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VIRTUAL MORSE THEORY ON ΩHam(M,ω)

Yakov Savelyev

Abstract

We relate previously defined quantum characteristic classes to
Morse theoretic aspects of the Hofer length functional on ΩHam
(M,ω). As an application we prove a theorem which can be in-
terpreted as stating that this functional is “virtually” a perfect
Morse-Bott functional. This can be applied to study the topol-
ogy and Hofer geometry of Ham(M,ω). We also use this to give
a prediction for the index of some geodesics for this functional,
which was recently partially verified by Yael Karshon and Jen-
nifer Slimowitz[5].

1. Introduction

Hamiltonian fibrations over Riemann surfaces form a rich object from
the point of view of Gromov-Witten theory, as the properties of holo-
morphic sections of such fibrations can be closely tied with the under-
lying geometry of the fibration. Here by geometry we may mean such
things as curvature properties of Hamiltonian connections, geometry of
the coupling forms in the sense of [3], as well as the associated quanti-
ties like Gromov’s K-area (cf. [12]) and the related notion of area of a
Hamiltonian fibration.

Gromov-Witten theory of Hamiltonian fibrations M →֒ X
π
−→ Σ fits

into a certain 2d Hamiltonian cohomological field theory, or even more
generally into a string background [15], considerably extending Gromov-
Witten theory of (M,ω). In this paper we will be concerned with a
fairly small but still geometrically rich part of this theory, restricting
our discussion to genus 0, one input one output part of the data of
field theory. With some further restrictions, the data one gets is a ring
homomorphism defined in [16]:

Ψ : H∗(ΩHam(M,ω),Q) → QH(M).

Geometry of Hamiltonian fibrations over S2 can be tied with Hofer
geometry of loops in Ham(M,ω), and we are going to relate Ψ to a
kind of virtual Morse theory of the positive Hofer length functional,
L+ : ΩHam(M,ω) → R (see (2.2)).
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1.1. Morse theory on ΩHam(M,ω) and Ψ. Let h : B → ΩHam(M,ω)
be a smooth cycle, where B is a closed oriented smooth manifold. Let

(1.1) Ph = B ×M ×D2
0

⋃
B ×M ×D2

∞/ ∼,

where (b, x, 1, θ)0 ∼ (b, hb,θ(x), 1, θ)∞, using the polar coordinates (r, 2πθ).
We get a bundle,

p : Ph → B,

with fiber modeled by a Hamiltonian fibration M →֒ X
π
−→ S2. A

Hamiltonian connection or, equivalently, a coupling form (see [9, theo-
rem 6.21]) on the Hamiltonian bundle

(1.2) M →֒ Ph → B × S2

induces a family of complex structures {Xb = p−1(b), Jb}. The map Ψ
is defined by counting fiber-wise (i.e., vertical) holomorphic curves in
p : Ph → B, with some constraints. The details are given in Section 2.

Let γ : S1 → Ham(M,ω) be a one-parameter subgroup, which is
always assumed in this paper to be generated by a Morse Hamiltonian
H. The loop γ is a smooth point of the functional L+ and is critical
(see Ustilovsky [17]). Our focus will be on smooth cycles h : B →
ΩHam(M,ω) that resemble unstable manifolds for the functional L+ of
γ, in the sense below.

Definition 1.1. We say that a smooth map h : B → ΩHam(M,ω) is
Morse at γ if the pull-back of L+ to B attains its maximum at a unique
point max ∈ B such that L+ is Morse at max and h(max) = γ.

To make use of this structure we construct a coupling form on Ph

naturally adapted to the above properties of h. As a consequence, for
the induced family {Jh

b } of complex structures on Ph all vertical holo-
morphic curves in Ph of “maximum allowed c-energy” (Definition 3.3)
localize over max and in fact correspond to a single, distinguished flat
section σmax of the fiber Xmax.

One would then like that this curve is persistent and contributes to
the invariant Ψ. However, without further restriction on (h,B) this is
not true, as one can see from simple heuristic intuition: the map h :
B → ΩHam(M,ω) which by assumption is Morse at γ can be homotoped
below the energy level L+(γ), unless its dimension is that of the unstable
manifold of γ for the functional L+, (provided one can make sense of
such an unstable manifold). Once this happens, the part of the invariant
Ψ corresponding to curves of the same class as σmax has to vanish.
(This is explained in the proof of Theorem 1.5.) There is a more formal
obstruction: the dimension of B has to be the dimension of the cokernel
of the linearized Cauchy-Riemann operator corresponding to the pair
(σmax,Xmax), for otherwise the index of the overall problem is not zero
and our moduli space does not even have the expected dimension.
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The index of the above Cauchy-Riemann operator will be denoted by
Ivirt(γ), and we call this the virtual index of γ. Indeed, the name arises
from intuition that the above necessary conditions are the same, and
this is verified by Theorem 1.5 below. We show in [16, section 5.1]:

(1.3) Ivirt(γ) =
∑

1≤i≤n
ki≤−1

2(|ki| − 1),

where ki are the weights of the linearized action of γ on Txmax
M , the

tangent space to the maximum: xmax of the generating function H of
γ. This is a single point since H is Morse and the level sets of H must
be connected by the Atiyah-Guillemin-Sternberg convexity theorem. To
define these weights one takes an S1 equivariant orientation preserving
identification of Txmax

with Cn, which splits into γ invariant 1 complex
dimensional subspaces Nki , on which γ is acting by

(1.4) v 7→ e2πikiθv.

