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A CHARACTERIZATION OF THE STANDARD

EMBEDDINGS OF CP 2 AND Q3

Jost Eschenburg, Maria Joao Ferreira & Renato Tribuzy

Abstract

H. Hopf showed that the only constant mean curvature sphere
S2 immersed in R3 is the round sphere. The Kähler framework
is an adequate approach to generalize Hopf’ s theorem to higher
dimensions. When ϕ : M → Rn is an isometric immersion from
a Kähler manifold, the complexified second fundamental form α
splits according to types. The (1, 1) part of the second funda-
mental form plays the role of the mean curvature for surfaces and
will be called the pluri-mean curvature pmc. Therefore isometric
immersions with parallel pluri-mean curvature (ppmc isometric
immersions) generalize in a natural way the cmc immersions. It
is a standard fact that R8 is the smallest space where CP 2 can be
embedded. The aim of this work is to generalize Hopf’s theorem
proving in particular that the only ppmc isometric immersion from
CP 2 into R8 is the standard immersion.

1. Introduction and statement of results

The smallest R
k into which S

2 = CP 1 may be embedded is R
3. H.

Hopf [13] showed that, up to congruence, the only constant mean curva-
ture (cmc) isometric immersion from the sphere into R

3 is the standard
immersion. Affording higher dimensions in the domain manifold, an
adequate setting is the class of Kähler manifolds. When M is a Kähler
manifold and ϕ : M −→ R

n is an isometric immersion, the coupling
of the second fundamental form α of ϕ with the complex structure J
of M originates two operators. To describe these operators we denote
respectively by T cM , T ′M and T ′′M the complexification of TM and
the eigenbundles of J corresponding to the eigenvalues i and −i. We
will denote π′ and π′′ respectively the orthogonal projections of T cM
onto T ′M and T ′′M . Accordingly, each X ∈ T cM is decomposed as
X = X ′ +X ′′ where

X ′ = π′(X) = 1

2
(X − iJX), X ′′ = π′′(X) = 1

2
(X + iJX)

The authors wish to thank Fundação para a Ciência e Tecnologia, Portugal and
CNPq and FAPEAM, Brasil, for support.

Received 03/07/2008.

289



290 J. ESCHENBURG, M.J. FERREIRA & R. TRIBUZY

(type decomposition). Then the complexification of α decomposes ac-
cordingly giving rise to the components

α(1,1)(X,Y ) = α(X ′, Y ′′) + α(X ′′, Y ′),

α(2,0)(X,Y ) = α(X ′, Y ′).

H. Hopf discovered that the traceless part of the second fundamental
form of an immersed surface with constant mean curvature (“cmc”) is
a holomorphic quadratic differential on the surface. This observation
was the key to his well known theorem refered above. This holomorphic
differential is nothing but the operator α(2,0), and α(1,1) = 〈 , 〉H where
H = 1

2
traceα is the mean curvature vector. In higher dimensions, the

mean curvature (trace of α) can be generalized to α(1,1) which we call
pluri-mean curvature (see [3] for a justification). For isometric immer-
sions where this part of the second fundamental form is parallel (parallel

pluri-mean curvature, ppmc), the other part α(2,0) is again a (normal

bundle valued) holomorphic quadratic differential. When α(1,1) van-
ishes identically, the immersion is called (1, 1)-geodesic or pluriminimal
([6], [4], [5]). When α(2,0) vanishes identically, the immersion is called
(2, 0)-geodesic; such immersion are also ppmc and have been classified
by Ferus [12]: they are the so called standard embeddings of Kähler
symmetric spaces (cf. Section 5 and [8]).

Isometric immersions with parallel pluri-mean curvature share some
geometric features of parallel mean curvature surfaces, namely the exis-
tence of a 1-parameter deformation through a smooth family of isometric
ppmc-immersions which, up to a parallel isomorphism, have the same
normal bundle ([3]). Just as in the case of immersions with parallel
mean curvature, isometric ppmc-immersions can also be characterized
by the pluriharmonicity of their Gauss maps ([10], [3]).

