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FOR CMC SURFACES IN R3

William H. Meeks, III & Giuseppe Tinaglia

Abstract

In this paper, we study the space of translational limits T (M)
of a surface M properly embedded in R

3 with nonzero constant
mean curvature and bounded second fundamental form. There is
a natural map T which assigns to any surface Σ ∈ T (M) the set
T (Σ) ⊂ T (M). Among various dynamics type results we prove
that surfaces in minimal T -invariant sets of T (M) are chord-arc.
We also show that if M has an infinite number of ends, then there
exists a nonempty minimal T -invariant set in T (M) consisting
entirely of surfaces with planes of Alexandrov symmetry. Finally,
when M has a plane of Alexandrov symmetry, we prove the fol-
lowing characterization theorem: M has finite topology if and only
if M has a finite number of ends greater than one.

1. Introduction

A general problem in classical surface theory is to describe the asymp-
totic geometric structure of a connected, noncompact, properly embed-
ded, nonzero constant mean curvature (CMC) surface M in R

3. In this
paper, we will show that when M has bounded second fundamental
form, for any divergent sequence of points pn ∈ M , a subsequence of
the translated surfaces M − pn converges to a properly immersed sur-
face of the same constant mean curvature which bounds a smooth open
subdomain on its mean convex side. The collection T(M) of all these
limit surfaces sheds light on the geometry of M at infinity.

We will focus our attention on the subset T (M) ⊂ T(M) consisting
of the connected components of surfaces in T(M) which pass through
the origin in R

3. Given a surface Σ ∈ T (M), we will prove that T (Σ) is
always a subset of T (M). In particular, we can consider T to represent
a function:

T : T (M) → P(T (M)),
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where P(T (M)) denotes the power set of T (M). Using the fact that
T (M) has a natural compact metric space topology, we obtain classical
dynamics type results on T (M) with respect to the mapping T . These
dynamics results include the existence of nonempty minimal T -invariant
sets in T (M) and are described in Theorem 2.3, which we refer to as the
CMC Dynamics Theorem in R

3, or more simply as just the Dynamics
Theorem.

Assume M ⊂ R
3 is a connected, noncompact, properly embedded

CMC surface with bounded second fundamental form. In section 3,
we demonstrate various properties of the minimal T -invariant sets in
T (M). For example, we prove:

Surfaces in minimal T -invariant sets in T (M) are chord-arc.

If M has an infinite number of ends, then T (M) contains a
minimal T -invariant set in which every element has a plane
of Alexandrov symmetry.

If M has finite genus, then any element in a minimal T -
invariant set is a Delaunay surface1 .

In the special case that M has finite topology2 , this last result follows
from the main theorem in [13], however the full generality of this result
is needed in applications in [21, 23, 24, 26].

In section 4, we deal with CMC surfaces with a plane of Alexandrov
symmetry. In particular we obtain the following characterization result:

If M is a complete, connected, noncompact embedded CMC
surface with a plane of Alexandrov symmetry and bounded
second fundamental form, then M has finite topology if and
only if it has a finite number of ends greater than one.

The collection of properly embedded CMC surfaces with bounded
second fundamental form is quite large and varied (see [4, 10, 11, 15,
16, 17]). Many of these examples appear as doubly and singly periodic
surfaces. The techniques of Kapouleas [10] and Mazzeo-Pacard [16] can
be applied to obtain many nonperiodic examples of finite and infinite
topology. Some theoretical aspects of the study of these special sur-
faces have been developed previously in works of Meeks [18], Korevaar-
Kusner-Solomon [13] and Korevaar-Kusner [12]; results from all of these
three key papers are applied here. More generally, the broader theory of
properly embedded CMC surfaces in homogeneous three-manifolds is
an active field of research with many interesting recent results [2, 5, 9].
In [22], we will generalize the ideas contained in this paper to obtain

1In this manuscript, “Delaunay surfaces” refers to the embedded CMC surfaces
of revolution discovered by Delaunay [3] in 1841.

2A surface has finite topology if it is homeomorphic to a closed surface minus a
finite number of points.
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related theoretical results for properly embedded separating CMC hy-
persurfaces of bounded second fundamental form in homogeneous n-
manifolds.

In subsequent papers, [21, 23, 24, 26], we apply the results con-
tained in this manuscript. In [26], we prove that the existence of a
Delaunay surface in T (M) implies M does not admit any other noncon-
gruent isometric immersion into R

3 with the same constant mean curva-
ture (see also [14, 29]). In [23], we show that any complete, embedded,
noncompact, simply-connected CMC surface M in a fixed homogeneous
three-manifold N has the appearance of a suitably scaled helicoid nearby
any point of M where the second fundamental form is sufficiently large
(see [30, 31] for related results).

Acknowledgements. We thank Rob Kusner and Joaquin Perez for
their helpful comments on the results and proofs contained in this pa-
per. We also thank Joaquin Perez for making the figures that appear
here. The second author would also like to thank the Mathematics De-
partment at University of Notre Dame, where this work was initiated.

2. The Dynamics theorem for CMC surfaces
of bounded curvature

In this section, motivated by previous work of Meeks, Perez, and Ros
in [19], we prove a dynamics type result for the space T (M) of certain
translational limit surfaces of a properly embedded, CMC surface M ⊂
R

3 with bounded second fundamental form. All of these limit surfaces
satisfy the almost-embedded property described in the next definition.

Definition 2.1. Suppose W is a complete flat three-manifold with
boundary ∂W = Σ together with an isometric immersion f : W → R

3

such that f restricted to the interior of W is injective. This being the
case, if f(Σ) is a CMC surface and f(W ) lies on the mean convex side
of f(Σ), we call the image surface f(Σ) a strongly Alexandrov embedded
CMC surface.

We note that, by elementary separation properties, any properly em-
bedded CMC surface in R

3 is always strongly Alexandrov embedded.
Furthermore, by item 1 of Theorem 2.3 below, any strongly Alexandrov
embedded CMC surface in R

3 with bounded second fundamental form
is properly immersed in R

3.
Recall that the only compact Alexandrov-embedded3 CMC surfaces

in R
3 are spheres by the classical result of Alexandrov [1]. Hence, from

this point on, we will only consider surfaces M which are noncompact
and connected.

3A compact surface Σ immersed in R
3 is Alexandrov embedded if Σ is the boundary

of a compact three-manifold immersed in R
3.
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Definition 2.2. Suppose M ⊂ R
3 is a connected, noncompact, strongly

Alexandrov-embedded CMC surface with bounded second fundamental
form.

1) T (M) is the set of all connected, strongly Alexandrov-embedded
CMC surfaces Σ ⊂ R

3, which are obtained in the following way.
There exists a sequence of points pn ∈ M , limn→∞ |pn| = ∞,

such that the translated surfaces M − pn converge C2 on compact
sets of R

3 to a strongly Alexandrov-embedded CMC surface Σ′,
and Σ is a connected component of Σ′ passing through the origin.
Actually, we consider the immersed surfaces in T (M) to be pointed
in the sense that if such a surface is not embedded at the origin,
then we consider the surface to represent two different elements in
T (M) depending on a choice of one of the two preimages of the
origin.

2) Δ ⊂ T (M) is called T -invariant if Σ ∈ Δ implies T (Σ) ⊂ Δ.
3) A nonempty subset Δ ⊂ T (M) is called a minimal T -invariant set

if it is T -invariant and contains no smaller nonempty T -invariant
sets.

4) If Σ ∈ T (M) and Σ lies in a minimal T -invariant set of T (M),
then Σ is called a minimal element of T (M).

Throughout the remainder of this paper, B(p, R) denotes the open
ball in R

3 of radius R centered at the point p, and B(R) denotes the
open ball of radius R centered at the origin in R

3. Furthermore, we will
always orient surfaces so that their mean curvature H is positive.

With these definitions in hand, we now state our Dynamics Theorem.

Theorem 2.3 (CMC Dynamics Theorem). Let M ⊂ R
3 be a con-

nected, noncompact, strongly Alexandrov-embedded CMC surface with
bounded second fundamental form. Let W be the associated complete
flat three-manifold on the mean convex side of M . Then the following
statements hold:

1) M is properly immersed in R
3.

2) There exist positive constants c1, c2 depending only on the mean
curvature of M and on an upper bound for the norm of its second
fundamental form, such that for any p ∈ M and R ≥ 1,

(1) c1 ≤ Area(M ∩ B(p, R))
Volume(W ∩ B(p, R))

≤ c2.

In particular, for R ≥ 1, Area(M ∩B(R)) ≤ 4πc2
3 R3. Furthermore,

M has a regular neighborhood of radius ε in W , where ε > 0 only
depends on the mean curvature of M and on an upper bound for
the norm of its second fundamental form.
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3) W is a handlebody4 and every point in W is a distance of less
than 1

H from ∂W , where H is the mean curvature of M .
4) T (M) is nonempty and T -invariant.
5) T (M) has a natural compact topological space structure given by

a metric dT (M). The metric dT (M) is induced by the Hausdorff

distance between compact subsets of R
3.

6) If M is an element of T (M), then T (M) is a connected space. In
particular, if M is invariant under a translation, then T (M) is
connected.

7) A nonempty set Δ ⊂ T (M) is a minimal T -invariant set if and
only if whenever Σ ∈ Δ, then T (Σ) = Δ.

8) Every nonempty T -invariant set of T (M) contains a nonempty
minimal T -invariant set. In particular, since T (M) is itself a
nonempty T -invariant set, T (M) always contains nonempty min-
imal invariant sets.

9) Any minimal T -invariant set in T (M) is a compact connected
subspace of T (M).

Proof. For the proofs of items 1 and 2, see Corollary 5.2 in [25] or
see [20]. The key idea in the proof of Corollary 5.2 is to show that the
immersed surface M has a fixed-size regular neighborhood on its mean
convex side.

