J. DIFFERENTIAL GEOMETRY
81 (2009) 575-599

POINTS IN PROJECTIVE SPACES AND
APPLICATIONS

IvAN CHELTSOV

Abstract

We prove the factoriality of a nodal hypersurface in P* of de-
gree d that has at most 2(d — 1)?/3 singular points, and we prove
the factoriality of a double cover of P? branched over a nodal sur-
face of degree 2r having less than (2r — 1)r singular points.

1. Introduction

Let 3 be a finite subset in P and £ € N, where n > 2. Then the points
of the set X impose independent linear conditions on homogeneous forms
of degree ¢ if and only if for every point P € ¥ there is a homogeneous
form of degree £ that vanishes at every point of the set X\ P, and does
not vanish at the point P. The latter is equivalent to the equality

P (Tn @ Opn (€)) =0,

where Ty, is the ideal sheaf of the subset ¥ C P".
In this paper we prove the following result (see Section 2).

Theorem 1. Suppose that there is a natural number A > 2 such that
at most Ak points of the set X lie on a curve in P™ of degree k. Then

B (Tn @ Opn () ) =0

in the case when one of the following conditions holds:

|3A/2 = 3] and |Z| < A[A/2];

|13 —3], |2] < Apand 3] —p—2 =X = p for some p € Q;
[nul, 12| < A and (n— 1) = X for some p € Q.

* ¢
* ¢
LS
Let us consider applications of Theorem 1.

Definition 2. An algebraic variety X is factorial if C1(X) = Pic(X).

We assume that all varieties are projective, normal, and defined over C.
Received 12/14/2006.
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Let 7: X — P2 be a double cover branched over a surface S C P3 of
degree 2r > 4 such that the only singularities of the surface S are iso-
lated ordinary double points. Then X is a hypersurface

w? = fgr(x,y,z,t) C P(l, 1,1, 1,r) 2 Proj ((C[x,y,z,t,w]),

where wt(x) = --- = wt(t) = 1, wt(w) = r, and for(z,y, 2,t) is a homo-
geneous polynomial of degree 2r such that S C P2 is given by

f2r(:v,y,z,t) =0 C P? = Proj (C[w,y,z,t]).

The following conditions are equivalent (see [10] and [8]):
the threefold X is factorial;

the singularities of the threefold X are Q-factoriall ;
the equality rk Hy(X,Z) = 1 holds;

the ring

(C[:c,y, z,t,w}/<’w2 — for (a?,y, z,t)>

is a unique factorization domain;
e the points of the set Sing(S) impose independent linear conditions
on homogeneous forms on P? of degree 3r — 4.

Theorem 3. Suppose that the inequality
’ Sing(S)‘ < (2r — 1)7”
holds. Then the threefold X is factorial.

Proof. The subset Sing(S) C P3 is a set-theoretic intersection of sur-
faces of degree 2r — 1. Then X is factorial by Theorem 1. q.e.d.

The assertion of Theorem 3 is proved in [4] in the case when r = 3.
Example 4. Suppose that the surface S is given by an equation
(5) 9> (:c, Y, 2, t) =qn (x, Y, 2, t)g%»_l (x, Y, 2, t) c P3,
where g; is a general homogeneous polynomial of degree ¢. Then
‘ Sing(S)‘ = (27" — 1)7’,
and S has at most ordinary double points. But X is not factorial.

For r = 3, the threefold X is non-rational if it is factorial (see [4]), but
the threefold X is rational if the surface S is the Barth sextic (see [1]).
We prove the following generalization of Theorem 3 in Section 3.

LA variety is Q-factorial if some non-zero integral multiple of every Weil divisor
on it is a Cartier divisor. This property is not local in the analytic topology, because
ordinary double points of threefolds are not locally analytically Q-factorial.
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Theorem 6. Suppose that the inequality
|Sing ()] < (2r — )7 +1
holds. Then X 1is not factorial <= S can be defined by equation 5.

The assertion of Theorem 6 is proved in [11] in the case when r = 3.
Let V be a hypersurface in P* of degree d such that V has at most
isolated ordinary double points. Then V' can be given by the equation

fd(x,y,zjt,u) =0CcPtx Proj(C[x,y, z,t,u]),

where fy(z,vy, z,t,u) is a homogeneous polynomial of degree d.
The following conditions are equivalent (see [10] and [8]):

the threefold V is factorial;

the threefold V' has Q-factorial singularities;

the equality rk H4(V,Z) = 1 holds;

the ring

C[:J;,y,z,t,u]/<fd(:1;,y,z,t, u)>

is a unique factorization domain;
e the points of the set Sing(V') impose independent linear conditions
on homogeneous forms on P4 of degree 2d — 5.

The threefold V' is not rational if it is factorial and d = 4 (see [12]),
but general determinantal quartic threefolds are known to be rational.

Conjecture 7. Suppose that the inequality
‘ Sing(V)’ < (d — 1)2
holds. Then the threefold V is factorial.
The assertion of Conjecture 7 is proved in [3] and [5] for d < 7.
Example 8. Suppose that V is given by the equation
xg(x,y,z,t,u) —i—yf(a:,y,z,t,u) —0cCP Proj(C[m,y,z,t,u]),
where g and f are general homogeneous forms of degree d — 1. Then
|Sing(V)| = (d-1)°
and V has at most ordinary double points. But V is not factorial.
The threefold V is factorial if | Sing(V)| < (d — 1)2/4 by [2].
Theorem 9. Suppose that the inequality
2(d—1)

|Sing(V)] < =

holds. Then the threefold V is factorial.
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Proof. The set Sing(V) is a set-theoretic intersection of hypersurfaces
of degree d — 1. Then V is factorial for d > 7 by Theorem 1.
For d < 6, the threefold V is factorial by Theorem 2 in [9]. q.e.d.

