Z, since Ψ is Lipschitz
continuous, and vk = 1 in {|v| ≥ 2k} and vk = 0 in {|v| ≤ 2k−1}. In
particular, vk = 0 on E = M \ (M \ E). Hence, by the very definition
of capacity of a condenser, one has that

∑

k∈Z

22kC({|v| ≥ 2k},M \ E) ≤
∑

k∈Z

22k
∫

M
|∇vk|2dHn(2.32)

= 4
∑

k∈Z

∫

{2k−1≤|v|<2k}
|∇v|2dHn

= 4

∫

M
|∇v|2dHn .

Combining inequalities (2.30)–(2.32) tells us that there exists a constant
C such that

∫

M
v2 dHn ≤ C sup

r≤s

r

νM(r)

∫

M
|∇v|2dHn .(2.33)

Thus,

‖(1− η)u‖L2(M)

(2.34)

≤
(

C sup
r≤s

r

νM (r)

)1/2

‖∇((1 − η)u)‖L2(M)

≤
(

C sup
r≤s

r

νM (r)

)1/2
(

‖∇u‖L2(M) + ‖∇η‖L∞(M)‖u‖L2(K)

)

,

and, trivially,

(2.35) ‖ηu‖L2(M) ≤ ‖u‖L2(K) .

From (2.29), (2.34), and (2.35) we deduce that

(2.36) ‖u‖L2(M) ≤ C

(

sup
r≤s

r

νM (r)

)1/2

‖∇u‖L2(M) + C‖u‖L2(K) ,

for a suitable constant C.
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By the standard Reillich compactness embedding theorem, applied on
each element of a finite covering of K with smooth bounded open sets,
the embedding

(2.37) W 1,2(M) → L2(K)

is compact. Let {uk} be a sequence in the unit ball of W 1,2(M). By the
compact embedding (2.37), we may assume (on taking a subsequence,
if necessary) that {uk} is a Cauchy sequence in L2(K). An application
of (2.36) with u replaced by uk − um for k,m ∈ N yields

(2.38) ‖uk − um‖L2(M) ≤ 2C

(

sup
r≤s

r

νM(r)

)1/2

+ C‖uk − um‖L2(K) .

Since {uk} is a Cauchy sequence in L2(K), by (2.38)

(2.39) ‖uk − um‖L2(M) ≤ 3C

(

sup
r≤s

r

νM (r)

)1/2

,

provided that k and m are sufficiently large. Owing to the arbitrariness
of s and to assumption (2.4), {uk} is a Cauchy sequence in L2(M). The
compactness of the embedding W 1,2(M) → L2(M) follows.

Conversely, assume that the embedding W 1,2(M) → L2(M) is com-
pact. Then, by Lemma 2.5, embedding (2.17) is also compact. Let ω
be as in the definition of the norm in V 1,2(M), and such that Hn(ω) ≤
Hn(M)/2. Thus, there exists an increasing function ζ : (0,Hn(M)) →
[0,∞) fulfilling

(2.40) lim
s→0

ζ(s) = 0 ,

and such that for any s ∈ (0,Hn(M)/2) and any measurable set E ⊂ M
with Hn(E) = s

(2.41)

∫

E
u2dHn ≤ ζ(s)

(
∫

M
|∇u|2dHn +

∫

ω
u2dHn

)

for every u ∈ V 1,2(M). An application of (2.41) with u replaced by
u−med(u), and Lemma 2.6, entail that

∫

E
|u−med(u)|2dHn ≤ ζ(s)

(
∫

M
|∇u|2dHn +

∫

ω
|u−med(u)|2dHn

)

(2.42)

≤ Cζ(s)

∫

M
|∇u|2dHn

for some constant C and for every u ∈ V 1,2(M). Given any measurable
set G ⊃ E such that Hn(G) ≤ Hn(M)/2, let u ∈ V 1,2(M) be any
function such that u = 1 a.e. in E and u = 0 a.e. in M \ G. In
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Figure 1. A manifold of revolution

particular, med(u) = 0. We thus infer from (2.42) that

(2.43) s = Hn(E) ≤ Cζ(s)

∫

M
|∇u|2dHn .