We now prove item 3. The proof that W is a handlebody is based on
topological techniques used previously to study the topology of a com-
plete, orientable flat three-manifold X with minimal surfaces as bound-
ary. These techniques were first developed by Frohman and Meeks [8]
and later generalized by Freedman [7]. An important consequence of
the results and theory developed in these papers is that if ∂X is mean
convex, X is not a handlebody, and X is not a Riemannian product
of a flat surface with an interval, then X contains an orientable, non-
compact, embedded, stable minimal surface Σ with compact boundary.
Suppose now that M ⊂ R

3 is a strongly Alexandrov-embedded CMC
surface with associated domain W on its mean convex side. Since M is
not totally geodesic, W cannot be a Riemannian product of a flat sur-
face with an interval. Therefore, if W is not a handlebody, there exists
an orientable, noncompact, embedded stable minimal surface Σ ⊂ W
with compact boundary. Since Σ is orientable and stable, a result of
Fisher-Colbrie [6] implies Σ has finite total curvature. It is well known
that such a Σ has an end E which is asymptotic to an end of a catenoid
or a plane [28]. We will obtain a contradiction when E is a catenoidal-
type end; the case where E is a planar-type end can be treated in the
same manner. After a rotation of M , assume that the catenoid to which

4A handlebody is a three-manifold with boundary which is homeomorphic to a
closed regular neighborhood of some connected, properly embedded simplicial one-
complex in R

3.
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E is asymptotic is vertical and E is a graph over the complement of a
disk in the (x1, x2)-plane; assume the disk is B(R) ∩ {x3 = 0} for some
large R. Let S2 be a sphere in R

3 with mean curvature equal to the
mean curvature of M , which lies below E and which is disjoint from the
solid cylinder {(x1, x2, x3) | x2

1 + x2
2 ≤ R2}. By vertically translating S2

upward across the (x1, x2)-plane and applying the maximum principle
for CMC surfaces, we find that as S2 translates across E, the portions
of the translated sphere that lie above E do not intersect M = ∂W .
Thus, some vertical translate Ŝ2 of S2 lies inside W . Next, translate Ŝ2

inside W so that it touches ∂W a first time. The usual application of
the maximum principle for CMC surfaces implies that M is a sphere,
which is not possible, since M is not compact.

Note that if some point p ∈ W had distance at least 1
H from ∂W ,

then ∂B(p, 1
H ) is a sphere of mean curvature H in W . The arguments

in the previous paragraph show that no such sphere can exist, and this
contradiction completes the proof of item 3.

The uniform local area estimates for M given in item 2 and the as-
sumed bound on the second fundamental form of M , together with stan-
dard compactness arguments, imply that for any divergent sequence of
points {pn}n in M , a subsequence of the translated surfaces M − pn

converges on compact sets of R
3 to a strongly Alexandrov-embedded

CMC surface M∞ in R
3. The component M∞ of M∞ passing through

the origin is a surface in T (M) (if M∞ is not embedded at the origin,
then one obtains two elements in T (M) depending on a choice of one
of the two pointed components). Hence, T (M) is nonempty.

Let Σ ∈ T (M) and Σ′ ∈ T (Σ). By definition of T (Σ), any compact
domain of Σ′ can be approximated arbitrarily well by translations of
compact domains “at infinity” in Σ. In turn, by definition of T (M), these
compact domains “at infinity” in Σ can be approximated arbitrarily well
by translated compact domains “at infinity” on M . Hence, a standard
diagonal argument implies that Σ′ ∈ T (M). Thus, T (M) is T -invariant,
which proves item 4.

Suppose now that Σ ∈ T (M) is embedded at the origin. In this
case, there exists an ε > 0 depending only on the bound of the second
fundamental form of M , so that there exists a disk D(Σ) ⊂ Σ ∩ B(ε)
with ∂D(Σ) ⊂ ∂B(ε), �0 = (0, 0, 0) ∈ D(Σ) and such that D(Σ) is a
graph with gradient at most 1 over its projection to the tangent plane
T�0D(Σ) ⊂ R

3. Given another such Σ′ ∈ T (M), define

dT (M)(Σ, Σ′) = dH(D(Σ), D(Σ′)),

where dH is the Hausdorff distance. If �0 is not a point where Σ is embed-
ded, then since we consider Σ to represent one of two different pointed
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surfaces in T (M), we choose D(Σ) to be the disk in Σ ∩ B(ε) contain-
ing the chosen base point. With this modification, the above metric is
well-defined on T (M).

Using the fact that the surfaces in T (M) have uniform local area and
curvature estimates (see item 2), we will now prove T (M) is sequen-
tially compact and hence compact. Let {Σn}n be a sequence of surfaces
in T (M) and let {D(Σn)}n be the related sequence of graphical disks
defined in the previous paragraph. A standard compactness argument
implies that a subsequence {D(Σni)}ni of these disks converges to a
graphical CMC disk D∞. Using item 2, it is straightforward to show
that D∞ lies on a complete, strongly Alexandrov-embedded surface Σ∞
with the same constant mean curvature as M . Furthermore, Σ∞ is a
limit of compact domains Δni ⊂ Σni . In turn, the Δni ’s are limits of
translations of compact domains in M , where the translations diverge
to infinity. Hence, Σ∞ is in T (M) and by definition of dT (M), a sub-
sequence of {Σn}n converges to Σ∞. Thus, T (M) is a compact metric
space with respect to the metric dT (M). We remark that this compact-
ness argument can be easily modified to prove that the topology of
T (M) is independent of the sufficiently small radius ε used to define
dT (M). It follows that the topological structure on T (M) is determined
(ε chosen sufficiently small), and it is in this sense that the topological
structure is natural. This completes the proof of item 5.

Suppose now that M ∈ T (M). Note that whenever X ∈ T (M), then
the path connected set of translates Trans(X) = {X − q | q ∈ X}
is a subset of T (M). In particular, Trans(M) is a subset of T (M).
We claim that the closure of Trans(M) in T (M) is equal to T (M).
By definition of closure, the closure of Trans(M) is a subset of T (M).
Using the definition of T (M) and the metric space structure on T (M),
it is straightforward to check that T (M) is contained in the closure
of Trans(M); hence, Trans(M) = T (M). Since the closure of a path
connected set in a topological space is always connected, we conclude
that T (M) is connected, which completes the proof of item 6.

We now prove item 7. Suppose Δ is a nonempty, minimal T -invariant
set and Σ ∈ Δ. By definition of T -invariance, T (Σ) ⊂ Δ. By item 4,
T (Σ) is a nonempty T -invariant set. By definition of minimal T -invariant
set, T (Σ) = Δ, which proves one of the desired implications. Suppose
now that Δ ⊂ T (Σ) is nonempty and that whenever Σ ∈ Δ, T (Σ) = Δ;
it follows that Δ is a T -invariant set. If Δ′ ⊂ Δ is a nonempty T -
invariant set, then there exists a Σ′ ∈ Δ′, and thus, Δ = T (Σ′) ⊂ Δ′ ⊂
Δ. Hence, Δ′ = Δ, which means Δ is a minimal T -invariant set and
item 7 is proved.

Now we prove item 8 through an application of Zorn’s lemma. Sup-
pose Δ ⊂ T (M) is a nonempty T -invariant set and Σ ∈ Δ. Using the
definition of T -invariance, an elementary argument proves T (Σ) is a
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nonempty T -invariant set in Δ which is a closed set of T (M); essen-
tially, this is because the set of limit points of a set in a topological
space forms a closed set (also see the proofs of items 4 and 5 for this
type of argument). Next, consider the set Λ of all nonempty T -invariant
subsets of Δ which are closed sets in T (M), and as we just observed,
this collection is nonempty. Also, observe that Λ has a partial ordering
induced by inclusion ⊂.

We first check that any linearly ordered set in Λ has a lower bound,
and then apply Zorn’s lemma to obtain a minimal element of Λ with
respect to the partial ordering ⊂. To do this, suppose Λ′ ⊂ Λ is a
nonempty linearly ordered subset and we will prove that the intersec-
tion

⋂
Δ′∈Λ′ Δ′ is an element of Λ. In our case, this means that we only

need to prove that such an intersection is nonempty, because the inter-
section of closed (respectively T -invariant) sets in a topological space is
a closed set (respectively T -invariant) set. Since each element of Λ′ is
a closed set of T (M) and the finite intersection property holds for the
collection Λ′, then the compactness of T (M) implies

⋂
Δ′∈Λ′ Δ′ 	= Ø.

Thus,
⋂

Δ′∈Λ′ Δ′ ∈ Λ is a lower bound for Λ′. By Zorn’s lemma applied
to Λ under the partial ordering ⊂, Δ contains a smallest, nonempty,
closed T -invariant set Ω. We now check that Ω is a nonempty, minimal
T -invariant subset of Δ. If Ω′ is a nonempty T -invariant subset of Ω,
then there exists a Σ′ ∈ Ω′. By our previous arguments, T (Σ′) ⊂ Ω′ ⊂ Ω
is a nonempty T -invariant set in Δ which is a closed set in T (M), i.e.,
T (Σ′) ∈ Λ. Hence, by the minimality property of Ω in Λ, we have
T (Σ′) = Ω′ = Ω. Thus, Ω is a nonempty, minimal T -invariant subset of
Δ, which proves item 8.

Let Δ ⊂ T (M) be a nonempty, minimal T -invariant set and let Σ ∈
Δ. By item 7, T (Σ) = Δ. Since T (Σ) is a closed set in T (M) and T (M)
is compact, then Δ is compact. Since Σ ∈ T (Σ) = Δ, item 6 implies Δ
is also connected which completes the proof of item 9. q.e.d.

Remark 2.4. It turns out that any complete, connected, noncom-
pact, embedded CMC surface M ⊂ R

3 with compact boundary and
bounded second fundamental form is properly embedded in R

3, has a
fixed-sized regular neighborhood on its mean convex side, and so has
cubical area growth; these properties of M follow from simple modifi-
cations of the proof of these properties in the case when M has empty
boundary (see [20, 25]). For such an M , the space T (M) also can be de-
fined and consists of a nonempty set of strongly Alexandrov embedded
CMC surfaces without boundary. We will use this remark in the next
section where M is allowed to have compact boundary. Also we note that
items 4–9 of the Dynamics Theorem make sense under small modifica-
tions and hold for properly embedded separating CMC hypersurfaces
M with bounded second fundamental form in noncompact homogeneous
n-manifolds N , where T (M) is the set of connected properly immersed
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surfaces that pass through a fixed base point of N and which are com-
ponents of limits of M under a sequence of “translational” isometries
of N which take a divergent sequence of points in M to the base point;
see [22] for details.

3. The Minimal Element Theorem

In this section, we give applications of the Dynamics Theorem to the
theory of complete embedded CMC surfaces M in R

3 with bounded
second fundamental form and compact boundary. Let R be the radial
distance to the origin in R

3. We will obtain several results concerning
the geometry of minimal elements in T (M), when the area growth of
M is less than cubical in R or when the genus of the surfaces M ∩B(R)
grows slower than cubically in R. With this in mind, we now define some
growth constants for the area and genus of M in R

3.
For any p ∈ M , we denote by M(p, R) the connected component of

M ∩ B(p, R) which contains p; if M is not embedded at p and there
are two immersed components M(p, R), M ′(p, R) corresponding to two
pointed immersions, then in what follows we will consider both of these
components separately.