The smallest Rk into which CP 2 may be ppmc-immersed is R8. (The
total Pontrjagin class of M = CP 2 is p(TM) = 1 + 3ξ2 where ξ is the
standard generator of H2(M ;Z) (cf. [15], p. 178). If f : M → R

n is any
immersion with normal bundleNM , then TM⊕NM is a trivial bundle.
Thus p(TM)p(NM) = 1 whence p(NM) = (1+3ξ2)−1 = 1−3ξ2. Since
p(NM) = 1 + p1(NM), we get

p1(NM) = −3ξ2. (a)

This excludes codimension one (n = 5) since the normal bundle of an
oriented hyperplane is trivial. If the codimension is two (n = 6), the
normal bundle is an oriented plane bundle, hence a complex line bundle.
Let η = c1(NM) ∈ H2(CP 2;Z) be its first Chern class. Then by [15],
p. 177 we have 1− p1(NM) = (1− η)(1 + η) = 1− η2 and therefore

p1(NM) = η2. (b)

Comparing with (a) would yield −3ξ2 = η2 ∈ H4(CP 2;Z) ∼= Z which is
impossible since −3 is not a square number. The same conclusion holds
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for codimension three (n = 7) provided that NM splits off a trivial
subbundle. If the mean curvature vector is nowhere zero, it generates
such a subbundle.)

The aim of this work is to generalize Hopf’s theorem proving that
the only ppmc-immersion from CP 2 (with any Kähler metric) into R

8 is
the standard immersion. In fact we will prove more: We will show that
any ppmc immersion with codimension ≤ 4 is a standard embedding.
Besides the S

2 and CP 2, there is just one other case with codimension
≤ 4: The complex quadric Q3 ⊂ CP 4 which is the Grassmannian of
oriented 2-planes in R

5.

Theorem 1.1. Let M be a compact Kählerian manifold with positive
first Chern class and ϕ : M → R

n a full indecomposable isometric ppmc
immersion with codimension ≤ 4. Then either M is isometric to S

2,
CP 2 or Q3 (up to scaling), and ϕ is the standard embedding (up to
congruence), or φ(M) is a minimal sphere in S

4.

Corollary 1.2. Let ϕ : CP 2 → R
8 be an immersion whose induced

metric is Kähler. If ϕ is ppmc, then ϕ is the standard embedding of
CP 2 endowed with the Fubini-Study metric.

Remark. The minimal spheres in S
4 have been classified by R.

Bryant [2].

2. Holomorphic differentials

Let M be a Kähler manifold and ϕ : M → R
n an isometric im-

mersion. Let α : S2(TM) → NM (where S2 denotes the second sym-
metric power) be the second fundamental form (tacitly extended to the

complexified bundles) with its components α(2,0), α(1,1), α(0,2) = α(2,0).

Throughout the paper we assume that ϕ is ppmc, i.e. α(1,1) is parallel
with respect to the induced connections on TM and NM . In particular,
the (unnormalized) mean curvature vector H = traceα =

∑

i α(Ei, Ei)
(where E1, . . . , Em is any unitary basis of T ′M) is a parallel normal
vector field.

Lemma 2.1. The 4-form

(1) β : (A,B,C,D) 7→ 〈α(A,B), α(C,D)〉

on ⊗4T cM – which is always symmetric in (A,B) and (C,D) – is sym-
metric in (B,C) iff 〈R(B,C)A,D〉 = 0.

Proof. This is immediate from the Gauss equation

〈α(A,B), α(C,D)〉 − 〈α(A,C), α(B,D)〉 = 〈R(B,C)D,A〉 q.e.d.

Lemma 2.2. The form Λ4 = 〈α(2,0), α(2,0)〉 on ⊗4(T ′M) is symmet-
ric and holomorphic. Likewise, for any parallel normal vector field ξ,
the symmetric 2-form Λξ = 〈α(2,0), ξ〉 on ⊗2(T ′M) is holomorphic.
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Proof. Since M is Kähler, R(B,C)D = 0 if B,C ∈ T ′M and hence
we see the symmetry of Λ4 from the previous Lemma 2.1. For the
holomorphicity we need two preparations:

(a) Let z = (z1, . . . , zm) be a holomorphic chart and Zj = ∂/∂zj the
corresponding holomorphic coordinate vector fields. Then

(2) ∇Zk
Zj = ∇Zj

Zk ∈ T ′M ∩ T ′′M = 0.

(b) The Codazzi equations show for all Ā ∈ T ′′M and B,C ∈ T ′M

(3) (∇Āα)(B,C) = (∇Bα)(Ā, C) = 0

since α(1,1) is parallel. Thus derivatives of α vanish as soon the argu-
ments are of mixed type. Hence ∇ĀΛξ = 〈∇Āα

(2,0), ξ〉 = 0 and similarly
∇ĀΛ4 = 0.