Let Y be a complete intersection of hypersurfaces F and G in P° of
degree m and k, respectively, such that m > k, and the complete inter-
section Y has at most isolated ordinary double points.

Example 10. Let F' and G be general hypersurfaces that contain a
two-dimensional linear subspace in P°. Then

’Sing(Y)‘ = (m+/€—2)2— (m— 1)(k:— 1)
and Y has at most ordinary double points. But Y is not factorial.

The threefold Y is factorial if G is smooth and singular points of Y
impose independent linear conditions on homogeneous forms of degree
2m + k — 6 (see [8]).

Theorem 11. Suppose that G is smooth, and the inequalities
[Sing (V)| < (m+ k= 2) (2m + &k - 6) /5
and m > 7 hold. Then the threefold Y is factorial.

Proof. The set Sing(Y) is a set-theoretic intersection of hypersurfaces
of degree m + k — 2. Then Y is factorial by Theorem 1. q.e.d.

Arguing as in the proof of Theorem 11, we obtain the following result.
Theorem 12. Suppose that G is smooth, and the inequalities
| Sing(Y)| < (2m + & = 3)(m + k- 2)/3
and m = k 4+ 6 hold. Then the threefold Y is factorial.
Let H be a smooth hypersurface in P* of degree d > 2, and let
nU—H
be a double cover branched over a surface R C H such that
R~ Opa(2r)]
and 2r > d. Suppose that S has at most isolated ordinary double points.
Theorem 13. Suppose that the inequalities
|Sing(R)| < (2r +d - 2)r/2
and r = d+ 7 hold. Then the threefold U is factorial.

Proof. The subset Sing(R) C P* is a set-theoretic intersection of hy-
persurfaces of degree 2r +d — 2. Then U is factorial by Theorem 1, be-
cause it is factorial if the points of Sing(R) impose independent linear
conditions on homogeneous forms of degree 3r +d — 5 (see [8]). q.e.d.
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The author thanks I. Aliev, A. Corti, V. Iskovskikh, J. Park, Yu. Pro-
khorov, V. Shokurov, and K. Shramov for very useful comments.

2. Main result

Let X be a finite subset in P", where n > 2. Now we prove the
following special case of Theorem 1, leaving the other cases to the reader.

Proposition 14. Let r > 2 be a natural number. Suppose that
‘Z‘ < (2r - 1)r,
and at most (2r — 1)k points in ¥ lie on a curve of degree k. Then
B (T @ Opn (3r — 4) ) = 0.
The following result is Corollary 4.3 in [7].

Theorem 15. Let w: Y — P2 be a blow up of points P, ..., Ps € P?,
and let E; be the m-exceptional divisor such that w(E;) = P;. Then

T (OPQ (5)) - Z; E;

does not have base points if at most k(§+3—k)—2 points in {Py,..., Ps}
lie on a curve of degree k for every k < (§ + 3)/2, and the inequality

5<max{f;3J <€+3— f;ﬂ) -1 f;gf}

holds, where £ is a natural number such that & > 3.

Therefore, it follows from Theorem 15 that to prove Proposition 14,
we may assume that n = 3 due to the following result.

Lemma 16. Let II C P™ be an m-dimensional linear subspace, and
let
: PP - IT X P™
be a projection from a linear subspace €2 C P™ such that

e the subspace Q is sufficiently general and dim(Q2) =n—m — 1,
o there is a subset A C X such that

‘A‘ > Ak +1,
but the set 1¥(A) is contained in an irreducible curve of degree k,

andn >m = 2. Let M be the linear system that contains all hypersur-
faces in P™ of degree k that pass through all points in A. Then

dim (Bs(M) ) =0,

and either m = 2, or k > .
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Proof. Suppose that there is an irreducible curve Z such that
Z C Bs(M),

and put Z = ZNA. We may assume that 1|z is a birational morphism,
and

»(2) mp(A\E) — o,

because € is general. Then deg(y(Z)) = deg(Z2).
Let C be an irreducible curve in II of degree k that contains ¥(A),
and let W be the cone in P" over the curve C and with vertex 2. Then

W e M,

which implies that W contains the curve Z. Thus, we have
¥(Z2) =C,
which implies that = = A and deg(Z) = k. But |Z N X| < A\k. We have

dim (Bs(M) ) =0.

Suppose that m > 2 and k& < A. Let us show that the latter assump-
tion leads to a contradiction. We may assume that m = 3 and n = 4,
because ¥ as a composition of n — m projections from points.

Let Y be the set of all irreducible reduced surfaces in P4 of degree
k that contains all points of the set A, and let T be a subset of P*
consisting of points that are contained in every surface of ). Then

ACT,

but the previous arguments imply that T is a finite set.
Let S be the set of all surfaces in P? of degree k such that

SeS «— 3Y ey ‘ »(Y) = S and |, is a birational morphism,

and let ¥ be a subset of P? consisting of points that are contained in
every surface of the set S. Then S # @ and

w(A) Cv(T) C v,
The generality of Q2 implies that ¢(Y) = ¥. Indeed, for every point
Oell\V

and for a general surface Y € ), we may assume that the line passing
through O and € does not intersect Y, but |y is a birational morphism.

The set ¥ is a set-theoretic intersection of surfaces in II of degree k,
which implies that at most §k points in W lie on a curve in II of degree 6.

We see that at most k2 points in ¥ lie on a curve in II of degree k,
but the set ¥(A) contains at least Ak + 1 points that are contained in
an irreducible curve in II of degree k, which is a contradiction. q.e.d.
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We have a finite subset ¥ C P3 and a natural number r > 2 such that
|E| < (27" — 1)7“,
and at most (2r — 1)k points in ¥ lie on a curve of degree k. Then
’E’ < (27‘ - 1) (r — e)
for some integer € > 0. Let us prove the following result.
Proposition 17. The equality h'(Zy, @ Ops(3r — 4 — €)) = 0 holds.

