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ADIABATIC LIMITS OF RICCI-FLAT KÄHLER

METRICS

Valentino Tosatti

Abstract

We study adiabatic limits of Ricci-flat Kähler metrics on a
Calabi-Yau manifold which is the total space of a holomorphic
fibration when the volume of the fibers goes to zero. By es-
tablishing some new a priori estimates for the relevant complex
Monge-Ampère equation, we show that the Ricci-flat metrics col-
lapse (away from the singular fibers) to a metric on the base of
the fibration. This metric has Ricci curvature equal to a Weil-
Petersson metric that measures the variation of complex structure
of the Calabi-Yau fibers. This generalizes results of Gross-Wilson
for K3 surfaces to higher dimensions.

1. Introduction

In this paper, which is a continuation of [To2], we study the behaviour
of Ricci-flat Kähler metrics on a compact Calabi-Yau manifold when
the Kähler class degenerates to the boundary of the Kähler cone. Given
a compact Calabi-Yau manifold, a fundamental theorem of Yau [Y1]
says that there exists a unique Ricci-flat Kähler metric in each Kähler
class. If we now move the Kähler class inside the Kähler cone, the
corresponding Ricci-flat metrics vary smoothly, as long as the class does
not approach the boundary of the Kähler cone. The question that we
want to address is to understand what happens to the Ricci-flat metrics
if the class goes to the boundary of the Kähler cone. This question has
been raised by Yau and reiterated by others, see for example [Y3, W,
McM]. In our previous work [To2] we have studied the case when the
limit class has positive volume. In this paper we consider the case when
the limit volume is zero, and we focus on the situation when the Calabi-
Yau manifold admits a holomorphic fibration to a lower dimensional
space such that the limit class is the pullback of a Kähler class from the
base.

To state our result, let us introduce some notation. Let (X,ωX)
be a compact Kähler n-manifold with c1(X) = 0 in H2(X,R). The
condition that c1(X) = 0 is equivalent to the requirement that the

Received 05/29/2009.

427



428 V. TOSATTI

canonical bundle of X be torsion (see [To2]), and we call X a Calabi-Yau
manifold. We assume that there is a holomorphic map f : X → Z where
(Z,ωZ) is another compact Kähler manifold. We denote by Y the image
of X under f , and we assume that Y is an irreducible normal subvariety
of Z of dimension m with 0 < m < n, and that the map f : X → Y
has connected fibers. Then ω0 = f∗ωZ is a smooth nonnegative (1, 1)
form on X, whose cohomology class lies on the boundary of the Kähler
cone. We will also denote by ωY the restriction of ωZ to the regular
part of Y . The map f : X → Y is an “algebraic fiber space” in the
sense of [La] and we can find a subvariety S ⊂ X such that Y \f(S) is
smooth and f : X\S → Y \f(S) is a smooth submersion (S consists of
singular fibers, as well as fibers of dimension strictly larger than n−m).
Then for any y ∈ Y \f(S) the fiber Xy = f−1(y) is a smooth (n −m)-
manifold, equipped with the Kähler form ωX |Xy . Notice that since f
is a submersion near Xy, we have that c1(Xy) = c1(X)|Xy , and so the
fibers Xy with y ∈ Y \f(S) are themselves Calabi-Yau. Yau’s theorem
[Y1] says that in each Kähler class of X there is a unique Kähler metric
with Ricci curvature identically zero. For each 0 < t ≤ 1 we call ω̃t the
Ricci-flat Kähler metric cohomologous to [ω0] + t[ωX ], and we wish to
study the behaviour of these metrics when t goes to zero. First of all in
[To2] we proved the following

Theorem 1.1 (Theorem 3.1 of [To2]). The Ricci-flat metrics ω̃t on

X have uniformly bounded diameter as t goes to zero.

The volume of any fiber Xy with respect to ω̃t is comparable to tn−m,
and the Ricci-flat metrics ω̃t approach an “adiabatic limit”. We will
show that the metrics ω̃t collapse to a Kähler metric on Y \f(S).

Our main theorem is the following:

Theorem 1.2. There is a smooth Kähler metric ω on Y \f(S) such

that the Ricci-flat metrics ω̃t when t approaches zero converge to f∗ω

weakly as currents and also in the C1,β
loc topology of potentials on compact

sets of X\S, for any 0 < β < 1. The metric ω satisfies

(1.1) Ric(ω) = ωWP ,

on Y \f(S), where ωWP is a Weil-Petersson metric measuring the

change of complex structures of the fibers. Moreover for any y ∈ Y \f(S)
if we restrict to Xy, the metrics ω̃t converge to zero in the C1 topology

of metrics, uniformly as y varies in a compact set of Y \f(S).

This result generalizes work of Gross and Wilson [GW], who consid-
ered the case when f : X → Y = P

1 is an elliptically fibered K3 surface
with 24 singular fibers of type I1 (see section 5). They achieved their
result by writing down explicit approximations of the Ricci-flat metrics
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near the adiabatic limit. A similar approach in higher dimensions seems
out of reach at present. Instead, our main technical tool are some new
general a priori estimates for complex Monge-Ampère equations on the
total space of a holomorphic fibration.

The limit equation (1.1) has first been explicitly proposed by Song-
Tian [ST1], where ω is called a generalized Kähler-Einstein metric.

Let us briefly explain the meaning of ωWP , referring the reader to
section 4 for more details. We have already remarked that the smooth
fibers Xy of f are themselves Calabi-Yau (n −m)-manifolds, polarized
by ωX |Xy . If the canonical bundles of the fibers are actually trivial
we get a map from Y \f(S) to the moduli space of polarized Calabi-
Yau manifolds and by pulling back the Weil-Petersson metric we get
a smooth nonnegative form ωWP on Y \f(S) (a similar construction
goes through in the case when the fibers have torsion canonical bundle).
Notice that ωWP is identically zero precisely when the complex structure
of the fibers doesn’t change. The appearance of the Weil-Petersson
metric in the more general setting of adiabatic limits of constant scalar
curvature Kähler metrics was observed by Song-Tian [ST1], and further
studied by Fine [Fi] and Stoppa [St].

There are two possible situations that we have in mind for our setup:
in one case Y is smooth, and then we can just take Z = Y . In the second
case we take Z = P

N with ωZ the Fubini-Study metric, and then Y is
an algebraic variety. A natural class of examples where this situation
arises is the following: X is a projective Calabi-Yau manifold and L
is a semiample line bundle over X with Iitaka dimension κ(X,L) =
m < n. Then a classical construction of Iitaka (see 2.1.27 in [La])
gives a holomorphic map f : X → P

N exactly as in the setup. Note
that if the log Abundance Conjecture holds then every line bundle L
with cohomology class on the boundary of the Kähler cone and with
κ(X,L) = m < n is automatically semiample (see [To2]). This is
known to hold if n = 2.

The organization of the paper is the following. In section 2 we set up
the problem as a family of degenerating complex Monge-Ampère equa-
tions and state our estimates that imply the main result. In section 3 we
prove a priori C2 estimates for these equations as well as C3 estimates
along the fibers. In section 4 we use the estimates to prove our main
theorem, and in section 5 we provide a few examples.

Acknowledgments. I would like to thank my advisor Shing-Tung Yau
for suggesting this problem and for constant support. I also thank Chen-
Yu Chi, Jian Song, Gábor Székelyhidi and Ben Weinkove for very useful
discussions. I was partially supported by a Harvard Merit Fellowship.
These results are part of my PhD thesis at Harvard University [To3].
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2. Complex Monge-Ampère equations

In this section we translate our problem to a family of degenerating
complex Monge-Ampère equations, and we state our estimates.

