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POINTS IN PROJECTIVE SPACES AND
APPLICATIONS

Ivan Cheltsov

Abstract

We prove the factoriality of a nodal hypersurface in P4 of de-
gree d that has at most 2(d− 1)2/3 singular points, and we prove
the factoriality of a double cover of P3 branched over a nodal sur-
face of degree 2r having less than (2r − 1)r singular points.

1. Introduction

Let Σ be a finite subset in Pn and ξ ∈ N, where n > 2. Then the points
of the set Σ impose independent linear conditions on homogeneous forms
of degree ξ if and only if for every point P ∈ Σ there is a homogeneous
form of degree ξ that vanishes at every point of the set Σ \P , and does
not vanish at the point P . The latter is equivalent to the equality

h1
(
IΣ ⊗OPn

(
ξ
))

= 0,

where IΣ is the ideal sheaf of the subset Σ ⊂ Pn.
In this paper we prove the following result (see Section 2).

Theorem 1. Suppose that there is a natural number λ > 2 such that
at most λk points of the set Σ lie on a curve in Pn of degree k. Then

h1
(
IΣ ⊗OPn

(
ξ
))

= 0

in the case when one of the following conditions holds:

• ξ = b3λ/2− 3c and |Σ| < λdλ/2e;
• ξ = b3µ− 3c, |Σ| 6 λµ and b3µc−µ− 2 > λ > µ for some µ ∈ Q;
• ξ = bnµc, |Σ| 6 λµ and (n− 1)µ > λ for some µ ∈ Q.

Let us consider applications of Theorem 1.

Definition 2. An algebraic variety X is factorial if Cl(X) = Pic(X).

We assume that all varieties are projective, normal, and defined over C.
Received 12/14/2006.
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Let π : X → P3 be a double cover branched over a surface S ⊂ P3 of
degree 2r > 4 such that the only singularities of the surface S are iso-
lated ordinary double points. Then X is a hypersurface

w2 = f2r

(
x, y, z, t

) ⊂ P(
1, 1, 1, 1, r

) ∼= Proj
(
C

[
x, y, z, t, w

])
,

where wt(x) = · · · = wt(t) = 1, wt(w) = r, and f2r(x, y, z, t) is a homo-
geneous polynomial of degree 2r such that S ⊂ P3 is given by

f2r

(
x, y, z, t

)
= 0 ⊂ P3 ∼= Proj

(
C

[
x, y, z, t

])
.

The following conditions are equivalent (see [10] and [8]):
• the threefold X is factorial;
• the singularities of the threefold X are Q-factorial1 ;
• the equality rkH4(X,Z) = 1 holds;
• the ring

C
[
x, y, z, t, w

]/〈
w2 − f2r

(
x, y, z, t

)〉

is a unique factorization domain;
• the points of the set Sing(S) impose independent linear conditions

on homogeneous forms on P3 of degree 3r − 4.

Theorem 3. Suppose that the inequality∣∣∣Sing
(
S

)∣∣∣ <
(
2r − 1

)
r

holds. Then the threefold X is factorial.

Proof. The subset Sing(S) ⊂ P3 is a set-theoretic intersection of sur-
faces of degree 2r − 1. Then X is factorial by Theorem 1. q.e.d.

The assertion of Theorem 3 is proved in [4] in the case when r = 3.

Example 4. Suppose that the surface S is given by an equation

(5) g2
r

(
x, y, z, t

)
= g1

(
x, y, z, t

)
g2r−1

(
x, y, z, t

) ⊂ P3,

where gi is a general homogeneous polynomial of degree i. Then∣∣∣Sing
(
S

)∣∣∣ =
(
2r − 1

)
r,

and S has at most ordinary double points. But X is not factorial.

For r = 3, the threefold X is non-rational if it is factorial (see [4]), but
the threefold X is rational if the surface S is the Barth sextic (see [1]).

We prove the following generalization of Theorem 3 in Section 3.