These ki are then defined to be the weights of the circle action γ. Our
conventions are

ω(XH , ·) = −dH(·)(1.5)

ω(·, J ·) > 0.(1.6)

With these conventions the above weights are negative. Let L+(γ) de-
note the positive Hofer length of γ (see Section 2.1). The following is
our main main technical result proved in in Section 3:

Theorem 1.2. Let h : Bγ → ΩHam(M,ω) be Morse at γ and such
that Ivirt(γ) = dimBγ; then

(1.7) 0 6= Ψ(h) = [±pt] · eiL
+(γ) + corrections ∈ QH(M).

In [16] we also studied what we called the max length measure of
h : B → ΩHam(M,ω) which is defined by

(1.8) L+(h) ≡ max
b∈B

L+(h(b)).

Corollary 1.3. Let h : Bγ → ΩHam(M,ω) be as in Theorem 1.2;
then the cycle h : Bγ → ΩHam(M,ω) does not vanish in rational ho-
mology and moreover minimizes the max length measure in its homology
class.

When γ is generated by a Morse Hamiltonian H, γ is a smooth point
of L+ by Ustilovsky’s work [17] and we can make the following defini-
tion.

Definition 1.4. Let γ be a one-parameter subgroup of Ham(M,ω),
where (M,ω) is any closed symplectic manifold. We define the Hofer
index IH(γ) to be the maximal dimensional subspace of TγΩHam(M,ω)
on which the Hessian of L+ is negative definite.
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Of course the above index can a priori be infinite. On the other hand
we have:

Theorem 1.5. Let h : Bγ → ΩHam(M,ω) be as in Theorem 1.2;
then

IH(γ) = Ivirt(γ) = dimBγ .

Conjecture 1.6. Let γ be a Hamiltonian circle action on (M,ω)
generated by a Morse Hamiltonian; then

(1.9) IH(γ) = Ivirt(γ).

Yael Karshon and Jennifer Slimowitz [5] have recently verified that
IH(γ) ≥ Ivirt(γ). They explicitly construct a local family deforming γ,
of dimension Ivirt(γ), so that the Hessian of L+ on the tangent space
to this family is negative definite. Following a suggestion of Leonid
Polterovich, I now expect to be able to prove this conjecture, using clas-
sical calculus of variations and Duistermaat’s theorem relating Morse
index and Maslov index [2].

1.2. Hofer functional as “virtually perfect Morse-Bott func-
tional”. Given the conjecture above, Corollary 1.3 can be restated,
with Morse index of γ replacing virtual index of γ. However, this now
raises an interesting observation. The first part of the corresponding
statement for a Morse-Bott function on a closed manifold could only
hold if this function was a perfect Morse-Bott function. Now the Hofer
length functional is extremely degenerate and has no conceivable nega-
tive gradient flow. Yet from the point of view of Corollary 1.3 it behaves
“virtually” as a perfect Morse-Bott functional with a negative gradient
flow.

1.3. Generalizations to path spaces. All of the results outlined in
this section have appropriate generalizations to path spaces. For exam-
ple, Theorem 1.2 can be stated for cycles in path space Ωφ1,φ2

Morse at
γ, where γ is an autonomous geodesic (generated by Morse H) between
non-conjugate φ1, φ2 ∈ Ham(M,ω). Here non-conjugate is in Hofer ge-
ometry sense, which amounts to the condition that the linearized flow
at the maximizer of H has no periodic orbits with period less than 1. In
this case one must use Floer homology instead of quantum homology,
and the role of fibrations M →֒ Xb → S2 is played by fibrations

M →֒ Xb → R× S1

with asymptotic (r 7→ ±∞, with r, θ coordinates on R × S1) bound-
ary monodromy maps φ1, φ2, but otherwise the statements and proofs
are completely analogous. It is even likely that one can extend from
autonomous geodesics to any geodesics of the Hofer length functional,
(which are generated by quasi-autonomous time-dependent Hamilton-
ians—see [17] and [8]). However in this case the proofs may need to
slightly change, since we give up some symmetry.
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1.4. A special case: ΩHam(G/T ). Consider the Hamiltonian action
of G on G/T . In Section 4 we relate the “Morse theory” for the func-
tional L+ : ΩG → R pulled back from ΩHam(G/T ) and the energy
functional E : ΩG→ R induced by a bi-invariant metric on G. The lat-
ter functional is amazingly well behaved. It is Morse-Bott, the “smooth”
negative gradient flow (i.e., energy flow) exists for all time and the un-
stable manifolds of critical level sets are complex submanifolds. (These
appear to be rather deep facts of life—see [14] and or [13].)