Now the partial derivatives with respect to zk are:

∂
∂z̄k

Λξ(Za, Zb) = Λξ(∇Zk
Za, Zb) + Λξ(Za,∇Zk

Zb) = 0,
∂

∂z̄k
Λ4(Za, Zb, Zc, Zd) = Λ4(∇Zk

Za, Zb, Zc, Zd) + . . . = 0

which shows that these forms are holomorphic. q.e.d.

Now let us assume that M is compact with positive first Chern class.
Then M allows a Kähler metric with positive Ricci curvature, cf. [1],
(11.16), p.322. A Bochner type argument allows the conclusion that
there are no nonzero holomorphic differentials on M (see [14]), in par-
ticular:

Corollary 2.3. Let M be a compact Kähler manifold with positive
first Chern class and ϕ : M → R

n an isometric ppmc immersion. Then
the forms Λ4 = 〈α(2,0), α(2,0)〉 and Λξ = 〈α(2,0), ξ〉 for every parallel
normal field ξ vanish on all of M .

A ppmc immersion ϕ will be called half isotropic if the last assertion
is true, i.e. if 〈α(2,0), α(2,0)〉 = 0 and 〈α(2,0), ξ〉 = 0 for every parallel
normal field ξ ∈ No where

(4) No = {α(A′, B′′); A,B ∈ TM}.

We have seen that positive first Chern class implies half isotropic.

3. Indecomposability

Let M be a Kähler manifold. An isometric immersion ϕ : M → R
n

is decomposable if M is a Riemannian product of Kähler submanifolds,
M = M1 ×M2, and there are isometric immersions ϕi : Mi → R

ni with
n = n1 + n2 such that ϕ = ϕ1 × ϕ2.

Lemma 3.1. Let M be Kähler and ϕ : M → R
n an isometric ppmc-

immersion which is decomposable. Then both factors are ppmc.
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Proof. The type decomposition of the second fundamental form α is
inherited to its components α1 and α2, and since the projections onto

Mi are parallel, the components α
(1,1)
i of α(1,1) are also parallel. q.e.d.

Passing to the components if necessary, we may assume from now on
that our ppmc immersion ϕ : M → R

n is indecomposable. Moreover we
will always assume that ϕ is full, i.e. ϕ(M) is not contained in a proper
affine subspace of Rn. We put

(5) N1 =
{

α(2,0)(A,B) + α(0,2)(A,B); A,B ∈ TM
}

which is a subbundle of NM on an open subset Mo ⊂ M .

Lemma 3.2. Let ξ be any parallel normal vector field with ξ ⊥ N1M .
Then the corresponding Weingarten operator Aξ ∈ Hom(TM,TM) is
parallel and commutes with J .

Proof. Let A
(1,1)
ξ be the (1, 1)-Weingarten map of ξ,

〈A
(1,1)
ξ (X), Y 〉 := 〈α(1,1)(X,Y ), ξ〉.

Since α(1,1)(JX, JY ) = α(1,1)(X,Y ), we have

〈J−1A
(1,1)
ξ (JX), Y 〉 = 〈A

(1,1)
ξ (JX), JY 〉 = 〈A

(1,1)
ξ (X), Y 〉,

thus J−1A
(1,1)
ξ J = A

(1,1)
ξ , so A

(1,1)
ξ commutes with J . Since both

α(1,1) and ξ are parallel, so is A
(1,1)
ξ . But the (2,0) and (0,2) com-

ponents of α are perpendicular to ξ, thus 〈Aξ(X), Y 〉 = 〈α(X,Y ), ξ〉 =

〈α(1,1)(X,Y ), ξ〉 = 〈A
(1,1)
ξ X,Y 〉 whence Aξ = A

(1,1)
ξ . q.e.d.

Proposition 3.3. Let ϕ : M → R
n be indecomposable, full, ppmc

and half isotropic. Then ϕ(M) is minimal in a round sphere S
n−1 ⊂ R

n,
and any parallel normal field in No is a multiple of the position vector.

