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TEICHMÜLLER GEOMETRY OF MODULI SPACE, I:
DISTANCE MINIMIZING RAYS AND THE

DELIGNE-MUMFORD COMPACTIFICATION

Benson Farb & Howard Masur

1. Introduction

Let S be a surface of finite type, that is, a closed, oriented surface
with a finite (possibly empty) set of points removed. In this paper
we classify (globally) geodesic rays in the moduli space M(S) of Rie-
mann surfaces, endowed with the Teichmüller metric, and we determine
precisely how pairs of rays asymptote. We then use these results to
relate two important but disparate topics in the study of M(S): Te-
ichmüller geometry and the Deligne-Mumford compactification. We re-
construct the Deligne-Mumford compactification (as a metric stratified
space) purely from the intrinsic metric geometry of M(S) endowed with
the Teichmüller metric. We do this by constructing an “iterated EDM
ray space” functor, which is defined on a quite general class of metric
spaces. We then prove that this functor applied to M(S) produces the
Deligne-Mumford compactification.

Rays in M(S). A ray in a metric space X is a map r : [0,∞) →
X which is locally an isometric embedding. In this paper we initiate
the study of (globally) isometrically embedded rays in M(S). Among
other things, we classify such rays, determine their asymptotics, classify
almost geodesic rays, and work out the Tits angles between rays. We
take as a model for our study the case of rays in locally symmetric
spaces, as in the work of Borel, Ji, MacPherson, and others; see [JM]
for a summary.

In [JM] it is explained how the continuous spectrum of any noncom-
pact, complete Riemannian manifold M depends only on the geometry
of its ends, and in some cases (e.g., when M is locally symmetric) the
generalized eigenspaces can be parametrized by a compactification con-
structed from asymptote classes of certain rays. The spectral theory of
M(S) endowed with the Teichmüller metric was initiated by McMullen
[Mc], who proved positivity of the lowest eigenvalue of the Laplacian.
Our compactification of M(S) by equivalence classes of certain rays
might be viewed as a step towards further understanding its spectral
theory. We remark that the Teichmüller metric is a Finsler metric.
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Following [JM], we will consider two natural classes of rays.

Definition 1.1 (EDM rays). A ray r : [0,∞) → X in a metric space
X is eventually distance minimizing, or EDM, if there exists t0 such
that for all t ≥ t0:

d(r(t), r(t0)) = |t− t0|.

Note that if r is an EDM ray, after cutting off an initial segment
of r we obtain a globally geodesic ray, i.e. an isometric embedding of
[0,∞) → X .

Definition 1.2 (ADM rays). The ray r(t) is almost distance mini-
mizing, or ADM, if there are constants C, t0 ≥ 0 such that for t ≥ t0:

d(r(t), r(t0)) ≥ |t− t0| − C.

It is easy to check that a ray r is ADM if and only if, for every ǫ > 0
there exists t0 ≥ 0 so that for all t ≥ t0:

d(r(t), r(t0)) ≥ |t− t0| − ǫ.

As with locally symmetric manifolds, there are several ways in which
a ray in M(S) might not be ADM: it can traverse a closed geodesic, it
can be contained in a fixed compact set, or it can return to a fixed
compact set at arbitrarily large times. More subtly, there are rays
which leave every compact set in M(S) and are ADM but are not
EDM; these rays “spiral” around in the “compact directions” in the
cusp of M(S). This phenomenon does not appear in the classical case
of M(T 2) = H2/SL(2,Z), but it does appear in all moduli spaces of
higher complexity, as we shall show.

The set of rays in Teich(S) through a basepoint Y ∈ Teich(S) is
in bijective correspondence with the set of elements q ∈ QD1(Y ), the
space of unit area holomorphic quadratic differentials q on Y (see §2
below). We now describe certain kinds of Teichmüller rays that will be
important in our study.

Recall that a quadratic differential q on Y is Strebel if all of its vertical
trajectories are closed. In this case Y decomposes into a union of flat
cylinders. Each cylinder is swept out by vertical trajectories of the same
length. The height of the cylinder is the distance across the cylinder.

We say q is mixed Strebel if it contains at least one cylinder of closed
trajectories.

Definition 1.3 ((Mixed) Strebel rays). A ray in M(S) is a (mixed)
Strebel ray if it is the projection to M(S) of a ray in Teich(S) corre-
sponding to a pair (Y, q) with q a (mixed) Strebel differential on Y .

Our first main result is a classification of EDM rays and ADM rays
in moduli space M(S).

Theorem 1.4 (Classification of EDM rays in M(S)). Let r be a ray
in M(S). Then
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1) r is EDM if and only if it is Strebel.
2) r is ADM if and only if it is mixed Strebel.

One of the tensions arising from Theorem 1.4 is that for any ǫ > 0,
there exist very long local geodesics γ between points x, y in M(S)
which are only ǫ longer than any (global) geodesic from x to y. As
distance in M(S) is difficult to compute precisely, the question arises
as to how such “fake global geodesics” γ can be distinguished from true
global geodesics. This is done in §3.2. The idea is to use the input
data of being non-Strebel to build by hand a map whose log-dilatation
equals the length of γ, but which has nonconstant pointwise quasiconfor-
mal dilatation. By Teichmüller’s uniqueness theorem, since the actual
Teichmüller map from x to y has constant pointwise dilatation, this di-
latation, and thus the length of the Teichmüller geodesic connecting x
to y, is strictly smaller than the length of γ.

We also determine finer information about EDM rays. In Section
3.4 we determine the limiting asymptotic distance between EDM rays:
it equals the Teichmüller distance of their endpoints in the “boundary
moduli space” (see Theorem 3.9 below). This precise behavior of rays
in M(S) lies in contrast to the behavior of rays in the Teichmüller
space of S, which themselves may not even have limits. Theorem 3.9 is
crucial for our reconstruction of the Deligne-Mumford compactification.
In Section 5.3 we compute the Tits angle of any two rays, showing
that only 3 possible values can occur. This result contrasts with the
behavior in locally symmetric manifolds, where a continuous spectrum
of Tits angles can occur.

Reconstructing the topology of Deligne-Mumford. Deligne-

Mumford [DM] constructed a compactification M(S)
DM

ofM(S) whose
points are represented by conformal structures on noded Riemann sur-

faces. They proved that M(S)
DM

is a projective variety. As such,

M(S)
DM

as a topological space comes with a natural stratification: each
stratum is a product of moduli spaces of surfaces of lower complexity.
We will equip each moduli space with the Teichmüller metric, and the

product of moduli spaces with the sup metric. In this way M(S)
DM

has
the structure of a metric stratified space, i.e., a stratified space with a

metric on each stratum (see §4 below). We note that M(S)
DM

was also
constructed topologically by Bers in [Be].

In Section 4 we construct, for any geodesic metric space X, a space

X
ir

of X, called the iterated EDM ray space associated to X. This
space comes from considering asymptote classes of EDM rays, endowing
the set of these with a natural metric, and then considering asymptote

classes of EDM rays on this space, etc. The space X
ir
has the structure

of a metric stratified space.
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Theorem 1.5. Let S be a surface of finite type. Then there is

a strata-preserving homeomorphism M(S)
ir

→ M(S)
DM

which is an
isometry on each stratum.

Thus, as a metric stratified space, M(S)
DM

is determined by the in-
trinsic geometry of M(S) endowed with the Teichmüller metric. The
following table summarizes a kind of dictionary between purely (Te-
ichmüller) metric properties of M(S) on the one hand, and purely com-
binatorial/analytic properties on the other. Each of the entries in the
table is proved in this paper.

Purely Metric Analytic/Combinatorial
EDM ray in M(S) Strebel differential

ADM ray in M(S) mixed Strebel differential

isolated EDM ray in M(S) one-cylinder Strebel differential

asymptotic EDM rays in M(S) modularly equivalent Strebel dif-
ferentials with same endpoint

iterated EDM ray space of M(S) Deligne-Mumford compactifica-

tion M(S)
DM

rays of rays of. . . of rays (k times) level k stratum of M(S)
DM

Tits angle 0 pairs of combinatorially equiva-
lent Strebel differentials

Tits angle 1 pairs of Strebel differentials with
disjoint cylinders

Tits angle 2 all other pairs of Strebel differen-
tials

Acknowledgements. Both authors are supported in part by the NSF.
We would like to thank Steve Kerckhoff, Cliff Earle, Al Marden, and
Yair Minsky for useful discussions, and Chris Judge for numerous useful
comments and corrections. We are also grateful to Kasra Rafi for his
crucial help relating to the appendix.

2. Teichmüller geometry and extremal length

In this section we quickly explain some basics of the Teichmüller
metric and quadratic differentials. We also make some extremal length
estimates which will be used later. The notation fixed here will be used
throughout the paper.

Throughout this paper S will denote a surface of finite type, by which
we mean a closed, oriented surface with a (possibly empty) finite set of
points deleted. We call such deleted points punctures. The Teichmüller
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space Teich(S) is the space of equivalence classes of marked conformal
structures (f,X) on S, where two markings fi : S → Xi are equivalent
if there is a conformal map h : X1 → X2 with f2 homotopic to h◦f1. We
often drop the marking notation, remembering that a marked surface is
the same as a surface where we “know the names of the curves.”

The Teichmüller metric on Teich(S) is the metric defined by

dTeich(S)((X, g), (Y, h))

:=
1

2
inf{logK(f) : f : X → Y is homotopic to h ◦ g−1}

where f is quasiconformal and

K(f) := ess− sup
x∈S

Kx(f) ≥ 1

is the quasiconfromal dilatation of f , where

Kx(f) :=
|fz(x)|+ |fz(x)|

|fz(x)| − |fz(x)|

is the pointwise quasiconformal dilatation at x. We also use the no-
tation dTeich(S)(X,Y ) with the markings implied. The mapping class
group Mod(S) is the group of homotopy classes of orientation-preserving
homeomorphisms of S. This group acts properly discontinuously and
isometrically on (Teich(S), dTeich(S)), and so the quotient

M(S) = Teich(S)/Mod(S)

has the induced metric. M(S) is the moduli space of (unmarked) Rie-
mann surfaces, or what is the same thing, conformal structures on S.

2.1. Quadratic differentials and Teichmüller rays. Quadratic
differentials and measured foliations. Let S be a surface of fi-
nite type, and let X ∈ Teich(S). Recall that a (holomorphic) quadratic
differential q on X is a tensor given in holomorphic local coordinates z
by q(z)dz2, where q(z) is holomorphic. Let QD(X) denote the space of
holomorphic quadratic differentials on X. Any q ∈ QD(X) determines
a singular Euclidean metric |q(z)||dz|2, with the finitely many singular
points corresponding to the zeroes of q. The total area of X in this
metric is finite, and is denoted by ‖q‖, which is a norm on QD(X). We
denote by QD1(X) the set of elements q ∈ QD(X) with ‖q‖ = 1.

An element q ∈ QD(X) determines a pair of transverse measured
foliations Fh(q) and Fv(q), called the horizontal and vertical foliations
for q. The leaves of these foliations are paths z = γ(t) such that

q(γ(t))γ′(t)2 > 0

and
q(γ(t))γ′(t)2 < 0.

In a neighborhood of a nonsingular point, there are natural coordinates
z = x + iy so that the leaves of Fh are given by y = const., the leaves
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of Fv are given by x = const., and the transverse measures are |dy|
and |dx|. The foliations Fh and Fv have the zero set of q as their
common singular set, and at each zero of order k they have a (k + 2)-
pronged singularity, locally modeled on the singularity at the origin
of zkdz2. The leaves passing through a singularity are the singular
leaves of the measured foliation. A saddle connection is a leaf joining
two (not necessarily distinct) singular points. The union of the saddle
connections of the vertical foliation is called the critical graph Γ(q) of q.

The components X \ Γ(q) are of two types: cylinders swept out by
vertical trajectories (i.e., leaves of Fv) of equal length, and minimal
components where each leaf of Fv is dense.