Let f : ΩG → ΩHam(G/T ) be the map induced by the Hamiltonian
action. The first theorem follows from Corollaries 4.2 and 1.3.

Theorem 1.7. Let G be a semisimple Lie group, γ an S1 subgroup
of G whose centralizer is the torus, and h : Bγ → G the pseudocycle
corresponding to the unstable manifold of γ in ΩG for the Riemannian
energy functional. Then the pseudocycle f ◦ h : Bγ → ΩHam(G/T ) is
non-vanishing in HdimBγ

(ΩHam(G/T ),Q), and moreover it minimizes
the max-length measure in its homology class, (see eq. (1.8)).

Theorem 1.5 together with Corollary 4.2 gives:

Theorem 1.8. Let γ be as in the above theorem, then IH(f ◦ γ) is
the Riemannian index of γ, i.e., the index of the geodesic γ as a critical
point of the Riemannian energy functional on ΩG.

Alexander Givental asked me the following natural question:

Question 1.9. Does the first part of Theorem 1.7 remain true if
ΩHam(G/T ) is replaced with ΩDiff(G/T )?

My feeling is that the answer is no; however, not much is known about
topology of diffeomorphism groups of higher dimensional manifolds.

Acknowledgements. This is part of the author’s doctoral research at
Stony Brook University. I would like to thank my advisor, Dusa McDuff,
and Aleksey Zinger for numerous suggestions and discussions—Aleksey
Zinger in particular for noticing a serious issue in an earlier version of the
manuscript. I would also like to thank Michael Entov and Yael Karshon
for helping me out with some properties of normalized Hamiltonian
functions.

2. Preliminaries and the map Ψ

2.1. The group of Hamiltonian symplectomorphisms and Hofer
metric. Given a smooth function Ht : M → R, 0 ≤ t ≤ 1, there is an
associated time-dependent Hamiltonian vector field Xt, 0 ≤ t ≤ 1, de-
fined by

(2.1) ω(Xt, ·) = −dHt(·).
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The vector field Xt generates a path γt, 0 ≤ t ≤ 1, in Diff(M,ω). Given
such a path γt, its end point γ1 is called a Hamiltonian symplectomor-
phism. The space of Hamiltonian symplectomorphisms forms a group,
denoted by Ham(M,ω).

In particular the path γt above lies in Ham(M,ω). It is well known
that any smooth path {γt} in Ham(M,ω) with γ0 = id arises in this
way (is generated by Ht : M → R). Given such a path {γt}, the Hofer
length, L(γt), is defined by

L(γt) :=

∫ 1

0
max(Hγ

t )−min(Hγ
t )dt,

where Hγ
t is a generating function for the path γ−1

0 γt, 0 ≤ t ≤ 1. The
Hofer distance ρ(φ,ψ) is defined by taking the infimum of the Hofer
length of paths from φ to ψ. It is a deep theorem that the resulting
metric is non-degenerate (cf. [4, 7]). This gives Ham(M,ω) the struc-
ture of a Finsler manifold. We will be more concerned with a related
measure of the path,

(2.2) L+(γt) :=

∫ 1

0
max(Hγ

t ),

where Hγ
t is in addition normalized by the condition

∫

M

Hγt = 0.

2.2. Quantum Homology. For a monotone symplectic manifold (M,ω)
we set QH(M) = H∗(M,C). For us this is an ungraded vector space
with a special product called a quantum product. For integral genera-
tors a, b ∈ H∗(M), this is the product defined by

(2.3) a ∗ b =
∑

A∈H2(M)

bAe
−iω(A),

where bA is the homology class of the evaluation pseudocycle from the
pointed moduli space of J-holomorphic A-curves intersecting generic
pseudocycles representing a, b, for a generic ω tamed J . This sum is
finite in the monotone case: ω = kc1(TM), with k > 0. The product is
then extended to QH(M) by linearity. For more technical details, see
[10].

2.3. Quantum characteristic classes. Here, we give a brief overview
of the construction of the map

Ψ : H∗(ΩHam(M,ω),Q) → QH(M),

originally defined in [16] and which is a natural generalization of Seidel
representation. Let h : B → ΩHam(M,ω) be a smooth cycle (the
associated map h : B × S1 → Ham(M,ω) is smooth), where B is a



VIRTUAL MORSE THEORY ON ΩHam(M,ω) 415

closed oriented smooth manifold, and let p : Ph → B be as in equation
(1.1).

Fix a family {jb,z} of almost complex structures on

M →֒ Ph → B × S2,

fiberwise compatible with ω. Given a smooth family {Ab}, Ab is a
Hamiltonian connection on Xb = p−1(p), we have an induced family of
complex structures {JA

b } defined as follows.

• The natural map π : (Xb, J
A
b ) → (S2, j) is holomorphic for each b.