Fix a point P € . To prove Proposition 17, it is enough to construct
asurface? of degree 3r —4—e that contains ¥\ P and does not contain P.

We assume that » > 3 and € < r — 3, because the assertion of Propo-
sition 17 follows from Theorem 2 in [9] and Theorem 15 otherwise.

Lemma 18. Suppose that there is a hyperplane Il C P that contains
the set 2. Then there is a surface of degree 3r —4 — e that contains every
point of the set ¥\ P and does not contain the point P.

Proof. Suppose that |S\ P| > [(3r — 1 —€)/2]2. Then

3r—1—¢|2 (3r—2—¢?
(2r=1)(r—¢)—22|S\P|> L#J +1>f

which implies that (r—4)%+2er+¢? < 0. We have r = 4 and € = 0. Then
r—1—ce¢ dr—1—ce
e[ (e £
2\ P| . <3r ' .

Thus, in every possible case, the number X\ P| does not exceed

o (2522 -1 (2551, [P

At most 3r—4—e points of ¥\ P lie on a line, because 3r—4—e > 2r—1.
Let us prove that at most k(3r — 1 — e — k) — 2 points in ¥\ P can
lie on a curve of degree k < (3r — 1 —€)/2. It is enough to show that

k(3r—1—e—k)—2>k(2r —1)
for all k < (3r — 1 — €)/2. We must prove this only for £ > 1 such that
k(Br—1—e—k)—2<|S\P|<(2r—1)(r—¢) -2,

because otherwise the condition that at most k(3r — 1 — k) — 2 points
in the set ¥\ P can lie on a curve of degree k is vacuous.
We may assume that k < r —e. But

kB3r—1—e—k)—22k(2r—1) < r>k—e,

+1,

which immediately implies that at most k(3r — 1 — e — k) — 2 points in
the set 3\ P can lie on a curve of degree k.

2For simplicity we consider homogeneous forms on P" as hypersurfaces.
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It follows from Theorem 15 that there is a curve
C C II = P?
of degree 3r — 4 — e that contains ¥ \ P and does not contain P € X.

A general cone in P? over the curve C is the required surface. q.e.d.

Fix a general hyperplane II C P3. Let 1: P3 --» II be a projection
from a sufficiently general point O € P3. Put ¥/ = (%) and P’ = ¢(P).

Lemma 19. Suppose that at most (2r—1)k points in X' lie on a curve
of degree k. Then there is a surface in P? of degree 3r—4—e that contains
all points of the set ¥\ P but does not contain the point P € ¥.

Proof. Arguing as in the proof of Lemma 18, we obtain a curve
C C I = P?

of degree 3r — 4 — € that contains X'\ P’ and does not pass through P’.

Let Y be the cone in P2 over C whose vertex is O. Then Y is a surface
of degree 3r — 4 — e that contains all points of the set ¥ \ P but does
not contain the point P € X. q.e.d.

To conclude the proof of Proposition 14, we may assume that there
is a natural number k such that at least (2r — 1)k + 1 points of ¥/ lie on
a curve of degree k, where k is the smallest number of such property.

Lemma 20. The inequality k > 3 holds.

Proof. The inequality k£ > 2 holds by Lemma 16, which implies r > 3.
Suppose that there is a subset ® C X such that

@] >2(2r — 1),
but 1 (®) is contained in a conic C' C II. Then C is irreducible.
Let D be a linear system of quadrics in P? containing ®. Then

dim (Bs(D) ) = 0
by Lemma 16. Let W be a cone in P over C with the vertex 2. Then

8=Dy-Dy- W 2> multy,(Dy)multy, (D) > | @ >2(2r — 1) > 8,
wed
where D; and Dy are general divisors in D. q.e.d.

Therefore, there is a subset A,lC C X such that
|AL] > (2r — 1)k,

but the subset ¥(A}) C II 2 P? is contained in an irreducible curve of
degree k > 3. Similarly, we obtain a disjoint union

l ¢
JUas

j=ki=1
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where A;’ is a subset in X such that
|A%]| > (2r —1)j,

the subset Lb(A}) is contained in an irreducible reduced curve of degree j,
and at most (2r — 1)( points of the subset

I ¢
o Q) e ense
j=ki=1
lie on a curve in IT of degree (. Put A = Ué.:k Uz, A;
Let =} be the base locus of the linear system of surfaces of degree j
that pass through the set Az Then Ei» is a finite set by Lemma 16, and

l
(21) IS\A[ < (2r=1)(r—¢) =1=> c(2r—1)i
i=k

Corollary 22. The inequality Zi:k ic; <r—e—1 holds.

We have A;- C E; But the set E; imposes independent linear condi-
tions on homogeneous forms of degree 3(j — 1) by the following result.

Lemma 23. Let M be a linear subsystem in |Opn(\)| such that
dim (Bs(M) ) =0,

where A > 2. Then the points in Bs(M) impose independent linear con-
ditions on homogeneous forms on P™ of degree n(\ —1).

Proof. See Lemma 22 in [2] or Theorem 3 in [6]. q.e.d.

Put::U U 1H . Then A CE

1=

Lemma 24. Suppose that X is contained in =. Then there is a sur-
face of degree 3r —4 — e that contains ¥\ P and does not contain P € 3.

Proof. For every E; containing P there is a surface of degree 3(j — 1)
that contains the set Ez \ P and does not contain P by Lemma 23.