Definition 3.1 (Growth Constants). For n = 1, 2, 3, we define

Asup(M, n) = lim sup sup
p∈M

(Area[M(p, R)] · R−n),

Ainf(M, n) = lim inf inf
p∈M

(Area[M(p, R)] · R−n),

Gsup(M, n) = lim sup sup
p∈M

(Genus[M(p, R)] · R−n),

Ginf(M, n) = lim inf inf
p∈M

(Genus[M(p, R)] · R−n).

In the above definition, note that supp∈M (Area[M(p, R)] · R−n) and
the other similar expressions are functions from (0,∞) to R and there-
fore they each have a lim sup or a lim inf, respectively.

By item 2 of Theorem 2.3 and Remark 2.4, Asup(M, 3) is a finite
number. We now prove that Gsup(M, 3) is also finite. Since M has
bounded second fundamental form, it admits a triangulation T whose
edges are geodesic arcs or smooth arcs in the boundary of M of lengths
bounded between two small positive numbers, and so that the areas of
2-simplices in T also are bounded between two small positive numbers.
Let T (M(p, R)) be the set of simplices in T which intersect M(p, R).
Note that for R large, the number of edges in T (M(p, R)) which intersect
M(p, R) is less than some constant K times the area of M(p, R), where
K depends only on the second fundamental form of M . Hence, the
number of generators of the first homology group H1(T (M(p, R)), R)
is less than K times the area of M(p, R). Since there are at least
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Genus[M(p, R)] linearly independent simplicial homology classes in
H1(T (M(p, R)), R), then

(2) Genus[M(p, R)] ≤ KArea[M(p, R)] for R large.

In particular, since Asup(M, 3) is finite, equation (2) implies that
Gsup(M, 3) is also finite.

Definition 3.2. Suppose that M ⊂ R
3 is a complete, noncompact,

connected embedded CMC surface with compact boundary (possibly
empty) and with bounded second fundamental form.

1) For any divergent sequence of points pn ∈ M , a subsequence of the
translated surfaces M − pn converges to a properly immersed sur-
face of the same constant mean curvature which bounds a smooth
open subdomain on its mean convex side. Let T(M) denote the
collection of all such limit surfaces.

2) If there exists a constant C > 0 such that for all p, q ∈ M with
d

R
3(p, q) ≥ 1, dM (p, q) ≤ C · d

R
3(p, q), then we say that M is

chord-arc. (Note that the triangle inequality implies that if M is
chord-arc and p, q ∈ M with d

R
3(p, q) < 1, then dM (p, q) < 6C.)

We note that in the above definition and in Theorem 3.3 below, the
embedded hypothesis on M can be replaced by the weaker hypothesis
that M has a fixed-size one-sided neighborhood on its mean convex side
(see Remark 2.4).

We now state the main theorem of this section. For the statement
of this theorem, recall that a plane P ⊂ R

3 is a plane of Alexandrov
symmetry for a surface M ⊂ R

3 if it is a plane of symmetry which
separates M into two open components M+, M−, each of which is a
graph over a fixed subdomain of P .

Theorem 3.3 (Minimal Element Theorem). Let M ⊂ R
3 be a com-

plete, noncompact, connected embedded CMC surface with possibly empty
compact boundary and bounded second fundamental form. Then the fol-
lowing statements hold.

1) If Σ ∈ T (M) is a minimal element, then either every surface in
T(Σ) is the translation of a fixed Delaunay surface or every surface
in T(Σ) has one end. In particular, if Σ ∈ T (M) is a minimal
element, then every surface in T(Σ) is connected and T (Σ) =
T(Σ).

2) Minimal elements of T (M) are chord-arc.
3) Let Σ be a minimal element of T (M). For all D, ε > 0, there

exists a dε,D > 0 such that the following statement holds. For
every compact domain X ⊂ Σ with extrinsic diameter less than
D and for each q ∈ Σ, there exists a smooth compact, domain
Xq,ε ⊂ Σ and a translation, τ : R

3 → R
3, such that

dΣ(q, Xq,ε) < dε,D and dH(X, τ(Xq,ε)) < ε,
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where dΣ is the distance function on Σ and dH is the Hausdorff
distance on compact sets in R

3. Furthermore, if X is connected,
then Xq,ε can be chosen to be connected.

4) If M has empty boundary and lies in the halfspace {x3 ≥ 0}, then
some minimal element of T (M) has the (x1, x2)-plane as a plane
of Alexandrov symmetry.

5) If E is an end representative5 of M such that R
3 − E contains

balls of arbitrarily large radius, then T (M) contains a surface with
a plane of Alexandrov symmetry.

6) The following statements are equivalent:
a) Ainf(M, 3) = 0.
b) Ginf(M, 3) = 0.
c) T (M) contains a minimal element with a plane of Alexandrov

symmetry.
d) Ainf(M, 2) is finite.
e) Ginf(M, 2) is finite.

7) If M has an infinite number of ends, then there exists a minimal
element in T (M) with a plane of Alexandrov symmetry.

8) If T (M) does not contain an element with a plane of Alexandrov
symmetry, then the following statements hold.
a) There exists a constant F such that for every end representative

E of a surface in T(M), there exists a positive number R(E)
such that

[R3 − B(R(E))] ⊂ {x ∈ R
3 | d

R
3(x, E) < F}.

In particular, if E1 and E2 are end representatives of a surface
in T(M), then for R sufficiently large, for any x ∈ E1 − B(R),
d

R
3(x, E2 − B(R)) < F}.

b) There is a uniform upper bound on the number of ends of any
element in T(M). In particular, there is a uniform upper bound
on the number of components of any element in T(M).

9) Suppose Σ is a minimal element of T (M). Then the following
statements are equivalent.
a) Ainf(Σ, 2) = 0.
b) Ginf(Σ, 2) = 0.
c) Σ is a Delaunay surface.
d) Ainf(Σ, 1) is finite.
e) Ginf(Σ, 1) is finite.

The following corollary gives some immediate consequences of The-
orem 3.3. The proof of this corollary appears after the proof of Theo-
rem 3.3.

5A proper noncompact domain E ⊂ M is called an end representative for M if it
is connected and has compact boundary.
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Corollary 3.4. Let M ⊂ R
3 be a complete, noncompact, connected,

embedded CMC surface with compact boundary and bounded second fun-
damental form. Then the following statements hold.

1) Asup(M, 3) = 0 =⇒ Gsup(M, 3) = 0 =⇒
=⇒ Every minimal element in T (M) has a plane of Alexandrov
symmetry.

2) Asup(M, 2) = 0 =⇒ Gsup(M, 2) = 0 =⇒
=⇒ Every minimal element in T (M) is a Delaunay surface.

We make the following conjecture related to the Minimal Element
Theorem. Note that item 9 of Theorem 3.3 implies that the conjecture
holds for n = 1.

Conjecture 3.5. Suppose that M ⊂ R
3 satisfies the hypotheses of

Theorem 3.3. Then for any minimal element Σ ∈ T (M) and for n =
1, 2, or 3,

lim
R→∞

Area[Σ ∩ B(R)] · R−n and lim
R→∞

Genus[Σ ∩ B(R)] · R−n

exist (possibly infinite). Furthermore,

Ainf(Σ, n) = Asup(Σ, n) = lim
R→∞

Area[Σ ∩ B(R)] · R−n

Ginf(Σ, n) = Gsup(Σ, n) = lim
R→∞

Genus[Σ ∩ B(R)] · R−n.

Proof of Theorem 3.3. We postpone the proofs of items 1, 2, 3 to after
the proofs of the items 4–9 of the theorem.

Assume that M has empty boundary and M ⊂ {x3 ≥ 0}. Using
techniques similar to the ones discussed by Ros and Rosenberg in [27],
we now prove that some element of T (M) has a horizontal plane of
Alexandrov symmetry, that is, item 4. Let WM be the smooth open
domain in R

3 − M on the mean convex side of M . Note that WM ⊂
{x3 ≥ 0}. After a vertical translation of M , assume that M is not
contained in a smaller halfspace of {x3 ≥ 0}. Since M has a fixed-
size regular neighborhood on its mean convex side and M has bounded
second fundamental form, then for any generic and sufficiently small
ε > 0, Mε = M ∩ {x3 ≤ ε} is a nonempty graph of small gradient
over its projection to P0 = {x3 = 0}; we let Pt = {x3 = t}. Note that
the mean curvature vector to Mε is upward pointing. In what follows,
RPt : R

3 → R
3 denotes reflection in Pt, while Π: R

3 → R
3 denotes

orthogonal projection onto P0.
For any t > 0, consider the new surface with boundary, M̂t, obtained

by reflecting Mt = M ∩{x3 ≤ t} across the plane Pt, i.e., M̂t = RPt(Mt).
Let T = sup{t ∈ (0,∞) | for t′ < t, the surface Mt′ is a graph over its
projection to P0, M̂t′ ∩M = ∂M̂t′ = ∂Mt′ and the infimum of the angles
that the tangent spaces to M along ∂Mt make with vertical planes is
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bounded away from zero}. Recall that by height estimates for CMC
graphs with zero boundary values [27], ε < T ≤ 1

H , where H is the
mean curvature of M .

If there is a point p ∈ ∂MT such that the tangent plane TpM is
vertical, then the classical Alexandrov reflection principle implies that
the plane PT is a plane of Alexandrov symmetry. Next, suppose that the
angles that the tangent spaces to MT make with (0, 0, 1) along ∂MT are
not bounded away from zero. In this case, let pn ∈ ∂MT be a sequence
of points such that the tangent planes TpnM converge to the vertical
(the dot products of the normal vectors to the planes with (0, 0, 1) are
going to zero) and let Σ ∈ T (M) be a related limit of the translated
surfaces M − pn. One can check that Σ ∩ {x3 < 0} is a graph over
P0 and that its tangent plane at the origin is vertical. Now the usual
application of the boundary Hopf maximum principle at the origin, or
equivalently, the Alexandrov reflection argument, implies P0 is a plane
of Alexandrov symmetry for Σ.

Suppose now that the tangent planes of M along ∂MT are bounded
away from the vertical. In this case, PT is not a plane of Alexandrov
symmetry. So, by the usual application of the Alexandrov reflection
principle, we conclude that M̂T ∩ M = ∂M̂T = ∂MT . By definition
of T , there exist δn > 0, δn → 0, such that Fn = M̂T+δn ∩ M is not
contained in ∂MT+δn . We first show that not only is Π(Fn) contained in
the interior of Π(MT ), but for some η > 0, it stays at a distance at least
η from Π(∂MT ) for δn sufficiently small. In fact, since we are assuming
that the tangent planes of M along ∂MT are bounded away by a fixed
positive angle from the vertical, if δ is small enough, the tangent planes
of M along ∂MT+δ are also bounded away by a fixed positive angle
from the vertical. Thus, the previous statement on the existence of an
η > 0 is a consequence of the existence of a fixed-size one-sided regular
neighborhood for M in WM .