• JA
b preserves the horizontal subbundle HorAb of TXb induced by

A.
• JA

b preserves the vertical tangent bundle of M →֒ Ph → B × S2

and restricts to the family {jb,z}.

Definition 2.1. A family {Jb} is called π-compatible if it is {JA
b }

for some connection A as above.

The importance of this condition is that it forces bubbling to happen in
the fibers of M →֒ Xb → S2, where it is controlled by the monotonicity
of M,ω.

Remark 2.2. For the most part we work with a fixed symplectic
manifold (M,ω), which we will assume to be monotone. Also, for the
purpose of the following definition the family {jb,z} is fixed. However,
it will be helpful in Section 4 to vary the families {jb,z}, {ωb,z} on
M →֒ Ph → B × S2, so long as each fiber (Mb,z, ωb,z, jb,z) is Fano, i.e.,
c1(TM) is positive on jb,z holomorphic curves. This will be done not for
any compactness or regularity reasons, but for other geometric reasons.
This will vary the notion of a π-compatible family {Jb}, but not the
map Ψ below.

The map Ψ we now define measures part of the degree of quantum
self-intersection of a natural submanifold B × M ⊂ Pf . The entire
quantum self-intersection is captured by the total quantum class of Pf ,
discussed in [16]. We define Ψ as follows:

(2.4) Ψ([B, f ]) =
∑

A∈j∗(Hsect
2

(X))

bA · e−iC(A).

Here,

• Hsect
2 (X) denotes the section homology classes of X.

• C is the coupling class of Hamiltonian fibrationM →֒ Pf → B×S2

(see [6, section 3]). Its restriction to the fibers X ⊂ Pf is uniquely
determined by the condition

(2.5) i∗(C) = [ω],

∫

M

Cn+1 = 0 ∈ H2(S2),
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where i :M → X is the inclusion of the fiber map, and the integral
above denotes the integration along the fiber map for the fibration
π : X → S2.

• The map j∗ : H
sect
2 (X) → H2(Pf ) is induced by inclusion of fiber.

• The coefficient bA ∈ H∗(M) is defined by duality:

b
Ã
·M c = ev0 ·B×M [B]⊗ c,

where

ev0 : M0(Ph, Ã, {Jb}) → B ×M

ev0(u, b) = (u(0), b)

denotes the evaluation map from the space

(2.6) M(Pf , A, {Jb})

of pairs (u, b), u is a Jb-holomorphic section of Xb in class A, and
·M , ·B×M denote the intersection pairings.

• The family {Jb} is π-compatible in the sense above.

3. Hofer geometry and Ψ

We now show how to construct a π-compatible family {Jh
b } on Ph nat-

urally adapted to the Hofer geometry of the map h : B → ΩHam(M,ω).
This family is induced from a family of Hamiltonian connections {Ab,Xb},

which are in turn induced by a family of certain closed forms {Ω̃h
b },

which we now describe.
The construction of this family mirrors the construction in section

3.2 of [16]. First, we define a family of forms {Ω̃∞
b } on B ×M ×D2

∞:

(3.1) Ω̃h
b |D2

∞

(x, r, θ) = ω − d(η(r)Hb
θ(x)) ∧ dθ.

Here, Hb
θ is the generating Hamiltonian for h(b), normalized so that

∫

M

Hb
θω

n = 0,

for all θ, and the function η : [0, 1] → [0, 1] is a smooth function satisfy-
ing

0 ≤ η′(r),

and

η(r) =

{
1 if 1− δ ≤ r ≤ 1,

r2 if r ≤ 1− 2δ,

for a small δ > 0.
Note that under the gluing relation ∼, (x, 1, θ)0 7→ (h(b, θ)x, 1, θ)∞.

Thus, ∂
∂θ

7→ XHb
θ
+ ∂

∂θ
, ∂

∂x
7→ (γθ)∗(

∂
∂x

), and moreover ∂
∂r

7→ − ∂
∂r
. We

leave it to the reader to check that the gluing relation ∼ pulls back

the form Ω̃h
b |D2

∞

to the form ω on the boundary M × ∂D2
0 , which we
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may then extend to ω on the whole of M × D2
0. Let {Ω̃h

b } denote

the resulting family on Xb. The forms Ω̃h
b on Xb restrict to ω on the

fibers M and the 2-form
∫
M
(Ω̃h

b )
n+1 vanishes on S2. Such forms are

called coupling forms, which is a notion due to Guillemin, Lerman, and

Sternberg [3]. The form Ω̃h
b induces a connection on Xb, by declaring

horizontal subspaces to be those which are Ω̃h
b -orthogonal to the vertical

tangent spaces of π : Xb → S2.

Remark 3.1. The induced connection is Hamiltonian, and, more-
over, every Hamiltonian connection on Xb is induced by a unique cou-
pling form in above sense (see [9, theorem 6.21]).