For every =]

—1
We have j < 3(j — 1), because k > 2. For every Zj there is a surface
F/ cp?
of degree 3(j—1) that contains the set E; \ (E; NP) and does not contain
the point P. The union Ul-:k UZ F? is a surface of degree

not containing P there is a surface of degree j that

contains Z% and does not contain P by the definition of the set E;

232—1 ZSZC,—Sck 3r—6—3e<3qr—4—c¢

that contains the set X \ P and does not contain the point P.  q.e.d.
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The proof of Lemma 24 implies that there is surface of degree

!
> 33— e
i=k

containing (ENX)\ (ENP) and not containing P, and a surface of degree
!
Z e
i=k
containing = N ¥ and not containing any point of the set ¥\ (ENX).
Lemma 25. Let A and A be disjoint finite subsets in P™ such that

e there is a hypersurface in P" of degree  that contains all points
in the set A and does not contain any point in the set A,

e the points of the sets A and A impose independent linear conditions
on hypersurfaces in P* of degree & and & — (, respectively,

where & > ¢ are natural numbers. Then the points of the set AUA impose
independent linear conditions on hypersurfaces in P" of degree .

Proof. Let @ be a point in AUA. To conclude the proof we must find
a hypersurface of degree ¢ that passes through the set (AUA)\ Q and
does not contain the point ). We may assume that @ € A.

Let F' be the homogenous form of degree £ that vanishes at every
point of the set A \ @ and does not vanish at the point Q). Put

AZ{QL---?Q(S},

where (); is a point. There is a homogeneous form G; of degree £ that
vanishes at every point in (AUA)\ @; and does not vanish at @;. Then

F(Qi) + 1iGi(Qi) =0

for some p; € C, because ¢;(Q;) # 0. Then the homogenous form
é
F+ Z wi G
i=1
vanishes on set (AU A) \ @ and does not vanish at the point Q). q.e.d.
Putd=3r—4—e— Eézkz’ci and

£=v(2\ (EnY)).

To prove Proposition 17, we may assume that () # ¥ C ¥'.
It follows from Lemma 25 that to prove Proposition 17 it is enough
to show that 3 C II and d satisfy the hypotheses of Theorem 15.

Lemma 26. The inequality || < |(d + 3)/2]? holds.
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Proof. Suppose that the inequality |X| > |(d+3)/2|?+1 holds. Then

Lo - (3r—2—e—2§:kici)2
(27“—1)(7“—6—;;61‘1)—22‘2‘2 1 +1
by Corollary 22. Put A = e+ ', ¢;i. Then A >k > 3 and
4(2r —1)(r—A) 12> 3r—2-A)?,
which implies that 0 < 72 — 8 4+ 16 + 2rA + A% < 0. q.e.d.

The inequality d > 3 holds by Corollary 22, because r > 3.

Lemma 27. Suppose that at least d 4+ 1 points in the set ¥ are con-
tained in a line. Then there is a surface in P2 of degree 3r — 4 — €
that contains all points of the set X2\ P and does not contains the point
PeX.

Proof. We have |E| d+ 1. It follows from inequality 21 that

l
3r—3 —G—Zwl 27“—1 r—e —1 ch 2r—1
i=k

which gives Zi:k ic; # r —e— 1. Now it follows from Corollary 22 that

but 2r—1 > 3T—3—6—Z§:k ic;. Then Zi:k ic; =r—e—2and d = 2r—2.
We have a surface of degree Zé:k 3(i—1)¢; < 3r —4—e€ that contains

(Emz)\(amp)

and does not contain P. But we have a surface of degree r — ¢ — 2 that

contains ZN X and does not contain any point of the set X\ (2N ).
The set ¥\ (ENX) contains at most 47 —4 points, at most 2r—1 points

of the set ¥ lie on a line. It follows from Theorem 2 in [9] that the set

2\(Emz)

imposes independent linear conditions on homogeneous forms on P? of
degree 2r — 2. Applying Lemma 25, we complete the proof. q.e.d.

So, we may assume that at most d points in ¥ lie on a line.
Lemma 28. For every t < (d+ 3)/2, at most
t(d+3—t)—2

points in X lie on a curve of degree t in I1 = P2,
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Proof. At most (2r — 1)t of the points in ¥ lie on a curve of degree t,
which implies that to conclude the proof it is enough to show that

td+3—t)—2= (2r—1)t
for every t < (d +3)/2 such that ¢t > 1 and t(d +3 —t) — 2 < |3|. But
!
Hd+3—t)=22t2r—1) < r—e— Y ic; >t,
i=k
because t > 1. Thus, we may assume that t(d +3 —t) — 2 < || and

l
. d+3
r—e—chigtg —
i=k
Let g(x) = (d + 3 — z) — 2. Then
l
g(t) P g(r —€— Zici),
i=k
because g(z) is increasing for z < (d + 3)/2. Therefore, we have
! !
@r=1)(r—e=dic)=2> [S] > gt) > (r—e— Y ic;) (2r—1) -2,
i=k i=k
because inequality 21 holds. q.e.d.

We can apply Theorem 15 to the blow up of the plane II at the points
of the set ¥ and to the integer d. Then applying Lemma 25, we obtain
a surface in P? of degree 3r —4—e¢ containing ¥\ P and not containing P.

The assertion of Proposition 17 is completely proved, which implies
the assertion of Proposition 14. The proof of Theorem 1 is similar.

3. Auxiliary result

Now we prove Theorem 6. Let 7: X — P3 be a double cover branched
over a surface S of degree 2r > 4 with isolated ordinary double points.

Lemma 29. Let F' be a hypersurface in P of degree d that has iso-
lated singularities, and let C be a curve in P™ of degree k. Then
o the inequality | Supp(C) N Sing(F')| < k(d — 1) holds,
o the equality | Supp(C) N Sing(F)| = k(d — 1) implies that
Sing(C’) N Sing(F) =g.
Proof. Let f(xo,...,zy,) be the homogeneous form of degree d such

that f(zo,...,x,) = 0 defines F C P", where (z¢ : ... : x,) are homo-
geneous coordinates on P". Put
n

0
> Ay, =0
1=0

D= C }O[pm(d—l)

)
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where Ag, ..., A\, are complex numbers. Then
BS(D) = Sing (F),

which implies that the curve C intersects a generic member of the linear
system D at most (d — 1)k times, which implies the assertion.  q.e.d.