Teichmüller maps and rays. Teichmüller’s Theorem states that,
given any X,Y ∈ Teich(S), there exists a unique (up to translation in
the case when S is a torus) quasiconformal map f , called the Teichmüller

map, realizing dTeich(S)(X,Y ). The Beltrami coefficient µ := ∂f
∂f is of

the form µ = k q
|q| for some q ∈ QD1(X) and some k with 0 ≤ k < 1. In

natural local coordinates given by q and a quadratic differential q′ on
Y , we have f(x + iy) = Kx + 1

K iy, where K = K(f) = 1+k
1−k . Thus f

dilates the horizontal foliation by K and the vertical foliation by 1/K.
Any q ∈ QD1(X) determines a geodesic ray r = r(X,q) in Teich(S),

called the Teichmüller ray based at X in the direction of q. The ray r is
given by the complex structures determined by the quadratic differen-
tials q(t) obtained by multiplying the transverse measures of Fh(q) and
Fv(q) by 1

K = e−t and K = et, respectively, for t > 0. To summarize,
for each X ∈ Teich(S), there is a bijective correspondence between the
set of rays in Teich(S) based at X and the set of elements of QD1(X).

Finally, we note that any ray inM(S) is the image of a ray in Teich(S)
under the natural quotient map

Teich(S) → M(S) = Teich(S)/Mod(S).

2.2. Extremal length and Kerckhoff’s formula. Kerckhoff [Ke]
discovered an elegant and useful way to compute Teichmüller distance
in terms of extremal length, which is a conformal invariant of isotopy
classes of simple closed curves. We now describe this, following [Ke].

Recall that a conformal metric on a Riemann surface X is a metric
which is locally of the form ρ(z)|dz|, where ρ is a nonnegative, measur-
able, real-valued function onX. A conformal metric determines a length
function ℓρ, which assigns to each (isotopy class of) simple closed curve
γ the infimum ℓρ(γ) of the lengths of all curves in the isotopy class,
where length is measured with respect to the conformal metric. We
denote the area of X in a conformal metric given by a function ρ by
Areaρ(X), or Areaρ when X is understood.

By cylinder we will mean the surface S1 × [0, 1], endowed with a
conformal metric. Recall that any cylinder C is conformally equivalent
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to a unique annulus of the form {z ∈ C : 1 ≤ |z| ≤ r}. The number
(log r)/2π will be called the modulus of C, denoted mod(C). A cylinder
in X is an embedded cyclinder C in X, endowed with the conformal
metric induced from the conformal metric on X. There are two equiv-
alent definitions of extremal length, each of which is useful.

Definition 2.1 (Extremal length). Let X be a fixed Riemann sur-
face, and let γ be an isotopy class of simple closed curves on X. The
extremal length of γ in X, denoted by ExtX(γ), or Ext(γ) when X is
understood, is defined to be one of the following two equivalent quanti-
ties:

Analytic definition:

Ext(γ) := sup
ρ
ℓρ(γ)

2/Areaρ

where the supremum is over all conformal metrics ρ on X of finite
positive area.

Geometric definition:

Ext(γ) := inf{
1

mod(C)
: C is a cylinder with core curve isotopic to γ}

As pointed out by Kerckhoff in [Ke], and as we will see throughout the
present paper, the analytic definition is useful for finding lower bounds
for Ext(γ), while the geometric definition is useful for finding upper
bounds.

Theorem 2.2 (Kerckhoff [Ke], Theorem 4). Let S be any surface of
finite type, and let X,Y be any two points of Teich(S). Then

(1) dTeich(S)(X,Y ) =
1

2
log [ sup

γ

ExtX(γ)

ExtY (γ)
]

where the supremum is taken over all isotopy classes of simple closed
curves γ on S.

Remark. The definition of extremal length is easily extended to
measured foliations. The density of simple closed curves in the space
MF(S) of measured foliations on S allows us to replace the right-hand
side of (1) by the supremum taken over all γ ∈ MF(S).

2.3. Extremal length estimates along Strebel rays. Let (X, q) be
a Riemann surface X ∈ Teich(S) with Strebel differential q ∈ QD(X),
and let r = r(X,q) be the corresponding Strebel ray. Our goal in this
subsection is to estimate the extremal length Extr(t)(β) of an arbitrary
(isotopy class of) simple closed curve β as the underlying Riemann sur-
face moves along the ray r. The following estimates are due to Kerckhoff
[Ke]. We include proofs here for completeness, and because these esti-
mates are so essential for this paper.
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The setup will be as follows. Let Ci, 1 ≤ i ≤ n be the cylinders of the
Strebel differential q, and for each i let αi denote the homotopy class of
the core curve of Ci. Let ai(t) denote the q(t)-length of αi, and let bi(t)
denote the q(t)-height of Ci. Let Mi(t) = mod(Ci) = bi(t)/ai(t) be the
modulus. Note that on the Riemann surface r(t) we have

ai(t) = e−tai(0)

and the height bi(t) of the cylinder Ci satisfies

bi(t) = etbi(0).

Recall that the geometric intersection number of two isotopy classes
of simple closed curves α, β, denoted i(α, β), is the miminal number of
intersection points of curves α′ and β′ isotopic to α and β, respectively.

Lemma 2.3. With notation as above, the following hold:

1) limt→∞ e2tMi(0)Extr(t)(αi) = 1.
2) There is a constant c > 0 such that if i(β, αi) = 0 for all i and β

is not isotopic to any of the αi, then for all t large enough,

Extr(t)(β) ≥ c.

3) There is a constant c > 0 such that if β crosses Ci then for t large
enough,

Extr(t)(β) ≥ ce2t.

Proof. To prove Statement (1) we recall that the geometric definition
of extremal length says that

Extr(t)(αi) = inf
1

mod(A)
,

where the infimum is taken over all cylinders A ⊂ r(t) homotopic to
αi. Statement 1 is immediate in the case that n = 1, for then by
theorem 20.4(3) of [St], taken with i = 1, the modulus of a one-cylinder
Strebel differential realizes the supremum of the moduli of all cylinders
homotopic to α1, so that the reciprocal realizes the infimum of the
reciprocals of the moduli in the geometric definition. In that case the
limit in Statement 1 is actually an equality for each t. Thus assume
m > 1. On r(t), the cylinder Ci has modulus e2tbi(0)/ai(0) = e2tMi(0),
giving the bound

Extr(t)(αi) ≤
e−2t

Mi(0)
.

We now give a lower bound. We can realize the surface r(t) by cutting
along the core curves of the cylinders that are halfway across each cylin-

der, inserting cylinders of circumference ai(0) and height bi(0)(e
2t−1)
2 to

each side of the cut, and then regluing. Rescaling by et the flat metric
induced by q(t) gives a flat metric ρ(t) of area e2t for which the core
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curves have constant length ai(0) and height e2tbi(0). Choose a con-
stant b such that b > ai(0), and for t0 sufficiently large, choose a fixed
neighborhood Nbhd(Ci) of Ci on r(t0) such that

dρ(t0)(Ci, ∂ Nbhd(Ci)) = b.

For some fixed B > 0 we have

Areaρ(t0)(Nbhd(Ci) \ Ci) = B.

Via the construction described above, we may think of Nbhd(Ci) \ Ci

as a subset of r(t) for t ≥ t0. Define a conformal metric σi(t) on r(t) as
follows. It is given by ρ(t) on Ci. On Nbhd(Ci) \ Ci it is given by the
metric ρ(t0), and on r(t) \Nbhd(Ci) it is given by δρ(t) for some δ > 0.
With respect to the metric σi(t), we then have

dσi(t)(Ci, ∂Nbhd(Ci)) = b

and

Areaσi(t) ≤ B + δe2t + e2tai(0)bi(0).

Since the distance across Nbhd(Ci) \ Ci is at least b ≥ ai(0), it is easy
to see that

ℓσi(t)(αi) = ai(0).

Putting the estimates on lengths and areas together, it follows that
given any ǫ > 0, we may choose δ > 0 so that for t large enough,

Extr(t)(αi) ≥
ℓ2σi(t)

(αi)

Aσi(t)
≥ (1− ǫ)

e−2t

Mi(0)
.

Putting this lower bound together with the upper bound we have proved
(1).

For the proof of (2), for t0 large enough, take a fixed neighborhood N
of the component of the critical graph Γ that contains β such that the
distance across N is at least mini ai(0), the lengths of the core curves
of the cylinders on the base surface r(0). Again we may consider N as
a subset of r(t) for all t ≥ 0. We put a conformal metric σ(t) on r(t)
which is given by the flat metric defined by q(t) on r(t) \ N and the
metric defined by q(t) scaled by et on N . For some fixed B > 0 we have

Areaσ(t) ≤ B.

Now any geodesic representative of β that enters r(t) \N must bound a
disc with a core curve of Ci, and can be shortened to lie entirely inside
N . Thus its geodesic representative in fact lies in the critical graph and
so there is a b such that

ℓσ(t)(β) ≥ b.

The lower bound now follows from these last two inequalities and the
analytic definition of extremal length.
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The proof of (3) follows by using the given metric q(t) in the analytic
definition of extremal length. q.e.d.

3. EDM and ADM rays in moduli space

In this section we classify EDM and ADM rays in moduli space, giving
a proof of Theorem 1.4. We then determine, in §3.4, when two EDM
rays are asymptotic.

3.1. Strebel rays are EDM. Our goal in this subsection is to prove
one direction of Theorem 1.4, namely, that if (X, q) is Strebel, then the
ray r(X,q) in M(S) is eventually distance minimizing.

Since Mod(S) acts properly by isometries on Teich(S) with quotient
M(S), the distance between points x, y ∈ M(S) are the same as min-
imal distances between orbits of any lift of x, y to Teich(S). We warn
the reader that while every ray in M(S) comes from the projection to
M(S) of a ray in Teich(S), the converse is not true; this is due to the
fixed points of the action of Mod(S) on Teich(S).

Thus, to achieve our goal, we must find t0 ≥ 0 so that

(2) dTeich(S)(r(t), r(t0)) ≤ dTeich(S)(φ(r(t0)), r(t))

for all t ≥ t0 and for every φ ∈ Mod(S). In fact we will prove for Strebel
rays that the inequality in (2) is strict for t > t0, as long as φ doesn’t
have a fixed point.

Remark. Note that while any two nonseparating curves on S can
be taken to each other via some element of Mod(S), Strebel rays along
cylinders with nonseparating core curves, based at the same Y ∈ Teich(S),
project to different rays in M(S). Indeed, given any point X ∈ M(S),
there are countably infinitely many Strebel rays in M(S) based at X,
even though there are [g/2]+1 topological types of simple closed curves
on S.

Let α1, . . . , αp denote the core curves of the cylinders {Ci} in the
cylinder decomposition of (X, q). By Lemma 2.3, the extremal length
of curves β with i(β, αi) = 0 for each 1 ≤ i ≤ p and not homotopic
to any αi remain bounded below by some d > 0. By Lemma 2.3 the
extremal length of any curve β with i(β, αi) > 0 for some i tends to ∞
as t→ ∞. Choose t0 big enough so that each of the following holds:

1) If i(β, αi) > 0 for some i, then Extr(t)(β) ≥ d for t ≥ t0.

2) e2t0 > 2maxi(
Mi

d ), where Mi is the modulus of the cylinder Ci

3) For t ≥ t0, Extr(t)(αi) ≤ 2e−2tMi. (This can be done by Lemma 2.3).

Let φ be any element of Mod(S) without a fixed point in Teich(S);
this is the same as φ not having finite order. Suppose first that φ−1(αi) =
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β /∈ {αj} for some i. By Theorem 2.2 we have for t > t0:

dTeich(S)(φ(r(t0)), r(t)) ≥ 1
2 log

Extφ(r(t0))(αi)

Extr(t)(αi)

= 1
2 log

Extr(t0)(β)

Extr(t)(αi)

≥ 1
2 log

d
2e−2tMi

> 1
2 log

e2t

e2t0
= t− t0 = dTeich(S)(r(t), r(t0)).