We denote by {Jh
b } the induced family of complex structures. An

important property of the family {Jh
b } is that it is almost compatible

with the family {Ωh
b ,Xb} defined by

Ωh
b |D2

∞

= Ω̃h
b |D2

∞

+ (max
x

Hb
θ(x))dη ∧ dθ, Ωh

b |D2
0
= Ω̃h

b |D2
0
,(3.2)

where, almost compatible means that Ωh
b (v, J

h
b ) ≥ 0, v ∈ TXb, and this

inequality is strict for v ∈ T vertXb.
By the characterization of the class C in (2.5):

(3.3) [Ω̃h
b ] = j∗(C).

Thus,

(3.4) [Ωh
b ] = j∗(C) + [π∗(αb)],

where j : Xb → Ph is the inclusion map and αb is an area form on S2

with

(3.5) L+(h(b)) =

∫

S2

αb.

Lemma 3.2. Let {Ωh
b } and {Jh

b } be as above, then we have the prop-

erty that a vertical Jh
b -holomorphic section u in the fiber Xb ⊂ Ph gives

a lower bound

(3.6) −C([u]) ≤ L+(h(b).

Proof. Let u : S2 → Xb ⊂ Ph be a holomorphic section; then

(3.7) 0 ≤ Ωh
b ([u]).

This follows from the almost compatible condition on Ωh
b and Jh

b , from

the fact that u is a holomorphic map and by the fact that Jh
b is π-

compatible. Combining (3.7) with (3.4), (3.5) we get

0 ≤

∫

u

Ωh
b = C([u]) + L+(h(b)).

q.e.d.

Definition 3.3. As the quantity −C([u]) is so important for us, we
give it a name: c-energy of u, or the coupling energy of u.
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Note that there are no fiber holomorphic curves in Ph in class A with
c-energy(A) > Hmax, the maximum of the generating function H of γ.
This follows from the assumption that the pull-back of the functional
L+ to Bγ attains its unique maximum at max, L+(h(max)) = L+(γ) =
Hmax, and from the energy inequality (3.6). On the other hand there
is a special class Amax ∈ H2(Xγ) ⊂ H2(Ph) for which c-energy(Amax) =
Hmax. We now describe this.

Let xmax denote the unique max of H (cf. the discussion preced-
ing Theorem 1.2). There is a corresponding Ωh

max-horizontal and thus
holomorphic section σxmax

of π : Xmax → S2,

(3.8) σxmax
(z) = ({xmax}, z)0,∞ ⊂M ×D2

0,∞ ⊂ Xmax for z ∈ D2
0,∞.

By (3.1) and (3.3), c-energy([σxmax
]) = Hmax. Moreover, there are no

other holomorphic sections u in Xmax with c-energy([u]) = Hmax. This
observation is due to Seidel. For if we suppose otherwise, then by the
proof of Lemma 3.2 we must have that

∫
u
Ωh
max = 0, and so

(3.9) 0 =

∫

u

ω − η(r)dH ∧ dθ −

∫

u

Hdη ∧ dθ + (sup
x
H(x))dη ∧ dθ.

Note that u is necessarily horizontal, for otherwise
∫
u
Ωh
max > 0 (by the

almost-compatible property of Ωh
max and Jh

max and the π-compatible
property of Jh

max). Hence the form ω − η(r)dH ∧ dθ must vanish on
u, as the horizontal subspaces are spanned by vectors ∂

∂r
, ∂
∂θ

+ η(r)XH .
Thus, (3.9) can only happen if u is σxmax

. In particular, the space
M0(Xmax, J

h
max, Amax) of unmarked holomorphic sections in Xmax in

homology class Amax = [σmax] is identified with the point xmax. We will
also denote by Amax the class j∗(Amax) ∈ H2(Ph), where j : X → Ph is
the inclusion of fiber map.

Proposition 3.4. Let h : Bγ → ΩHam(M,ω) be a smooth oriented

cycle and {Ωh
b } as above. Suppose that the pull-back by h of the function

L+ to Bγ attains its maximum at the unique point max ∈ B, such that

h(max) = γ; then M0(Ph, Amax, {J
h
b }) lies over max and is identified

with xmax.

Proof. The energy inequality (3.6) shows that any holomorphic curve
in Ph with c-energy Hmax must lie in the fiber Xmax. Consequently, by
the discussion preceding the proposition,

M0(Ph, {J
h
b }, Amax) ≃ M0(Xmax, J

h
max, Amax) ≃ xmax.

q.e.d.

3.1. Proof of Theorem 1.2. One example of Theorem 1.2 that the
reader may keep in mind comes from the Hamiltonian S3 action on S2.
Take γ to be a one-parameter subgroup of S3, which is a great geodesic
going around S3 once. The subgroup γ then acts on S2 by rotating it
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twice. The induced loop f ◦ γ ⊂ ΩHam(S2) is a critical point of L+,
and this loop has a two-parameter family of shortenings. More specifi-
cally, the unstable manifold Bγ of γ in ΩS3 (for the Riemannian energy
functional) is two-dimensional (by the Riemannian index theorem), and
the pull-back of the positive Hofer length functional to Bγ is Morse at
its maximum max ⊂ Bγ . Why all this is the case will be explained in
the next section.