First of all let us recall our setup from the introduction: (X,ωX) is
a compact Kähler manifold of complex dimension n with c1(X) = 0,
or in other words a Calabi-Yau manifold. We have a map holomorphic
map f : X → Z, where (Z,ωZ) is another compact Kähler manifold,
with image Y ⊂ Z and so that f : X → Y has connected fibers. Y is
assumed to be an irreducible normal subvariety of Z of dimension m
with 0 < m < n, and we let ωY be the restriction of ωZ to the regular
part of Y . We also set ω0 = f∗ωZ , which is a smooth nonnegative (1, 1)
form on X whose cohomology class lies on the boundary of the Kähler
cone. There is a proper subvariety S ⊂ X such that Y \f(S) is smooth
and f : X\S → Y \f(S) is a smooth submersion. Yau’s theorem [Y1]
says that in each Kähler class of X there is a unique Kähler metric with
Ricci curvature identically zero. For each 0 < t ≤ 1 we call ω̃t the Ricci-
flat Kähler metric cohomologous to [ω0] + t[ωX ], and we wish to study
the behaviour of these metrics when t goes to zero. On X we have

ωk
0 ∧ ωn−k

X = 0,

for m+ 1 ≤ k ≤ n, and

(2.1) ωm
0 ∧ ωn−m

X = Hωn
X ,

where the smooth non-negative function H vanishes precisely on S and
is such that H−γ is in L1 for some small γ > 0. This is because H is
locally comparable to a sum of squares of holomorphic functions (the
minors of the Jacobian of f). In particular it follows that

∫

X
ωm
0 ∧ ωn−m

X > 0.

For later purposes we need the following construction. Let I be the
ideal sheaf of f(S) inside Z. We cover Z by a finite number of open sets
Uk so that on each Uk the ideal I is generated by holomorphic functions
hk,j, with 1 ≤ j ≤ Nk. We then fix ηk a partition of unity subordinate
to the covering {Uk} and we let

(2.2) σ =
∑

k,j

ηk|hk,j |2,

if S 6= ∅ and otherwise we just set σ = 1. Then σ is a smooth nonnega-
tive function on Z with zero locus precisely f(S) and there is a constant
C so that on Z we have

(2.3) σ ≤ C, 0 ≤
√
−1∂σ ∧ ∂σ ≤ CωZ , −CωZ ≤

√
−1∂∂σ ≤ CωZ.



ADIABATIC LIMITS OF RICCI-FLAT KÄHLER METRICS 431

Then for any y ∈ Y \f(S) we have the inequality

(2.4) σ(y)λ ≤ C inf
Xy

H,

for some constants C, λ, and we are free to enlarge λ if needed. This is
because both of the function H and f∗σ on X are locally comparable
to a sum of squares of holomorphic functions and they both have zero
set equal to S. By taking a log resolution of the ideal sheaf of S inside
X and we can assume that S is a divisor with simple normal crossings,
and then the holomorphic functions have well defined vanishing orders
along the irreducible components of S, and (2.4) follows.

In this setting we look at the Kähler forms ωt = ω0+tωX for 0 < t ≤ 1,
which are cohomologous to the Ricci-flat metrics ω̃t. We then define a
smooth function E by

Ric(ωX) =
√
−1∂∂E,

∫

X
eEωn

X =

∫

X
ωn
1 ,

which is possible thanks to the ∂∂-lemma. Then the equation Ric(ω̃t) =
0 is equivalent to

ω̃n
t = ate

Eωn
X ,

where

at =

∫

X ω
n
t

∫

X ω
n
1

.

Using the ∂∂-lemma again, we can find smooth functions ϕt for 0 < t ≤
1 so that ω̃t = ωt +

√
−1∂∂ϕt, supX ϕt = 0 and we have

(2.5) (ωt +
√
−1∂∂ϕt)

n = ate
Eωn

X .

Notice that as t approaches zero, the constants at behave like

(2.6)

(

n

m

)

∫

X ωm
0 ∧ ωn−m

X
∫

X ωn
1

tn−m +O
(

tn−m+1
)

.

We can then write (2.5) as

(2.7) (ωt +
√
−1∂∂ϕt)

n = ctt
n−meEωn

X ,

where the constant ct is bounded away from zero and infinity as t goes
to zero. Equation (2.7) has been studied for example in [KT] where a
uniform L∞ bound on ϕt was conjectured. When m = 1 such a bound
can be easily proved using the Moser iteration method (see [ST1]). The
bound in the general case was then proved independently by Demailly
and Pali [DP] and by Eyssidieux, Guedj and Zeriahi [EGZ2]:

Theorem 2.1 ([DP, EGZ2]). There is a constant C that depends

only on X,E, ωX , ω0 such that for all 0 < t ≤ 1 we have

(2.8) ‖ϕt‖L∞ ≤ C.
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Our goal is to show higher order estimates for ϕt which are uniform
on compact sets of X\S. Notice that since

0 < trωX
ω̃t = trωX

ωt + ∆ωX
ϕt,

and since trωX
ωt is uniformly bounded, we always have a uniform lower

bound for ∆ωX
ϕt.

The following are our main results, and together they imply Theorem
1.2.

Theorem 2.2. There are constants A,B,C that depend only on the

fixed data, so that on X\S and for any 0 < t ≤ 1 we have

(2.9)
t

CeAeBσ−λ
ωX ≤ ω̃t ≤ CeAeBσ−λ

ωX ,

where σ is defined by (2.2). In particular the Laplacian ∆ωX
ϕt is

bounded uniformly on compact sets of X\S, independent of t.
Theorem 2.3. Given any y ∈ Y \f(S) denote by Xy the fiber f−1(y),

by ωy the Kähler form ωX |Xy and by ω̃y the restriction of the Ricci-flat

metric ω̃t|Xy . Then there are constants A,B,C that only depend on the

fixed data, so that on the fiber Xy and any 0 < t ≤ 1 we have

(2.10)
t

CeAeBσ(y)−λ
ωy ≤ ω̃y ≤ tCeAeBσ(y)−λ

ωy,

(2.11) |∇ω̃y|2ωy
≤ t1/2CeAeBσ(y)−λ

,

where ∇ is the covariant derivative of ωy. In particular the metrics ω̃y

converge to zero in C1(ωy) as t approaches zero, uniformly as y varies

in a compact set of Y \f(S).

Theorem 2.4. As t → 0 the Ricci-flat metrics ω̃t on X\S converge

to f∗ω, where ω is a smooth Kähler metric on Y \f(S). The convergence

is weakly as currents and also in the C1,β
loc topology of Kähler potentials

for any 0 < β < 1. The metric ω satisfies

Ric(ω) = ωWP ,

on Y \f(S), where ωWP is the pullback of the Weil-Petersson metric

from the moduli space of the Calabi-Yau fibers, and it measures the

change of complex structures of the fibers.

3. A priori estimates

In this section we prove a priori C2 estimates for the degenerating
complex Monge-Ampère equations that we are considering, and we also
prove C3 estimates along the fibers of f .

We start with a few lemmas.
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Lemma 3.1. There is a uniform constant C so that for all 0 < t ≤ 1
we have

(3.1) trω̃tω0 ≤ C.