Proof. Let ξ ∈ NoM be any parallel normal field. By half isotropy,
ξ ⊥ N1. From Corollary 2.3 we have Λξ = 〈ξ, α2,0〉 = 0. Hence
by the previous lemma the Weingarten operator Aξ is parallel and its
eigenspaces form parallel J-invariant distributions E1, . . . , Er. The par-
allelity of ξ also implies that RN (A,B)ξ = 0 for any A,B and then the
Ricci equation shows that Aξ commutes with any other Weingarten op-
erator Aη. Therefore α(Ei, Ej) = 0 for i 6= j, and by Moore’s theorem
[16], ϕ is decomposable unless r = 1. Hence Aξ = λξI for some λξ ∈ R.

In particular all this holds for the mean curvature vector ξ = H. By
compactness, λH 6= 0. Thus H is umbilic and ϕ(M) is contained as a
minimal submanifold in a sphere of radius 1/|λ|.

But for any parallel normal field ξ ⊥ H in No we have traceAξ =
〈H, ξ〉 = 0 and hence λξ = 0. So ξ is a constant vector since ∂Xξ =

−Aξ(X) +∇N
Xξ = 0 for any tangent vector X. Moreover ϕ(M) ⊂ ξ⊥.

By the fullness assumption this shows ξ = 0. q.e.d.
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4. The Riccati equation

Next we shall consider the distribution ∆ = kerα(2,0). As we shall
see, this is an autoparallel distribution on M . We need some properties
of such distributions.

Let M be a Riemannian manifold and ∆ ⊂ TM an auto-parallel
distribution, i.e. ∇∆∆ ⊂ ∆. Denoting Γ = ∆⊥, we also have ∇∆Γ ⊂ Γ,
since 〈∇∆Γ,∆〉 = −〈Γ,∇∆∆〉 ⊂ 〈Γ,∆〉 = 0.

Proposition 4.1. For any vector field T ∈ ∆ we consider the tensor
CT ∈ Hom(Γ,Γ),

CTX = −(∇XT )Γ

for all X ∈ Γ. Then we have for all S, T ∈ ∆:

(6) ∇SCT = CTCS + C∇ST +R( , S)T.

Proof. For any X ∈ Γ we have

(7) (∇SCT )X = ∇S(CTX)− CT (∇SX),

where

∇S(CTX) = −∇S(∇XT )Γ

= − (∇S∇XT )Γ

=
(

−R(S,X)T −∇X∇ST −∇[S,X]T
)Γ

,(8)

−CT (∇SX) = −CT ((∇SX)Γ)

= −CT ((∇XS)Γ)− CT ([S,X]Γ)

= CTCSX + (∇[S,X]ΓT )
Γ.(9)

Let L = [S,X]. Then

(∇LT )
Γ = (∇LΓT +∇L∆T )Γ = (∇LΓT )Γ

since ∇∆∆ ⊂ ∆ ⊥ Γ. Hence the last terms of (8) and (9) cancel each
other. Moreover, ∇ST ∈ ∆ and

−(∇X∇ST )
Γ = C∇STX.

Further note that 〈R(∆,Γ)∆,∆〉 = 0 since ∆ is totally geodesic, so the
curvature term R(S,X)T in (8) is automatically in Γ. Thus inserting
(8) and (9) into (7) proves (6). q.e.d.

Corollary 4.2. If (M,J) is Kähler and ∆ ⊂ TM autoparallel with
J∆ = ∆ and CTJ = JCT (i.e. CT is C-linear), then R( , T )T is
C-linear on Γ.

Proof. This is immediate from (6) for S = T and the parallelity of J .
q.e.d.
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5. The kernel of α(2,0)

Now let M be a Kähler manifold and ϕ : M → R
n an isometric ppmc

immersion. Let us consider

(10) ∆ = kerα(2,0) =
{

X ∈ TM ; α(X ′, Y ′) = 0 ∀Y ∈TM

}

which is of maximal dimension on an open subset Mo ⊂ M and hence a
distribution on Mo. We denote ∆′ the projection of ∆ to T ′M . Clearly
∆ is J-invariant.

When ∆ = TM , i.e. α(2,0) = 0, the immersion is called (2, 0)-geodesic.
In this case, the Codazzi equations immediately show ∇α = 0. Such
immersions (so called extrinsic symmetric spaces) have been classified
by D. Ferus [12]. The (2,0)-geodesic ones are the standard embeddings
of the Kähler symmetric spaces, defined as follows. A Kähler symmetric
space is a Kähler manifold M which is also a symmetric space such that
all point reflections are holomorphic. If M is compact without local
euclidean factor, the almost complex structure Jp at any point p ∈ M
defines an element of its transvection Lie algebra g; this map p 7→ Jp:
M → g is the standard embedding (cf. [8]). E.g. for M = S

2, the
transvection Lie algebra is g = so(3) ∼= R

3 and for M = CP 2 we have
g = su(3) ∼= R

8.