By the definition of capacity, inequality (2.43) implies that

(2.44) s ≤ Cζ(s)C(E,G) .

Since νM is a positive non-decreasing function in (0,Hn(M)/2), equa-
tion (2.4) easily follows from (2.44), (2.2), and (2.40). q.e.d.

2.3. Examples.

2.3.1. Manifolds of revolution. Basic instances of complete noncom-
pact Riemannian manifolds are provided by manifolds of revolution of
the form R× S

n−1, endowed with the Riemannian metric

(2.45) ds2 = dr2 + ϕ(r)2dω2 .

Here, dω2 stands for the standard metric on the (n − 1)-dimensional
sphere S

n−1, and ϕ is a smooth function on [0,∞) such that ϕ(r) > 0
for r > 0, ϕ(0) = 0, and ϕ′(0) = 1. Clearly, Hn(M) < ∞ if and
only if

∫∞
0 ϕ(r)n−1 dr < ∞. Under the additional assumption that

there exists r0 > 0 such that ϕ is decreasing and convex in (r0,∞), the
asymptotic behavior of λM and νM can be described [CM, theorem 3.1].
In particular, conditions (2.4) and (2.8) are equivalent for this class of
manifolds [CM, corollary 4.2], and lead to the following characterization
of the discreteness of the spectrum of ∆M .

Proposition 2.7. Let M be an n-dimensional Riemannian manifold
of revolution as above. Then the spectrum of ∆M (which agrees with the
Friedrichs extension of the Laplacian on M) is discrete if and only if

(2.46) lim
r→∞

1

ϕ(r)n−1

∫ ∞

r
ϕ(ρ)n−1dρ = 0.
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Figure 2. A manifold with a family of clustering submanifolds

Condition (2.46) suggests that profiles ϕ with an exponential decay at
infinity are borderline for the discreteness of the spectrum of ∆M . More
precisely, consider the one-parameter family of manifolds of revolution
M where ϕ : [0,∞) → [0,∞) is such that ϕ(r) = e−rα for large r, for
some α > 0. An application of Proposition 2.7 tells us that the spectrum
of the Laplacian on M is discrete if and only if α > 1. This overlaps
with results of [Ba].

2.3.2. Manifolds with clustering submanifolds. We consider here
a class of noncompact surfaces M embedded in R

3, which are reminis-
cent of an irregular open set in R

2 appearing in [CH]. This class of
surfaces will demonstrate how Theorem 2.1, involving the isocapacitary
function νM , can actually succeed in proving the discreteness of the
spectrum of ∆M in situations where, instead, Corollary 2.2 fails.

The main feature of the manifolds considered in this section is that
they contain a sequence of mushroom-shaped submanifolds {Nk} clus-
tering at some point (Figure 2). The submanifolds {Nk} are constructed
in such a way that the diameter of the head and the length of the neck
of Nk decay to 0 as 2−k when k → ∞, whereas the width of the neck of
Nk decays to 0 as σ(2−k), where σ is an increasing function such that

(2.47) lim
s→0

σ(s)

s
= 0.

Moreover, the distance of {Nk} and {Nk+1} is of the order 2−k+1 for
k ∈ N. Loosely speaking, a faster decay to 0 of the function σ(s) as
s → 0 results in a faster decay to 0 of λM (s) and νM (s), and hence
in a manifold M with a more irregular geometry. A description of the
asymptotic behavior of λM and νM has been provided in propositions
7.1 and 7.2 of [CM], to which we also refer for a rigorous definition of
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M . In particular, we have what follows. Assume that σ ∈ ∆2, namely
a constant c exists such that σ(2s) ≤ cσ(s) for s > 0. Then

(2.48) λM (s) ≤ Cσ(s1/2) for s ≥ 0,

and

(2.49) νM (s) ≤ Cσ(s1/2)s−
1

2 for s ≥ 0,

for some positive constant C. If, in addition,

(2.50)
sβ+1

σ(s)
is non-increasing for some β > 0,

and

(2.51)
s3

σ(s)
is non-decreasing,

then, in fact,

(2.52) νM (s) ≈ σ(s1/2)s−
1

2 near 0.