Proof. Recall that we are assuming that ω0 = f∗ωZ where f : X → Z
is a holomorphic map. We can then use the Chern-Lu formula that
appears in Yau’s Schwarz lemma computation [Y2, To1] and get

∆ω̃t log trω̃tω0 ≥ −Atrω̃tω0,

for a uniform constant A. Noticing that

∆ω̃tϕt = n− trω̃tωt ≤ n− trω̃tω0,

we see that

(3.2) ∆ω̃t(log trω̃tω0 − (A+ 1)ϕt) ≥ trω̃tω0 − n(A+ 1).

Then the maximum principle applied to (3.2), together with the esti-
mate (2.8), gives (3.1). q.e.d.

The next lemma, which gives a Sobolev constant bound, is due inde-
pendently to Allard [A] and Michael-Simon [MS].

Lemma 3.2. There is a uniform constant C so that for any 0 < t ≤
1, for any y ∈ Y \f(S) and for any u ∈ C∞(Xy) we have

(3.3)

(

∫

Xy

|u|
2(n−m)
n−m−1ωn−m

y

)
n−m−1
n−m

≤ C

∫

Xy

(

|∇u|2ωy
+ |u|2

)

ωn−m
y .

Proof. For any y ∈ Y \f(S) the fiber Xy is a smooth (n−m) - dimen-
sional complex submanifold of X. Since X is Kähler, it follows that Xy

is a minimal submanifold, and so it has vanishing mean curvature vec-
tor. We then use the Nash embedding theorem to isometrically embed
(X,ωX) into Euclidean space, and so we have an isometric embedding
X → R

N . The length of the mean curvature vector of the composite
isometric embedding Xy → X → R

N is then uniformly bounded inde-
pendent of y, since it depends only on the second fundamental form of
X → R

N . Then (3.3) follows from the uniform Sobolev inequality of
[A, MS]. Notice that they prove an L1 Sobolev inequality, but this im-
plies the stated L2 Sobolev inequality thanks to the Hölder inequality.

q.e.d.

One can easily avoid the Nash embedding theorem by using a par-
tition of unity to reduce directly to the Euclidean case, but the above
proof is perhaps cleaner.

We note here that the volume of Xy with respect to ωy,
∫

Xy
ωn−m
y , is

a homological constant independent of y ∈ Y \f(S), and up to scaling
ωX we may assume that it is equal to 1. The next step is to prove a
diameter bound for ωy:
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Lemma 3.3. There is a uniform constant C so that for any 0 < t ≤
1, for any y ∈ Y \f(S) we have

(3.4) diam(Xy, ωy) ≤ C.

Proof. As above we embed (X,ωX) isometrically into R
N and we get

that the length of the mean curvature vector of the composite isometric
embedding Xy → X → R

N is then uniformly bounded independent of y.
We can then apply Theorem 1.1 of [Tp] and get the required diameter
bound.

Alternatively, first one observes that (3.3) implies that there is a
uniform constant κ so that geodesic balls in Xy of radius r < 1 have

volume at least κr2(n−m) (Lemma 3.2 in [H]). Since the total volume of
Xy is constant equal to 1, an elementary argument gives the required
diameter bound. q.e.d.

The next step is to prove a Poincaré inequality for the restricted met-
ric ωy. This time the constant will not be uniformly bounded, but it
will blow up like a power of 1

H , where H is defined in (2.1). To this end,
we first estimate the Ricci curvature of ωy. Fix a point y ∈ Y \f(S)
and choose local coordinates z1, . . . , zn−m on the fiber Xy, which ex-
tend locally to coordinates in a ball in X. Then pick local coordi-
nates wn−m+1, . . . , wn near y ∈ Y \f(S), so that z1, . . . , zn−m, zn−m+1 =
f∗(wn−m+1), . . . , zn = f∗(wn) give local holomorphic coordinates on X.
We can also assume that at the point y the metric ωY is the identity.
At any fixed point of Xy we then have

Ric(ωy) = −
√
−1∂∂ log

ωn−m
y

dz1 ∧ · · · ∧ dzn−m

= −
√
−1∂∂ log

ωn−m
X ∧ ωm

0

dz1 ∧ · · · ∧ dzn

= −
√
−1∂∂ logH −

√
−1∂∂ log

ωn
X

dz1 ∧ · · · ∧ dzn

≥ −
√
−1∂∂H

H
+ Ric(ωX)|Xy

≥ −
(

C

H
+ C

)

ωy ≥ −C

H
ωy,

(3.5)

where all derivatives are in fiber directions. Combining (3.5) and (2.4)
we see that the Ricci curvature of ωy is bounded below by −Cσ−λ.
Since the diameter of ωy is bounded by Lemma 3.3, a theorem of Li-
Yau [LY] then shows that the Poincaré constant of ωy is bounded above

by CeBσ−λ
. This proves the following

Lemma 3.4. There are uniform constants λ,B,C so that for any 0 <
t ≤ 1, for any y ∈ Y \f(S) and for any u ∈ C∞(Xy) with

∫

Xy
uωn−m

y = 0
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we have

(3.6)

∫

Xy

|u|2ωn−m
y ≤ CeBσ−λ

∫

Xy

|∇u|2ωy
ωn−m
y .

We now let ω̃y be the restriction ω̃t|Xy . We have the following esti-
mate for the volume form of ω̃y on Xy:

ω̃n−m
y

ωn−m
y

=
ω̃n−m
t ∧ ωm

0

ωn−m
X ∧ ωm

0

=
ω̃n−m
t ∧ ωm

0

ω̃n
t

· ω̃n
t

Hωn
X

≤
(

ω̃n−1
t ∧ ω0

ω̃n
t

)m
ctt

n−meE

H

= (trω̃tω0)
m ctt

n−meE

H
≤ Ctn−m

σλ
.

(3.7)

Notice that when we restrict to Xy we have

ω̃y = (ω0 + tωX +
√
−1∂∂ϕt)|Xy = tωy + (

√
−1∂∂ϕt)|Xy .

It is convenient to define a function ϕt on Y \f(S) by

ϕt(y) =

∫

Xy

ϕtω
n−m
y .

This is just the “integration along the fibers” of ϕt, and we will also
denote by ϕt its pullback to X\S via f . We also define a function on
X\S by

ψ =
1

t

(

ϕt − ϕt

)

,

so that we have
∫

Xy
ψωn−m

y = 0 and on Xy we have

(3.8) (ωy +
√
−1∂∂ψ)n−m =

ω̃n−m
y

tn−m
≤ C

σλ
ωn−m
y .

We can then apply Yau’s L∞ estimate for complex Monge-Ampère equa-
tions [Y1] to the inequality (3.8). Since the volume of Xy is constant
equal to 1, the Sobolev constant of ωy is uniformly bounded (Lemma
3.2) and the Poincaré constant is controlled by Lemma 3.4, Yau’s L∞

estimate gives

(3.9) sup
Xy

∣

∣ϕt − ϕt

∣

∣ = t sup
Xy

|ψ| ≤ tCeBσ(y)−λ
,

where we increased the constant B to absorb the term σ−λ in (3.8).
Recall that from (2.8) we have a uniform bound for the oscillation of
ϕt.

Proof of Theorem 2.2. First we will show the right-hand side inequal-
ity in (2.9). We will apply the maximum principle to the quantity

K = e−Bσ−λ

(

log trωX
ω̃t −

A

t
(ϕt − ϕt)

)

,
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where A is a suitably chosen uniform large constant. The maximum of
K on X\S is obviously achieved, and we will show that K ≤ C for a
uniform constant C. This together with (3.9) will show that on X\S
we have

(3.10) ∆ωX
ϕt = trωX

ω̃t − trωX
ω0 − nt ≤ trωX

ω̃t ≤ CeCeBσ−λ

,

which is half of (2.9) To do this, we first compute as in Yau’s C2 esti-
mates [Y1]

∆ω̃t log trωX
ω̃t ≥ −Ctrω̃tωX − C,

for a uniform constant C. On the other hand

∆ω̃tϕt ≤ n− t · trω̃tωX ,

and so if A is large enough we get

∆ω̃t

(

log trωX
ω̃t −

A

t
ϕt

)

≥ trω̃tωX − C

t
.