Lemma 30. Let II C P? be a hyperplane, and let C C 11 be a reduced
curve of degree r. Suppose that the equality

Supp(C’) N Sing(S) = (2r — 1)7'
holds. Then S can be defined by equation 5.
Proof. Put

S’H = ;mzcz,

where C; is an irreducible reduced curve, and m; is a natural number.
We assume that C; # C; for ¢ # j, and C' = Ziﬁzl C;, where 8 < «
It follows from Lemma 29 and from the equalities

ﬁ o
(31) 3 deg(Cy) = r = 2=t Mi4e8(G)

2
that C; N Sing(S) = (2r — 1)deg(C;) if ¢ < 3, and
Sing(C’) N Sing(S) =g.
Suppose that m, = 1 for some v < 3. Then
C, N Sing(S) = (2r — 1)deg(C,),

but the curve S| = > ; m;C; must be singular at every singular point
of the surface S that is contained in C,. Thus, we have

Sing(S) N Supp(Cy) € | JCinCy,
i#y
but |C; NCy| < (C; - Cy)n = deg(C;)deg(C,) for ¢ # ~. Hence, we have
Zdeg i)deg(C,y) = (2r — 1)deg(C,),
i#y
but on the plane II we have the equalities
(2r — deg(C,))deg(C,) = <S‘H - CW) = Zm,deg i)deg(C,),
iy

which implies that deg(C,) =1 and m; = 1 for every i.
Now, equalities 31 imply that 5 < «, but every singular point of the
surface S that is contained in the curve C' must lie in the set

[e%
cn | a

i=0+1
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that consists of at most 72 points, which is a contradiction.

Thus, we see that m; > 2 for every ¢ < 8. Therefore, it follows from
the equalities 31 that a = 8 and m; = 2 for every i.

Let f(z,y,z,w) be the homogeneous form of degree 2r such that

f(mayvzaw) =0

defines the surface S C P3, where (z : y : 2z : w) are homogeneous
coordinates on P3. We may assume that II is given by x = 0. Then

f(Ov Y, z, U}) = gq%(yv Z, w)’
where g, (y, z,w) is a form of degree r such that C' is given by
z=gr(y,z,w) =0,
which implies that S can be defined by equation 5. q.e.d.
It follows from Lemma 29 that at most (2r — 1)k singular points of

the surface S can lie on a curve in P? of degree k.

Lemma 32. Let C be an irreducible reduced curve in P? of degree k
that is not contained in a hyperplane. Then

€N Sing ()| < (2r = 1)k -2,
Proof. Suppose that the curve C' contains at least (2r—1)k—1 singular
points of the surface S. Then C C S, because otherwise we have
2rk = deg(C)deg(S) < 2(2r — 1)k — 2 = 4rk — 2k — 2,
which leads to 2k(r — 1) < 2. But r > 2 and k > 3.
Let O be a sufficiently general point of the curve C, and let
p: P35 10

be a projection from O, where II is a general plane in P3. Then
w‘cz C --»(C)

is a birational morphism, because C' is not a plane curve.

Put Z =¢(C). Then Z has degree k — 1.

Let Y be a cone in P? over Z with the vertex O. Then C' C Y.

The point O is not contained in a hyperplane in P? that is tangent to
the surface S at some point of the curve C, because C' is not contained
in a hyperplane. Then Y does not tangent S along the curve C. Put

S| =C+R,
Y

where R is a curve of degree 2rk — k — 2r. The generality in the choice
of the point O implies that R does not contain rulings of the cone Y.
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Let a : Z — Z be the normalization of Z. Then the diagram

Y Y
|
W\L IwY
\ \
Z Z

commutes, where (3 is a birational morphism, the surface Y is smooth,
and 7 is a Pl-bundle. Let L be a general fiber of 7, and E be a section
of the Pl-bundle 7 such that 3(E) = O. Then E? = —k+1on Y.

Let @@ be an arbitrary point of the set

Sing(S) NnC,

and let C and R be proper transforms of the curves C' and R on the sur-
face Y, respectively. Then there is a point () € Y such that

Qe Supp(C’ . R)
and 3(Q) = Q. But we have
R=(2r—2)E+ (2rk—k—2r)L
and C = E + kL. Therefore, we have
(2r—1)k—2=C-R> (2r—1)k—1,

which is a contradiction. q.e.d.

Now we prove Theorem 6 by reductio ad absurdum, where we assume
that > 4, because the case r = 3 is done in [11].
Put ¥ = Sing(.5), and suppose that the following conditions hold:
e the inequalities |X| < (2r — 1)r + 1 and r > 3 hold;
e the surface S can not be defined by equation 5;
e the threefold X is not factorial.

There is a point P € ¥ such that every surface in P3 of degree 3r — 4
that pass through the set ¥\ P contains the point P as well.

Lemma 33. Let I be a hyperplane in P3. Then [IIN %] < 2r.

Proof. Suppose that the inequality [II N X| > 2r holds. Let us show
that this assumption leads to a contradiction.

Let T" be the subset of the set ¥ that consists of all points that are
not contained in the plane II. Then I' contains at most

(2r—1)(r—1) -1

points, which impose independent linear conditions on homogeneous
forms of degree 3r — 5 by Proposition 17.
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Suppose that P ¢ II. There is a surface ' C P3 of degree 3r — 5 that
contains the set I' \ P and does not contain the point P. Then
FuUllc P

is the surface of degree 3r — 4 that contains the set ¥ \ P and does not
contain the point P, which is impossible. Therefore, we have P € II.
Arguing as in the proof of Lemma 29, we see that

IN%| < (2r—1)r,

because S|y is singular in every point of the set II N X.

It follows from Lemma 30 that II N X is not contained in a curve of
degree r if [IINX| = (2r — 1)r. Arguing as in the proof of Lemma 18,
we see that there is a surface of degree 3r — 4 that contains the set

(Hmz)\P

and does not contain P, which concludes the proof by Lemma 25. q.e.d.