The manifold M is obviously not complete. This notwithstanding, the
following density result holds.

Proposition 2.8. Let M be the manifold described above, under as-
sumption (2.47). Then

(2.53) C∞
0 (M) = W 1,2(M).

Hence, the operator ∆M agrees with the Friedrichs extension of the
Laplacian on M .

Proof. It suffices to prove (2.53). With reference to Figure 2, we denote
a point in R

3 by x = (y, z), where y ∈ R
2 (the horizontal plane) and

z ∈ R (the vertical axis). Let η ∈ C∞(R) be an increasing function such
that η(s) = 0 if s ≤ 0, η(s) = 1 if s ≥ 1. Define, for ε > 0, the function
ηε : M → [0, 1] as

ηε(x) = η

(

log(|y|/ε2)
log(1/ε)

)

for x ∈ M .

Clearly, ηε ∈ C∞
0 (M), ηε(x) = 0 if x belongs to the intersection of M

with the half-cylinder {x ∈ R
3 : |y| < ε2, z ≥ 0}, and η(x)ε = 1 if x

belongs to the intersection of M with {x ∈ R
3 : |y| > ε, z ≥ 0}. We

have that
(2.54)

|∇ηε(x)|























= η′
(

log(|y|/ε2)
log(1/ε)

)

1
|y| log(1/ε) ≤ C

|y| log(1/ε)

if x ∈
(

M \ (∪kN
k)
)

∩ {z ≥ 0},
≤ η′

(

log(|y|/ε2)
log(1/ε)

)

1
|y| log(1/ε) ≤ C2k

log(1/ε) if x ∈ Nk,
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for some constant C depending on η. Here, ∇ denotes the gradient on
M . Next, define K = {k : Nk ∩ {x ∈ R

3 : ε2 < |y| < ε} 6= ∅}, and note
that the cardinality of K is of the order log(ε−1). Furthermore, we have
that H2(Nk) ≤ C2−2k for some constant C. Thus,

∫

M
|∇ηε|2dH2 =

∫

(M\(∪kNk))∩{z≥0}
|∇ηε|2dH2 +

∑

k∈K

∫

Nk

|∇ηε|2dH2

(2.55)

≤ C

log2(1/ε)

∫

{y:ε2≤|y|≤ε}

dy

|y|2 +
C

log2(1/ε)

∑

k∈K

22k

≤ C

log(1/ε)
+

C ′

log2(1/ε)
log(1/ε)

≤ C ′′

log(1/ε)
,

for some constants C,C ′, C ′′. Now, given any u ∈ W 1,2(M), we have to
show that u can be approximated in W 1,2(M) by a family of functions
from C∞

0 (M). Bounded functions are dense in W 1,2(M). This can be
easily seen on approximating u by its truncation at the levels t and −t
and letting t go to +∞. Thus, we may assume, without loss of generality,
that u is bounded. Moreover, smooth functions are well known to be
dense in W 1,2(M) for any Riemannian manifold M , and hence also for
the present one. Thus, we may assume that u ∈ C∞(M) ∩ L∞(M).
Now, set uε = ηεu, and observe that uε ∈ C∞

0 (M) for ε > 0. We have
that

‖u− uε‖W 1,2(M) ≤ ‖(1 − ηε)∇u‖L2(M) + ‖u‖L∞(M)‖∇ηε‖L2(M)(2.56)

+ ‖(1− ηε)u‖L2(M).

Owing to (2.55), we infer that uε → u in W 1,2(M) as ε → 0. Hence,
assertion (2.53) follows. q.e.d.

The next proposition relies upon the criterion for the discreteness of
the spectrum of ∆M in terms of the isocapacitary function of M given in
Theorem 2.1, and provides us with a characterization of those manifolds
M of the family considered in this section for which the spectrum of the
Laplacian is discrete.

Proposition 2.9. Assume that σ ∈ ∆2 and fulfills (2.50), and that

the function s3

σ(s) is monotonic. Then the spectrum of ∆M (which, by

Proposition 2.8, agrees with the Friedrichs extension of the Laplacian
on M) is discrete if and only if

(2.57) lim
s→0

s3

σ(s)
= 0 .