Since f is locally a submersion on X\S, the fiber integration formula

∂∂ϕt = f∗(∂∂ϕt ∧ ωn−m
X )

holds. So we can compute that

∆ω̃tϕt = trω̃tf∗(
√
−1∂∂ϕt ∧ ωn−m

X )

= trω̃tf∗((ω̃t − ωt) ∧ ωn−m
X )

≥ −trω̃tf∗(ωt ∧ ωn−m
X )

= −trω̃tf∗(f
∗ωY ∧ ωn−m

X ) − ttrω̃tf∗(ω
n−m+1
X )

= −trω̃tω0 − ttrω̃tf∗(ω
n−m+1
X ).

(3.11)

On Y \f(S) the Kähler form f∗(ω
n−m+1
X ) can be estimated by

f∗(ω
n−m+1
X ) ≤ ωm−1

Y ∧ f∗(ωn−m+1
X )

ωm
Y

ωY =
f∗(ω

m−1
0 ∧ ωn−m+1

X )

ωm
Y

ωY

≤ C
f∗(ω

n
X)

ωm
Y

ωY = C
f∗(H

−1ωm
0 ∧ ωn−m

X )

ωm
Y

ωY

≤ Cσ−λ f∗(ω
m
0 ∧ ωn−m

X )

ωm
Y

ωY = Cσ−λωY .

(3.12)

and so using (3.1) we get

∆ω̃tϕt ≥ −C − tCσ−λ.

It follows that

(3.13) ∆ω̃t

(

log trωX
ω̃t −

A

t
(ϕt − ϕt)

)

≥ trω̃tωX − C

t
− Cσ−λ.
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Using (2.3) and (3.1) we have that

(3.14) |∆ω̃tσ| ≤ Ctrω̃tω0 ≤ C,

(3.15) |∇σ|2ω̃t
≤ Ctrω̃tω0 ≤ C,

Using (3.13) we then compute

∆ω̃tK ≥ e−Bσ−λ

(

trω̃tωX − C

t
− Cσ−λ

)

+

(

log trωX
ω̃t −

A

t
(ϕt − ϕt)

)

∆ω̃t

(

e−Bσ−λ
)

+ 2eBσ−λ
Re〈∇K,∇e−Bσ−λ〉ω̃t

− 2

(

log trωX
ω̃t −

A

t
(ϕt − ϕt)

)

eBσ−λ
∣

∣

∣∇e−Bσ−λ
∣

∣

∣

2

ω̃t

.

(3.16)

Using (2.3), (3.14) and (3.15), the second term in (3.16) can be esti-
mated as follows

∆ω̃t

(

e−Bσ−λ
)

=
Bλe−Bσ−λ

σλ+1
∆ω̃tσ +

B2λ2e−Bσ−λ

σ2λ+2
|∇σ|2ω̃t

− Bλ(λ+ 1)e−Bσ−λ

σλ+2
|∇σ|2ω̃t

≥ −C e
−Bσ−λ

σλ+1
− C

e−Bσ−λ

σλ+2

≥ −C e
−Bσ−λ

σλ+2
.

(3.17)

At the maximum of K we may assume that K ≥ 0, otherwise we have
nothing to prove. Hence we can use (3.9) to estimate

(

log trωX
ω̃t −

A

t
(ϕt − ϕt)

)

∆ω̃t

(

e−Bσ−λ
)

≥ −C e
−Bσ−λ

σλ+2
log trωX

ω̃t −
C

σλ+2
.

(3.18)

The fourth term in (3.16) can be estimated using (3.15)

∣

∣

∣
∇e−Bσ−λ

∣

∣

∣

2

ω̃t

=
B2λ2e−2Bσ−λ

σ2λ+2
|∇σ|2ω̃t

≤ Ce−2Bσ−λ

σ2λ+2
,(3.19)

−2

(

log trωX
ω̃t −

A

t
(ϕt − ϕt)

)

eBσ−λ
∣

∣

∣∇e−Bσ−λ
∣

∣

∣

2

ω̃t

≥ −C e
−Bσ−λ

σ2λ+2
log trωX

ω̃t −
C

σ2λ+2
.

(3.20)

Plugging (3.18) and (3.20) in (3.16), at the maximum point of K we get

0 ≥ trω̃tωX − C

t
− C

σλ
− C

σ2λ+2
log trωX

ω̃t − C
eBσ−λ

σ2λ+2
.
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Since for any two Kähler metrics ω, ω̃ we have

(3.21) trωω̃ ≤ (trω̃ω)n−1 ω̃
n

ωn
,

we see that

trωX
ω̃t ≤ Ctn−m(trω̃tωX)n−1 ≤ C(trω̃tωX)n−1,

and using this and the inequalities 2ab ≤ εa2+b2/ε and (log x)2 ≤ x+C
we get

trω̃tωX ≤ C

t
+
C

σλ
+

C

σ4λ+4
+ C

eBσ−λ

σ2λ+2
+

1

2
trω̃tωX ,

whence

trω̃tωX ≤ C

t
+CeCσ−λ

.

At the same point we then get

trω̃tωt = trω̃t(ω0 + tωX) ≤ C + tCeCσ−λ
.

and using (3.21) we get

(3.22) trωtω̃t ≤ (trω̃tωt)
n−1 ω̃

n
t

ωn
t

≤
(

C + tCeCσ−λ
)n−1 ω̃n

t

ωn
t

.

We now use (2.1), (2.7) and (2.4) to get

(3.23)
ω̃n
t

ωn
t

≤ Ctn−mωn
X

ωm
0 ∧ (tωX)n−m

=
C

H
≤ C

σλ
.

Combining (3.22) and (3.23) we get

trωtω̃t ≤ CeCσ−λ
,

for some uniform constant C. But we also have ωt = ω0 + tωX ≤ CωX

and so we get

trωX
ω̃t ≤ CeCσ−λ

.

Using (3.9) again, this implies that at the maximum of K we have

K ≤ C + e−Bσ−λ
log
(

CeCσ−λ
)

≤ C.

We now show the left-hand side inequality in (2.9). To this extent we
apply the maximum principle to the quantity

K1 = e−Bσ−λ
h

(

log(t · trω̃tωX) − A

t
(ϕt − ϕt)

)

,

where A is a suitably chosen uniform large constant. The maximum of
K1 on X\S is obviously achieved, and we will show that K1 ≤ C for
a uniform constant C. This together with (3.9) will show that on X\S
we have

(3.24) trω̃tωX ≤ C

t
eCeBσ−λ

,
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which is the other half of (2.9). To prove that K1 ≤ C we use the
maximum principle and, as in (3.16), we compute

∆ω̃tK1 ≥ e−Bσ−λ

(

trω̃tωX − C

t
− Cσ−λ

)

+

(

log(t · trω̃tωX) − A

t
(ϕt − ϕt)

)

∆ω̃t

(

e−Bσ−λ
)

+ 2eBσ−λ
Re〈∇K1,∇e−Bσ−λ〉ω̃t

− 2

(

log(t · trω̃tωX) − A

t
(ϕt − ϕt)

)

eBσ−λ
∣

∣

∣
∇e−Bσ−λ

∣

∣

∣

2

ω̃t

.