Thus we may assume that φ preserves {αi} as a set. Consider the
special case when φ(αi) = αi for each i. This assumption implies that
φ−1 preserves the vertical foliation Fv(q) of q, as a measured foliation.
Then

dTeich(S)(φ(r(t0)), r(t)) ≥
1

2
log

Extφ(r(t0))(Fv(q))

Extr(t)(Fv(q))
(3)

=
1

2
log

Extr(t0)(Fv(q))

Extr(t)(Fv(q))
= t− t0

and we are again done in this case. The leftmost inequality follows from
the remark after Theorem 2.2.

We remark that the inequality (3) is strict. This is because equality of
the leftmost terms occurs if and only if Fv(q) is the vertical foliation of
the quadratic differential defining the Teichmüller map from φ(r(t0)) to
r(t). However, Fv(q) is the vertical foliation of the quadratic differential
of the Teichmüller map from r(t0) to r(t), and so it cannot be the former
since φ is assumed to be nontrivial.

Finally, consider the general case of φ preserving {αi} as a set. Let
k be the smallest integer such that φk(αi) = αi for all i. If the desired
result is not true, there is a sequence of times t0 < t1 < . . . < tk such
that

dTeich(S)(r(ti−1), φ(r(ti))) < dTeich(S)(r(ti−1), r(ti)).

Since φ acts as an isometry of Teich(S), applications of the triangle
inequality give

dTeich(S)(r(t0), φ
k(r(tk))) < dTeich(S)(r(t0), r(tk)).

But φk fixes each αi, and we have a contradiction to the previous
assertion.
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3.2. Every EDM ray is Strebel. In this subsection we prove the
other direction of Theorem 1.4, namely that if a ray r(X,q) : [0,∞) →
M(S) is EDM then (X, q) is Strebel. The idea of the proof is explained
in the introduction above. Since r is EDM, we can change basepoint
and assume that r is (globally) isometrically embedded. We henceforth
assume this.

Recall that for each t ≥ 0, the ray r = r(X,q) determines the follow-
ing data: the Riemann surface r(t) ∈ M(S), the quadratic differential
q(t) ∈ QD1(r(t)), and the vertical foliation Fv(q(t)) for the quadratic
differential q(t). Let Γ(t) denote the critical graph of q(t), so that Γ(t)
is the union of the vertical saddle connections of q(t). Note that Γ(t)
may be empty.

For any quadratic differential q on a Riemann surface X, let Σ denote
the set of zeroes of q. We define the diameter of X (in the q-metric dq),
denoted diam(X), to be

diam(X) := sup
x∈X

dq(x,Σ).

Now suppose that the ray r = r(X,q) is not Strebel. This assumption
implies that there is some subsurface Y (t) ⊆ r(t) which contains some
leaf of Fv(q(t)) which is dense in Y (t). We will find a contradiction.

Step 1 (Delaunay triangulations):

Proposition 3.1. There is a triangulation ∆(t) on r(t) with the
following properties:

1) The vertices of ∆(t) lie in the zero set of q(t).
2) The edges of ∆(t) are saddle connections of q(t).
3) For t large enough, every edge of the vertical critical graph Γ(t) is

an edge of ∆(t).
4) There is a function c(t) with c(t) → ∞ as t → ∞ so that ev-

ery triangle in ∆(t) whose interior is contained in some minimal
component Y , can be inscribed in a circle of radius at most et/c(t).

Proof. The triangulation ∆(t) will be the Delaunay triangulation ∆(t)
constructed by Masur-Smillie in §4 of [MS]. In particular, ∆(t) auto-
matically satisfies (1) and (2). We now claim something very special
about ∆(t).

Lemma 3.2. There is a function c(t) with limt→∞ c(t) = ∞ with the
following property: the shortest saddle connection β(t) of the quadratic
differential q(t) on r(t), whose endpoints lie in Y ∩Σ, and whose interior
lies in Y , has length at least c(t)e−t.

Proof of Lemma 3.2. Denote by | · |t the length function associated to
flat metric on r(t) induced by q(t). For an arc α, we denote by |α|vertt
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(resp. |α|horizt ) the length of α as measured with respect to the transverse
measure |dy| on Fh(q(t)) (resp. |dx| on Fv(q(t))).

We claim that there is a constant D such that |β(t)|t ≤ D. To prove
the claim, consider an edge E of the Delaunay triangulation ∆(t) with

E ∩ Y 6= ∅. First suppose |E|t ≤ s =: 2
√

2/π. If E ⊂ Y , then take
D = s and we are done. If E is not contained in Y , then it crosses some
edge α of Γ(t). We remind the reader that, as we move out along r(t),
the horizontal lengths are expanded by et and the vertical length are
contracted by e−t. Thus we have the equation

(4) |α|t = e−t|α|0.

But then we can take some subsegment of E, together with a union of
at most two subsegments of Γ(t), to give a nontrivial homotopy class of
arc with endpoints in Y ∩ Σ and interior contained in Y . The geodesic
representative β(t) in this homotopy class has length bounded above by
the length of E plus the length of Γ(t), which for large enough t is less
than D = s+ 1, and we are done.

We are now reduced to the case where E has length at least s. By
proposition 5.4 of [MS], E must cross some flat cyclinder C in r(t)
whose height is greater than its circumference. If C ⊂ Y , then since Y
has area at most 1, the circumference is at most 1, and so taking β(t)
to be the circumference, we have |β(t)|t ≤ 1. If C is not contained in Y ,
then C crosses the critical graph Γ(t). Thus the height of C is bounded,
as in (4). Thus the circumference is bounded as well. An argument
similar to the previous paragraph then provides β(t), and the claim is
proved.

We now continue with the proof of the lemma. We have

|β(t)|t ≥ |β(t)|horizt = et|β(t)|horiz0 .

Since |β(t)|t is bounded, we must have |β(t)|horiz0 → 0 as t → ∞. Since
Y is assumed to be minimal, there are no vertical saddle connections in
Y , and so |β(t)|horiz0 > 0. Because the set of holonomy vectors of saddle
connections is a discrete subset of R2 for a fixed flat structure (see, e.g,
[HS]), this forces |β(t)|vert0 → ∞ as t→ ∞. Now

|β(t)|t ≥ |β(t)|vertt = e−t|β(t)|vert0 .

Thus the desired inequality holds with c(t) = |β(t)|vert0 . q.e.d.

We continue with the proof of Proposition 3.1.
For t sufficiently large, by Lemma 3.2 the segments of Γ(t) are the

shortest saddle connections on q(t). Now since these segments are all
vertical, given such a segment α, the midpoint p of α has the property
that the two endpoints of α realize the distance from p to Σ. Thus, by
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construction of the Delaunay triangulation (see §4 of [MS]), the entire
segment α lies in ∆(t). This proves (3).

We now prove (4). By (3), no edge of the triangulation crosses Γ(t),
so any 2-cell that intersects a minimal component Y is contained in
that minimal component. By theorem 4.4 of [MS], every point in Y is
contained in a unique Delaunay cell isometric to a polygon inscribed in
a circle of radius ≤ diam(Y ). It therefore remains to bound diam(Y ).

If diam(Y ) > 2s, then there is a cylinder C whose height is at least
s. As we have seen above, such a cylinder must be contained in Y , as
it cannot cross Γ(t) for sufficiently large t. But Lemma 3.2 gives that
the circumference of C is at least c(t)e−t, and since r(t) has unit area,
the height of C is at most et/c(t), and there the diameter is at most
(et/2c(t)) + 1 (the second term coming from a bound on the length of
the circumference of C). q.e.d.

We now return to the proof that EDM rays are Strebel. Recall we
are arguing by contradiction, so that we are assuming the quadratic
differential q0 defining the say is not Strebel. Thus there is at least one
minimal component in the complement of the critical graph of q0. Let
C1, . . . , Cr be the (possibly empty) collection of vertical cylinders of q0.

Recall now that for t large enough, by Proposition 3.1, the critical
graph of q(t) are edges of the Delaunay triangulation ∆(t) of q(t). Con-
sider ∆(t) restricted to the complement of the cylinders Ci.

Proposition 3.3. Let (r0, q0) be given with (possibly empty) cylinder
data. There exist finitely many triangulations T1, . . . , Tm of the comple-
ment of the set of cylinders of (r0, q0), with the following property: for
any combinatorial type of triangulation ∆ that appears as the Delaunay
triangulation ∆(tn) of (r(tn), q(tn)) for a sequence tn → ∞, there ex-
ists some Ti combinatorially equivalent to ∆ on the complement of the
cylinders.

Proof. For any such ∆, choose t1 ≥ 0 to be the smallest time for
which ∆(t1) appears in its combinatorial equivalence class. Now let
T1 be the pullback of ∆(t1) by the Teichmüller map f : r(0) → r(t1).
We remark that T1 is not necessarily Delaunay with respect to the flat
structure given by q(0).

We now do this for each new combinatorial class that appears along
r(t). There are only finitely many such Ti since there are only finitely
many combinatorial types of triangulations with a fixed number of ver-
tices and edges. q.e.d.

Step 2 (Building the fake Teichmüller map): Given r(t), we will
build a very efficient map ψ from some r(0) to r(t). We first need the
following lemma about Euclidean triangles.
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Lemma 3.4 (Euclidean triangle lemma). Fix a triangle T0 in the
Euclidean plane. Then there is a constant b, depending only on T0,
with the following property: for any other Euclidean triangle T whose
shortest side has length at least ǫ, such that each side has length at most
R, and which can be inscribed in a circle of radius R, there is an affine
map from T0 to T which has quasiconformal dilatation at most bR/ǫ.

Proof. Let pi, i = 1, 2, 3 be the vertices of T on the circle arranged in
counterclockwise order and assume that p1p2 is the shortest side with
length a1 ≥ ǫ, and that p1, p3 is the longest side with length a3 ≤ 2R.
Let p0 the center of the circle. Let θ the angle at p3 of the T . We claim
that

sin(θ) =
a1
2R

≥
ǫ

2R
.

The first case is that the segment p1p3 separates p0 from p2. Let ψ1 be
the angle at p0 of the isoceles triangle with vertices at p0, p1, p2. Let
ψ2 the angle at p0 of the isoceles triangle with vertices p0, p2, p3. Let ψ
the angle at p3 of the isoceles triangle with vertices p0, p1, p3. Since this
triangle is isoceles, we have

2ψ = (π − (ψ1 + ψ2)).

Since the triangle with vertices at p0, p2, p3 is isoceles, we have

2(ψ + θ) = π − ψ2.

Subtracting, we get

θ = ψ1/2,

proving the claim. A similar analysis holds if p1p3 does not separate p0
from p2.

Similarly we have θ′, the angle of T at p1, is given by

sin(θ′) =
a2
2R

≥ sin(θ),

where a2 is length of the side p2p3. Now let h be the height of the
triangle T with vertex p2 and opposite side length a3. It divides T into
a pair of triangles T1, T2 with bases x1, x2 along p3p1 and angles θ, θ′.
Since θ′ ≥ θ, we have

x2/h ≤ x1/h = cot(θ) ≤ 1/ sin(θ) ≤ 2R/ǫ.

Thus, if we double the triangles along the hypotenuse, we find their
moduli are bounded by 2R/ǫ and so the affine map to a standard isoceles
right triangle has dilatation bounded in terms of R/ǫ. q.e.d.

Proposition 3.5. For t sufficiently large, there exists a map ψ :
r(0) → r(t) which is at most an e2t-quasiconformal map and which is
not the Teichmüller map.
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Proof. For any t sufficiently large, choose Ti such that the (r(0), q(0))
triangulation Ti described in Proposition 3.3 is combinatorially equiva-
lent to the Delaunay triangulation ∆(t) on r(t), say, via a homeomor-
phism h : r(0) → r(t).

Let a be the length of the shortest vertical saddle connection of
(r(0), q(0)). We now build the map ψ : r(0) → r(t). On each verti-
cal cylinder, ψ will be the linear map of least quasiconformal dilatation,
which is e2t. Notice this is the map that agrees with the Teichmüller
map f : r(0) → r(t) on the cylinder. Extend the map to the obvious
linear map on the critical graph Γ(0). We are left with having to define
ψ on the nonempty collection of complementary minimal components
of r(0) \ Γ(0).