Lemma 5.1. For all S, T ∈ ∆ and A ∈ TM we have:

∇A′′T ′ ∈ ∆′,(11)

∇ST ∈ ∆.(12)

Proof. The Codazzi equations give for all B ∈ TM :

(∇A′′α)(T ′, B′) = (∇T ′α)(A′′, B′) = 0

since α(1,1) is parallel. Hence α(∇A′′T ′, B′) = −α(T ′,∇A′′B′) = 0 since
T ∈ ∆. This proves (11). For (12) we have to show

α(∇ST
′, B′) = 0

for all S, T ∈ ∆ and B ∈ TM . We split S = S′+S′′. Since α(∇S′′T ′, B′)
= 0 by (11), it remains to show α(∇S′T ′, B′) = 0. But (∇S′α)(T ′, B′) =
(∇B′α)(T ′, S′) = ∇B′ (α(T ′, S′)) − α(∇B′T ′, S′) − α(T ′,∇B′S′) = 0.
Thus

α(∇S′T ′, B′) = −α(T ′,∇S′B′) = 0.

q.e.d.

Corollary 5.2. ∆ is autoparallel and hence integrable, and the leaves
are totally geodesic Kähler submanifolds which are (2,0)-geodesic in the
ambient euclidean space.
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Proof. ∆ is autoparallel by (12), hence integrable with totally geo-
desic leaves, and since ∆ is J-invariant, the leaves are Kähler submani-
folds of M . Moreover they are (2,0)-geodesic since α(2,0) = 0 on ∆.

q.e.d.

Now let Γ = ∆⊥. Consider the tensor field C : ∆ → Hom(Γ,Γ)
defined by

(13) CT (X) = −(∇XT )Γ

for T ∈ ∆ and X ∈ Γ.

Lemma 5.3. CT commutes with J .

Proof. By (11) we have (∇X′′T ′)Γ = 0 = (∇X′T ′′)Γ. Extending the
Γ-projection complex linearly and using the splitting X = X ′+X ′′ and
T = T ′ + T ′′ we have

(∇XT )Γ = (∇X′T ′)Γ + (∇X′′T ′′)Γ

and consequently

(∇JXT )Γ = i(∇X′T ′)Γ − i(∇X′′T ′′)Γ = J(∇XT )Γ.

Now the claim follows from the definition of CT , see (13). q.e.d.

6. Small codimension

Let N1 = N ′+N ′′ ⊂ NM where N ′ is spanned by the values of α(2,0)

and N ′′ = N ′ by the values of α(0,2); these are subbundles on an open
subset Mo ⊂ M . By Corollary 2.3, N ′ and N ′′ are isotropic, 〈N ′, N ′〉 =
0. Denoting by ( , ) the hermitean inner product, (X,Y ) = 〈X,Y 〉, we
have (N ′, N ′′) = 〈N ′, N ′〉 = 0 and thus

dimN1 = 2dimN ′.

Moreover note that N1 ⊥ H 6= 0, hence N ⊃ RH ⊕N1 and therefore

(14) codimϕ(M) ≥ 2 dimN ′ + 1.

Definition. A ppmc immersion ϕ is said to be isotropic if

〈α(2,0), α(2,0)〉 = 0 = 〈α(2,0), α(1,1)〉

i.e. the values of α(2,0), α(0,2), α(1,1) span subbundles which are mutually
perpendicular with respect to the hermitian inner product.

Lemma 6.1. Let M be Kähler and ϕ : M → R
n an isometric ppmc

immersion of codimension ≤ 4. If codim∆ ≥ 2, then ϕ is isotropic.

Proof. We have seen above that 〈α(2,0), α(2,0)〉 = Λ4 = 0. We need to

show 〈α(2,0), α(1,1)〉 = 0, i.e.