(3.25)

We estimate this in the same way as before and get

∆ω̃tK1 ≥ e−Bσ−λ

(

trω̃tωX − C

t
− Cσ−λ

)

− C
e−Bσ−λ

σ2λ+2
log(t · trω̃tωX) − C

σ2λ+2

+ 2eBσ−λ
Re〈∇K1,∇e−Bσ−λ〉ω̃t .

(3.26)

At the maximum of K1 we get

0 ≥ trω̃tωX − C

t
− C

σλ
− C

σ2λ+2
log(t · trω̃tωX) − CeCσ−λ

,

and using the inequalities 2ab ≤ εa2 + b2/ε and (log x)2 ≤ x+C we get

trω̃tωX ≤ C

t
+
C

σλ
+

C

σ4λ+4
+ CeCσ−λ

+
1

2
trω̃tωX ,

whence

t · trω̃tωX ≤ C + tCeCσ−λ ≤ CeCσ−λ
,

and so at that point

K1 ≤ C + e−Bσ−λ
log
(

CeCσ−λ
)

≤ C,

and we are done. q.e.d.

Proof of Theorem 2.3. We will first show (2.10), which is an easy
consequence of (2.9). The left-hand side follows immediately from (2.9),
which implies

(3.27) trω̃yωy ≤ C

t
eCeBσ−λ

.

Then (3.21) and (3.7) give

(3.28) trωy ω̃y ≤ (trω̃yωy)n−m−1
ω̃n−m
y

ωn−m
y

≤ t
CeCeBσ−λ

σλ
≤ tCeCeBσ−λ

,

which proves (2.10).
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Next, we show (2.11). Recall from (3.10) and (3.24) that on X\S we
have

(3.29) trωX
ω̃t ≤ CeC0eBσ−λ

.

(3.30) trω̃tωX ≤ C

t
eC0eBσ−λ

,

for uniform constants B,C,C0. We apply the maximum principle to the
quantity

K2 = e−AeBσ−λ

(

S + C
e3C0eBσ−λ

t5/2
trωX

ω̃t

)

,

for suitable constants A,C, where the quantity S is the same quantity
as in [Y1]:

S = |∇ω̃t|2ω̃t
,

where ∇ is the covariant derivative associated to the metric ωX . Using
ϕt we can write

S = g̃ipt g̃
qj
t g̃

kr
t

(

g0
ij,k

+ ϕijk

)

(

g0qp,r + ϕpqr

)

,

where again lower indices are covariant derivatives with respect to ωX ,
and where g0

ij
are the components of ω0. We are going to show that

K2 ≤ C
t5/2

, and using (3.29) this implies that

(3.31) S ≤ CeAeBσ−λ

t5/2
.

We now use (3.28), which says that on Xy we have

(3.32) trωy ω̃y ≤ tCeC0eBσ−λ

.

At any given point of Xy we can assume that ωX is the identity and ω̃t

is diagonal with positive entries λi, 1 ≤ i ≤ n, so that the first n −m
directions are tangent to the fiber Xy. Then (3.32) gives that

(3.33) λi ≤ tCeC0eBσ−λ

,

for 1 ≤ i ≤ n−m. Then using (3.31) we see that

n−m
∑

i,j,k=1

1

λiλjλk
|ϕijk|2 ≤

n
∑

i,j,k=1

1

λiλjλk

∣

∣

∣
g0
ij,k

+ ϕijk

∣

∣

∣

2
= S ≤ CeAeBσ−λ

t5/2
,

where we have used that g0
ij,k

vanishes whenever 1 ≤ i, j ≤ n−m since

ω0|Xy = 0. Using (3.33) we get

|∇ω̃y|2ωy
=

n−m
∑

i,j,k=1

|ϕijk|2 ≤ t1/2Ce(A+3C0)eBσ−λ

,

and this is (2.11).
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We now prove that K2 ≤ C
t5/2

. To simplify the computation, we will
use the notation

F(x) = exe
Bσ−λ

,

where x is a real number, and we note here that F is increasing. The
starting point is a precise formula for ∆ω̃tS. This is just Yau’s C3

estimate [Y1], but without assuming that the metrics ω̃t and ωt =
ω0 + tωX are equivalent, and it is done in a more general setting in
[TWY] (see also [PSS]). With the notation of [TWY] we can write

S =
∑

i,j,k

|aijk|2.

We then choose local unitary frames {θ1, . . . , θn} for ωX and {θ̃1, . . . , θ̃n}
for ω̃t, and write

θ̃i =
∑

j

aijθ
j,

θi =
∑

j

bij θ̃
j,

for some local matrices of functions aij , b
i
j . Notice that at any given

point we can choose the frames and arrange that

(3.34) aij =
√

λiδ
i
j ,

(3.35) bij =
1√
λi
δij .

Then in our case [TWY, (4.3)] reads

∆ω̃tS ≥ 2Re

(

aikℓ

(

bmk b
q
ℓb

s
pR

j
mqsa

i
rpa

r
j − aijb

q
ℓb

s
pR

j
mqsa

r
kpb

m
r

− aijb
m
k b

s
pR

j
mqsa

r
ℓpb

q
r + aijb

m
k b

q
ℓb

s
pb

u
pR

j
mqs,u

))

,(3.36)

where we are summing over all indices, Rj
mqs represents the curvature

of ωX and Rj
mqs,u its covariant derivative (with respect to ωX). Since

these are fixed tensors, we can use the Cauchy-Schwarz inequality and
(3.34), (3.35) to estimate the first term on the right hand side of (3.36)
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by

∣

∣

∣2Re
(

aikℓb
m
k b

q
ℓb

s
pR

j
mqsa

i
rpa

r
j

)∣

∣

∣ ≤ C
∑

i,k,ℓ,r,p

|aikℓairp|
√

λr
λkλℓλp

≤ C





∑

j

λj





1
2 (

∑

q

1

λq

) 3
2
∑

k,ℓ,r,p

(

∑

i

|aikℓ|2
) 1

2
(

∑

i

|airp|2
) 1

2

= C(trωX
ω̃t)

1
2 (trω̃tωX)

3
2





∑

i,k,ℓ

|aikℓ|2




1
2




∑

i,r,p

|airp|2




1
2

= CS(trωX
ω̃t)

1
2 (trω̃tωX)

3
2 .

The second and third term in (3.36) are estimated similarly, while the
fourth term can be bounded by

∣

∣

∣
2Re

(

aikℓa
i
jb

m
k b

q
ℓb

s
pb

u
pR

j
mqs,u

)∣

∣

∣
≤ C

∑

i,k,ℓ,p

|aikℓ|
√

λi
λkλℓλ2p

≤ C





∑

j

λj





1
2 (

∑

q

1

λq

)2
∑

i,k,ℓ

|aikℓ|

≤ C
√
S(trωX

ω̃t)
1
2 (trω̃tωX)2.

Overall we can estimate
(3.37)

∆ω̃tS ≥ −CS(trω̃tωX)3/2(trωX
ω̃t)

1/2 − C
√
S(trω̃tωX)2(trωX

ω̃t)
1/2.

On the other hand from [TWY, Lemma 3.3] we see that

∆ω̃ttrωX
ω̃t = aikℓa

i
pℓa

k
j a

p
j + aija

i
rb

q
ℓb

s
ℓR

r
jqs

≥
∑

i,j,ℓ

|aijℓ|2λj − C
∑

i,ℓ

λi
λℓ

≥
(

∑

k

1

λk

)−1
∑

i,j,ℓ

|aijℓ|2 − C

(

∑

p

λp

)(

∑

q

1

λq

)

=
S

trω̃tωX
− C(trω̃tωX)(trωX

ω̃t).