The homeomorphism h gives a bijective mapping between the set of
triangles of Ti and those of ∆(t). For each triangle P of Ti, each of P
and h(P ) has a given Euclidean structure. Define ψ to be the unique
affine map wihich identifies edges in the same combinatorial way as h
does.

Let a be the length of the shortest edge in the critical graph Γ. By
property (4) of Proposition 3.1 applied to ∆(t), we can apply Lemma
3.4 with ǫ ≥ ae−t and R = et/c(t) to conclude that on the union of
the interiors of the triangles which are not in any vertical cylinder, the
pointwise quasiconformal dilatation is at most

etb

ac(t)e−t =
be2t

ac(t)
.

Note that since there are only finitely many Ti, the constant b is uni-
versal.

Since c(t) → ∞, this number can be taken to be smaller than e2t.
Note that with quasiconformal maps we only need to check dilatation
on a set of full measure, since quasiconformal dilatation is an L∞ norm.

Thus the (global) dilatation K(ψ), as a supremum of the dilatation
over all points on the surface, equals e2t, but ψ is not the Teichmüller
map, since the dilatation is not constant. Namely, it is strictly smaller
than e2t for any point in the minimal component. q.e.d.

Step 3 (The trick): Since ψ is not the Teichmüller map, there is
a Teichmüller map Φ : r(0) → r(t) in the same homotopy class of ψ,
with dilatation strictly smaller than that of ψ, which is e2t. Hence the
distance in moduli space from r(0) to r(t) is strictly less than 1

2 log e
2t =

t, and we are done.

3.3. ADM rays. Our goal in this subsection is to prove the following.

Theorem 3.6. A Teichmüller geodesic r(t) determined by (X0, q0)
is ADM if and only if it is mixed Strebel.
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Proof. Suppose (X0, q0) is mixed Strebel. Let C be a cylinder with
modulus M in the homotopy class of some β. Let

b := inf{ExtX0(α) : α is a simple closed curve} > 0.

On r(t) the image of C has modulus e2tM . By the geometric defi-
nition of extremal length, the extremal length of β on r(t) is at most
e−2t/M . By Kerckhoff’s distance formula (Theorem 2.2 above), for any
φ ∈ Mod(S),

dTeich(S)(φ(r(0)), r(t)) ≥
1

2
log

Mb

e−2t
= t+

1

2
logM +

1

2
log b.

We have thus proved with C = −1
2 logM − 1

2 log b that mixed Strebel
implies ADM.

Now assume that r(t) is ADM. We need to show that (X0, q0) is mixed
Strebel. We argue by contradiction: assume that q0 has no vertical
cylinder.

Since r(t) is ADM, it cannot return to any compact set in M(S)
for arbitrarily large times. Therefore, for sufficiently large t, there is
a nonempty maximal collection β1(t), . . . , βn(t) of simple closed curves
whose hyperbolic length is less than some fixed ǫ, the Margulis constant.

We have

|βj(t)| ≥ e−t|βj(t)|
vert
0 ≥ ce−t|βj(t)|0,

for some fixed c > 0. By theorems 4.5 and 4.6 of [Mi2], since by
assumption (X0, q0) has no vertical cylinder, we have that for some
fixed δ > 0, δ′ > 0:

(5) Extr(t)(βj(t)) ≥
δ

− log |βj(t)|t
≥

δ

t− log(|βj(t)|0)
≥
δ′

t
,

for t sufficiently large.
By a theorem of Maskit (see [Mas]), the ratio of the hyperbolic length

of βj(t) to its extremal length tends to 1 as t → ∞, so we can assume
that the hyperbolic lengths of βj satisfy the same lower bounds.

Now fix a collection of uniformly bounded length curves γ1, . . . , γn on
X0 combinatorially equivalent to the collection of βi(t), which means
that there is an element φ(t) of the mapping class group taking the
βi(t) to the γi. Since the curves in any complementary component Y
of the βi have length bounded below, we can further choose φ on Y so
that for any curve of φ(Y ) the extremal lengths on φ(r(t)) and X0 have
bounded ratio.

By moving a bounded Teichmüller distance we can shorten the γi so
that they have fixed length ǫ. We can now apply the Minsky product
theorem (see [Mi1]) to find constants C1, C2 such that

dTeich(S)(X0, φ(r(t))) ≤ max
j

{
1

2
log

C1

Extr(t)(βj(t))
}+ C2
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which by (5) is at most

log t− log δ′ + logC1 + C2,

for t sufficiently large. Thus r(t) is not almost length minimizing. q.e.d.

3.4. Asymptote classes of EDM rays. We say that two rays r, r′ are
asymptotic if there is a choice of basepoints r(0), r′(0) so that
limt→∞ d(r(t), r′(t)) → 0. In this section we determine the asymp-
tote classes of EDM rays. We will then use these rays in Section 4.3 to
compactify M(S).

Definition 3.7 (Endpoint of a ray). Let (X, q) be a Strebel differen-
tial with maximal cylinders C1, . . . , Cp, determining a ray r : [0,∞) →
Teich(S). Cut each Ci along a circle and glue into each side of the

cut an infinite cylinder. The resulting surface with punctures X̂ is the
endpoint of r, denoted r(∞). It carries a quadratic differential q(∞)
with double poles at the punctures, with equal residues, such that the
vertical trajectories are closed leaves isotopic to the punctures.

The surface X̂ can be considered as an element of the product of
Teichmüller spaces of its connected components. We denote this moduli
space, or product of moduli spaces, which we endow with the sup metric,
by Teich(X̂).

We note that X̂ and q(∞) do not depend on where Ci is cut. The
following definition is due to Kerckhoff [Ke].

Definition 3.8 (Modularly equivalent differentials). Suppose that
(X, q), (X ′, q′) are Strebel differentials with maximal cylinders C1, C2,
. . . , Cp and C ′

1, . . . , C
′
r, respectively. We say that these differentials are

modularly equivalent if each of the following holds:

1) p = r.
2) After reindexing, up to the action of there is an element Mod(S),

for each i, φ(Ci) is homotopic to C ′
i.

3) There exists λ > 0 so that Mod(Ci) = λMod(C ′
i) for each i.

Suppose a pair of rays r, r′ are modularly equivalent. Since the moduli
change by a fixed factor along rays, we can choose basepoints r(0), r′(0)
so that the cylinders have the same moduli at the basepoints, and define

d(r, r′) = lim
t→∞

dM(S)(r(t), r
′(t))

if the limit exists.

Theorem 3.9. With the notation as above, suppose that r and r′ are
modularly equivalent. Then d(r, r′) exists and d(r, r′) =
dM(X̂)(r(∞), r′(∞)).

Assuming Theorem 3.9 for the moment, we have the following.
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Corollary 3.10. Two rays r, r′ are asymptotic if and only if they are
modularly equivalent and they have the same endpoints r(∞) = r′(∞).

This corollary was proven by Kerckhoff [Ke] in the case of a maximal
collection of cylinders.

Proof of Corollary 3.10. The “if” direction follows immediately from
Theorem 3.9. For the “only if” direction, we first note that the hy-
pothesis implies that for each n sufficiently large, there is a sequence
of (1 + o(1))-quasiconformal maps fn : r(n) → r′(n). Since uniformly
quasiconformal maps form a normal family (see, e.g., [Hu], Theorem
4.4.1) and r(n), r′(n) converge to r(∞), r′(∞), there is a subsequence
of {fn} which converges to a conformal map f∞ : r(∞) → r′(∞), so
that r(∞) = r′(∞). Modular equivalence of r and r′ follows immedi-
ately from (1) of Lemma 2.3 and Kerckhoff’s distance formula (Theorem
2.2). q.e.d.

We now begin the proof of Theorem 3.9.

Proof. We first note that, exactly as in the proof of Corollary 3.10,
we have

dM(X̂)(r(∞), r′(∞)) ≤ lim inf
t→∞

dM(S)(r(t), r
′(t)).

To prove the opposite inequality we first need the following lemma.

Lemma 3.11. Suppose ǫ > 0 is given. Let C1, C2 be Euclidean cylin-
ders with heights R1, R2 and circumference 1. Now in coordinates (x, y)
in the upper half-space model H2 of the hyperbolic plane, given any
n ∈ Z we let z1 = (0, R1) and z2 = (n,R2) be points in H2. Let

d0 := dH2(z1, z2).

Let p1, q1 marked points on the boundary of C1 assumed to be at (0, 0)
and (0, R1). Let p2, q2 marked points on the boundary of C2 at (0, 0)
and (α,R2) in polar coordinates (θ, h) on C2. Let f(θ) be a real analytic
function defined from the base h = 0 of C1 to the base of C2 such that
f(0) = 0 and

sup
θ

|f ′(θ)− 1| ≤ ǫ.

Let γ1 be the vertical line in C1 joining p1 to q1. Let β be the Euclidean
geodesic joining (0, 0) to (α,R2) in C2. Let γ2 be the local geodesic in the
relative homotopy class of β twisted n times about the core curve of C2.
Then for R1, R2 large enough, there is a (1 +O(ǫ))e2d0 -quasiconformal
map F : C1 → C2 such that

• F (θ, 0) = (f(θ), 0),
• F (q1) = q2,
• F (γ1) is homotopic to γ2 relative to the boundary of C1.
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Proof. Define F = (F1, F2) by

F (θ, h) = ((1−
h

R1
)f(θ) +

h(θ + α+ n)

R1
,
hR2

R1
),

the first coordinate taken modulo 1. We have F (θ, 0) = (f(θ), 0) and
F (0, R1) = (α,R2) and F (γ1) = γ2. We compute

∂F1/∂θ =
h

R1
(1− f ′(θ)) + f ′(θ),

∂F2/∂h =
R2

R1

∂F1/∂h =
1

R1
(θ + α+ n− f(θ))

and
∂F2/∂θ = 0.

So we have
|∂F1/∂θ − 1| < 2ǫ

and for R1 sufficiently large we have

|∂F1/∂h− n/R1| ≤ ǫ.

Thus

|Jac(F )−

(

1 n/R1

0 R2/R1

)

| = O(ǫ),

where Jac stands for Jacobian. Note that the above linear map is the
Teichmüller map taking the marked torus spanned by {(1, 0), (0, R1)}
to the marked torus spanned by {(1, 0), (n,R2)}. These tori correspond
to the given points in H2, and therefore the dilatation of the linear map
is precisely e2d0 , as claimed. q.e.d.

We also need the following lemma.

Lemma 3.12. Let g : X̂ → X̂ ′ be a Teichmüller map with dilatation
K0. Given ǫ > 0, there is a (K0 + ǫ)-quasiconformal map f : X̂ → X̂ ′

which is conformal in a neighborhood of of the punctures.

Proof. Let µ be the dilatation of g. For any small neighborhood
0 < |z| < |t| of the punctures, let µt be the Beltrami differential which is

0 in 0 < |z| < |t| and µ in the complement. For some surface X̂t, there is

a K0-quasiconformal map ft : X̂ → X̂t with dilatation µt; in particular
ft is conformal in 0 < |z| < |t|. As t → 0, µt → µ and therefore

limt→0 ft = g and so limt→0 X̂t = X̂ ′. Choose a nonempty open set V
on X̂. We can find a collection of Beltrami differentials supported in V
that form a basis for the tangent space to Teich at X̂ ′. This implies that
for t small enough we can find a (1+ǫ)-quasiconformal map ht : X̂t → X̂ ′

which is conformal in a neighborhood of the punctures. Our desired map
is f = ht ◦ ft. q.e.d.
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Now we begin the proof of the bound

lim sup
t→∞

dM(S)(r(t), r
′(t)) ≤ dM(X̂)(r(∞), r′(∞)).

Let pi, qi, i = 1, . . . , p be the paired punctures on r(∞), and let zi be
the coordinate at pi so that for some ai > 0,

q(∞) =
a2i
z2i
dz2i ,

we have a similar coordinate in a neighborhood of qi. Let ζi the cor-
responding coordinate for q′(∞) on r′(∞) in a neighborhood of p′i so
that

q′(∞) =
b2i
ζ2i
dζ2i .