〈α(X ′, Y ′), α(Z ′,W ′′)〉 = 0
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for all X,Y,Z,W ∈ TMo. Let us fix Z and W . The values of α(2,0)

lie in N ′ which is complex one-dimensional on Mo since N ′ 6= 0 and
2dimN ′+1 ≤ 4 by (14). Thus the subspace of all U with α(U ′, Z ′) = 0
has dimension n− 1. By Lemma 2.1 we have for any such U

〈α(U ′, V ′), α(Z ′,W ′′)〉 = 〈α(U ′, Z ′), α(V ′,W ′′)〉 = 0

Since dim∆ ≤ n − 2, we may choose our U outside ∆, and hence we
find some V such that α(U ′, V ′) 6= 0. But since dimN ′ = 1 we may
replace the particular element α(U ′, V ′) by an arbitrary α(X ′, Y ′) ∈ N ′

and obtain 〈α(X ′, Y ′), α(Z ′,W ′′)〉 = 0. q.e.d.

Lemma 6.2. (cf. [11]) Let M be a compact Kähler manifold with
c1(M) > 0 and ϕ : M → R

n an isometric ppmc immersion with codi-
mension ≤ 4. If codim∆ = 1, then either ϕ(M) is (2, 0)-geodesic or ϕ
is decomposable into a product of two ppmc immersions one of which is
(2, 0)-geodesic.

Proof. By Theorem 4.1, the tensor field CT : Γ → Γ corresponding
to ∆ (see (13)) satisfies the Riccati equation (6). Since Γ is complex
one-dimensional (with the complex structure defined by J) and CT is
complex linear by Lemma 5.3, it is a complex multiple of the identity,
CT = λI. Let γ be a geodesic on a maximal leaf of ∆ and denote by T
its velocity field. Then CT (t) = λ(t)I where the complex function λ(t)
satisfies the Riccati type equation

(15) λ′ = λ2 + r

where R( , T )T = r(t)I with r(t) =
〈

RM (Y, T )T, Y
〉

γ(t)
. We will see in

the subsequent Lemma 6.3 that r ≥ 0. It is well known that 0 is the only
real solution of (15) which is defined on the whole real line (any other
solution has a pole). Therefore CT has no real eigenvalues. But if λ is

complex, λ = µ+iη, we replace T by the vector T̃ = µT−ηJT = λ̄T and
get CT̃ = λ̄CT = λ̄λI = (µ2 + η2)I at the initial point t = 0. Extending

T̃ to the tangent vector field along a geodesic γ̃, we obtain CT̃ = λ̃I

with λ̃(0) ∈ R. Then λ̃(t) is a real solution of (15) and as before we

conclude λ̃ = 0 which implies λ = 0. We conclude that CT = 0 for
all T ∈ ∆ which shows that ∆ is not only autoparallel, but even fully
parallel, and then the same holds for Γ = ∆⊥. Hence Mo is locally a
product of two nontrivial Kähler manifolds M1 and M2.

To prove that ϕ|Mo
is a product of immersions we first notice that

α(S′, Y ′) = 0 for all S ∈ ∆ and Y ∈ Γ. Using Lemma 2.1 and the
vanishing of curvature tensor components with mixed ∆ and Γ entries,
we get

0 = 〈α(S′, Y ′), α(S′′, Y ′′)〉 = 〈α(S′, Y ′′), α(S′′, Y ′)〉.

This shows α(S′, Y ′′) = 0 and henceforth α(S, Y ) = 0 whenever S ∈ ∆
and Y ∈ ∆⊥. Then ϕ|Mo

splits as a product of immersions [16]. An
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analyticity argument allows the conclusion that M is globally a product
of two Riemann surfaces M1 and M2 and ϕ is a product of two ppmc
immersions, ϕ1 and ϕ2 where one of the factors (the integral leaves of
∆) is (2, 0)-geodesic. q.e.d.

Lemma 6.3. For all T ∈ ∆ and Y ∈ Γ = ∆⊥ we have

(16) 〈R(Y, T )T, Y 〉 ≥ 0

Proof. We consider the complex multilinear extension of the curva-
ture tensor and claim that, whenever T, S ∈ ∆ and Y ∈ Γ,

(17) R(Y ′′, T ′)S′ ∈ ∆′, R(Y ′, T ′′)S′′ ∈ ∆′′.

To prove this claim we remember from (11) that ∇Z′′T ′ ∈ ∆′ (respec-
tively ∇Z′T ′′ ∈ ∆) whenever T is a section of ∆ and Z ∈ TM . Using
this and the fact that ∆ is an auto-parallel distribution, we know that
∇T ′∇Y ′′S′, ∇Y ′′∇T ′S′ and∇[T ′,Y ′′]S

′ are in ∆′, hence R(Y ′′, T ′)S′ ∈ ∆′.
This proves (17).