Proof. It will be helpful to work with a special subset of π-compatible

families {Jb}. Let C̃b denote the space of coupling forms on Xb (see
Remark 3.1) which restrict to ω over M ×D2

0 in the notation of (1.1).

A general element Ω̃ ∈ C̃b is determined by a pair of families of functions
Gη,θ, F η,θ :M → R,

Ω̃|D2
∞

= Ω̃h
b |D2

∞

+ d(Gη,θdθ) + d(F η,θdη),

where Ω̃h
b |D2

∞

is defined in (3.1) and η is defined in the discussion fol-
lowing (3.1).

We set Cb ⊂ C̃b to be the subspace of those forms for which

Gη,θ = η ·Gθ, for some Gθ and
d

dθ
F η,θ = 0.

We also set C to be the space of families {Ω̃b} on Ph, with each Ω̃b ∈ Cb.
We have a function

(3.10) area : Cb → R,

(3.11) area(Ω̃) = inf{

∫

S2

α |Ω̃ + π∗(α) is symplectic}.

Let {Ω̃′
b} be as in Lemma 3.6 and sufficiently C∞-close to {Ω̃h

b }; then

{Ω̃′
b} has the property that the function

(3.12) b 7→ area(Ω̃′
b)

on Bγ attains its maximum at the unique point max ∈ Bγ and this
function is Morse at max. This readily follows from the assumption
that the pull-back of L+ to Bγ is Morse at max, and by Lemma 3.5

below. Let {J ′
b} be the family induced by {Ω̃′

b}; then by the proof of
Proposition 3.4 M0(Ph′ , Amax, {J

′
b}) ≃ Fmax = max and this moduli

space is regular by construction. We thus verified the leading term of
Ψ(h) up to sign, which depends on the orientation of the cycle Bγ . The
corrections are in lower c-energy classes A, and consequently give rise
to higher dimensional moduli spaces via the dimension formula

(3.13) 2n+ dimBγ+ < 2c1(T
vertX), A >,

and therefore are linearly independent of the leading term (if they con-
tribute). q.e.d.
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Lemma 3.5. The coupling form Ω̃h
max is a smooth point of the area

functional on Cmax and is critical.

Variation Ω̃s in Cmax induces a variation of the boundary monodromy

maps γs : [0, 1] → Ham(M,ω) induced by Ω̃s|D2
∞

, which are necessarily

loops in Ham(M,ω), since Ω̃s|D2
0
= ω. By the properties of coupling

forms in Cmax, the statement of the lemma is equivalent to γ being a
smooth critical point for the L+ functional on ΩHam(M,ω). We leave
the details to the reader.

Lemma 3.6. Let h : Bγ → ΩHam(M,ω) be as in Theorem 1.2. Then

there is a family {Ω̃′
b} ∈ C on Ph arbitrarily C∞-close to {Ω̃h

b }, with

Ω̃′
max = Ω̃h

max, such that the induced family {J ′
b} is regular for Amax-

class curves.

Proof. Denote by B the space of pairs (u, b), u ∈ Bb, with the latter
denoting the space of holomorphic sections of Xb. We have a bundle

E → B,

whose fiber over (u, b) is Ω0,1(S2, (u, b)∗TXb), and the section we call
Fh,

Fh(ub) = ∂̄Jh
b
(u).

By the assumption that h is Morse at γ, and Proposition 3.4,
M0(Ph, Amax, {J

h
b }) is a zero dimensional manifold consisting of a sin-

gle point umax, which corresponds to the section σxmax
of Xmax ⊂ Ph.

By assumption we have that Ivirt(γ) = dimBγ , where I
virt(γ) is the

cokernel of the vertical differential DFh|TumaxBmax
. And so zero is the

expected dimension of M0(Ph, Amax, {J
h
b }). Therefore, if we can per-

turb (abstractly) the section Fh, fixing it over Bmax ⊂ B, so that the
corresponding vertical differential at umax has no kernel, then the per-
turbed section would be necessarily transverse to the 0-section at umax.
(The corresponding differential would necessarily be Fredholm of index
zero.)

More specifically, we need a smooth vertical (tangent to the fibers of
E → B) vector field V along Fh having the properties that it vanishes
over Bmax, and so that Fh exponentiated along V:

expVt (Fh) : B → E ,

is transverse to the 0-section for all sufficiently small time t. This is just
a matter of differential topology. The assumption that V vanishes over
Bmax can be accommodated due to the fact that the vertical differential
DFh restricted to Tumax

Bmax has no kernel. Which in turn follows from
the fact that the vertical normal bundle to umax in Xmax is holomorphic
and all its Chern numbers are negative. (Indeed this is another instance
where the Morse condition on H is crucial.)
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We may also assume that V vanishes outside a neighborhood BUmax

of the curve umax in B, with all maps in BUmax
lying over Umax a con-

tractible neighborhood of max in Bmax. Trivializing Ph over Umax, we
have BUmax

= Bmax × Umax, where Bmax = C∞(S2,Xmax).
We now show that the perturbation V can be realized by perturbing

the family {Ωh
b } and hence the induced family {Jh

b }. Let

E → (Bmax × Umax)× Cmax ≡ C̃

be the fibration whose fiber over (u, b, Ω̃) is Ω0,1
J (S2, u∗TXmax) the space

of j, J-anti-linear one forms, where J is induced by Ω̃. Let

F : C̃ → E

be the map

F(u, b, Ω̃) = ∂̄J (u).