(3.38)

We now insert (3.29), (3.30) in (3.37), (3.38) and get

(3.39) ∆ω̃tS ≥ −CF(2C0)

t3/2
S − CF(5C0/2)

t2

√
S,

∆ω̃ttrωX
ω̃t ≥

tF(−C0)

C
S − CF(2C0)

t
.
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We then compute

∆ω̃t

(F(3C0)

t5/2
trωX

ω̃t

)

≥ F(2C0)

Ct3/2
S − CF(5C0)

t7/2

+
2

t5/2
Re〈∇F(3C0),∇trωX

ω̃t〉ω̃t

+
1

t5/2
(trωX

ω̃t)∆ω̃tF(3C0),

(3.40)

and estimate

Re〈∇F(3C0),∇trωX
ω̃t〉ω̃t ≥ −|∇F(3C0)|ω̃t |∇trωX

ω̃t|ω̃t .

Using [TWY, (3.20)] we see that

|∇trωX
ω̃t|ω̃t ≤

√
S(trωX

ω̃t).

On the other hand a direct computation using (3.14) and (3.15) shows
that there is a constant C such that for any real number x we have

|∇F(x)|ω̃t ≤ CF(x+ 1),

|∆ω̃tF(x)| ≤ CF(x+ 1),

and so we have

∆ω̃t

(F(3C0)

t5/2
trωX

ω̃t

)

≥ F(2C0)

Ct3/2
S − CF(5C0)

t7/2
− CF(5C0)

t5/2

√
S

− CF(5C0)

t5/2
.

(3.41)

This and (3.39) give

∆ω̃t

(

S +
CF(3C0)

t5/2
trωX

ω̃t

)

≥ F(2C0)

t3/2
S − CF(5C0/2)

t2

√
S

− CF(5C0)

t7/2
− CF(5C0)

t5/2

√
S − CF(5C0)

t5/2

≥ F(2C0)

t3/2
S − CF(5C0)

t7/2
− CF(5C0)

t5/2

√
S,

and

∆ω̃tK2 ≥ F(−A)

(F(2C0)

t3/2
S − CF(5C0)

t7/2
− CF(5C0)

t5/2

√
S

− CF(1)S − CF(4C0 + 1)

t5/2

)

+ 2F(A)Re〈∇K2,∇F(−A)〉ω̃t

≥ F(−A)

(F(2C0)

Ct3/2
S − CF(5C0)

t7/2
− CF(5C0)

t5/2

√
S
)

+ 2F(A)Re〈∇K2,∇F(−A)〉ω̃t .

(3.42)



444 V. TOSATTI

At the maximum of K2 we then get

S ≤ CF(3C0)

t

√
S +

CF(3C0)

t2
,

which implies that

S ≤ CF(6C0)

t2
,

and so

K2 = F(−A)

(

S +
CF(3C0)

t5/2
trωX

ω̃t

)

≤ F(−A)
CF(6C0)

t5/2
≤ C

t5/2
,

if we choose A ≥ 6C0. q.e.d.

Remark. In the estimates proved in this section we have repeatedly
used the fact that the metrics ω̃t are Ricci-flat. If instead one is dealing
with the general equation (2.7), the only estimate that does not gener-
alize immediately is (3.1) (which requires that the Ricci curvature of ω̃t

be nonnegative).

Remark. In the context of collapsing of the Kähler-Ricci flow on
projective manifolds with semi-ample canonical bundle and positive Ko-
daira dimension, parabolic analogues of the C2 estimates (2.9), (2.10)
were proved by Song-Tian in [ST3].

4. Collapsing of Ricci-flat metrics

In this section we use the estimates from section 3 to prove that the
Ricci-flat metrics collapse to the base of the fibration.

We first explain the meaning of the Weil-Petersson metric, following
the discussion in [ST2]. Recall that the Ricci-flat Kähler metric on X
cohomologous to ω1 = ω0+ωX is denoted by ω̃1. We will call Ω = ω̃n

1 its
volume form. The generic fiberXy of f is an (n−m)-dimensional Calabi-
Yau manifold, and it is equipped with the Kähler form ωy = ωX |Xy .

Recall that the volume of Xy is a homological constant independent
of y, and that we assume that it is equal to 1. Since c1(Xy) = 0, there

is a smooth function Fy such that Ric(ωy) =
√
−1∂∂Fy and

∫

Xy
(eFy −

1)ωn−m
y = 0. The functions Fy vary smoothly in y, since so do the

Kähler forms ωy. By Yau’s theorem there is a unique Ricci-flat Kähler
metric ωSF,y on Xy cohomologous to ωy, given by the solution of

(4.1) ωn−m
SF,y = eFyωn−m

y .

If we write ωSF,y = ωy +
√
−1∂∂ζy, the functions ζy vary smoothly in

y and so they define a smooth function ζ on X\S. We then define a
real closed (1, 1)-form ωSF on X\S by ωSF = ωX +

√
−1∂∂ζ, and call

it the semi-flat form. Notice that ωSF is not necessarily nonnegative
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(it is Kähler only in the fiber directions), but on X\S the (n, n)-form
ωn−m
SF ∧ ωm

0 is strictly positive, and so we can define a smooth positive
function F on X\S by

(4.2) F =
Ω

ωn−m
SF ∧ ωm

0

.

We claim that F is actually constant on each fiber Xy, and so it is the
pullback of a function on Y \f(S). To see this, fix a point y ∈ Y \f(S)
and choose local coordinates z1, . . . , zn−m on the fiber Xy, which ex-
tend locally to coordinates in a ball in X. Then take local coordi-
nates wn−m+1, . . . , wn near y ∈ Y \f(S), so that z1, . . . , zn−m, zn−m+1 =
f∗(wn−m+1), . . . , zn = f∗(wn) give local holomorphic coordinates on X.
In these coordinates write

ω0 =
√
−1

n
∑

i,j=n−m+1

g0
ij
dzi ∧ dzj,

ωSF,y =
√
−1

n−m
∑

i,j=1

gSF
ij
dzi ∧ dzj ,

Ω = G(
√
−1)ndz1 ∧ · · · ∧ dzn.

Then locally

F =
G

det
(

g0
ij

)

det
(

gSF
ij

) ,

and so on the fiber Xy we have
√
−1∂∂ logF = −Ric(ω̃1) + Ric(ωSF,y) = 0,

because ω0 is the pullback of a metric from Y , and so F is indeed
constant on Xy. Moreover, it is easy to check [ST2, Lemma 3.3] that
on Y \f(S) we have

F =
f∗Ω

ωm
Y

,

and so
∫

Y
Fωm

Y =

∫

X
Ω =

∫

X
ωn
1

is finite. In fact there is a positive ε so that
∫

Y F
1+εωm

Y is finite [ST2,
Proposition 3.2]. Then we apply [ST2, Theorem 3.2], which relies on the
seminal work of Ko lodziej [K] and further generalizations [EGZ1, Z],
to solve (uniquely) the complex Monge-Ampère equation

(4.3) (ωY +
√
−1∂∂ψ)m =

∫

X ωm
0 ∧ ωn−m

X
∫

X ωn
1

Fωm
Y ,

with ψ ∈ L∞(Y ) and moreover ψ is smooth on Y \f(S) (the proof of this
follows the arguments of Yau in [Y1]). We will call ω = ωY +

√
−1∂∂ψ

the Kähler metric on Y \f(S) that we’ve just constructed. Its Ricci
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curvature is the Weil-Petersson metric that we are about to define. Re-
call that the fibers Xy have torsion canonical bundle, so that there is

a number k such that K⊗k
Xy

is trivial for all y ∈ Y \f(S). The Weil-

Petersson metric is a smooth nonnegative (1, 1)-form on Y \f(S) de-
fined as the curvature form of a pseudonorm on the relative canoni-
cal line bundle f∗(Ω

n−m
X/Y )⊗k: if Ψy is a local nonzero holomorphic sec-

tion of f∗(Ω
n−m
X/Y )⊗k, which means that Ψy is a nonzero holomorphic

k-pluricanonical form on Xy that varies holomorphically in y, then we
let its length be

|Ψy|2hWP
=

∫

Xy

(Ψy ∧ Ψy)
1
k .