Circles in these coordinates are vertical leaves for q(∞) and q′(∞) and
have lengths 2πai and 2πbi, respectively. For some δj(t) we recover the

surfaces along r(t) by removing punctured discs of radius δ
1/2
i (t) around

pi and qi and gluing the resulting surfaces along their boundary. We
have

lim
t→0

δj(t) = 0.

We have a similar picture for r′ with corresponding δ
′1/2
i (t). The as-

sumption that r, r′ are modularly equivalent means that for each δi
there is δ′i, such that the resulting cylinders Ai, A

′
i on r(t), r

′(t) have the
same modulus. For convenience we drop the subscript i.

Let K = e
d
M(X̂)(r(∞),r′(∞))

. Given ǫ, let F2 : r′(∞) → r(∞) be the
(K+ǫ)-quasiconformal map given by Lemma 3.12 that is conformal in a
neighorhood of all of the punctures. We may take a fixed κ′ so that F2 is
conformal inside the circle of radius κ′ inside each punctured disc. This
means that we can take ζ as a conformal coordinate in a neighborhood
of the puncture on r(∞) and so the map F2 is the identity on the circle
|ζ| = κ′ in these coordinates.

Consider the annulus B′ ⊂ A′ defined by

B′ = {ζ : |δ′1/2| < |ζ| < κ′}.

Consider also the annulus B ⊂ r(∞) which in the z plane is bounded by
the circle of radius |δ1/2| and the curve ω which is the image under F2

of the circle of radius κ′. In the ζ coordinates on r(∞), B is bounded by
the circle |ζ| = κ′ and an analytic curve γ which is the image under the
holomorphic change of coordinate map ζ = ζ(z) of the circle of radius

|δ1/2|.
Since κ′ is fixed, we have

lim
δ′→0

Mod(B′)

Mod(A′)
= 1,
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and since ω is fixed,

lim
δ→0

Mod(B)

Mod(A)
= 1.

Since Mod(A) = Mod(A′), we therefore have

(6) lim
δ→0

Mod(B′)

Mod(B)
→ 1.

For small enough δ we wish to find a (1 +O(ǫ)) quasiconformal map
F1 from B′ to B such that

• for ζ = δ′1/2eiθ, z = F1(ζ) = δ1/2eiθ,
• for |ζ| = κ′, F1(ζ) = ζ.

In other words, the desired F1 is the identity on the circle of radius
κ′ and takes the circle of radius δ′1/2 in the ζ coordinates to the circle of
radius δ1/2 in the z coordinates. We also find a corresponding map F1 for
neighborhoods of the punctures qi, q

′
i. We then will glue these maps F1

along the circle of radius δ′1/2 together to give a 1+O(ǫ) quasiconformal
map, again denoted F1, on the glued annulus to the annulus found by
gluing along the circle of radius δ1/2 in the z coordinates. We then glue
F1 to F2 along the circles of radius κ

′ to give a (K+O(ǫ))-quasiconformal
map from r′(t) to r(t).

We now find the map F1. By (6) for all sufficiently small δ,

|
Mod(B′)

Mod(B)
− 1| ≤ ǫ/2.

Find a conformal map hδ(z) from B to a round annulus

B1 = {w : δ′′1/2 < |w| < κ′}

with the normalization that hδ(κ
′) = κ′. The composition

ζ = δ′1/2eiθ → z = δ1/2eiθ → hδ(z)

is a map w = fδ(ζ) from the circle of radius δ′1/2 in the ζ plane to the

circle of radius δ′′1/2 in the w plane. Similarly, we have a map w = gδ(ζ)
from the circle of radius κ′ in the ζ-plane to the circle of radius κ′ in
the w-plane. These two maps can be thought of as boundary maps of
B′ to B1.

We wish to show that, as δ → 0, we have |f ′δ(ζ)− (δ
′′

/δ′)1/2| → 0 and
|g′δ(ζ) − 1| → 0. In that case after mapping the annuli B1, B

′ to flat
cylinders with base 0, circumference 1, and heights R1, R2, respectively,
by a logarithm map, the induced maps on the top and bottom of the
cylinders have derivatives almost constantly 1. Since the ratio of moduli
has limit 1, we then can apply Lemma 3.11 with R1/R2 → 1 and n = 0.

We now show the desired above limits hold. Considering B as an
annulus in the ζ coordinates, with outer boundary the fixed circle |ζ| =
κ′, as δ → 0, the conformal maps hδ converge to a conformal self map
of the punctured disc 0 < |ζ| < κ′. It extends to a conformal map
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taking 0 to 0. The only such conformal maps are rotations. But by our
normalization of the hδ’s to fix a point, that map must be the identity.
Thus as δ → 0, the maps hδ converge uniformly to the identity, and
therefore g′δ converges uniformly to 1 on the circle of radius κ′.

By replacing z with z/δ1/2 and w with w/δ′′1/2, we also can consider
hδ as a map from the annulus B in the z plane with inner boundary
the unit circle, to B1, another annulus with inner boundary the unit
circle. As δ → 0, hδ converges to a conformal map of the exterior of the
unit disc to the exterior of the unit disc, taking ∞ to ∞. The limiting
conformal map is therefore again the identity. Thus the map hδ from
the circle of radius δ1/2 to the circle of radius δ′′1/2 in the w plane has
derivative approaching (δ′′/δ)1/2 as δ → 0. Since the map from the

circle of radius δ′1/2 in the ζ plane to the circle of radius δ1/2 in the z
plane has derivative (δ/δ′)1/2, applying the chain rule the composition

fδ has derivative converging to (δ′′/δ′)1/2 as δ → 0. We are now in a
position to apply Lemma 3.11. This completes the proof. q.e.d.

4. The iterated EDM ray space and the
Deligne-Mumford compactification

In this section we introduce a functor X 7→ X
ir

defined on a certain
collection of metric spaces X. The space X

ir
will be constructed via

certain equivalence classes of EDM rays, and will have the structure of
a metric stratified space (see below). We will then prove that this func-
tor applied to M(S) produces the Deligne-Mumford compactification

M(S)
DM

; that is, we will find a stratification-preserving homeomor-

phism from M(S)
ir
to the Delgine-Mumford compactification M(S)

DM

which is an isometry on each stratum.

4.1. The iterated EDM ray space. Before defining X
ir
, we will

have to deal with a technical issue. The boundary pieces of M(S)
DM

are
naturally products of smaller moduli spaces. We will need to canonically
pick out the factors in such products by studying uniqueness of product
decompositions. Unfortunately, the fact that M(S) has orbifold points
slightly complicates matters, as we will now see.

A metric space Y is said to have the unique local geodesic property if
for every y ∈ Y there is a neighborhood U of y with the property that
any two points in U can be connected by a unique geodesic in U . It
is well-known that Teich(S) has the unique local geodesic property. It
follows easily from the proper discontinuity of the action of Mod(S) on
Teich(S) that M(S) has this property in the complement of its orbifold
locus. However, for points s ∈ M(S) in the orbifold locus, this is not
true: every neighborhood of s in M(S) has some pair of points x, y so
that the number n(x, y) of (globally length minimizing) geodesics from
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x to y is greater than 1. Since there is a uniform bound (of 84(g−1)) of
the order of any group stabilizing any point of Teich(S), it follows that
there is a uniform upper bound for n(x, y) for any x, y ∈ M(S).

Theorem 4.1 (Uniqueness of product decomposition). For each 1 ≤
i ≤ m, let Yi be a connected metric space, not equal to a point, with the
following property:

1) The complement of the set of points Si ⊂ Yi without the unique
local geodesic property is open and dense in Yi, and

2) there exists Ni ≥ 1 so that for all x, y ∈ Yi, the number ni(x, y) of
(globally length-minimizing) geodesics in Yi from x to y is at most
Ni.

Let Z = Y1 × Y2 . . . × Yn, endowed with the sup metric. Then given
any other way of writing Z = X1 × · · ·Xm with the sup metric, it must
be that m = n and, after perhaps permuting factors, Xi = Yi for all i.

As the proof of Theorem 4.1 is independent of the rest of this paper,
we leave it for the Appendix (Section 6) below. One key ingredient is a
recent theorem of Malone [Mal].

As discussed above, Yi = M(S) satisfies the hypotheses of Theorem
4.1. In this case the set Si is precisely the orbifold locus of M(S).

Now consider a metric space (X, d) with X = X1 × . . . Xm ( possibly
with m = 1). Assume that (X, d) satisfies the hypotheses of Theorem
4.1. We will consider rays in each factor.

Definition 4.2 (Isolated rays). We say that a ray r is isolated if the
following two properties hold:

1) There is a factor Xj such that r ⊂ Xj and r is an EDM ray in Xj .
2) For every p ∈ Xj , the set of asymptote classes of EDM rays [r′] ⊂

Xj which are a bounded distance from r, and which have some
representative passing through p, is countable.

We will now define a space X
ir

inductively, building it inductively,
stratum by stratum. The level k stratum will be denoted Dk(X).

Henceforth every metric space (Y, d) that appears as a factor in a
product will be assumed to have the following three properties:

Standing Assumption I (Limits exist): For any two isolated
EDM rays r1, r2 in Y that are a bounded distance apart, there are
initial points r1(0), r2(0) such that limt→∞ d(r1(t), r2(t)) exists and is a
minimum among all choices of basepoints.

Standing Assumption II (Asymptotes are uniformly asymp-
totic): For any ǫ > 0, any asymptote class of isolated EDM rays [r],
any representative r of [r], and any choice of basepoint r(0), there is a
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T = T (r, r(0), ǫ) such that for any such asymptotic pairs r, r′ the rays
r([T,∞)) and r′([T ′,∞)) are within Hausdorff distance ǫ of each other.

Standing Assumption III (Almost locally unique geodesics): Y
satisfies the hypotheses (and hence the conclusions) of Theorem 4.1.

If a metric space X contains isolated rays, we consider the set Asy(X)
of all asymptote classes of isolated EDM rays [r] in X. With Standing
Assumption I in hand, we can endow Asy(X) with a distance function
via dasy([r1], [r2]) = limt→∞ d(r1(t), r2(t)) for choice of basepoints that
minimizes this limit. It is easy to check that this defines a metric.

Let (D0(X), d0) := (X, d).

Step 1 (Inductive step): Suppose we are given the metric space
Dk(X), written as a product of factors X1 × . . . ×Xm with the metric
dk(·, ·), where dk is the sup of the metrics dj of the factors. Remove each
factor that is a point. If none of the factors Xj contains isolated EDM
rays, define Dm(X) = ∅ for all m > k and stop the inductive process.
If some factor Xj contains isolated rays, then we set

Dj
k+1(X) = X1 × . . . ×Xj−1 ×Asy(Xj)×Xj+1 × . . .×Xm.

We can endow Dj
k+1(X) with a distance function djk+1 as the sup metric

on the factors. From Standing Assumption III, we have that if Asy(Xj)
is a product, then it can be written uniquely as a product. Thus, given
the product representation of Dk(X), we have a unique product repre-

sentation of Dj
k+1(X).

Note also that if two points in Dj
k+1(X) have an infinite distance from

each other, then they are in different components of Dj
k+1(X). We then

set

Dk+1(X) = ⊔m
j=1D

j
k+1(X)

with metric dk+1 which is the corresponding metric djk+1 on each term
in the disjoint union.

Step 2 (Topology): We will inductively define a topology on the
disjoint union Y := ∪∞

j=0Dj(X), as follows.

Using Standing Assumption II, for every [r0] ∈ Asy(Xj) and every
ǫ > 0 we can define an ǫ-neighborhood Vǫ([r0]) of [r0] in Asy(Xj)∪Xj .
Consider the set of equivalence classes of isolated rays [r] ∈ Asy(Xj)

such that dj([r], [r0]) < ǫ and set V j
ǫ ([r0]) to be the union of the set of

such rays and the following set. For each such ray [r] and each r ∈ [r]

include in V j
ǫ ([r0]) the set {r(t) : t ≥ T (r, r(0), ǫ)}.