The discussion in the previous paragraph implies that there exists a
sequence of points pn ∈ MT which stay at a distance at least η from ∂MT

and such that the distance from RT (pn) and M − MT is going to zero.
The fact that pn stays at a distance at least η from ∂MT implies that
for n large there exists an ε > 0 such that RT (B(pn, ε) ∩ M) is disjoint
from M and it is a graph over Π(B(pn, ε) ∩ M). Consider the element
Σ ∈ T (M) obtained as a limit of the translated surfaces M −Π(pn) and
let limn→∞ pn = p = (0, 0, S) ∈ Σ. From the way Σ is obtained, p is a
positive distance from ∂ΣT . Moreover, RT (p) ∈ Σ − ΣT and Σ̂T is tan-
gent to Σ−ΣT and lies on its mean convex side. The maximum principle
implies that PT is a plane of Alexandrov symmetry which contradicts
the assumption that tangent planes of M along ∂MT are bounded away
by a fixed positive angle from the vertical. This completes the proof that
there exists a surface Σ ∈ T (M) with the (x1, x2)-plane as a plane of
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Alexandrov symmetry. It then follows from item 8 of Theorem 2.3 that
the nonempty T -invariant set T (Σ) ⊂ T (M) contains minimal element
of T (M) with the (x1, x2)-plane as a plane of Alexandrov symmetry,
which proves item 4.

We now prove item 5 holds. Assume now that M has possibly nonempty
compact boundary and there exists a sequence of open balls B(qn, n) ⊂
R

3−M . Note that these balls can be chosen so that they are at distance
at least n from the boundary of M and so that there exists a sequence
of points pn ∈ ∂B(qn, n) ∩ M diverging in R

3. After choosing a subse-
quence, we may assume that the translated balls B(qn, n)− pn converge
to an open halfspace K of R

3 and a subsequence of the translated sur-
faces M − pn gives rise to an element M∞ ∈ T (M) with M∞ contained
in the halfspace R

3 − K and ∂M∞ = Ø. By the previous discussion
when M has empty boundary (item 4), T (M∞) ⊂ T (M) contains a
minimal element with a plane of Alexandrov symmetry. This completes
the proof of item 5.

We now prove item 6 in the theorem. First, observe that 6d =⇒ 6a
and that 6e =⇒ 6b. Also, equation (2) implies that 6a =⇒ 6b and
that 6d =⇒ 6e. We now prove that 6c =⇒ 6d. Suppose that T (M)
contains a minimal element Σ which has a plane of Alexandrov symme-
try and let WΣ denote the embedded three-manifold on the mean convex
side of Σ. In this case WΣ is contained in a slab, and by item 2 of The-
orem 2.3, the area growth of Σ is comparable to the volume growth of
WΣ. Note that the volume of WΣ grows at most like the volume of the
slab which contains it, and so, the volume growth of WΣ and the area
growth of Σ is at most quadratic in R. By the definitions of T (M) and
Ainf(M, 2), we see that Ainf(M, 2) is finite which implies 6d.

In order to complete the proof of item 6, it suffices to show 6b =⇒ 6c.
However, since the proof of 6b =⇒ 6c uses the fact that 6a =⇒ 6c,
we first show that 6a =⇒ 6c. Assume that Ainf(M, 3) = 0 and we will
prove that T (M) contains a surface Σ which lies in a halfspace of R

3.
Since Ainf(M, 3) = 0, we can find a sequence of points {pn}n ⊂ M and
positive numbers Rn, Rn → ∞, such that the connected component
M(pn, Rn) of M ∩ B(pn, Rn) containing pn has area less than 1

nR3
n.

Since M has bounded second fundamental form, there exists an ε > 0
such that for any q ∈ R

3, if B(q, r) ∩ M 	= Ø, then Area(B(q, r + 1) ∩
M) ≥ ε. Using this observation, together with the inequality Area(M ∩
B(pn, Rn)) ≤ 1

nR3
n and the equality Volume (B(pn, Rn)) = 4π

3 R3
n, we can

find a sequence of points qn ∈ B(pn, Rn), numbers kn with kn → ∞, such
that B(qn, kn) ⊂ [B(pn, Rn

2 )−M(pn, Rn)] and such that there are points
sn ∈ ∂B(qn, kn) ∩ M(pn, Rn) with |sn| → ∞ (see Figure 1). Let Σ ∈
T (M) be a limit surface arising from the sequence of translated surfaces
M(pn, Rn)−sn. Note that Σ is disjoint from an open halfspace obtained
from a limit of a subsequence of the translated balls B(qn, kn)−sn. Since
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Figure 1. Finding large balls in the complement of M(pn, Rn)

Σ lies in a halfspace of R
3, item 4 in the theorem implies T (M) contains

a minimal element with a plane of Alexandrov symmetry. The existence
of this minimal element proves that 6a =⇒ 6c.

We now prove that 6b =⇒ 6c, and this will complete the proof of
item 6. Assume that Ginf(M, 3) = 0. Since Ginf(M, 3) = 0, there exists
a sequence of points pn ∈ M and Rn → ∞, such that the genus of
M(pn, Rn) ⊂ B(pn, Rn) is less than 1

nR3
n. Using the fact that the genus

of disjoint surfaces is additive, a simple geometric argument, which is
similar to the argument that proved 6a =⇒ 6c, shows that we can find
a sequence of points qn ∈ B(pn, Rn) diverging in R

3 and numbers kn,
with kn → ∞, such that one of the following statements holds.

1) Genus(M(qn, kn)) = 0.
2) B(qn, kn) ⊂ [B(pn, Rn

2 ) − M(pn, Rn)] and, as n varies, there exist
points sn ∈ ∂B(qn, kn) ∩ M(pn, Rn) diverging in R

3.
If statement 2 holds, then our previous arguments imply that T (M)

contains a surface Σ which lies in a halfspace of R
3 and that T (M)

contains a minimal element with a plane of Alexandrov symmetry. Thus,
we may assume statement 1 holds.

Since statement 1 holds, then the sequence of translated surfaces
M − qn yields a limit surface Σ ∈ T (M) of genus zero. If Σ has a finite
number of ends, then Σ has an annular end E. By the main theorem
in [18], E is contained in a solid cylinder in R

3. Under a sequence of
translations of E, we obtain a limit surface D ∈ T (Σ) which is contained
in a solid cylinder. By item 4, there is a minimal element D′ ∈ T (D) ⊂
T (M) which has a plane of Alexandrov symmetry; this conclusion also
follows from the main result in [13].
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Suppose now Σ has genus zero and an infinite number of ends. For
each n ∈ N, there exists numbers, Tn with Tn → ∞, such that the
number k(n) of noncompact components,

{Σ1(Tn), Σ2(Tn), . . . ,Σk(n)(Tn)},

in Σ−B(Tn) is at least n. Fix points pi(n) ∈ Σi(Tn)∩∂B(2Tn), for each
i ∈ {1, 2, . . . , k(n)}. Note that

∑k(n)
i=1 Area(Σ(pi(n), Tn)) ≤ Area(Σ ∩

B(3Tn)). Since Σ has no boundary, then Area(Σ∩B(3Tn)) ≤ 4
3πc2(3Tn)3

(see item 2 of Theorem 2.3). Therefore, we obtain that for all n, there
exists an i, such that

Area(Σ(pi(n), Tn)) ≤ c

n
T 3

n ,

for a fixed constant c. By definition of Ainf(Σ, 3), we conclude that
Ainf(Σ, 3) = 0. Since we have shown that 6a =⇒ 6c, T (Σ) contains a
minimal element Σ′ with a plane of Alexandrov symmetry. Since T (Σ) ⊂
T (M), T (M) contains a minimal element with a plane of Alexandrov
symmetry. Thus 6b =⇒ 6c, which completes the proof of item 6.

We next prove item 7. Assume that M has an infinite number of ends.
If M has empty boundary, then by the arguments in the previous para-
graph, Ainf(M, 3) = 0 and thus T (M) contains a minimal element with
a plane of Alexandrov symmetry. By Remark 2.4, if M has nonempty,
compact boundary, then it has a fixed-size regular neighborhood on its
mean convex side, which is sufficient for item 2 of Theorem 2.3 to hold
and then to apply the arguments in the previous paragraph. This proves
that item 7 holds.

We next prove item 8a. Arguing by contrapositive, suppose that the
conclusion of item 8a fails to hold and we will prove that T (M) contains
an element with a plane of Alexandrov symmetry. Since the conclusion
of 8a fails to hold, there exists a sequence of surfaces Σ(n) ∈ T(M) with
end representatives E(n), and positive numbers F (n) → ∞ as n → ∞
such that for any R(n) > 0, there exist balls Bn of radius F (n) such
that

Bn ⊂ [R3 − (B(R(n)) ∪ E(n))].

Choose R(n) > F (n) sufficiently large so that ∂E(n) ⊂ B(R(n)
2 ).

After rotating Bn around an axis passing through the origin, we obtain
a new ball Kn ⊂ R

3 − (B(R(n)) ∪ E(n)) of radius F (n) such that ∂Kn

intersects E(n) at a point pn of extrinsic distance at least R(n)
2 from

∂E(n). After choosing a subsequence, suppose that E(n)−pn converges
to a surface Σ∞ ∈ T(M) which lies in a halfspace of R

3 which is a limit of
some subsequence of the translated balls Kn − pn. By item 4, T (Σ∞) ⊂
T (M) contains a surface with a plane of Alexandrov symmetry, which
completes the proof of item 8a.

The proof of item 8b is a modification of the proof of item 7. In fact,
if Σn ∈ T(M) is a sequence of surfaces with at least n ends, n going



THE DYNAMICS THEOREM FOR CMC SURFACES IN R3
157

to infinity, then Ainf(M, 3) = 0, which implies that T (M) contains a
minimal element with a plane of Alexandrov symmetry.