For k > 1 this is not a Hermitian metric, but just a pseudonorm. The
Weil-Petersson metric ωWP on Y \f(S) is just formally the curvature of
hWP , that is locally we set

ωWP = −
√
−1∂∂ log |Ψy|2hWP

,

and this is well-defined because the bundleK⊗k
Xy

is trivial. It is a classical

fact (see [FS]) that ωWP is pointwise nonnegative. As an aside, we note
here that one can realize ωWP as the actual curvature form of an honest
Hermitian metric on a relative canonical bundle if one takes a finite
unramified k-sheeted cyclic cover X̃ → X so that the smooth fibers of
X̃ → Y now have trivial canonical bundle.

Proposition 4.1 (cfr. [ST2]). On Y \f(S) we have

(4.4) Ric(ω) = ωWP .

Proof. Differentiating (4.3) we see that

Ric(ω) = Ric(ωY ) −
√
−1∂∂ log F.

If we fix y ∈ Y \f(S) and choose Ψ a local never vanishing holomorphic

section of f∗(Ω
n−m
X/Y )⊗k, then we can define a local function u = (Ψ∧Ψ)1/k

ωn−m
SF

on X\S, which is constant on each fiber Xy. Since
∫

Xy
ωn−m
SF = 1, we

see that
−
√
−1∂∂ log u = ωWP .

Then

(4.5) Ric(ω) = Ric(ωY ) −
√
−1∂∂ log

uΩ

(Ψ ∧ Ψ)
1
k ∧ ωm

0

.

Picking local coordinates zi as above, and writing

Ψ = K
[

(
√
−1)n−mdz1 ∧ · · · ∧ dzn−m

]⊗k
,

ω0 =
√
−1

n
∑

i,j=n−m+1

g0
ij
dzi ∧ dzj,
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Ω = G(
√
−1)ndz1 ∧ · · · ∧ dzn,

we see that
uΩ

(Ψ ∧ Ψ)
1
k ∧ ωm

0

=
uG

|K| 2k det
(

g0
ij

) ,

and since K is holomorphic and Ω is Ricci-flat we see that

−
√
−1∂∂ log

uG

|K| 2k det
(

g0
ij

) = ωWP − Ric(ωY ),

which together with (4.5) gives (4.4). q.e.d.

With these preparations, we can now show Theorem 2.4, which can be
recast as follows

Theorem 4.1. Consider the Ricci-flat metrics ω̃t on X, which can

be written as ω̃t = ω0 + tωX +
√
−1∂∂ϕt. As t→ 0, we have ϕt → ψ in

the C1,β
loc topology on X\S, for any 0 < β < 1, and so ω̃t converges in

this topology to ω, which satisfies (4.4). Moreover ω̃t also converge to

ω weakly as currents on X.

Proof. We first prove that ω̃t converges to ω in the weak topology of
currents. Since the cohomology class of ω̃t is bounded, weak compact-
ness of currents implies that from any sequence ti → 0 we can extract
a subsequence so that ω̃ti converges weakly to a limit closed positive
(1, 1)-current ω̂, which a priori depends on the sequence. If we write
ω̂ = ω0 +

√
−1∂∂ϕ̂, it follows that ϕti → ϕ̂ in L1, and from the bound

(2.8) we infer that ϕ̂ is in L∞. Moreover restricting ω̂ to any smooth
fiber Xy we see that √

−1∂∂ϕ̂|Xy ≥ 0,

and the maximum principle implies that ϕ̂ is constant on each fiber, and
so descends to a bounded function ϕ̂ on Y \f(S). We will show that ϕ̂
satisfies the same equation (4.3) as ψ, and so by uniqueness ϕ̂ = ψ. To
this end we fix an arbitrary compact set K ⊂ Y \f(S), and we wish to
show that ϕ̂ satisfies (4.3) on K.

We then fix η a smooth function with support contained in K, and
we will also denote by η its pullback to X via f . Recall that we have
called ω̃1 the Ricci-flat metric in the class [ω1], and Ω = ω̃n

1 . Then from
the Monge-Ampère equation (2.5) we have

(4.6)

∫

X
ηΩ =

1

at

∫

X
η(ω0 + tωX +

√
−1∂∂ϕt)

n,

where the constants at are equal to
∫

X ωn
t

∫

X ωn
1

,
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and behave like (2.6). We can also write

(4.7)

∫

X
ηΩ =

∫

X
ηFωn−m

SF ∧ ωm
0 .

We are now going to estimate 1
at

∫

X η(ω0 + tωX +
√
−1∂∂ϕt)

n. We have

1

at

∫

X
η(ω0 + tωX +

√
−1∂∂ϕt)

n

=
1

at

∫

X
η
(

(ω0 +
√
−1∂∂ϕt) + (tωX +

√
−1∂∂(ϕt − ϕt)

)n

=
1

at

∫

X
η

n
∑

k=0

(

n

k

)

(ω0 +
√
−1∂∂ϕt)

k ∧ (tωX +
√
−1∂∂(ϕt − ϕt))

n−k.

First of all observe that the form ω0 +
√
−1∂∂ϕt is the pullback of a

form on Y , and it can be wedged with itself at most m times, so all
terms in the sum with k > m are zero. Next, we claim that all the
terms with k < m go to zero as t → 0. To see this, start by observing
that on the compact set K the estimate (3.29) gives a constant C (that
depends on K) such that

(4.8) −CωX ≤
√
−1∂∂ϕt ≤ CωX .

Moreover from the equation

∂∂ϕt = f∗(∂∂ϕt ∧ ωn−m
X )

together with (4.8), (3.12), we see that on f(K) we have

(4.9) −CωY ≤
√
−1∂∂ϕt ≤ CωY .

We also need to use (3.9) which on K gives

(4.10) sup
K

|ϕt − ϕt| ≤ Ct.

Then any term with k < m is equal to
(n
k

)

at

∫

X
η(ω0 +

√
−1∂∂ϕt)

k ∧ (tωX +
√
−1∂∂(ϕt − ϕt))

n−k,

and it can be expanded into
(n
k

)

at

n−k
∑

i=0

(

n− k

i

)∫

X
η(ω0+

√
−1∂∂ϕt)

k∧(tωX)n−k−i∧(
√
−1∂∂(ϕt−ϕt))

i.

On K the (1, 1)-form ω0 +
√
−1∂∂ϕt is bounded by (4.9). Since at =

O(tn−m) from (2.6), we see that the term in this sum with i = 0 goes
to zero. Any term with i > 0 is comparable to

1

tn−m

∫

X
(ϕt − ϕt)

√
−1∂∂η ∧ (ω0 +

√
−1∂∂ϕt)

k ∧ (tωX)n−k−i∧

∧(
√
−1∂∂(ϕt − ϕt))

i−1.