We are now ready to define the topology.
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Definition 4.3. Let j ≥ 0. Suppose ~x(n) is a sequence in Dk(X)

and (~x, [r]) ∈ Dj
k+1(X). We say ~x(n) → (~x, [r]) if there exists tn → ∞

such that

1) for i 6= j, limn→∞ di(xi(n), xi) = 0,
2) limn→∞ dj(xj(n), r(tn)) = 0 for some representative r of [r].

Now suppose inductively for each k,m, and for each sequence ~x(n) ∈
Dk(X), and y ∈ Dk+m(X) we have defined what it means for ~x(n) to
converge to y.

Definition 4.4. Suppose ~x(n) ∈ Dk(X) and z ∈ Dk+m+1(X). We

say ~x(n) → z if there exists j, points (~x′(n), [rn]) ∈ Dj
k+1(X), a sequence

ǫn → 0, representatives rn and times tn such that

1) limn→∞ di(xi(n), x
′
i(n)) = 0 for i 6= j,

2) limn→∞ dj(xj(n), rn(tn)) = 0,
3) rn(tn) ∈ Vǫn([rn]),

4) limn→∞(~x′(n), [rn]) = z.

The first condition just says that one has convergence in the fac-
tors where one is not considering isolated rays. Notice the last con-

dition inductively makes sense since (~x′(n), [rn]) ∈ Dk+1(X) and z ∈
Dk+m+1(X) and k +m+ 1− (k + 1) = m.

We thus obtain a topological space which is stratified by {Dk(X)},
and in fact each stratum is a metric space (by Standing Assumption I).
Note that X is open and dense in Y . We are actually interested in a
somewhat simpler space, obtained as a certain quotient of Y , as follows.

Step 3 (Identifications): The space Y provides a natural “bound-
ary” for X, although the construction may give multiple copies of the
same boundary component. To remedy this, we will identify points that
“should” be distance zero from each other. In some sense this is like
Cauchy’s scheme for completing metric spaces.

We make no identifications of points in D0(X). Now suppose induc-
tively we have made identifications of points in Dj(X) for all j ≤ k and
P,Q ∈ Dk+1(X).

Definition 4.5. We say P ∼ Q if there exist sequences xn, yn in the
same component of Dk−1(X) such that

1) limn→∞ xn = P and limn→∞ yn = Q,
2) limn→∞ dk−1(xn, yn) = 0.

This is clearly an equivalence relation. We denote the quotient space

of Y by this equivalence relation by X
ir
, and call it the iterated EDM

ray space associated toX. This is evidently a functor from metric spaces
(whose Dj ’s satisfy the standing assumptions) and isometries to metric
spaces and isometries. If Y turns out to be a compactification of X,
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then since we only identified certain points in Y \X, it follows that X
ir

is also a compactification of X.

Example 4.6. For X the upper quadrant in R2 = R+×R+ with the
sup metric, D1 has two components, each of which is an infinite ray. A
point in one component corresponds to a vertical ray, with the distance
function equal to the distance function between vertical rays, i.e., the
difference of their x coordinates. The points in the other component
correspond to horizontal rays, with the distance being the difference of
their y coordinates. Since D1 is a disjoint union of two rays, D2 consists
of two points. The sequence (n, n) converges to each of the two points

in D2, and so these points are identified. Thus in this case X
ir

is a
closed square.

4.2. Metric stratified spaces. We would like to keep track of struc-
tures finer than topological type. To do so we will need the following
standard concept.

Definition 4.7. A stratification of a second countable, locally com-
pact Hausdorff space X is a locally finite partition SX into open sets S
satisfying the following:

1) Each element S ∈ SX , called a stratum, is a connected topological
space in the induced topology.

2) For any two strata S1, S2 ∈ SX , if S1 ∩ S2 6= ∅ then S1 ⊃ S2.

A space X with a stratification, with each stratum endowed with the
structure of a metric space, is called a metric stratified space.

Inclusion S1 ⊃ S2 defines a partial ordering S1 > S2 on the elements
of SX . The depth, or level, of a stratum T is the maximal n so that
there is a chain

S0 > · · · > Sn = T

with Si ∈ SX . Note that since SX is locally finite, any such chain is
finite, although a priori one might have strata of infinite depth.

Example 4.8. The iterated EDM ray space X
ir
of §4.1 has a natural

stratification, where the level k strata are the components of Dk(X).

4.3. The Deligne-Mumford compactification. Deligne-Mumford

[DM] constructed a compactification M(S)
DM

of M(S), called the
Deligne-Mumford compactification, which they proved is a projective

variety. As such, M(S)
DM

is endowed with the structure of a strati-

fied space. Bers [Be] also gave a construction of M(S)
DM

as a strat-

ified space. Points of the level k strata of M(S)
DM

are given by con-
formal structures on k-noded Riemann surfaces; the set of strata are
parametrized by the set of combinatorial types of collections of nodes
(see [Be, DM]).
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The topology onM(S)
DM

is as follows. On each stratum the topology
is just that of the corresponding moduli space. Points Xn converge
to some Y in a lower level stratum if for every neighborhood N of
the union of nodes in Y , there is a conformal map (Y \ N) → Xn

for n sufficiently large. We endow each stratum of M(S)
DM

with the

corresponding Teichmüller metric, thus giving M(S)
DM

the structure of
a metric stratified space.

Our goal in this section is to reconstruct M(S)
DM

as a metric strat-
ified space (but not as a projective variety) as the iterated EDM ray

space M(S)
ir

associated to M(S). We therefore begin by applying the
construction from the previous subsection to M(S), endowed with the
Teichmüller metric.

We characterize the isolated rays in M(S), and identify the metric
they give on the stratum D1(M(S)).

Proposition 4.9. Let S be a surface of finite type. Then a ray in
M(S) is an isolated EDM ray if and only if it is a one-cylinder Strebel
ray. Let r and r′ be one-cylinder Strebel rays. Suppose the cylinders
of r and r′ both have core curves of the same topological type as a fixed
simple closed curve γ. Then d1(r, r

′) in D1(M(S)) exists, and coincides
with the Teichmüller distance between r(∞) and r′(∞) in the boundary
moduli space M(S \ γ).

We remark that if the cylinder defining the Strebel ray is given by a
separating curve, then S′ is disconnected, and so M(S \ γ) is itself a
product of smaller moduli spaces.

Proof. By Theorem 1.4, a ray in M(S) is EDM if and only if it
is Strebel. By theorem 21.7 of [St], on each Riemann surface there
is a unique one-cylinder Strebel differential in each homotopy class of
simple closed curve. There are only countably many such homotopy
classes. Moreover, given a collection of more than one distinct homotopy
class of disjoint curves, the set of Strebel differentials with cylinders in
those homotopy classes is uncountable (again, by Theorem 21.7 of [St]).
Moreover, by theorem 2 of [Ma1], any two Strebel differentials with
homotopic cylinders are a bounded distance apart. However (again by
theorem 21.7 of [St]), they are not modularly equivalent and so these
classes are not isolated. It follows easily from Lemma 2.3 that each of
these is an unbounded distance from a ray defined by a one-cylinder
Strebel differential. These facts together imply that the isolated rays
coincide with the one-cylinder Strebel rays.

The fact that the set of asymptote classes of one-cylinder Strebel
rays on any moduli space is homeomorphic to the moduli spaces of one
smaller complexity, and that the distance between one cylinder Strebel
rays of the same type exists and is equal to the Teichmüller distance on
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the corresponding one complexity smaller moduli space, is the content
of Theorem 3.9. The fact that isolated EDM rays determined by com-
binatorially inequivalent curves are not bounded distance apart follows
from Lemma 2.3. q.e.d.

With the setup above, we can now prove the main result of this

section: that M(S)
ir

and M(S)
DM

are isomorphic as metric stratified
spaces.

Theorem 4.10. The iterated EDM ray space M(S)
ir

associated to

M(S) is homeomorphic to the Deligne-Mumford compactification M(S)
DM

via a stratification-preserving homeomorphism which is an isometry on
each stratum.

Proof. First recall that the set of level k strata of M(S)
DM

is param-
etrized by the set of combinatorial types of k-tuples of simple closed
curves on S, representing the curves that are pinched to nodes. Each
level k stratum corresponding to a k-tuple {α1, . . . , αk} is a product of
the moduli spaces of the punctured surfaces consisting of the compo-
nents of S \ {α1, . . . , αk}. Further, we have endowed each stratum with
the Teichmüller metric of the corresponding moduli space or, in the case
of disconnected surfaces, with the sup metric on the product of moduli
spaces.

Step 1 (Defining a surjective map): We first define a map

ψ : ∪∞
k=0Dk(M(S)) → M(S)

DM

inductively, as follows. On D0(M(S)) we simply let ψ be the identity
map. Each factor that was a point that was removed is sent to the
moduli space of a three times punctured sphere which is itself a point.
By Proposition 4.9, the isolated EDM rays in D0(M(S)) are precisely
the one-cylinder Strebel rays. The equivalence classes of one-cylinder
Strebel differentials correspond precisely to the topological types of sim-
ple closed curves on S. By Corollary 3.10, the asymptote classes of one-
cylinder Strebel rays r correspond to the possible endpoints r(∞). By
Strebel’s existence theorem (theorem 23.5 of [St])) every possible end-
point can occur, so that D1(M(S)) consists of all possible surfaces ob-
tainable by pinching a single simple closed curve on S. Thus D1(M(S))
is the disjoint union of moduli spaces, one for each topological type of
simple closed curve. By Theorem 3.9, the metric d1 onD1 coincides with
the corresponding Teichmüller metric on each component of D1(M(S)).
We define ψ on each component of D1(M(S)). If the component is not
a product we map an asymptote class [r] of rays to the corresponding
endpoint r(∞). If the component is a product, then for each factor
we define ψ by fixing the coordinates of the other factors and map an
asymptote class of rays in the factor to its endpoint. By the above,
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on each component, this map is an isometry onto the component of

M(S)
DM

corresponding to the appropriate combinatorial type of simple
closed curve.

Suppose now inductively that we have proven that each component
of Dk(M(S)) is isometric via a map ψ to a (products of) moduli spaces,
and the map is onto the collection of moduli spaces, one for each combi-
natorial type of k-tuple of simple closed curves. Fix any component of
Dk(M(S)), corresponding to a k-tuple {α1, . . . , αk}, and let M(S′) be
the corresponding (products of) moduli spaces M(S1) × . . . ×M(Sp),
where S′ = S \{α1, . . . , αk}. For each factor in this product we find the
asymptote classes of isolated EDM rays, again given by the one-cylinder
Strebel differentials. We thus obtain components of Dk+1(M(S)), and
these components correspond to the possible combinatorial types of
(k+1)-tuples obtainable from α1, . . . , αk by adding a single simple closed
curve. We again define ψ on each component by sending each asymp-
tote class [r] to r(∞), and if the component is a product, defining it
to be the identity on the other coordinates. As above, we see that ψ
is an isometry when restricted to any of the fixed components just ob-
tained. By Strebel’s theorem again, the map is onto all (k+1)st strata

in M(S)
DM

.
We have therefore inductively defined a map

ψ :
⋃

k

Dk(M(S)) → M(S)
DM

which we have shown to be onto (by Strebel’s existence theorem), and
which is an isometry when restricted to any fixed component of any
fixed Dk(M(S)).

Step 2 (The standing assumptions hold): Standing Assumption
I holds by the fact discussed above, that if two EDM rays are defined
by pinching the same combinatorial type of curve then the rays have an
asymptotic distance apart, and by the fact that if the topological types
are different then the rays are not bounded distance apart. The latter
follows from Lemma 2.3

Now we show Standing Assumption II holds. Let [r] be an asymptotic
class of isolated EDM ray on any moduli space with r any representa-
tive. As we have seen, on the surface r(∞) there is a quadratic differ-
ential q(∞) with double poles at the paired punctures, such that the
vertical trajectories are all closed curves of equal length isotopic to the
punctures. Since q(∞) is the unique (up to scalar multiple) quadratic
differential with this property, any two representatives determine the
same q(∞). Since the Strebel differentials along r can be reconstructed
by cutting out punctured discs on r(∞) and gluing along the boundary
circles of q(∞), the ray r is determined by a single twist parameter;
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namely, how the circles are glued to each other. Thus the Strebel dif-
ferentials on any two rays differ by only a twist about the core curve,
and the amount of twisting is bounded by the length of the curve. For
any two points r1(t1) and r2(t2) along two such rays, if the moduli of
the cylinders M1,M2 are equal and large, then d(r(t1), r2(t2)) is small;
there is a O(1+1/M1)-quasiconformal map of the cylinders that realizes
the twisting. Standing Assumption II follows.