Denote by T vertC̃ the vertical tangent bundle of pr : C̃ → Bmax×Umax.
The vertical differential

DF : T vertC̃ → T vertE

is a family of maps

(3.14) DF(u, b, Ω̃) : TΩ̃Cmax → Ω0,1
J (S2, u∗TXmax).

By the proof of theorem 8.3.1 and remark 3.2.3 in [10], (3.14) is onto

for every u, Ω̃. (One must of course work with the appropriate Sobolev
completions for this.)

Let S : Umax → C̃ be the map S(b) = (umax, b, Ω̃
h
b ), induced by the

family {Ω̃h
b } on Ph over Umax. And let

A = DF−1(V) ⊂ T vertC̃.

Since (3.14) is onto for every u, Ω̃, A|S fibers over S. Let W be any
section, which we may think of as an infinitesimal perturbation of the

family {Ω̃h
b } for b ∈ Umax. This perturbation extends by vanishing

perturbation outside Umax. The infinitesimal perturbation W is the one
we were looking for and so we are done. q.e.d.

3.2. Proof of Corollary 1.3. The first part is immediate. To prove
the second part note that h : Bγ → ΩHam(M,ω) has max length mea-
sure Hmax. On the other hand, if the max length measure of the map
h could be reduced below Hmax by moving it in its homology class
to, say, h′ : B → ΩHam(M,ω), then this would destroy the contribu-
tion to Ψ(h) = Ψ(h′) in the c-energy Hmax, because by Corollary 3.2

there would simply be no vertical {Jh′

b }-holomorphic curves in Ph′ with
c-energy = Hmax; this is a contradiction. q.e.d.
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3.3. Proof of Theorem 1.5. We clearly have IH(γ) ≥ dimBγ . Sup-
pose IH(γ) > dimBγ = m; then there a subspace N ⊂ TγΩHam(M,ω)
such that N ⊃ h∗TmaxBγ , dimN = dimBγ + 1 and such that the Hes-
sian of L+ is negative definite on N . We homotop the map h to a map
h′ so that L+(h′(b)) < L+(γ) for all b ∈ Bγ , which kills the contribution
to Ψ(h) in the energy Hmax by the proof of 1.3. This will conclude the
proof.

Let φ : Dm → Bγ be a chart containing max. We may homotop h to

a map h̃ with the same image as h, with h̃ being the constant map to γ
on φ(Dm). Let p : Dm → N − 0 be an embedding so that

p : ∂Dm → h∗(S
m ⊂ TmaxBγ)

is a degree one map, where the unit sphere Sm is determined by the
trivialization φ. Under the identification given by φ extend p to any
smooth map

p̃ : Bγ → TΩHam(M,ω).

Now move h̃ along p̃ by exponentiating for a sufficiently small time; then
the exponentiated map h′ will have the required property. q.e.d.

4. Morse theory on ΩHam(G/T ) and ΩG.

Let M = G/T , where T is its maximal torus. There a symplectic
structure on G/T , inherited from that of T ∗G by symplectic reduction of
the natural G action on T ∗G, (G/T is the generic leaf of the symplectic
reduction.) The leaves of the the symplectic reduction of T ∗G and
hence G/T can be identified with orbits of the coadjoint action of G on
g∗, where g is the Lie algebra of G. The symplectic structure is then
induced from a natural 2 form on g∗ called the Kirillov form, (see [1]).

Let G be semisimple and Op0 a coadjoint orbit of p0 ∈ g∗ by G.
Then G acts on Op0 by φg(p) = Ad∗

g−1(p), with the infinitesimal action

Xη(p) = −ad∗η(p) for η ∈ g. The generating function is defined by
Hη(p) = p(ξ) and it is normalized, as the map

η 7→

∫

Oξ

Hη(p) =

∫

Oξ

p(η)

defines an element of g∗, which is clearly invariant under the coadjoint
action of G and so must be 0 since g has no center (I would like to thank
Yael Karshon for suggesting this argument).

Suppose now ξ = d
dt
|0γ ∈ g, where γ is a one-parameter subgroup

and let Oξ denote the coadjoint orbit of the covector < ξ
||ξ|| , · >. In this

case the maximum of the generating function Hξ on Oξ is < ξ
||ξ|| , ξ >=

||ξ||. Moreover, we get an inequality relating positive Hofer norm with
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Riemmanian norm,

(4.1) ||η||+ ≤ ||η||,

for any η, where
||η||+ = max

Oξ

Hη.