We now prove that item 9 holds. First, observe that 9d =⇒ 9a and
that 9e =⇒ 9b. Also, equation (2) implies that 9a =⇒ 9b and that
9d =⇒ 9e. An argument similar to the proof of 6c =⇒ 6d shows that
9c =⇒ 9d. In order to complete the proof of item 9, it suffices to show
9b =⇒ 9c. Let Σ be a minimal element of T (M) satisfying 9b. By
item 6, there exists a minimal element Σ′ ∈ T (Σ) with a plane of Alexan-
drov symmetry. By minimality of Σ, Σ ∈ T (Σ′), and so Σ also has a
plane P of Alexandrov symmetry (the same plane as Σ′ up to some
translation). In particular, Σ lies in a fixed slab in R

3.
After a possible rotation of Σ, assume that P = {x3 = 0} and so

Σ ⊂ {−a ≤ x3 ≤ a} for some a > 0. Since Ginf(Σ, 2) = 0, there
exists a sequence of points pn = (x1(n), x2(n), 0) ∈ Σ, numbers Rn with
Rn → ∞, such that Genus(Σ(pn, Rn)) < 1

nR2
n. Similar to the proof

of 6b =⇒ 6c, the fact that Ginf(Σ, 2) = 0 implies that we can find a
sequence of points qn ∈ B(pn, Rn) ∩ P diverging in R

3 and numbers kn,
with kn → ∞, such that one of the following statements holds.

1) Genus(Σ(qn, kn)) = 0.
2) B(qn, kn) ⊂ [Σ(pn, Rn

2 ) − Σ(pn, Rn)] and, as n varies, there exist
points sn ∈ ∂B(qn, kn) ∩ Σ(pn, Rn) ∩ P diverging in R

3.

We will consider the two cases above separately. If statement 1 holds,
then a subsequence of the translated surfaces Σ−qn yields a limit surface
Σ∞ ∈ T (Σ) of genus zero with P as a plane of Alexandrov symmetry. If
Σ∞ has a finite number of ends, then it has an annular end. In this case,
the end is asymptotic to a Delaunay surface [13]. Therefore, T (Σ) con-
tains a Delaunay surface Σ′ and since Σ is a minimal element, Σ ∈ T (Σ′)
which implies Σ itself is a Delaunay surface. Suppose Σ∞ has an infi-
nite number of ends. Note that Σ∞ lies in a slab which implies that
Area(Σ∞ ∩ B(R)) ≤ C2R

2 for some constant C2. In this case, a modifi-
cation of the end of the proof that 6b =⇒ 6c shows that for each n ∈ N,
there exist numbers Tn with Tn → ∞ such that the number k(n) of com-
ponents {Σ1(Tn), Σ2(Tn), . . . ,Σk(n)(Tn)} in Σ∞−B(Tn) is at least n and,
after possibly reindexing, there is a point p1(n) ∈ Σ1(Tn) ∩ ∂B(2Tn), a
constant C such that Area(Σ1(p1(n), Tn) ≤ C

n T 2
n . This implies that one

can find diverging points qn ∈ B(p1(n), Tn) ∩ P and numbers rn → ∞
such that B(qn, rn) ⊂ [B(p1(n), Tn

2 )−Σ1(p1(n), Tn)] and there are points
sn ∈ ∂B(qn, rn) ∩ Σ1(p1(n), Tn) such that |sn| → ∞. It follows that a
subsequence of the surfaces Σ1(p1(n), Tn) − sn converges to a surface
Σ∞ which lies in halfspace whose boundary plane is a vertical plane.
Item 6 of Theorem 2.3 implies that T (Σ∞) contains a surface Σ′ with
the plane P as a plane of Alexandrov symmetry as well as a vertical
plane of Alexandrov symmetry. Therefore, Σ′ is cylindrically bounded
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and so it is a Delaunay surface [13]. Since Σ ∈ T (Σ′), Σ is a Delaunay
surface [13].

We now consider the case where statement 2 holds. A modification of
the proof of the case where statement 1 holds (this time translating Σ by
the points −sn instead by the points −qn) then demonstrates that there
is a Σ′ ∈ T (Σ) with both the plane P and a vertical plane as planes
of Alexandrov symmetry. As before, we conclude that Σ is a Delaunay
surface. This completes the proof of item 9.

We now prove item 1. Let Σ be a minimal element in T (M). If Σ has
a plane of Alexandrov symmetry and T(Σ) contains a surface Σ′ with
more than one end, then Theorem 4.1, which does not depend on the
proof of this item, implies that Σ′ has at least one annular end, from
which it follows that T (Σ) contains a Delaunay surface D. Since Σ and
D are minimal elements of T (Σ), then Σ ∈ T (Σ) = T (D), and so Σ is
a translation of D. Since Σ is a Delaunay surface (a translation of D),
then clearly every surface in T(Σ) is also a translation of a Delaunay
surface, which proves item 1 under the additional hypothesis that Σ has
a plane of Alexandrov symmetry.

Thus, arguing by contradiction, suppose that Σ fails to have a plane of
Alexandrov symmetry and T(Σ) has a surface with more than one end.
Since Σ is a minimal element, then Σ ∈ T (Σ̃) for any Σ̃ ∈ T (Σ), and so
no element of T (Σ) has a plane of Alexandrov symmetry. By item 8b,
there is a bound on the number of ends of any surface in T(Σ). Let
Σ′ ∈ T(Σ) be a surface with the largest possible number n ≥ 2 of ends
and let {E1, E2, . . . , En} be pairwise disjoint end representatives for its
n ends. By item 8a, the ends E1, E2, . . . , En are uniformly close to each
other. It now follows from the definition of T(Σ′) that every element of
T(Σ′) must have at least n components, each such component arising
from a limit of translations of each of the ends E1, E2, . . . , En.

By our choice of n, we find that every surface in T(Σ′) ⊂ T(Σ) has
exactly n components. From the minimality of Σ, Σ must be a com-
ponent of some element Σ′′ ∈ T(Σ′). But then our previous arguments
imply T(Σ′′) contains a surface Δ with n − 1 ends coming from trans-
lational limits of the components of Σ′′ different from Σ and at least
two additional components (in fact n components) arising from trans-
lational limits of Σ ⊂ Σ′′. Hence, T(Σ′′) ⊂ T(Σ′) contains a surface Δ
with at least n + 1 components, which contradicts the definition of n.
This contradiction completes the proof of item 1.

We are now in a position to prove item 2 of the theorem. The first
step in this proof is the following assertion.

Assertion 3.6. Suppose Σ ∈ T(M)∪{M} and every element in T(Σ)
is connected. There exists a function f : [1,∞) → [1,∞) such that for
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every Ω ∈ T (Σ) and for all points p, q ∈ Ω with 1 ≤ d
R

3(p, q) ≤ R, then

dΩ(p, q) ≤ f(R)d
R

3(p, q).

Furthermore, if no element in T(Σ) has a plane of Alexandrov symme-
try, then Σ is chord-arc.

Proof. Suppose Σ ∈ T(M) ∪ {M} and every surface in T(Σ) is con-
nected. If there fails to exist the desired function f , then there exists
a positive number R, a sequence of surfaces Ω(n) ∈ T(Σ) and points
pn, qn ∈ Ω(n) such that for n ∈ N,

1 ≤ d
R

3(pn, qn) ≤ R and n · d
R

3(pn, qn) ≤ dΩ(n)(pn, qn).

Since by hypothesis every surface in T(Σ) is connected, T(Σ) = T (Σ).
As T (Σ) is sequentially compact and T (Σ) = T(Σ), the sequence of
surfaces Ω(n)−pn ∈ T (Σ) can be chosen to converge to a Σ∞ ∈ T(Σ) =
T (Σ) and the points qn − pn converge to a point q ∈ Σ∞. Clearly Σ∞
is not connected because it has a component passing through q and
another component passing through the origin (the intrinsic distance
between �0 ∈ Ω(n) − pn and qn − pn ∈ Ω(n) − pn is at least n). But
by assumption, every surface in T(Σ) is connected. This contradiction
proves the existence of the desired function f .

Suppose now that T (Σ) contains no element with a plane of Alexan-
drov symmetry and let f be a function satisfying the first statement
in the assertion. Since Σ is an end representative of Σ itself, item 5 of
the theorem implies that there exists an R0 > 0 such that every ball in
R

3 of radius at least R0 intersects Σ in some point. Let k be a positive
integer greater than R0 + 1. Fix any two points p, q ∈ Σ of extrinsic
distance at least 4k. Let v = q−p

|q−p| , p0 = p and pi+1 = pi + 2kv, where

i ∈ {0, 1, . . . , n−1} and q ∈ B(pn, k). By our choice of k, an open ball of
radius k − 1 always intersects Σ at some point. For each 0 < i < n, let
si ∈ Σ ∩ B(pi, k − 1); we choose s0 = p and sn = q. Since for each i < n,
d

R
3(si, si+1) ≤ 4k and d

R
3(si, si+1) ≥ 1, then dΣ(si, si+1) ≤ f(4k)4k.

Using the triangle inequality and 2(n − 1)k ≤ d
R

3(p, q), we obtain

dΣ(p, q) ≤
n−1∑
i=0

dΣ(si, si+1)

≤ nf(4k)4k ≤ 2f(4k)(d
R

3(p, q) + 2k) < 4f(4k)d
R

3(p, q).

Thus, Σ is chord-arc with constant 4f(4k), which completes the proof
of the assertion. q.e.d.

We now return to the proof of item 2. Let Σ ∈ T (M) be a minimal
element. By the last statement in item 1, the minimal element Σ satisfies
T (Σ) = T(Σ), and so every surface in T(Σ) is connected. Thus, by
Assertion 3.6, if Σ fails to have a plane P of Alexandrov symmetry,
then Σ is chord-arc. Suppose now that Σ has a plane P of Alexandrov
symmetry. If Σ were to fail to be chord-arc, then the proof of item 9
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shows that either Σ is a Delaunay surface or else there exists an R0 > 0
such that every ball B in R

3 of radius R0 and centered at a point of
P must intersect Σ. In the first case, Σ is a Delaunay surface, which is
clearly chord-arc. In the second case, the existence of points in B ∩ Σ
allows one to modify the proof of Assertion 3.6 to show that Σ is chord-
arc. Thus, item 2 of the theorem is proved.

In order to prove item 3, we need the following lemma.

Lemma 3.7. Let Σ be a minimal element in T (M). For all D, ε > 0,
there exists a dε,D > 0 such that the following statement holds. For
any BΣ(p, D) ⊂ Σ and for all q ∈ Σ, there exists q′ ∈ Σ such that
BΣ(q′, D) ⊂ BΣ(q, dε,D) and dH(BΣ(p, D)−p, BΣ(q′, D)−q′) < ε. Here
BΣ(p, R) denotes the intrinsic ball of radius R centered at p.