Standing Assumption III holds since, as disscussed before Theorem
4.1, the hypotheses of that theorem are satisfied by a product of Te-
ichmüller spaces.

Step 3 (ψ is continuous): Suppose xn ∈ Dk(M(S)) converges to z ∈
Dk+m(M(S)) as in Definitions 4.3 or 4.4. The proof of continuity of ψ is
by induction on m. Assume m = 1. If the component of Dk containing
xn is a product, then by definition all of the coordinates but one of ψ(xn)
in the product coincide with the corresponding coordinates of xn. By
assumption, these converge to the corresponding coordinates of ψ(z).
Thus we can assume that the component of Dk is not a (nontrivial)
product. Then ψ(z) is the Riemann surface r(∞), where r is an EDM
ray in Dk(M(S)), and dk(xn, r(tn)) → 0 for a sequence tn → ∞. The
fact that r(∞) is the endpoint of r says that ψ(r(tn)) → ψ(z) as tn → ∞

in the topology of M(S)
DM

. The fact that dk(xn, r(tn)) → 0 says there
is a sequence of (1 + o(1))-quasiconformal maps of ψ(xn) to ψ(r(tn)).
These converge to a conformal map of a limit ψ(r(tn)) to ψ(z). Thus
any such limit must in fact coincide with ψ(z).

Now suppose the continuity of ψ has been proved for all p ≤ m and
m = p + 1. Again it suffices to assume that Dk is not a product. Let
yn a sequence in Dk+1(M(S)) such that yn → z as in Definition 4.4.
There is a sequence of isolated rays rn in Dk defined by one-cylinder
Strebel differentials with core curve some γ such that yn = rn(∞). By
the induction hypothesis, ψ(yn) → ψ(z). Now assumption (2) in the
definition of the topology implies that

Extrn(tn)(γ) → 0,

for otherwise there would be rays in the same asymptote class whose
distance from rn(tn) does not tend to 0. Consider the p + 1 nodes of
ψ(z) corresponding to pinching p+1 curves. Without loss of generality
we can assume the last p of them are pinched along ψ(yn). Form small
neighborhoods of the corresponding paired punctures on ψ(z). By def-
inition of the topology, since ψ(yn) → ψ(z), there is a conformal map
of the complement of the last p pair of neighborhoods to ψ(yn) for n
large. For each such n, there is a conformal map of the complement of
the first pair of neighborhoods to rn(tn) for tn sufficiently large. This
shows that ψ(rn(tn)) → ψ(z). By assumption, there is a sequence of
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(1 + o(1))-quasiconformal maps from ψ(xn) to ψ(rn(tn)), and therefore
ψ(xn) → ψ(z) as well. This shows that ψ is continuous.

Step 4 (Factoring ψ): Now the map ψ itself is not injective, since
one can have two combinatorially distinct j-tuples of curves which be-
come combinatorially equivalent when one additional curve is added.
For example, if S is closed of genus 2, then in D2(M(S)) the compo-
nent corresponding to pinching a separating and nonseparating curve is
counted twice. However, we show now that the final identification Step
4 precisely identifies, by definition, such tuples. Namely, we show that
the map ψ factors through a map

Ψ : M(S)
ir
→ M(S)

DM
.

Suppose z, z′ ∈ Dk+1(M(S)) and z ∼ z′. We have to show ψ(z) =
ψ(z′). By definition there are sequences xn, x

′
n ∈ Dk−1(M(S)) that

satisfy dk−1(xn, x
′
n) → 0; xn → z, x′n → z′. By the continuity of ψ we

have ψ(xn) → ψ(z) and ψ(x′n) → ψ(z′). Since dk−1(xn, x
′
n) → 0, there

is a sequence of (1 + o(1))-quasiconformal maps from ψ(xn) to ψ(x′n).
Therefore we also have ψ(x′n) → ψ(z), and so ψ(z) = ψ(z′). We have

shown that there is a well-defined map Ψ : M(S)
ir
→ M(S)

DM
.

Step 5 (Ψ is injective): We must prove that if Ψ(z) = Ψ(z′),
then z has been identified with z′. We can assume z, z′ are in different
components of Dk+1(M(S)). Again we can assume the components
are not products; hence they are endpoints of rays r, r′ in different
components E,E′ of Dk(M(S)). Let xn ∈ Dk−1(M(S)) such that
xn → z. We wish to show xn → z′ as well, for then z is identified
with z′. We have Xn := Ψ(xn) → Z := Ψ(z).

4.4. (s, t) coordinate system. Before continuing the proof we need
to describe a coordinate system about Z which allows us to represent
any surface near Z in the coordinate system. This coordinate system is
due to [EM] (see also [Ma2] and [W]).

We may lift so that Z is in the augmented Teichmüller space. We will
find a neighborhood V of Z whose intersection with Teich(S) will not be
locally compact. We can separate the nodes of Z into pairs of punctures,
denoted pi, qi. Choose conformal neighborhoods Vi = {zi : 0 < |zi| < 1}
and Wi = {wi : 0 < |wi| < 1} of pi and qi. Also choose points P
and Q on the pairs of circles of radius 1. The discs may be taken to be
mutually disjoint. For each component Zl of Z choose a nonempty open
set W disjoint from ∪i(Vi∪Wi). Let nl denote the complex dimension of
Teich(Zl). There exist Beltrami differentials ν1, . . . , νnl

supported in W
whose equivalence classes form a basis for the tangent space to TZl

at Zl.
This implies that for any Yl sufficiently close to Zl, there is a nl-tuple
s(Y ) = (s1, . . . snl

) of complex numbers close to 0 and a quasiconformal
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map f : Zl → Yl such that the dilatation µ(f) of f satisfies

µ(f) =

nl
∑

i=1

siνi.

We do this for each component of Z. The result is a parametrization
of surfaces in a neighborhood of Z ∈ V that lie in the bordification, by
s 7→ Z(s) for a neighborhood of 0 in CN , for some N .

Since the map f (on each component) is conformal in Ui∪Vi, the coor-
dinates zi, wi are local holomorphic coordinates in neighborhoods Vi,Wi

of the punctures on each Z(s). Now choose a p-tuple t = (t1, . . . , tp)
complex numbers in a small neighborhood of the origin. For each surface
Zs, and for each 1 ≤ i ≤ p, remove the disc of radius |ti|

1/2 from each
of Vi and Wi, and then glue zi to ti/wi. We note that in this notation
Z(s, 0) = Z(s); so if all ti = 0, then there are no disks to remove.

To define the neighborhod in Teich(S) we need to choose markings on
Z(s, t) by choosing a homotopy class of arcs joining P and Q crossing the
glued annulus. Thus we have a marking of the surface Z(s, t) consisting
of the marking of Z = Z(0, 0), the curves along which we glued, and
for each such curve, a transverse arc crossing the annulus. Note that
markings differ by Dehn twists about the glued curve, and since these
are arbitrary the resulting neighborhood is not locally compact.

We continue the proof that ψ is injective. We can lift to Teichmüller
space and find the coordinate system (s, t) around Z. Since Z lies in a
moduli space of two fewer dimensions than Xn, there are two plumbing
coodinates t1, t2 such that the coordinates t1(n), t2(n) of Xn are both
nonzero.

We can assume that points of E′ have coordinate t1 = 0, and the t2
coordinate tends to 0 along the ray r′(u) as u → ∞. We can assume
that points of E have t2 = 0. The s coordinate of Xn approaches 0. For
each n, we can find a time un such that the modulus of the cylinder on
Ψ(r′(un)) coincides with the modulus of the corresponding annulus on
Xn. For each such r′(un) there is a ray r′n ⊂ Dk−1(M(S)) such that
r′(un) = r′n(∞). We can choose a time ln so that the corresponding
cylinder on r′n(ln) has the same modulus as the corresponding annulus
on Xn. Now, just as in the proof of Theorem 3.9, as n → ∞ there is a
sequence of (1 + o(1))-quasiconformal maps from Xn to Ψ(r′(ln)), and
by the definition of the topology on the union of the Dj(M(S)), we
have that xn → z′.

Step 6 (Ψ−1 is continuous): Suppose then that Xn ∈ M(S′) con-

verges to Z in M(S)
DM

. Again we can form an (s, t) coordinate neigh-
borhood system about Z such that, after re-indexing, the t coordinates
of Xn are given by (t1(n), . . . , tk(n)) 6= 0. Here k is the number of curves



220 B. FARB & H. MASUR

of Xn that we pinch to get Z. The proof is by induction on k and resem-
bles the proof that Ψ is injective. Suppose k = 1. Let r be the Strebel
ray with endpoint r(∞) = Z, so by definition, Ψ([r]) = Z. For each n,
we can find a time un such that the modulus of the cylinder on r(un) is
the same as the modulus about the pinching curve on Xn found by the
plumbing construction. Now again just as in the proof of Theorem 3.9,
for any ǫ, for n large enough, we can find a (1 + ǫ)-quasiconformal map
from Xn to r(un). Then by definition, Xn → [r] = Ψ−1(Z) in the

topology of M(S)
ir
.

Now for the induction step. Suppose we have proven the desired
limit for k − 1, where Z is found by pinching along k curves. We have
Z = Ψ([r0]) for some ray r0. Let Yn have the same (s, t) coordinates
as Xn except that we require t1 = 0. This means that we find Z from
Yn by pinching k − 1 curves. Let qn be the Strebel differential on Yn
with double poles at the punctures corresponding to t1 = 0, and let
rn be the corresponding Strebel ray with endpoint rn(∞) = Yn. By

definition, Ψ([rn]) = Yn. Now Yn → Z inM(S)
DM

, and by the induction
hypothesis on the continuity of the map Ψ−1, we see that [rn] → [r0].
Just as above we may choose un so that the modulus of the cylinder on
rn(un) is the same as the modulus of the annulus corresponding to the t1
coordinate in the plumbing construction. By definition of the topology

of M(S)
ir
, it is again enough to prove that dM(S)(Xn, rn(tn)) → 0.

But this again follows just as in the proof of Theorem 3.9: there is a
conformal map Xn → Ψ(r(un)) in the complement of annuli with large
but equal moduli; then for any ǫ, for n large enough, we can find a
(1 + ǫ)-quasiconformal map from Xn to Ψ(r(un)). This completes the
proof. q.e.d.

5. Further geometric properties

5.1. A strange example. In this subsection we indicate some of the
difficulties of the Teichmüller geometry of M(S) by exhibiting two se-
quences of EDM rays rn, r

′
n, with the following properties: there ex-

ists a constant D > 0 and sequences of times tn, t
′
n → ∞ such that

dM(S)(rn(tn), r
′
n(t

′
n)) ≤ D, each sequence rn, r

′
n converges to an EDM

ray r∞, r
′
∞ uniformly on compact intervals of time, and yet r∞ does not

stay within a bounded distance of r′∞. This example violates assump-
tion 9.11 of [JM], so that the Ji-MacPherson compactification method
cannot be applied to M(S). This partially explains why we took a
different approach.