The inequality |%| > (2r — 1)r holds by Proposition 14.
Lemma 34. Let L1 # Lo be lines in P3. Then
(L1U L) NE| < 4r —2.
Proof. Suppose that |(L; U Ly) N Y| > 4r — 2. Then
ILiNng|=|Linxg|=2r—1

by Lemma 29. Then L; N Ly = & by Lemma 33.
Fix two points ()1 and ()2 in the set

2\ (LU L2) N3)

different from P such that Q; # Q2. Let II; be a hyperplane in P? that
contains L; and @;. Then |[II; N ¥| = 2r by Lemma 33.

Suppose that P ¢ IT; UII,. There is a surface F' C P2 of degree 3r —6
that does not contain the point P and contains all points of the set

(Z\(En(mum)))\p
by Proposition 17. Hence, the union
FUIl; UIly

is a surface in P3 of degree 3r — 4 that contains ¥ \ P and does not
contain P, which is impossible. Therefore, we have P € II; U Ils.
The set ¥N(I1; UIly) consists of 47 points by Lemma 33. The points in

e (H1 qu)
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impose independent linear conditions on homogeneous forms P? of de-
gree 3r — 4 by Theorem 2 in [9]. On the other hand, the inequality

=\ (2 (mut))| < @r-1)(r-2)

holds. Then the points in ¥\ (3N (IT; UTl)) impose independent linear
conditions homogeneous forms of degree 3r —6 by Proposition 17, which
leads to a contradiction by applying Lemma 25. q.e.d.

Lemma 35. Let C be a curve in P3 of degree k > 2. Then
|ICNZ| < (2r — k.

Proof. Suppose that |C N Y| > (2r — 1)k. Then
ICNE|=(2r -1k

by Lemma 29, and C' is not contained in a hyperplane by Lemma 33.
The curve C must be reducible by Lemma 32. Put

= ic
=1

where o« > 2 and Cj is an irreducible curve. Then

k= Za:di,
=1

where d; = deg(C;). Then |C; N X| = (2r — 1)d; by Lemma 29.
The curve C; is contained in a hyperplane in P3 by Lemma 32. Then

di=dy=---=dy=1
and a = k # 1 by Lemma 33, which contradicts Lemma 34. q.e.d.
Lemma 36. Let L be a line in P3. Then [LNY| < 2r — 2.

Proof. Suppose that the inequality |L NX| > 2r — 1 holds. Then
LN =2r—-1
by Lemma 29. Let ® be a hyperplane in P? such that ® passes through
the line L, and ® contains a point of the set ¥\ (L NY). Then
2NxE|=2r

by Lemma 33. Put A =X\ (®NX). Then |A| < (2r —1)(r — 1).

The points in A impose dependent linear conditions on homogeneous
forms of degree 3r — 5, because otherwise the points in 3 impose inde-
pendent linear conditions on forms of degree 3r — 4 by Lemma 25.

Therefore, we see that there is a point Q € A such that every surface
of degree 3r — 5 containing A \ Q must pass through @. Then

A = 2r-1)r- 1)
and |X| = (2r — 1)r + 1 by Proposition 17.
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Fix sufficiently general hyperplane II C P? and a point O € P3. Let
VPP -5 10

be a projection from O. Put A’ = ¢(A) and Q' = ¢¥(Q).
At most 2r — 2 points in A’ lie on a line by Lemmas 16 and 34.
Suppose that at most (2r — 1)k points in the set A’ lie on any curve
of degree k for every k, and there is a curve Z C II of degree r — 1 that
contains the whole set A’. Then

P (Ta @ Ops (3 —5)) =0

by Lemmas 16, 23 and 35 in the case when Z is irreducible. So, we have

(0%
i=1
where a > 2, and Z; is an irreducible curve of degree d;. Then
‘ZZ N A/| = (27‘ — 1)dz,

because r = Y o | d;. Then every point of the set A’ is contained in one
irreducible component of the curve Z. We have d; # 1 for every i.

Let Z3 be the unique component of the curve Z such that Q' € Zg,
and let I' C A be a subset such that

() =A'NZg cT=P?

which implies that @ € I'. There is a surface F C P3 of degree 3(dg—1)
that contains I' \ @ and does not contain @ by Lemmas 16, 23 and 35.
Let Y; be a cone over Z; whose vertex is the point O. Then

FguU U Y;
i#0
is a surface of degree 3d; — 3 + Ziiﬂ d; = 2d; + r — 4 containing A \ @
and not containing @, which is impossible, because 2d; +r —4 < 3r — 5.
Hence, we proved that

e cither at least (2r — 1)k + 1 points in A’ lie on a curve of degree k;
e or there is no curve of degree r — 1 that contains the set A’.

Suppose that at most (2r — 1)k points of the set A’ lie on every curve
of degree k for every natural k. Then it follows from Theorem 15 that
there is a curve in II of degree 3r — 5 that contains A"\ @’ and does not
contain the point @’, which is a contradiction.

So, at least (2r—1)k+1 points in A’ lie on some curve in II of degree k,
where k£ > 3 by Lemma 20. Thus, the proof of Proposition 17 implies
the existence of a subset = C A such that

e at most (2r — 1)k points in ¥ (A \ Z) lie on a curve of degree k,
e there is a surface in P? of degree ;1 < r — 2 that contains all points
of the set Z and does not contain any point of the set A\ =,
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e the inequality |[A\ Z| < (2r — 1)(r — 1 — p) — 1 holds and
B (Z= ® Ops (37 = 5) ) = 0.

Put A = (A\E) and d = 3r —5 — u. The points of A impose depen-
dent linear conditions on homogeneous forms of degree d by Lemma 25,
which implies that there is a point Q € A such that A\ Q and d do not
satisfy one of the hypotheses of Theorem 15.