Proof. Arguing by contradiction, suppose that the claim in the lemma
is false. Then there exist D, ε > 0 such that the following holds. For all
n ∈ N, there exist intrinsic balls BΣ(pn, D) ⊂ Σ and qn ∈ Σ such that for
any BΣ(q′, D) ⊂ BΣ(qn, n), then dH(BΣ(pn, D) − pn, BΣ(q′, D) − q′) >
ε. In what follows, we further simplify the notation and we let BΣ(p)
denote BΣ(p, D). After going to a subsequence, we can assume that the
set of translated surfaces, Σ − pn, converges C2 to a complete, strongly
Alexandrov-embedded, CMC surface Σ∞ passing through the origin �0.
By item 1, Σ∞ is connected and we consider it to be pointed so that
BΣ(pn)−pn converges to BΣ∞(�0). Also, we can assume that BΣ(qn, n)−
qn converges to a complete, connected, pointed, strongly Alexandrov-
embedded CMC surface Σ′

∞. The previous discussion implies that for
any z ∈ Σ′

∞, there exists a sequence BΣ(zn) ⊂ BΣ(qn, n), such that

(3) dH(BΣ(zn) − zn, BΣ′
∞(z) − z) <

ε

4
for n large.

Furthermore, we can also assume that

(4) dH(BΣ(pn) − pn, BΣ∞(�0)) <
ε

4
,

and since BΣ(zn) ⊂ BΣ(qn, n), then

(5) dH(BΣ(pn) − pn, BΣ(zn) − zn) > ε.

Recall that since Σ is a minimal element, item 7 in Theorem 2.3
implies that

Σ, Σ∞, Σ′
∞ ∈ T (Σ) = T (Σ∞) = T (Σ′

∞).

In order to obtain a contradiction, it suffices to show that there exists
an α > 0 such that

dH(BΣ′
∞(z) − z, BΣ∞(�0)) > α

for any z ∈ Σ′
∞ because this inequality clearly implies that Σ∞ /∈

T (Σ′
∞). Fix z ∈ Σ′

∞ and let zn and pn be as given by equations (3)
and (4).
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In what follows, we are going to start with equation (5), apply the
triangle inequality for the Hausdorff distance between compact sets,
then apply the triangle inequality and equation (3), and finally apply
(4). For n large,

ε < dH(BΣ(pn) − pn, BΣ(zn) − zn) ≤
≤ dH(BΣ(pn) − pn, BΣ′

∞(z) − z) + dH(BΣ′
∞(z) − z, BΣ(zn) − zn) <

< dH(BΣ(pn) − pn, BΣ∞(�0)) + dH(BΣ∞(�0), BΣ′
∞(z) − z) +

ε

4
<

<
ε

2
+dH(BΣ′

∞(z)−z, BΣ∞(�0)).

This inequality implies dH(BΣ′
∞(z) − z, BΣ∞(�0)) > ε

2 , which, after
setting α = ε

2 , completes the proof of the lemma. q.e.d.

Notice that if X ⊂ Σ is a compact domain of intrinsic diameter less
than D, then for a point p ∈ Σ, X ⊂ BΣ(p, 2D). The next lemma is a
consequence of Lemma 3.7 and the following observation regarding the
Hausdorff distance: Given three compact sets A, B, X ⊂ Σ with X ⊂ A,
if dH(A, B) < ε, then there exists X ′ ⊂ B such that dH(X, X ′) < ε.

Lemma 3.8. Let Σ be a minimal element of T (M). For all D, ε > 0,
there exists a dε,D > 0 such that the following statement holds. For every
smooth, connected compact domain X ⊂ Σ with intrinsic diameter less
than D and for each q ∈ Σ, there exists a smooth compact, connected
domain Xq,ε ⊂ Σ and a translation, i : R

3 → R
3, such that

dΣ(q, Xq,ε) < dε,D and dH(X, i(Xq,ε)) < ε,

where dΣ is distance function on Σ.

In order to finish the proof of item 3, we remark that item 2 implies
intrinsic and extrinsic distances are comparable when the intrinsic dis-
tance between the points is at least one. Thus, the above lemma implies
the first statement in item 3. The second statement is an immediate
consequence of the first statement, which completes the proof.

Theorem 3.3 is now proved. q.e.d.

Proof of Corollary 3.4. We first prove item 1 of the corollary. By equa-
tion (2), Asup(M, 3) = 0 implies Gsup(M, 3) = 0. On the other hand,
if Gsup(M, 3) = 0, then for any Σ ∈ T (M), Gsup(Σ, 3) = 0. In partic-
ular, for any minimal element Σ ∈ T (M), Ginf(Σ, 3) = 0. By item 6
of Theorem 3.3, T (Σ) contains a minimal element Σ′ with a plane of
Alexandrov symmetry. Since Σ is a minimal element, Σ ∈ T (Σ′) and
therefore has a plane of Alexandrov symmetry. This proves that item 1
holds.

The proof of item 2 follows from arguments similar to the ones in the
proof of item 1, using item 9 of Theorem 3.3 instead of item 6. q.e.d.
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Remark 3.9. In regards to item 4 of Theorem 3.3, it has been con-
jectured by Meeks [18] that if M is a properly embedded CMC surface
in R

3 which lies in the halfspace {x3 ≥ 0}, then it has a horizontal
plane of Alexandrov symmetry. This conjecture holds when M has fi-
nite topology [13]

Remark 3.10. In [22], we give a natural generalization of Theo-
rems 2.3 and 3.3 to the more general case of separating CMC hyper-
surfaces M with bounded second fundamental form in an n-dimensional
noncompact homogeneous manifold N . In that paper, we obtain some
interesting applications of this generalization to the classical setting
where N is R

n or hyperbolic n-space, H
n, which are similar to the ap-

plications given in Theorem 3.3.

Remark 3.11. In [26], we prove that if M ⊂ R
3 is a strongly

Alexandrov-embedded CMC surface with bounded second fundamental
form and T (M) contains a Delaunay surface, then M is rigid6 . In [29],
Smyth and Tinaglia show that if M contains a surface with a plane of
Alexandrov symmetry, then M is locally rigid7 . In relation to these
rigidity results note that Theorem 3.3 gives several different constraints
on the geometry or the topology of M that guarantee the existence of
a Delaunay surface or a surface with a plane of Alexandrov symmetry
in T (M). The first author conjectures that the helicoid is the only com-
plete, embedded, constant mean curvature surface in R

3 which admits
more than one noncongruent, isometric, constant mean curvature im-
mersion into R

3 with the same constant mean curvature. Since intrinsic
isometries of the helicoid extend to ambient isometries, this conjecture
would imply that an intrinsic isometry of a complete, embedded, con-
stant mean curvature surface in R

3 extends to an ambient isometry of
R

3.

4. Embedded CMC surfaces with a plane of Alexandrov
symmetry and more than one end

In this section we prove the following topological result that uses
techniques from the proof of Theorem 3.3. In the next theorem the hy-
pothesis that the surface M be embedded can be replaced by the weaker
condition that it is embedded in the complement of its Alexandrov plane
of symmetry.

Theorem 4.1. Suppose M is a not necessarily connected, complete
embedded CMC surface with bounded second fundamental form, possibly

6M is rigid in the sense that the inclusion map is the unique isometric immersion
in R

3 up to rigid motion with the same constant mean curvature.
7M is locally rigid if any one-parameter family of isometric immersions Mt of M ,

t ∈ [0, ε), M0 = M , with same mean curvature as M is obtained by a family of rigid
motions of M .
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empty compact boundary, a plane of Alexandrov symmetry, at least n
ends, and every component of M is noncompact. If n is at least two, then
M has at least n annular ends. Furthermore, if M has empty boundary
and more than one component, then each component of M is a Delaunay
surface.

The following corollary is an immediate consequence of the above
theorem and the result of Meeks [18] that a connected, noncompact,
properly embedded CMC surface with one end must have infinite genus.

Corollary 4.2. Suppose M is a connected, noncompact, complete
embedded CMC surface with bounded second fundamental form and a
plane of Alexandrov symmetry. Then M has finite topology if and only
if M has a finite number of ends greater than one.

In regards to Theorem 4.1 when n = ∞, we note that there exist
connected surfaces of genus zero satisfying the hypotheses of the theorem
which are singly periodic and have an infinite number of annular ends.
It is important to notice that the hypothesis in Theorem 4.1 that M
has bounded second fundamental form is essential; otherwise, there are
counterexamples (see Remark 4.7).

Proof. We first describe some of the notation that we will use in
the proof of the theorem. We will assume that M has a plane P of
Alexandrov symmetry and P is the (x1, x2)-plane. We let S

1(R) = ∂(P ∩
B(R)). Assume that M is a bigraph over a domain Δ ⊂ P and R0 is
chosen sufficiently large, so that ∂M ⊂ B(R0) and Δ−B(R0) contains n
noncompact components Δ1, Δ2, . . . ,Δn. Let M1, M2 ⊂ M denote the
bigraphs with boundary over the respective regions Δ1, Δ2. Let X be
the component in P−(Δ1∪Δ2) with exactly two boundary curves ∂1, ∂2,
each a proper noncompact curve in P and such that ∂1 ⊂ ∂Δ1, ∂2 ⊂
∂Δ2. The curve ∂1 separates P into two closed, noncompact, simply
connected domains P1, P2, where Δ1 ⊂ P1 and Δ2 ⊂ P2.

Now choose an increasing unbounded sequence of numbers {Rn}n∈N

with R1 > R0 chosen large enough so that for i = 1, 2, there exists
a unique component of Pi ∩ B(R1) which intersects Pi ∩ S

1(R0) and
so has Pi ∩ S

1(R0) in its boundary; we will also assume that the circles
S

1(Rn) are transverse to ∂Δ1∪∂Δ2 for each n. By elementary separation
properties, for i = 1, 2, there exists a unique component σi(n) of Pi ∩
S

1(Rn) which separates Pi into two components, exactly one of whose
closure is a compact disk Pi(n) with Pi ∩ S

1(R0) in its boundary; note
that the collection of domains {Pi(n)}n forms a compact exhaustion of
Pi. See Figure 2.

Since σ1(n) is disjoint from σ2(n) and each of these sets is a connected
arc in S

1(Rn), then, after possibly replacing the sequence {Rn}n∈N by
a subsequence and possibly reindexing P1, P2, for each n ∈ N, the arc
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Figure 2. P1(1) is the shaded region on the right-hand
side containing σ1(1) and an arc of ∂1 in its boundary.
This figure illustrates the possibility that Δ1 may equal
P1 while Δ2 may be strictly contained in P2.