484 A. CIANCHI & V. MAZ’YA

Proof. By Theorem 2.4 and (2.49), condition (2.57) is necessary for
the embedding W 1,2(M) → L2(M) to be compact, and hence for the
spectrum of ∆M to be discrete. By Theorem 2.1, the monotonicity

assumption on s3

σ(s) , and (2.52), we have that condition (2.57) is also

sufficient for the discreteness of the spectrum of ∆M . q.e.d.
By contrast, let us emphasize that, owing to (2.48), the use of Corol-

lary 2.2 involving the isoperimetric function λM cannot yield the dis-
creteness of the spectrum of the manifold M unless

lim
s→0

s2

σ(s)
= 0 ,

a condition more stringent than (2.57).

3. Manifolds with infinite volume

We assume throughout this section that Hn(M) = ∞.

3.1. Discreteness of the spectrum. The notion of capacity C(E) of
a subset of M which now comes into play is:

C(E) = inf

{
∫

M
(|∇u|2 + u2) dx : u ∈ W 1,2(M), u ≥ 1 in E(3.1)

(up to a set of standard capacity zero)

}

.

Accordingly, the isocapacitary function µM : [0,∞) → [0,∞] is given
by

(3.2) µM (s) = inf {C(E) : E is measurable and s ≤ Hn(E) < ∞}
for s ≥ 0.

The isocapacitary inequality takes the form

(3.3) µM (Hn(E)) ≤ C(E)

for every measurable set E ⊂ M with Hn(E) < ∞.
Our characterization of Riemannian manifolds of infinite volume such

that ∆M has a discrete spectrum reads as follows.

Theorem 3.1. Let M be a Riemannian manifold such that Hn(M) =
∞. Then the spectrum of ∆M is discrete if and only if

(3.4) lim
s→0

s

µM (s)
= 0 and lim

s→∞

s

µM (s)
= 0 .

Defining the isoperimetric function ̺M : [0,∞) → [0,∞) of M as

(3.5) ̺M (s) = inf{P (E) : s ≤ Hn(E) < ∞}
results in the isoperimetric inequality on M

(3.6) ̺M (Hn(E)) ≤ P (E)
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for every measurable set E ⊂ M with Hn(E) < ∞. The counterpart of
(2.7) is the inequality

(3.7) µM(s) ≥ 1
∫∞
s

dr
̺M (r)2

+ s for s ∈ (0,∞),

whose proof follows via an easy modification of that of (2.7).
An analogue of Corollary 2.2 in the present framework follows from

Theorem 3.1 and inequality (3.7).

Corollary 3.2. Let M be a Riemannian manifold such that Hn(M) =
∞. Assume that

(3.8) lim
s→0

s

̺M (s)
= 0 and lim

s→∞

s

̺M (s)
= 0 .

Then the spectrum of ∆M is discrete.

3.2. Compactness of a Sobolev embedding. Analogously to the
case of manifolds of finite volume, Theorem 3.1 is a consequence of a
compactness result, which is the content of the next theorem.

Theorem 3.3. Let M be a Riemannian manifold such that Hn(M) =
∞. Then the embedding

W 1,2(M) → L2(M)

is compact if and only if (3.4) holds.

Proof. Assume that (3.4) holds. Let u ∈ W 1,2(M). Since the set of
continuous functions is dense in W 1,2(M), we may assume, without loss
of generality, that u is continuous. Given δ > 0, set

Mδ = {|u| > δ}.
Owing to our assumptions, Mδ is an open set, and Hn(Mδ) < ∞. We
have that

(3.9) ‖u‖L2(M) ≤ ‖u‖L2(Mδ) + ‖u‖L2(M\Mδ).

The first term on the right hand side of (3.9) can be estimated via an
argument similar to that of the proof of Theorem 2.4. Specifically, fix
any s > 0, and let E be any compact subset of Mδ such that Hn(Mδ \
E) < s. Let η be any smooth compactly supported function on Mδ such
that 0 ≤ η ≤ 1 and η = 1 in E. Set K = supp η. We have that

(3.10) ‖u‖L2(Mδ) ≤ ‖(1− η)u‖L2(Mδ) + ‖ηu‖L2(Mδ) .