We have d > 3, because r > 4. The proof of Lemma 26 gives

2
|IA\ Q| < V;?’J :
which implies that at least t(d+3—t) — 1 points of the finite set A\ Q lie
on a curve of degree ¢ for some natural number ¢ such that ¢t < (d+3)/2.

Suppose that t = 1. Then at least d 4+ 1 points of A lie on a line, but
at most 2r — 2 points of A’ lie on a line by Lemmas 16 and 34, which
implies that d = 2r — 3 and |A| = 2r — 2. Then the points in A impose
dependent linear conditions on homogeneous forms of degree d, which
is impossible. Therefore, we see that ¢ > 2.

At least t(d+3—t) —1 points in A\ @ lie on a curve of degree t. Then

td+3—t) —1<|A\Q| < (2r —1)(r—1) =2 — pu(2r — 1),
but t(d+3—t) — 1 < (2r — 1)t, because at most (2r — 1)t points in A lie
on a curve of degree t. Hence, we have t > r — 1 — p, which gives
(2r—1) (rflfu)f2 > |A\Q| = t(d+3—1)—1 > (rflf,u) (2r—1)—1,
which is a contradiction. q.e.d.

Corollary 37. Let C be any curve in P of degree k. Then
ICnx| < (2r—1)k.
Fix a hyperplane II C P3 and a general point O € P3. Let
Y: PP -5 I C P?
be a projection from O. Put ¥ = ¢(X) and P’ = ¢(P).
Lemma 38. Let C' be an irreducible curve in Il of degree r. Then
’COE" < (2r — 1)r.
Proof. Suppose that |[CNY'| > (2r—1)r. Let ¥ be a subset in 3 that
contains all points mapped to the curve C' by the projection ¢. Then
W] > (2r —1)r,

but less than (2r — 1)r points in X lie on a curve of degree 7.
Let H be a linear system of surfaces in P? of degree r that pass
through the set ¥, and let ® be the base locus of H. Then

dim(®) =0
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is finite by Lemma 16. Put T = ¥ N ®. The points in T impose
independent linear conditions on homogeneous forms of degree 3r — 3
by Lemma 23.

Let I" be a subset in T such that T\ I consists of 4r — 6 points. Then

(r+2)(r+1)r
; _

because r > 4. Therefore, there is a surface F' C P3 of degree r — 1 that
contains all points of the set I'.

Let © be a subset of the set T such that © consists of all points that
are contained in the surface F. Then © imposes independent linear
conditions on homogeneous forms of degree 3r — 4 by Theorem 3 in [6].

Put A = T\O. Using Theorem 2 in [9], we easily see that the points of
the set A impose independent linear conditions on homogeneous forms
of degree 2r — 3 by Lemmas 33 and 36. Then

B (Tr © Ops (3r —4)) =0

IT| <2r®=5r—5< 1,

by Lemma 25, which also follows from Theorem 3 in [6].
We have |32\ Y| < 1. Thus, the points in ¥ impose independent linear
conditions on homogeneous forms of degree 3r — 4 by Lemma 25. q.e.d.

Lemma 39. There is a curve Z C 11 of degree k such that
|1ZnY| > @2r—1)k+1.
Proof. Suppose that at most (2r — 1)k points of the set ¥’ lie on a
curve of degree k for every integer k > 1. Let us derive a contradiction.

The finite subset ¥\ P’ C II and the natural number 3r — 4 do not
satisfy at least one of the hypotheses of Theorem 15. But

‘E’\P/’ gmax(fr;lj (37"—1— L3T2_1J> 7 PT;lF)a

and at most 2r — 1 < 3r —4 points in ¥\ P’ lie on a line by Lemma 16.
We see that at least

k(3r—1—k) —1

points in X'\ P’ lie on a curve of degree k such that 2 < k < (3r—1)/2,
which implies that k& = r, because at most k(2r — 1) points in ¥’ lie on
a curve of degree k, and |X'\ P'| < (2r — 1)r.

Thus, there is a curve C' C II of degree r such that

’Supp(C) N (2’ \ P’)

which implies that P’ € C, because otherwise there is a curve in II of
degree 3r — 4 that contains X'\ P’ and does not contain P’. Then

}Supp((]) N E" > (2r — 1)r,

> (2r—1)r—1,
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which implies that C' is reducible by Lemma 38. Put

C = f:o
=1

where C; is an irreducible curve of degree d; > 1 and o > 2. Then

2r-1r<|CnyY| < Z |ICinY'| < 2(27’ — 1)deg(C;) = (2r — D)r,
i=1 i=1

which implies that C; contains (2r — 1)d; points of the set X, and every
point of the set ¥ is contained in at most one curve C;.

Let C,, be the component of C' that contains P’, and let T be a subset
of the set X that contains all points of the set ¥ that are mapped to
the curve C,, by the projection 1. Then

T| = (2r — 1)d.,

but less than (2r — 1)d,, points of the set X lie on a curve of degree d,,.
The points in T impose independent linear conditions on the homo-
geneous forms of degree 3(d, — 1) by Lemmas 16 and 23.
There is a surface F' C P? of degree such that

T\PCF¢P

and deg(F) = 3(d, —1). Let Y; be a cone in P3 over the curve C; whose
vertex is the point O. Then the surface

FulJYie|Op:(2d, —3+7)|
iF#v
contains the set ¥\ P and does not contain the point P. But
2d, — 3+ 1 < 3r —4,

which is a contradiction. q.e.d.

Arguing as in the proof of Theorem 1, we construct a disjoint union
I ¢
JUnics
j=ki=1

such that ]A;| > (2r—1)y, the subset 1/}(A§-) is contained in an irreducible
curve of degree j, and at most (2r — 1)t points of the subset

s (UUN)) e ez

j=ki=1

lie on a curve in II of degree t. Then r > k > 3 by Lemmas 20 and 38.
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Put A = Ué’:k U:il A; Let E; be the base locus of the linear system
of surfaces in P of degree j that pass through Ai-. Then
l l
(40) [S\A| < (2r=1)r+1=D"ci((2r=1)i+1) < (2r=1) (r=D i),
i=k 1=k

which implies that Zi:k ic; < r. The set Ez is finite by Lemma 16.