(4.11)
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Notice that all the (1, 1)-forms appearing inside the integral are bounded
by (4.8), (4.9), and that the function ϕt − ϕt is O(t) by (4.10). On K
the estimate (2.10) gives

(4.12) −Ctωy ≤ (
√
−1∂∂ϕt)|Xy = (

√
−1∂∂(ϕt − ϕt))|Xy ≤ Ctωy.

The form
√
−1∂∂η ∧ (ω0 +

√
−1∂∂ϕt)

k is the pullback of a form from
Y , and so we can use (4.12) to estimate
∣

∣

∣

∣

∣

√
−1∂∂η ∧ (ω0 +

√
−1∂∂ϕt)

k ∧ (tωX)n−k−i ∧ (
√
−1∂∂(ϕt − ϕt))

i−1

ωn
X

∣

∣

∣

∣

∣

≤

≤ Ctn−m,

and so the term (4.11) goes to zero. This proves our claim.
We are then left with only the term with k = m, which is

1

at

∫

X
η

(

n

m

)

(ω0 +
√
−1∂∂ϕt)

m ∧ (tωX +
√
−1∂∂(ϕt − ϕt))

n−m,

and if we expand the term (tωX +
√
−1∂∂(ϕt − ϕt))

n−m, we get

1

at

∫

X
η

(

n

m

)

(ω0 +
√
−1∂∂ϕt)

m ∧ (tωX)n−m

+
1

at

∫

X

√
−1∂∂η ∧ (ω0 +

√
−1∂∂ϕt)

m ∧ . . . ,

and the second term is zero because ∂∂η is the pullback of a form from
the base. We are then left with the term

(4.13)
1

at

∫

X
η

(

n

m

)

(ω0 +
√
−1∂∂ϕt)

m ∧ (tωX)n−m,

which we need to further estimate. Using (4.8) we see that, up to taking
a further subsequence, the functions ϕti converge to ϕ̂ in the C1,β(K)
topology, and (4.10) implies that the functions ϕti also converge to ϕ̂

uniformly. We can then rewrite (4.13) as

tn−m
(

n
m

)

at

∫

X
η(ω0 +

√
−1∂∂ϕt)

m ∧ ωn−m
X .

Using (2.6) we see that as t goes to zero the coefficient
tn−m(n

m)
at

converges
to

∫

X ωn
1

∫

X ω
m
0 ∧ ωn−m

X

.

On the other hand we have
∫

X
η(ω0 +

√
−1∂∂ϕt)

m ∧ ωn−m
X

=

m
∑

k=0

(

m

k

)∫

X
ηωm−k

0 ∧ (
√
−1∂∂ϕt)

k ∧ ωn−m
X .
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The term with k = 0 is independent of t, while any term with k > 0
can be written as

(4.14)

∫

X
ϕt

√
−1∂∂η ∧ ωm−k

0 ∧ (
√
−1∂∂ϕt)

k−1 ∧ ωn−m
X .

The (n, n)-form
√
−1∂∂η ∧ωm−k

0 ∧ (
√
−1∂∂ϕt)

k−1 ∧ωn−m
X is supported

in K and is uniformly bounded by (4.9), and the functions ϕti converge

uniformly to ϕ̂, and so along the sequence ti the term (4.14) has the
same limit as

∫

X
ϕ̂
√
−1∂∂η ∧ ωm−k

0 ∧ (
√
−1∂∂ϕt)

k−1 ∧ ωn−m
X .

But this is equal to
∫

X
ϕt

√
−1∂∂η ∧ ωm−k

0 ∧ (
√
−1∂∂ϕt)

k−2 ∧
√
−1∂∂ϕ̂ ∧ ωn−m

X ,

and repeating the same argument k − 1 times we see that along the
sequence ti the term (4.14) converges to

∫

X
ηωm−k

0 ∧ (
√
−1∂∂ϕ̂)k ∧ ωn−m

X .

It follows that along the sequence ti the term (4.13) converges to
∫

X ωn
1

∫

X ω
m
0 ∧ ωn−m

X

∫

X
η(ω0 +

√
−1∂∂ϕ̂)m ∧ ωn−m

X ,

and using (4.6), (4.7) we get
∫

X
ηFωn−m

SF ∧ ωm
0 =

∫

X ω
n
1

∫

X ωm
0 ∧ ωn−m

X

∫

X
η(ω0 +

√
−1∂∂ϕ̂)m ∧ ωn−m

X .

We then integrate first along the fibers and get
∫

Y
ηFωm

Y

(

∫

Xy

ωn−m
SF,y

)

=

∫

X ω
n
1

∫

X ωm
0 ∧ ωn−m

X

∫

Y
η(ωY +

√
−1∂∂ϕ̂)m

(

∫

Xy

ωn−m
y

)

,

and since ωy is cohomologous to ωSF,y, we get
∫

Y
ηFωm

Y =

∫

X ωn
1

∫

X ω
m
0 ∧ ωn−m

X

∫

Y
η(ωY +

√
−1∂∂ϕ̂)m,

which is just the weak form of (4.3). This shows that any weak limit ω̂ of
ω̃t as t→ 0 satisfies (4.3) weakly, and we have already remarked that we
can write ω̂ = ωY +

√
−1∂∂ϕ̂ with ϕ̂ in L∞. By Ko lodziej’s uniqueness

of L∞ weak solutions of (4.3) (see [ST2, Theorem 3.2] and [EGZ1, Z]),
we must have ϕ̂ = ψ, and so the whole sequence ω̃t converges weakly to
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ω as t→ 0. Then the bound (2.9) implies that ϕt actually converges to

ψ in the C1,β
loc topology on X\S. q.e.d.

5. Examples and remarks

In this section we give some examples where Theorem 1.2 applies.

The easiest example is a complex torus X of dimension n fibering over
another torus Y of lower dimension m. The fibers are also tori and they
are all biholomorphic. In this case Ricci-flat metrics are just flat, and
they can be identified with constant positive definite Hermitian n × n
matrices. If we degenerate the Kähler class on X to the pullback of a
Kähler class from Y , the matrices converge to a nonnegative definite
matrix whose kernel generates the tangent space to the fibers. So the
fibers are shrunk to points and the flat metrics on X converge to the flat
metric on Y in the given class. This is of course compatible with The-
orem 1.2, because in this case the Weil-Petersson metric is identically
zero, and the set S of singular fibers is empty.

To see a more interesting example, let X be an elliptically fibered K3
surface, so X comes equipped with a morphism f : X → P

1 with generic
fibers elliptic curves. Then the pullback of an ample line bundle on P

1

gives a nef line bundle L on X with Iitaka dimension 1. In the case when
all the singular fibers of f are of Kodaira type I1, Gross-Wilson have
shown in [GW] that sequences of Ricci-flat metrics on X whose class
approaches c1(L) converge in C∞ on compact sets of the complement
of the singular fibers to the pullback of a Kähler metric on P

1 (minus
the 24 points which correspond to the singular fibers). Their argument
relies on explicit model metrics that are almost Ricci-flat, and it is not
well-suited to generalization to higher dimensions. More recently Song-
Tian [ST1] gave a more direct proof of the result of Gross-Wilson and
they noticed that the limit metric has Ricci curvature equal to the Weil-
Petersson metric. Our Theorem 1.2 applies in this example, as well as
in higher dimensions.

One can easily construct examples of higher-dimensional Calabi-Yau
manifolds that are algebraic fiber spaces, to which Theorem 1.2 applies.
For example the case of Calabi-Yau threefolds is studied extensively in
[O], where many examples are given.
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