σ1(n) is contained in a closed halfspace Kn of R
3 with boundary plane

∂Kn being a vertical plane passing through the origin �0 of R
3. Let

Δ1(n) = Δ1 ∩ P1(n) and let M1(n) ⊂ M1 be the compact bigraph
over Δ1(n). Let K̂n be the closed halfspace in R

3 with Kn ⊂ K̂n and
such that the boundary plane ∂K̂n is a distance 2

H + R0 from ∂Kn,
where H is the mean curvature of M . Note that ∂M1(n) is contained in
the union of the solid cylinder over B(R0) and the halfspace Kn. Thus,
the distance from ∂M(n) to ∂K̂n is at least 2

H . By the Alexandrov
reflection principle and the 1

H height estimate for CMC graphs with
zero boundary values and constant mean curvature H, we find that
M1(n) ⊂ K̂n. After choosing a subsequence, the halfspaces K̂n converge
on compact sets of R

3 to a closed halfspace K. Since for all n ∈ N,
M1(n) ⊂ M1(n + 1) and

⋃∞
n=1 M1(n) = M1, one finds that M1 ⊂ K.

After a translation in the (x1, x2)-plane and a rotation of M1 around
the x3-axis, we may assume that the new surface, which we will also
denote by M1, lies in {(x1, x2, x3) | x2 > 0} and it is a bigraph over
a region Δ1 ⊂ {(x1, x2, 0) | x2 > 0}. A straightforward application
of the Alexandrov reflection principle and height estimates for CMC
graphs shows that, after an additional translation in the (x1, x2)-plane
and a rotation around the x3-axis, Δ1 also can be assumed to contain
a divergent sequence of points pn = (x1(n), x2(n), 0) ∈ ∂Δ1 such that
x2(n)
x1(n) → 0 as n approaches infinity. See Figure 3.

Assertion 4.3. The points pn can be chosen to satisfy the following
additional properties.
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Figure 3. Choosing the points pn and related data. The
shaded trapezoidal region is T (n).

1) The vertical line segments γn joining pn to (x1(n), 0, 0) intersect

Δ1 only at pn and x1(n+1)
x1(n) > n.

2) The surfaces M1 −pn converge to a surface in T(M) with a related
component in T (M) being a Delaunay surface F with P as a plane
of Alexandrov symmetry and axis parallel to the x1-axis.

Proof. The proof that the points pn can be chosen to satisfy statement
1 is clear. To prove that they can also be chosen to satisfy statement
2 can be seen as follows. Let Sn ⊂ P be the circle passing through
the points pn and (x1(n)

10 , 0, 0) with center on the line {(x1(n), s, 0) | s <
x2(n)} and let En denote the closed disk with boundary Sn. Consider the
family of translated disks En(t) = En − (0, t, 0) and let t0 be the largest
t ≥ 0 such that En(t) intersects Δ1 at some point and let Dn = En(t0).
By construction and after possibly replacing by a subsequence, points in
Dn∩Δ1 satisfy the first statement in the assertion as well as the previous
property that the ratio of their x2-coordinates to their x1-coordinates
limit to zero as n → ∞. Next, replace the previous point pn by any
point of ∂Dn ∩ M1, to obtain a new sequence of points which we also
denote by pn. A subsequence of certain compact regions of the translated
surfaces M − pn converges to a strongly Alexandrov-embedded surface
M∞ ∈ T (M) which has P as a plane of Alexandrov symmetry and
which lies in the halfspace x2 ≥ 0. It follows from item 4 of Theorem
3.3 (and its proof) that T (Σ) contains a Delaunay surface D with axis
being a bounded distance from the x1-axis and which arises from a limit
of translates of M∞. It is now clear how to choose the desired points
described in the assertion, which again we denote by pn, so that certain
compact regions of the translated surfaces M−pn converge to the desired
Delaunay surface F . This completes the proof of the assertion. q.e.d.
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As a reference for the discussion which follows, we refer the reader to
Figure 3. By Assertion 4.3, we may assume that around each point pn,
the surface M1 is closely approximated by a translation of a fixed large
compact region of the Delaunay surface F . Without loss of generality, we
may assume that the entire line containing γn is disjoint from the self-
intersection set of ∂Δ1. Let Γn be the largest compact extension of γn so
that Γn−γn ⊂ Δ1, and let Γ̂n be a line segment extension of Γn near the
endpoint of Γn with positive x2-coordinate so that Γ̂n∩Δ1 = Γn∩Δ1 and
so that the length of Γ̂n − Γn is less than 1

n . Let qn denote the endpoint
of Γ̂n which is different from the point pn. Without loss of generality,
we may assume that the line segments a(n) in P joining qn, qn+1 are
transverse to ∂Δ1 and intersect Δ1 in a finite collection of compact
intervals. If we denote by v(n) the upward-pointing unit vector in the
(x1, x2)-plane perpendicular to a(n), then the vectors v(n) converge to
(0, 1, 0) as n goes to infinity.

As a reference for the discussion which follows, we refer the reader
to Figure 4. Now fix some large n and consider the compact region
T (n) ⊂ P bounded by the line segments Γ̂n, Γ̂n+1, a(n) and the line
segment joining (x1(n), 0, 0) to (x1(n + 1), 0, 0). Consider T (n) to lie
in R

2 and let T (n) × R ⊂ R
3 be the related convex domain in R

3.
Let M1(n) be the component of M1 ∩ (T (n) × R) which contains the
point pn. Note that M1(n) is compact with boundary consisting of an
almost-circle C(Γn) which is a bigraph over an arc in Γn, possibly also
an almost circle C(Γn+1) which is a bigraph over an interval in Γn+1,
and a collection of bigraph components over a collection of intervals In

in the line segment a(n).
We denote by α(n) the collection of boundary curves of M1(n). Let

α2(n) be the subcollection of curves in α(n) which intersect either Γn or
Γn+1, that is, α2(n) = {C(Γn), C(Γn+1)} or α2(n) = {C(Γn)}. Clearly,
the collection of boundary curves of M1(n) which are bigraphs over the
collection of intervals In = Δ1 ∩ a(n) is α(n) − α2(n). Let α3(n) be the
subcollection of curves in α(n) − α2(n) which bound a compact domain
Δ(α) ⊂ M1 −∂M1, and let α4(n) = α(n)−(α2(n)∪α3(n)). Note that in
Figure 4, α2(n) = {C(Γn), C(Γn+1)}, α3(n) is empty and α4(n) consists
of the single gray curve ∂.

Assertion 4.4. For n sufficiently large, every boundary curve ∂ of
M1(n) which is a graph over an interval in In, bounds a compact domain
Δ(∂) ⊂ M1 − ∂M1; in other words, α4(n) is empty.

Proof. For any α ∈ α(n), let ηα denote the outward-pointing conor-
mal to α ⊂ ∂M1(n) and let D(α) be the planar disk bounded by α.
Consider a boundary component ∂ ∈ α4(n). By the “blowing a bub-
ble” argument presented in [12], there exists another disk D̂(∂) on
the mean convex side of M1 of the same constant mean curvature
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Figure 4. Blowing a bubble D̂(∂) on the mean convex
side of M1.

as M1, ∂D̂(∂) = ∂D(∂). Moreover, D̂(∂) is a graph over D(∂) and
D̂(∂) ∩ (T (n) × R) = ∂D̂(∂) = ∂. Let η̂∂ denote the inward pointing
conormal to ∂D̂(∂). The graphical disk D̂(∂) is constructed so that
〈η∂ − η̂∂ , v(n)〉 ≥ 0, see Figure 4.

The piecewise smooth surface M1(n) ∪ (
⋃

α∈α2(n)∪α3(n) D(α)) ∪
(
⋃

α∈α4(n) D̂(α)) is the boundary of a compact region W (n) ⊂ R
3. An

application of the divergence theorem given in [13] to the vector field
v(n), considered to be a constant vector field in R

3 in the region W (n),
gives rise to the following equation:

(6)
∑

α∈α2(n)∪α3(n)

[∫
α
〈ηα, v(n)〉 − 2H

∫
D(α)

〈v(n), N(n)〉
]

+

+
∑

∂∈α4(n)

[∫
∂
〈η∂ , v(n)〉 − 2H

∫
̂D(∂)

〈v(n), N(n)〉
]

= 0,

where H is the mean curvature of M and N(n) is the outward pointing
conormal to W (n). Note that

∑
α∈α2(n)

[∫
α〈ηα, v〉 − 2H

∫
D(α)〈v(n), N〉

]
=

ε(n) converges to zero as n → ∞ because v(n) converges to (0, 1, 0)
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and the curves C(Γn), C(Γn+1) converge to curves on Delaunay sur-
faces whose axes are perpendicular to (0, 1, 0). Also note that this ap-
plication of the divergence theorem in [13] implies that for α ∈ α3(n),∫
α〈ηα, v(n)〉 − 2H

∫
D(α)〈v(n), N(n)〉 = 0. Thus, equation (6) reduces to

the equation

(7) ε(n) +
∑

∂∈α4(n)

[∫
∂
〈η∂ , v(n)〉 − 2H

∫
̂D(∂)

〈v(n), N(n)〉
]

= 0.

On the other hand, for each ∂ ∈ α4(n),

(8)
∫

∂
〈η∂ , v(n)〉 − 2H

∫
̂D(∂)

〈v(n), N(n)〉 =
∫

∂
〈η∂ − η̂∂ , v(n)〉 ≥ 0

and the length of each ∂ ∈ α4 is uniformly bounded from below. Since
ε(n) is going to zero as n goes to infinity, equations (7) and (8) imply
that for n large, the conormals η∂ and η̂∂ are approaching each other
uniformly (see the lower left-hand corner of Figure 4). Note that the
intrinsic distance of any point on the graphs D̂(∂) to ∂ is uniformly
bounded (independent of ∂ and n)8 . The Harnack inequality, the above
remark, the facts that D̂(∂) is simply-connected and the second funda-
mental form of M is bounded, imply that there exists δ > 0 such that
if

∫
∂〈η∂ − η̂∂ , v(n)〉 < δ, then there is a disk Δ(∂) ⊂ M1 − M1(n) which

can be expressed as a small graph over D̂(∂). The existence of Δ(∂)
contradicts that ∂ ∈ α4(n), which means α4(n) = Ø for n sufficiently
large. This contradiction proves the assertion. q.e.d.

We now apply Assertion 4.4 to prove the following key partial result
in the proof of Theorem 4.1.

Assertion 4.5. M1 has at least one annular end.