Let us set

v = (1− η)u.

Then v ∈ W 1,2(M), and v = 0 on E. Thus, for every t > 0, {x ∈ Mδ :
|v| ≥ t} = {x ∈ Mδ \ E : |v| ≥ t}, and Hn({x ∈ Mδ : |v| ≥ t}) ≤ s.
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Hence, by (3.3),
∫

Mδ

v2 dHn =

∫ ∞

0
Hn({x ∈ Mδ : |v| ≥ t})d(t2)(3.11)

≤
(

sup
r≤s

r

µM (r)

)
∫ ∞

0
C({x ∈ Mδ : |v| ≥ t}) d(t2).

By the monotonicity of capacity,
∫ ∞

0
C({x ∈ Mδ : |v| ≥ t}) d(t2) ≤

∫ ∞

0
C({|v| ≥ t}) d(t2)(3.12)

≤ 3
∑

k∈Z

22kC({|v| ≥ 2k}) .

Let Ψ be the function defined in the proof of Theorem 2.4. Define
vk : M → [0, 1] as

vk = Ψ(21−k|v| − 1)

for k ∈ Z. A similar chain as in (2.32) now yields

∑

k∈Z

22kC({|v| ≥ 2k}) ≤
∑

k∈Z

22k
∫

M

(

|∇vk|2 + v2k
)

dHn(3.13)

≤
∑

k∈Z

∫

{2k−1≤|v|<2k}

(

4|∇v|2 + 22k
)

dHn

≤
∑

k∈Z

∫

{2k−1≤|v|<2k}

(

4|∇v|2 + 4v2
)

dHn

= 4

∫

M

(

|∇v|2 + v2
)

dHn .

From (3.11)–(3.13) we infer that there exists a constant C such that
∫

Mδ

v2 dHn ≤ C

(

sup
r≤s

r

µM (r)

)
∫

M

(

|∇v|2 + v2) dHn .(3.14)

Thus,

‖(1− η)u‖L2(Mδ)

(3.15)

≤
(

C sup
r≤s

r

µM (r)

)1/2
(

‖∇((1 − η)u)‖L2(M) + ‖(1− η)u‖L2(M)

)

≤
(

C sup
r≤s

r

µM (r)

)1/2
(

‖∇u‖L2(M) + ‖∇η‖L∞(M)‖u‖L2(K) + ‖u‖L2(M)

)

,

and, trivially,

(3.16) ‖ηu‖L2(Mδ) ≤ ‖u‖L2(K) .
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From (3.10), (3.15), and (3.16) we deduce that

(3.17) ‖u‖L2(Mδ) ≤ C

(

sup
r≤s

r

µM(r)

)1/2

‖u‖W 1,2(M) + ‖u‖L2(K) ,

for a suitable constant C.
Let us now focus on the second term on the right-hand side of (3.9).

We have that

‖u‖2L2(M\Mδ)
=

∫

{|u|≤δ}
u2dHn =

∞
∑

k=0

∫

{δ2−k−1<|u|≤δ2−k}
u2dHn(3.18)

≤
∞
∑

k=0

δ24−kHn({|u| > δ2−k−1}).

By the second limit in (3.4), for every ε > 0, there exists sε > 0 such
that if s > sε, then s ≤ εµM (s). Thus, if δ is so small that Hn({|u| >
δ}) > sε, then

∞
∑

k=0

δ24−kHn({|u| > δ2−k−1}) ≤ ε

∞
∑

k=0

δ24−kµM

(

Hn({|u| > δ2−k−1})
)

(3.19)

≤ ε

∞
∑

k=0

δ24−kC({|u| ≥ δ2−k−1}).

Now, let Ψ be as above, and let

uk = Ψ(2k+2δ−1|u| − 1).