In this discussion the symplectic manifold Oξ depends on ξ. If we make
an additional assumption, that the subgroup of G fixing < ξ, · >, un-
der the coadjoint action is T , then we can identify Oξ ≃ (G/T, ωξ).
Moreover, this condition is generic in g∗, from which it follows that
the symplectic forms ωξ are deformation equivalent. Also (G/T, ωξ , jξ)
are Fano for an integrable complex structure jξ depending smoothly on
ωξ. Therefore, we may regard Oξ as simply G/T for our purposes of
quantum homology and the map Ψ (cf. Remark 2.2)

4.1. Morse theory on ΩG. Let h : Bγ → ΩG be the pseudocycle
corresponding to the unstable manifold of γ for the energy flow on ΩG.
(See the discussion in Section 1.4. It is necessarily a pseudocycle, since
all the indexes of critical points of E are even.) As before, we denote
by max ∈ Bγ the point h(max) = γ.

Theorem 4.1. Let G be a semisimple compact Lie group; then
the positive Hofer length functional L+ : Bγ → R (its pull-back from
ΩHam(Oξ)) is Morse at max. Moreover, if the centralizer of γ is the
torus, then the indexes Ivirt(f(γ)) (cf. eq. (1.3)) and the Riemannian
index of γ coincide. In other words:

(4.2) Ivirt(f(γ)) = dimBγ .

Proof. By (4.1) we have L+(γb) ≤ L(γb) for γb any loop inBγ (or ΩG),
where L is the Riemmanian length functional on ΩG. Since L+(γ) =
L(γ), the first part of the theorem will follow if the restriction of L to
Bγ is Morse at γ. This is intuitively clear as the restriction of the energy
functional E to Bγ is Morse at γ since E is a Morse-Bott function on
ΩG. Here are the details. Let γt be a smooth variation of γ = γ0 in Bγ .
Applying the Cauchy-Schwarz inequality,

(

∫ b

a

fg dθ)2 ≤ (

∫ b

a

f2dθ)(

∫ b

a

g2 dθ),

with f(θ) = 1 and g(θ) = || d
dθ
|θγt(θ)||, we get

L(γt)
2 ≤ E(γt),

since γ is parametrized from 0 to 1. Both sides are the same for t =
0 (since γ is a geodesic and so parametrized by arclength), and the
derivatives of both sides are 0 at t = 0 since γ is critical for both L and
E. It follows that

d2

dt2
|0L(γt)

2 = 2L(γ) ·
d2

dt2
|0L(γt) ≤

d2

dt2
|0E < 0,
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and so
d2

dt2
|0L(γt) < 0.

We now prove the second part of the theorem. Let γ be generic and ξ
the corresponding element in g. In order to compute Ivirt(f ◦γ) we need
to understand the weights of the coadjoint action of γ on the tangent

space TpOξ, where p is the maximal fixed point p =< ξ
||ξ|| , · >. Since

the maps Ad∗g are linear, this action can be identified with the action
of γ on a subspace of T0g

∗ ≡ g∗. Moreover, under the identification of
g∗ with g using the Ad-invariant inner product <,> on g, the coadjoint
action by Ad∗g on g∗ corresponds to the adjoint action by Adg−1 on g

and so the coadjoint action of γ on g∗ corresponds to the adjoint action
of γ−1 on g. More specifically, we want the adjoint action on a certain
subspace of Tp ⊂ g which corresponds under all these identifications to
TpOξ. In fact, this subspace can be determined synthetically as follows.
Write

(4.3) g = t⊕
⊕

α

gα,

where t is the maximal Abelian subalgebra of g containing ξ and gα is a
subspace of g on which γ−1 is acting by eα2πiθ (so that t corresponds to
α = 0). Now, Tp is invariant under the adjoint action of γ−1 and all the
weights α are necessarily non-zero on Tp and are negative. The latter is
due to the fact that the function Hξ on Oξ is Morse at its maximum p,
which together with our convention XH = −J gradH implies that the
weights are negative. The subspace Tp must then simply be

Tp =
⊕

α

gα.

The virtual index is then by definition
∑

α

2|α| − 2.

Using the index theorem in Riemannian geometry one can show that
this is the Riemannian index of the geodesic γ of G (see for example
proof of Bott periodicity [11, section 23]). q.e.d.

Corollary 4.2. Let G be a semisimple Lie group and γ a generic S1

subgroup. Then the pseudocycles f ◦ h : Bγ → ΩHam(G/T ) satisfy the
hypothesis of Theorem 1.2.

Remark 4.3. Strictly speaking the map Ψ in Theorem 1.2 is only
defined here and in [16] on cycles f : B → ΩHam(M,ω), where B is
a closed smooth manifold. However, there is no essential difficulty in
extending this to appropriate pseudocycles. The details of this will be
given in a more general context in the upcoming paper [15].
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