We construct a sequence of rays rn as follows. Let r0 be a Strebel ray
corresponding to a maximal collection of curves β1, . . . , β3g−3+n whose
cylinders have equal moduli. Note that r0(∞) is the unique maximally
noded Riemann surface within its combinatorial equivalence class. Let
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α be a curve distinct from the βi and therefore it has positive intersec-
tion with some βj . Let Tα denote the Dehn twist about α. Let rn be
the Strebel ray through r0(0) corresponding to the Strebel differential
whose set of core curves is {T n

α (βi)} and whose cylinders have equal
moduli. This is possible by a theorem of Strebel ([St], Theorem 21.7).
Note that rn(∞) = r0(∞) for each n, since the collection {T n

α (βi)} is
combinatorially equivalent to {βi}. Since the rays are modularly equiva-
lent they are asymptotic (Corollary 3.10 above), so we can choose times
tn, t

′
n → ∞ such that dM(S)(rn(tn), r0(t

′
n)) is uniformly bounded.

On the other hand, the rays rn converge uniformly on compact sets
in time to a ray r∞, where r∞ corresponds to the unique one-cylinder
Strebel differential with core curve α. Taking r′n = r0 so that r′∞ = r0
for all n, we have d(r∞, r

′
∞) = ∞ by Lemma 2.3.

5.2. The set of asymptote classes of all EDM rays. In this sub-
section we give a parametrization of the set of asymptote classes of all
(not necessarily isolated) EDM rays. As we will see, this space is nat-

urally a closed simplex bundle B over M(S)
DM

. Let S be a surface of

genus g with n punctures. The fiber over a point X̂ ∈ Mg′,n′ , where
(g′, n′) 6= (g, n), consists of projective classes (b1, . . . , bp) of vectors. Let
Σ be the collection of all asymptotic classes of EDM rays on Mg,n. We
define a map

Φ : Σ → B .

Let [r] be an equivalence class of rays. Let r any representative with
cylinders C1, . . . , Cp with moduli mod(C1), . . . ,mod(Cp). By Corol-
lary 3.10 the projective class of the vector of moduli is independent
of the choice of representative and the endpoint r(∞) is independent
of the representative. Define Φ([r]) to be the point whose base is r(∞)
and whose fiber is the projective vector (mod(C1), . . . ,mod(Cp))

Theorem 5.1. The map Φ is a homeomorphism onto the open sim-
plex subbundle B0 where no coordinate is 0.

Proof. The map Φ is clearly injective. To show surjectivity let X̂ ∈
Mg′,n′ any point; v = (M1, . . .Mj) a projective vector. Pick a represen-

tative vector v and let (X̂, q̂) be the (unique) quadratic differential on

X̂ such that

• (X̂, q̂) has double poles at the punctures,
• the vertical trajectories are closed loops isotopic to the punctures,
• the lengths of the vertical trajectories are 1/Mi for each paired
puncture.

This is possible by theorem 23.5 of [St]. Remove a punctured disc
around each paired puncture so that the remaining cylinder has height
1/2. Glue together along the circles. The corresponding cylinders Ci

have height 1. The moduli of the cylinders are therefore Mi. We may
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choose the representative v so that the area of the resulting (X, q) is 1.

This gives a corresponding geodesic ray r(t). We have that X̂ = r(∞),

so that Φ([r]) = (X̂,M1, . . . ,Mj).

The quadratic differential (X̂, q̂) depends continously on X̂ and the
vector v, which implies that the ray [r] depends continuously on these
parameters so that the map Φ−1 is continuous. The map Φ is continuous
because the endpoints and moduli depend continously on the quadratic
differentials defining the ray. q.e.d.

5.3. Tits geometry of the space of EDM rays. In this section we
compute some invariants for pairs of EDM rays. These invariants are
fundamental in the study of nonpositively curved manifolds (see, e.g.,
[Eb], chapter 3).

Definition 5.2. Let r(t), r′(t) be a pair of EDM rays in a metric
space (X, d). We define the pre-Tits distance ℓ(r, r′) between r and r′

to be

ℓ(r, r′) := lim
t→∞

d(r(t), r′(t))

t
if the limit exists.

For simply connected, nonpositively curved manifolds X, the Tits
distance on the visual boundary ∂X is equal to the path metric induced
by ℓ ([Eb], prop. 3.4.2). The quantity ℓ is related to the angle metric
∠(r, r′) on ∂X via

ℓ(r, r′) = 2 sin(
1

2
∠(r, r′))

(see [Eb], prop. 3.2.2).
Our goal now is to compute ℓ for pairs of EDM rays in M(S).

Theorem 5.3. Let r, r′ be EDM rays defined by Strebel differentials
(X, q) and (X ′, q′) with core curves {γi} and {γ′j}. The Tits angle

between r and r′ is 0 if there is an element φ of the mapping class

group sending {γi}
p
i=1 to {γ′j}

p′

i=i. The angle is 1 if the above does not
hold but there is an element φ of the mapping class group such that
i(φ(γi), γ

′
j) = 0 for all γi, γ

′
j . The angle is 2 otherwise.

This discretization of Tits angles lies in contrast to what happens for
higher rank locally symmetric spaces Γ\G/K, where one has a continu-
ous values of the Tits angles coming from almost isometrically embedded
Weyl chambers.

Proof. The first case is if the collection of curves {γi} is combina-
torially equivalent to the collection of curves {γ′j}. That is, there is
an element φ of the mapping class group sending one collection to the
other. Then the corresponding geodesics stay bounded distance apart
by [Ma1]. Thus the Tits angle is 0.
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Thus assume the collections are not combinatorially equivalent. As-
sume further that any collection of curves combinatorially equivalent to
{γi} must intersect some γ′j . By reindexing we can assume

i(γ1, γ
′
1) > 0.

Now by Lemma 2.3
e2t Extr(t)(γ1) → c1,

for some c1 > 0. Since γ1 crosses C ′
1,

Extr′(t)(γ1) ≥ c2e
2t,

for some c2 > 0. By Theorem 2.2,

dM(S)(r(t), r
′(t)) ≥ 1/2 log(c1c2e

4t)

and so

lim inf
t→∞

dM(S)(r(t), r
′(t))

t
≥ 2.

On the other hand, by the triangle inequality

lim sup
t→∞

dM(S)(r(t), r
′(t))

t
≤ 2,

and we are done in this case.
The remaining case is that there is some φ so that i(φ(γi), γ

′
j) = 0 for

all i, j. There are several possibilities with similar analyses. Assume for
example that after reindexing and applying an element of Mod(S) that
γ1 6= γ′j for all j. Now since

i(γ1, γ
′
j) = 0

for all j′, by Lemma 2.3 we have Extr′(t)(γ1) bounded below, and so by
Theorem 2.2

lim inf
t→∞

dM(S)(r(t), r
′(t))

t
≥ 1.

We need to show the opposite inequality. That is, we need to show

(7) sup
β

Extr(t)(β)

Extr′(t)(β)
≤ c(t)e2t,

where
log c(t)

t
→ 0.

We will use results of Minsky [Mi1] to compare extremal lengths
of any β along r(t) and r′(t). We will say that two functions f, g are
comparable, denoted f ≍ g, if f and g differ by fixed multiplicative
constants (which in our case will depend only on the genus of S).

Fix some ǫ > 0, smaller than the Margulis constant for S. For suffi-
ciently large t0, and for each cylinder Ci along r(t), find a pair of curves
γ1i , γ

2
i with the following properties:

1) γ1i , γ
2
i are isotopic to γi.
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2) Each has fixed hyperbolic length ǫ.

3) γ1i and γ2i bound a cylinder Ĉi ⊂ Ci such that mod(Ĉi)
mod(Ci)

→ 1 as
t→ ∞.

Note that

mod(Ci) = cie
2t

for some fixed ci. Let Mi(t) = mod(Ĉi). The curves γji ; j = 1, 2 define
the thick-thin decomposition of r(t). The components Ωj of the com-

plement of the cylinders Ĉi are thick. According to [Mi1], for any β we
have

(8) Extr(t)(β) ≍ max
i,j

(ExtĈi
(β),ExtΩj

(β)),

which is the maximum of the contribution to the extremal length of β
from its intersections with the Ĉi and the Ωj. These quantities are given
below.

For the first, the hyperbolic geodesic representative of β crosses each
Ĉi a total of ni times, twisting ti times. The contribution to extremal
length ExtĈi

(β) from its intersection with Ĉi is given by

(9) ExtĈi
(β) = n2i (Mi(t) + t2i /Mi(t)).

By [Mi1] the contribution to extremal length ExtΩj
(β) of β from Ωj is

comparable to ℓ2(β ∩Ωj), where ℓ(·) is length in the hyperbolic metric.
This quantity can be computed as follows. Let Γj = Γ∩Ωj, the compo-
nent of the critical graph contained in Ωj . Choose generators ω1, . . . , ωn

for π1(Γj), where n = n(j). Since Ωj is thick, we have

(10) ℓ2(β ∩ Ωj) ≍ (max
i
i(β, ωi))

2,

and so

(11) ExtΩj
(β) ≍ (max

i
i(β, ωi))

2.

Similar estimates hold for the extremal length of β on r′(t). Now assume
β crosses C1. By assumption, the core curve γ1 of C1 lies in a thick
component Ω′

j of r
′(t). By (11), the contribution to the extremal length

of β in the thick part of Ω′
j from the ni crossings of β with γ1 with

ti twists is comparable to n2i t
2
i . The contribution to extremal length

of intersections with curves whose homotopy classes lie in both critical
graphs are comparable, by (11). Comparing the estimate n2i t

2
i to (9),

we see that for some c > 0,

Extr(t)(β)

Extr′(t)(β)
≤ c

n2i (Mi(t) + t2i /Mi(t)

n2i t
2
i

≤ cMi(t) ≤ ccie
2t.

The same estimates hold if β crosses a collection of Ĉ ′
i while the γ′i lie

in thick components Ωj. Thus we see that (7) holds. q.e.d.
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6. Appendix: Proof of Theorem 4.1

Before we begin the proof of Theorem 4.1 we will need some def-
initions and lemmas. By a geodesic in a metric space we will mean
a globally length-minimizing geodesic. Suppose Y = Y1 × . . . × Ym
is a product of metric spaces, given the sup metric. A pair of points
p = (p1, . . . , pm) and q = (q1, . . . , qm) in Y is called a diagonal pair if
dYi

(pi, qi) = dYj
(pj , qj) for 1 ≤ i, j ≤ m. If one of the points is under-

stood, we call the other a diagonal point.
The following lemma follows directly from the definition of the sup

metric on Y .

Lemma 6.1 (Characterizing diagonal pairs). Let Y be as above, and
suppose m ≥ 2. If p, q is a diagonal pair, then any geodesic between
p and q is of the form (r1(t), . . . , rm(t)), where each ri(t) is a geodesic
segment in Yi, and the ri(t) have the same parametrizations. Thus if
there is a unique geodesic from pi to qi for each 1 ≤ i ≤ m, then there is
a unique geodesic from p to q. If p, q is not a diagonal pair, then there
are infinitely many geodesics in Y from p to q.

Now suppose that we are in the situation of the hypotheses of Theo-
rem 4.1. By the previous paragraph, Lemma 6.1, and the definition of
the sets Si, we have the following.

Lemma 6.2. The set of points

(S1 × Y2 · · · × Ym) ∪ (Y1 × S2 × · · · × Ym) ∪ (Y1 × · · · × Ym−1 × Sm)

in Y is precisely the set of points z = (z1, . . . , zm) ∈ Y with the following
property: there exists an integer N > 1 such that for every neighborhood
U of z, there exists a pair of points x, y ∈ U such that the number of
geodesics in Y from x to y is greater than 1 and at most N . In fact, we
can take N = N1 ·N2 · · ·Nm.

Note that the complement of the set given in Lemma 6.2 is just
(Y1 \S1)×· · ·× (Ym \Sm). The characterization of the points in the set
given by Lemma 6.2 is purely metric, and is therefore clearly preserved
by any isometry of Y and therefore so is its complement. It follows that
any isometry of Y preserves this set. But the metric space (Y1 \ S1)×
· · · × (Ym \ Sm) is a product of geodesic metric spaces, none of which
is a point, and each of which has the locally unique geodesics property.
Malone [Mal] proved that any such product decomposition (in the sup
metric) is unique. As each (Yi\Si) is open and dense in Yi, any isometry
of Yi \ Si has a unique extension to Yi. Theorem 4.1 follows.
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