We have that uk = 1 if |u| ≥ δ2−k−1, uk = 0 if |u| ≤ δ2−k−2 and
0 ≤ uk ≤ 1 on M . Moreover, uk ∈ W 1,2(M). Thus,

C({|u| ≥ δ2−k−1}) ≤
∫

M

(

|∇uk|2 + u2k
)

dHn,(3.20)

and hence

ε

∞
∑

k=0

δ24−kC({|u| ≥ δ2−k−1}) ≤ ε

∞
∑

k=0

δ24−k

∫

M

(

|∇uk|2 + u2k
)

dHn

(3.21)

≤ ε

∞
∑

k=0

δ24−k

∫

{δ2−k−2<|u|≤δ2−k−1}

(

22k+4δ−2|∇u|2 + 1
)

dHn

≤ 16ε

∞
∑

k=0

∫

{δ2−k−2<|u|≤δ2−k−1}

(

|∇u|2 + u2
)

dHn

≤ 16ε

∫

{|u|≤δ}

(

|∇u|2 + u2
)

dHn.
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Combining (3.18), (3.19), and (3.21) yields

‖u‖2L2(M\Mδ)
≤ 16ε‖u‖2W 1,2(M\Mδ)

.(3.22)

From (3.9), (3.17), and (3.22) we infer that there exists a constant C
such that

‖u‖L2(M) ≤C

(

sup
r≤s

r

µM (r)

)1/2

‖u‖W 1,2(M)(3.23)

+ Cε1/2‖u‖W 1,2(M\Mδ) + ‖u‖L2(K).

By the first limit in (3.4), supr≤s
r

µM (r) ≤ ε provided that s is sufficiently

small. Hence, for such a choice of s,

‖u‖L2(M) ≤ Cε1/2‖u‖W 1,2(M) + ‖u‖L2(K).(3.24)

Starting from (3.24) instead of (2.36), we conclude as in the proof of
Theorem 2.4 that the embedding W 1,2(M) → L2(M) is compact.

Assume now that the embedding W 1,2(M) → L2(M) is compact.
Then there exists an increasing function ζ : (0,∞) → [0,∞) fulfilling

(3.25) lim
s→0

ζ(s) = 0 ,

and such that for any s > 0 and any measurable set E ⊂ M with
Hn(E) = s

(3.26)

∫

E
u2dHn ≤ ζ(s)

∫

M

(

|∇u|2 + u2
)

dHn

for every u ∈ W 1,2(M). Moreover, given any sequence {Gk}k∈N of
compact sets Gk such that Gk ⊂ Gk+1 for k ∈ N and ∪kGk = M , for
every ε > 0 there exists k such that

(3.27)

∫

M\Gk

u2dHn ≤ ε

∫

M

(

|∇u|2 + u2
)

dHn

for every u ∈ W 1,2(M). By the definition of capacity, inequality (3.26)
implies that

(3.28) s ≤ Cζ(s)C(E) .

Since νM is a positive non-decreasing function, the first limit in (3.4)
follows from (3.28) and (3.25).

To prove the second limit in (3.4), let us begin by observing that

(3.29) lim
s→∞

µM (s) = ∞.

This follows from the fact that for every measurable set E ⊂ M and
every function u ∈ W 1,2(M) such that u ≥ 1 a.e. on E we have

∫

M

(

|∇u|2 + u2
)

dHn ≥ Hn(E).



DISCRETENESS OF THE SPECTRUM OF THE LAPLACIAN 489

Now, given ε > 0, let k be such that (3.27) holds. For any measurable
set E, one has that

Hn(E)

C(E)
≤ Hn(Gk)

C(E)
+

Hn(E \Gk)

C(E)
.(3.30)

Inequality (3.27) applied with any function u ∈ W 1,2(M) such that
u ≥ 1 a.e. on E tells us that

Hn(E \Gk) ≤ εC(E).(3.31)

On the other hand, by (3.29), if Hn(E) is sufficiently large, then

Hn(Gk)

C(E)
< ε.(3.32)

Combining (3.30)–(3.32) entails that

Hn(E)

C(E)
≤ 2ε,(3.33)

provided that Hn(E) is sufficiently large. Hence, the second limit in
(3.4) follows. q.e.d.
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Linköping University
SE-581 83 Linköping, Sweden
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