We also recall that on any Kähler manifold we have R(Y ′, T ′) = 0 =
R(Y ′′, T ′′). Thus

R(Y, T ) = R(Y ′, T ′′) + R(Y ′′, T ′),
〈R(A,B)Y, T 〉 = 〈R(A,B)Y ′, T ′′〉+ 〈R(A,B)Y ′′, T ′〉

for arbitrary A,B. Since T ′′M is isotropic (“Isotropic” means that the
inner product vanishes: 〈X + iJX, Y + iJY 〉 = 〈X,Y 〉 − 〈JX, JY 〉 +
i (〈X,JY 〉+ 〈JX, Y 〉) = 0 for all X ∈ TM), we conclude from (17), the
Gauss equation and α(T ′, Y ′) = 0:

〈R(Y, T )T, Y 〉 = 〈R(Y ′′, T ′)T ′′, Y ′〉+ 〈R(Y ′, T ′′)T ′, Y ′′〉
= 2〈α(T ′, T ′′), α(Y ′′, Y ′)〉.

Again from Gauss equation (Lemma 2.1) we obtain

〈α(T ′, T ′′), α(Y ′′, Y ′)〉 = 〈α(T ′, Y ′′), α(T ′′, Y ′)〉.

Thus

〈R(Y, T )T, Y 〉 = 2〈α(T ′, Y ′′), α(T ′′, Y ′)〉 ≥ 0.

q.e.d.

7. The isotropic case

Recall that a ppmc immersion is isotropic if 〈α(2,0), α(2.0)〉 = 0 and
No ⊥ N1. Clearly “isotropic” is stronger than “half isotropic”. A gen-
eral study of this case has been done in [7], but in the present situation
of low codimension we can do better.

Proposition 7.1. Let ϕ : M → R
n be full indecomposable isotropic

ppmc with codimension ≤ 4. Then either ϕ(M) is an isotropic minimal
surface (“superminimal surface”) in S

4 or M is isometric to S
2 or CP 2
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or Q3 (up to scaling) and ϕ is the standard embedding S
2 →֒ R

3 = so(3)
or CP 2 →֒ R

8 = su(3) or Q3 →֒ R
10 = so(5).

Proof. We have to show that α(2,0) = 0; then ϕ is a standard em-
bedding of a Kähler symmetric space with codimension ≤ 4 and we are
done.

Thus assume that α(2,0) does not vanish identically. Then the subbun-
dle No ⊂ NM must have rank one; otherwise in view of (14), each fibre
of No would have dimension two and we would have another parallel
normal field perpendicular to H in No which is impossible by Propo-
sition 3.3. Thus ϕ takes values in the sphere S

n−1, and the restriction
ϕS : M → S

n−1 is pluriminimal or (1, 1)-geodesic, i.e. the second fun-
damental form αS of ϕS has vanishing (1,1)-component. By the sub-
sequent lemma, M is a surface. Thus ϕ(M) is an isotropic minimal
surface of Sn−1 with n ≤ 6. But such minimal surfaces do not exist in
S
5 which is not an inner symmetric space (cf. [9]), thus ϕ(M) ⊂ S

4.
q.e.d.

Lemma 7.2. ([5], [17]) Let M be a compact Kähler manifold and
ϕS : M → S

n−1 a pluriminimal immersion. Then M is a surface.

Proof. Let dimM = 2m. Composing ϕS with the embedding S
n−1 ⊂

R
n, we get a ppmc immersion ϕ : M → R

n. Taking, at each x ∈ M , an
orthonormal basis Ei, JEi, 1 ≤ i ≤ m, and using Gauss equations we
obtain that

〈

α(E′
i, E

′′
i ), α(E

′′
j , E

′
j)
〉

=
〈

α(E′
i, E

′′
j ), α(E

′′
i , E

′
j)
〉

,

from whence H = 0 which cannot happen. In fact,

α(E′
i, E

′′
i ) = 〈E′

i, E
′′
i 〉H = 1

2
H

while α(E′
i, E

′′
j ) = 〈E′

i, E
′′
j 〉H = 0 for i 6= j. q.e.d.

Proof of the Main Theorem: The proof of Theorem 1.1 is obtained
from Lemma 6.1, Lemma 6.2 and Proposition 7.1.
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