Remark 41. We have Zi:k ic; < r — 1, because the equality

l
Z ici=r
i=k

and inequalities 40 imply that kK =1 = r, but £ < r by Lemma 38.

It follows from Lemma 23 that the points of E; impose independent

linear conditions on homogeneous forms on P3 of degree 3(j — 1).
Put _—UJ L Ui 1 Zj. Then

l
(42) =\ (E03)[ < @r-1)r =Y a2 -1)i
i=k
Therefore, we can find surfaces F' and G in P3 of degree Zi: p3(i—1)¢;
and Zi:k ic;, respectively, such that

(Emz)\PcF;P,

the surface G contains the set ZNY, and the surface G does not contain
any point in ¥\ (ENX). In particular we have ¥ Z = because

l
232—1 23101—3% 3r—6<3r—4
i=k

Put X =¢(S\(ENX)) and d = 3r — 4 — Z _i 1Ci.

It follows from Lemma 25 that there is a point ) € ¥ such that every
curve in IT of degree d that contains the set 3\ Q must pass through the
point @ as well. Therefore, we can not apply Theorem 15 to the points
of the subset ¥\ @ C II and the natural number d.

The proof of Lemma 26 implies that the inequality

- : d+3|°

S\Ql < (2r—1)(r - cii)—lglJ

EAQ[< (2r—1) ; 5
holds, but d = 3r —4 — ZZ i ici = 2r —3 > 3, because ZZ pici <r—1,
which implies that at least t(d + 3 —t) — 1 points of the set >\ Q lie on
a curve in IT of degree t < (d + 3)/2.

Lemma 43. The inequality t # 1 holds.
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Proof. Suppose that ¢t = 1. Then at least d + 1 points in ¥\ @ lie on
a line, which implies that d + 1 < 2r — 2 by Lemmas 16 and 36.

The inequality d + 1 < 2r — 2 gives Zi:k: ic;=r—1and d=2r—3.

It follows from inequality 42 that

(2\(502))<2r71,

which implies that the set ¥\ (2N X) imposes independent linear con-
ditions on the homogeneous forms of degree 2r — 3 by Theorem 2 in [9],
which is impossible by Lemma 25. q.e.d.

There is a curve C C II of degree t > 2 that contains at least
td+3—t)—1
points of the set ¥\ @, which implies that
t(d+3—t)—1<|E\ Q|
and t(d+3 —1t) — 1 < (2r — 1)t. Therefore, we see that

l
t>r— Zz’ci,
i=k

because t > 2. It follows from inequalities 40 that

l
(2r—1)<r— Zc> 12 [5\Q| 2 t(d+3—1) -1
=k

i
!
= (7’ — chz> (27’ — 1) -1,
i=k
which implies that ¢ = r — Zi:k ic;, the curve C' contains X\ @, and
inequalities 40 are actually equalities. We have ¥ N = = A and

l

S\Al = @r=1)r+1- Y a((2r-1)i+1)

i=k
l
= (27’7 1) (T — Zi0i>,
i=k
which implies that | =k, ¢y =1, d =3r —4 — k and Y\_, ic; = k.
Lemma 44. The curve C contains the set 3.

Proof. Suppose that ¥ ¢ C. Then Q ¢ C, which (implies that there
is a curve in II of degree 7 — k that contains the set X\ @ but does not
contain the point (). The latter is impossible, because d > r — k. q.e.d.
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We have deg(C') =r — k and ¥(X \ A) C C. The equality
[B(S\A)| = (= k)2r = 1)

holds. But there is an irreducible curve Z C II of degree k that contains

all points of the set ¥ (A), which consists of k(2r — 1) 4+ 1. Then

S| =[S\A[+[A|=(r—k)(2r—1)+k@2r—1)+1=(2r—1)r+1.
Lemma 45. The curve C is reducible.

Proof. Suppose that C' is irreducible. Then ¥\ A imposes independent
linear conditions on forms of degree 3(r —k — 1) by Lemmas 16, 23, and
35, but the points in A impose independent linear conditions on forms
of degree 3(k — 1) by Lemmas 16 and 23. Then ¥ imposes independent
linear conditions on forms of degree 3r — 4 by Lemma 25. q.e.d.

Put C =" | C;, where C; is an irreducible curve of degree d;. Then

T—k:idi,
i=1

the curve C; contains (2r — 1)d; points of the set 3, and every point of
the set X is contained in a single irreducible component of the curve C.

Lemma 46. The curve Z contains the point P’.
Proof. Suppose that P’ & Z. Let C,, be a component of C' such that
P cC,,

and let T be a subset of the set ¥ that contains all points that are

mapped to the curve C,, by the projection ¢. Then |Y| = (2r — 1)d,.
The set T imposes independent linear conditions on the homogeneous

forms of degree 3(d, — 1) by Lemmas 16, 23 and 35. There is a surface

Fcp?

of degree 3(d, — 1) that contains Y \ P and does not contain P.
Let Y; and Y be the cones in P? over the curves C; and Z, respectively,
whose vertex is the point O. Then the union

FuyulJv
i#v
is a surface of degree 2d,, —3+r < 3r —4 that contains the set ¥\ P and
does not contain the point P, which is a contradiction. q.e.d.

The proof of Lemma 46 implies that the set ¥\ A imposes independent
linear conditions on homogeneous forms on P? of degree 3r — 4 — k, but
we already know that the set A imposes independent linear conditions
on homogeneous forms of degree 3(k — 1) by Lemmas 16 and 23.

Applying Lemma 25, we obtain a contradiction.
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