Proof. By Assertion 4.4, for some fixed n chosen sufficiently large,
every boundary curve α of M(n) in the collection α(n) − α2(n) bounds
a compact domain Δ(α) ⊂ M1 − ∂M1. By the Alexandrov reflection
principle and height estimates for CMC graphs, we find that the surface
M̂(n) = M(n) ∪

⋃
α∈α(n)−α2(n) Δ(α) must have two almost circles in its

boundary arising from α2(n). Let Σ(k) =
⋃

j≤k M̂(n + j). Note that
by the Alexandrov reflection argument and height estimates for CMC
graphs with zero boundary values, there exist half-cylinders C(n, k) in
R

3 which contain Σ(k) and have fixed radii 4
H . Hence, there is a limit

half-cylinder C(n) ⊂ R
3 that contains Σ(∞) =

⋃
k∈N

Σ(k) ⊂ M . By the
main result in [13], Σ(∞) is asymptotic to a Delaunay surface, which
proves the assertion. q.e.d.

8This uniform intrinsic distance estimate holds since CMC graphs are strongly
stable (existence of a positive Jacobi function) and there are no strongly stable,
complete CMC surfaces in R

3; see theorem 2 in [27] for a proof of this result.



THE DYNAMICS THEOREM FOR CMC SURFACES IN R3
169

It follows from the discussion at the beginning of the proof of Theorem
4.1 and Assertion 4.5 that if M has at least n ends, n > 1, then it has
at least n−1 annular ends. It remains to prove that if M1, M2 are given
as in the beginning of the proof of Theorem 4.1 with M1 having an
annular end, then M2 has an annular end as well. To see this, note that
the annular end E1 ⊂ M1 is asymptotic to the end F of a Delaunay
surface and so after a rotation of M , M1 is a graph over a domain Δ1
which contains the axis of F , which we can assume to be the positive
x1-axis. Now translate M2 in the direction (−1, 0, 0) sufficiently far so
that its compact boundary has negative x1-coordinates less than − 2

H ;
call the translated surface M ′

2 and let Δ′
2 ⊂ P be the domain over which

M ′
2 is a bigraph. If for some n ∈ N the line Ln = {(n, t, 0) | t ∈ R} is

disjoint from M ′
2, then M ′

2 is contained in a halfplane of P and our
previous arguments imply M ′

2 has an annular end. Thus without loss of
generality, we may assume that every line Ln intersects ∂Δ′

2 a first time
at some point sn with positive x2-coordinate.

For θ ∈ (0, π
2 ], let r(θ) be the ray with base point the origin and angle

θ and let W (θ) be the closed convex wedge in P bounded by r(θ) and
the positive x1-axis. Let θ0 be the infimum of the set of θ ∈ (0, π

2 ] such
that W (θ)∩{sn}n∈N is an infinite set. Because of our previous placement
of ∂M ′

2, a simple application of the Alexandrov reflection principle and
height estimates for CMC graphs with zero boundary values implies
that some further translate M ′′

2 of M ′
2 in the direction (−1, 0, 0) must

be disjoint from r(θ0). Finally, after a clockwise rotation M̂2 of M ′′
2 by

angle θ0, our previous arguments prove the existence of an annular end
of M̂2 of bounded distance from the positive x1-axis. Thus, we conclude
that M2 also has an annular end which completes the proof of the first
statement in Theorem 4.1.

We next prove the last statement of the theorem. Suppose M ⊂ R
3 is

a complete, properly embedded CMC surface with bounded second fun-
damental form and with the (x1, x2)-plane P as a plane of Alexandrov
symmetry. Suppose M contains two noncompact components M1, M2
and that we will prove that each of these surfaces is a Delaunay surface.

Consider M1 and M2 to be two disjoint end representatives of M
defined as bigraphs over two disjoint connected domains Δ1, Δ2 in P ,
respectively.

Assertion 4.6. After possibly reindexing Δ1, Δ2 and applying a rigid
of R

3 preserving the plane P , then Δ1 ⊂ {x2 ≥ 0}.

Proof. By what we have proved so far, we know that M2 has an
annular end E which is asymptotic to the end D(E) of a Delaunay
surface. Let rE ⊂ Δ2 be a ray contained in the axis of D(E). After a
rigid motion of M preserving P , assume rE is a ray based at the origin
of P . The arguments used to prove the first statement of the theorem
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Figure 5. A picture of M1 with two bubbles blown on
its mean convex side.

show that there are two disjoint annular ends F, G of M1 such that for R
large the arc α(F, G, R) in S

1(R)−Δ1 which intersects rE , has one of its
endpoints in Δ1∩F and its other endpoint in Δ1∩G. Let D(F ), D(G) be
ends of Delaunay surfaces to which F, G are asymptotic. Let rF , rG ⊂
Δ1 be rays contained in the axes of D(F ), D(G), respectively. Let γ1 be
a properly embedded arc in Δ1 consisting of rF , rG and a compact arc
joining their endpoints. Let γ′

2 be the proper arc in P −B(R) consisting
of α(F, G, R), a boundary arc in (E ∩ ∂Δ1) − B(R) and a boundary
arc in (G ∩ ∂Δ1) − B(R). After a small perturbation of γ′

2 we obtain
a proper arc γ2 contained in P − Δ1 which intersects rE . Note that
γ1 is contained in a halfplane and since γ2 lies at a bounded distance
from γ1, the halfplane can be chosen to contain both γ1 and γ2. After a
rigid motion, we may assume that this halfplane is {x2 ≥ 0}. Since the
region bounded by γ1 and γ2 is a strip by construction, by elementary
separation arguments, either γ1 lies between {x2 = 0} and γ2 or γ2 lies
between {x2 = 0} and γ1. If γ1 lies between {x2 = 0} and γ2, then Δ2
lies in the halfspace, otherwise Δ1 does. After possibly reindexing, this
completes the proof. q.e.d.

In the discussion which follows, we refer the reader to Figure 5. By the
previous assertion, we may assume Δ1 ⊂ {x2 ≥ 0}. Previous arguments
imply that after a rigid motion of M , we can further assume that M1
contains as annular end E+ with the property that for n ∈ N sufficiently
large, the line segments {(n, t, 0) | t > 0} intersect Δ1 for a first time
in a point pn ∈ E1. Furthermore, E+ is asymptotic to the end D+ of a
Delaunay surface. Also we can assume that the half axis of revolution
of D+ lies in P and is a bounded distance from the positive x1-axis.

By the Alexandrov reflection principle and height estimates for CMC
graphs with zero boundary values, Δ1 must not be contained in a convex
wedge of P with angle less than π. Therefore, for n ∈ N sufficiently large
the line segments {(−n, t, 0) | t > 0} intersect a second annular end Δ1
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in points p−n ∈ E− for a first time. In this case the annular end E−

is asymptotic to the end D− of another Delaunay surface and the half
axis of D− in P is a bounded distance from the negative x1-axis.

Similar to our previous arguments, we define for each n ∈ Z with |n|
sufficiently large, curves γn, Γn, Γ̂n and points qn as we did before (see
Figures 3 and 5). For each n ∈ N sufficiently large, we define the line
segment a(n) ⊂ P whose endpoints are the points q−n, qn. Now define
for any sufficiently large n the compact region T (n) ⊂ P bounded by
the line segments Γ̂−n, Γ̂n, a(n) and the line segment joining (−n, 0, 0)
to (n, 0, 0), and let T (n) × R ⊂ R

3 be the related convex domain in
R

3. Let M1(n) be the component of M1 ∩ (T (n) × R) which contains
the point p−n. Note that M1(n) is compact with boundary consisting
of an almost-circle C(Γ−n) which is a bigraph over an arc on Γ−n, and
an almost-circle C(Γn) which is a bigraph over an arc on Γn and a
collection of bigraph components over a collection of intervals In in the
line segment a(n).

As in previous arguments, an assertion similar to Assertion 4.4 holds
in the new setting. With this slightly modified assertion, one finds that
the almost-circles C(Γ−n) and C(Γn) bound a compact domain M̂1(n) ⊂
M1. A slight modification of the proof of Assertion 4.5 implies M1 is
cylindrically bounded, and so by the main theorem in [13], M1 is a
Delaunay surface. Note that the axis of M1 is an infinite line in Δ1 and
so Δ2 also lies in a halfplane of P . The arguments above prove that M2
is also a Delaunay surface, which completes the proof of the theorem.
q.e.d.

Remark 4.7. Using techniques in [10, 16], for every integer n > 1, it
is possible to construct a surface Mn with empty boundary and n ends,
none of which are annular, which satisfies the hypotheses of the surface
M in the statement of Theorem 4.1 except for the bounded second
fundamental form hypothesis. Hence, the hypothesis in the theorem
that M has bounded second fundamental form is a necessary one in
order for the conclusion of the theorem to hold.
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[19] W.H. Meeks III, J. Pérez & A. Ros, Local removable singularity theorems for
minimal and h-laminations, preprint, available at http://www.ugr.es/local/
jperez/papers/papers.htm.

[20] W.H. Meeks III & H. Rosenberg, Maximum principles at infinity, J. Differential
Geometry, 79(1):141–165, 2008, MR 2401421, Zbl pre05285650.

[21] W.H. Meeks III & G. Tinaglia, Chord-arc properties for constant mean curvature
disks, work in progress.

[22] ———, The CMC dynamics theorem in homogeneous n-manifolds, work in
progress.

[23] ———, CMC surfaces in locally homogeneous three-manifolds, work in progress.

[24] ———, Curvature estimates for constant mean curvature surfaces, work in
progress.



THE DYNAMICS THEOREM FOR CMC SURFACES IN R3
173

[25] ———, Properness results for constant mean curvature surfaces, work in
progress.

[26] ———, The rigidity of constant mean curvature surfaces, preprint,
arXiv:0801.3409.

[27] A. Ros & H. Rosenberg, Properly embedded surfaces with constant mean curva-
ture, preprint.

[28] R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J.
Differential Geom., 18:791–809, 1983, MR 0730928, Zbl 0575.53037.

[29] B. Smyth & G. Tinaglia, The number of constant mean curvature isometric
immersions of a surface with topology, preprint, arXiv:0811.1231.

[30] G. Tinaglia, Multi-valued graphs in embedded constant mean curvature disks,
Trans. Amer. Math. Soc., 359:143–164, 2007, MR 2247886, Zbl 1115.53010.

[31] G. Tinaglia, Structure theorems for embedded disks with mean curvature bounded
in LP , Comm. Anal. Geom., 16(4):819–836, 2008, MR 2471371.

Mathematics Department

University of Massachusetts

Amherst, MA 01003

E-mail address: profmeeks@gmail.com

Department of Mathematics

King’s College London

Strand, London, WC2R 2LS, U.K.

E-mail address: giuseppe.tinaglia@kcl.ac.uk