1A variety is Q-factorial if some non-zero integral multiple of every Weil divisor
on it is a Cartier divisor. This property is not local in the analytic topology, because
ordinary double points of threefolds are not locally analytically Q-factorial.
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Theorem 6. Suppose that the inequality∣∣∣Sing
(
S

)∣∣∣ 6
(
2r − 1

)
r + 1

holds. Then X is not factorial ⇐⇒ S can be defined by equation 5.

The assertion of Theorem 6 is proved in [11] in the case when r = 3.
Let V be a hypersurface in P4 of degree d such that V has at most

isolated ordinary double points. Then V can be given by the equation

fd

(
x, y, z, t, u

)
= 0 ⊂ P4 ∼= Proj

(
C

[
x, y, z, t, u

])
,

where fd(x, y, z, t, u) is a homogeneous polynomial of degree d.
The following conditions are equivalent (see [10] and [8]):
• the threefold V is factorial;
• the threefold V has Q-factorial singularities;
• the equality rkH4(V,Z) = 1 holds;
• the ring

C
[
x, y, z, t, u

]/〈
fd

(
x, y, z, t, u

)〉

is a unique factorization domain;
• the points of the set Sing(V ) impose independent linear conditions

on homogeneous forms on P4 of degree 2d− 5.
The threefold V is not rational if it is factorial and d = 4 (see [12]),

but general determinantal quartic threefolds are known to be rational.

Conjecture 7. Suppose that the inequality∣∣∣Sing
(
V

)∣∣∣ <
(
d− 1

)2

holds. Then the threefold V is factorial.

The assertion of Conjecture 7 is proved in [3] and [5] for d 6 7.

Example 8. Suppose that V is given by the equation

xg
(
x, y, z, t, u

)
+ yf

(
x, y, z, t, u

)
= 0 ⊂ P4 ∼= Proj

(
C

[
x, y, z, t, u

])
,

where g and f are general homogeneous forms of degree d− 1. Then∣∣∣Sing
(
V

)∣∣∣ =
(
d− 1

)2

and V has at most ordinary double points. But V is not factorial.

The threefold V is factorial if | Sing(V )| 6 (d− 1)2/4 by [2].

Theorem 9. Suppose that the inequality
∣∣∣Sing

(
V

)∣∣∣ 6
2
(
d− 1

)2

3
holds. Then the threefold V is factorial.
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Proof. The set Sing(V ) is a set-theoretic intersection of hypersurfaces
of degree d− 1. Then V is factorial for d > 7 by Theorem 1.

For d 6 6, the threefold V is factorial by Theorem 2 in [9]. q.e.d.

Let Y be a complete intersection of hypersurfaces F and G in P5 of
degree m and k, respectively, such that m > k, and the complete inter-
section Y has at most isolated ordinary double points.

Example 10. Let F and G be general hypersurfaces that contain a
two-dimensional linear subspace in P5. Then∣∣∣Sing

(
Y

)∣∣∣ =
(
m + k − 2

)2 − (
m− 1

)(
k − 1

)

and Y has at most ordinary double points. But Y is not factorial.

The threefold Y is factorial if G is smooth and singular points of Y
impose independent linear conditions on homogeneous forms of degree
2m + k − 6 (see [8]).

Theorem 11. Suppose that G is smooth, and the inequalities∣∣∣Sing
(
Y

)∣∣∣ 6
(
m + k − 2

)(
2m + k − 6

)/
5

and m > 7 hold. Then the threefold Y is factorial.

Proof. The set Sing(Y ) is a set-theoretic intersection of hypersurfaces
of degree m + k − 2. Then Y is factorial by Theorem 1. q.e.d.

Arguing as in the proof of Theorem 11, we obtain the following result.

Theorem 12. Suppose that G is smooth, and the inequalities∣∣∣Sing
(
Y

)∣∣∣ 6
(
2m + k − 3

)(
m + k − 2

)/
3

and m > k + 6 hold. Then the threefold Y is factorial.

Let H be a smooth hypersurface in P4 of degree d > 2, and let

η : U −→ H

be a double cover branched over a surface R ⊂ H such that

R ∼ OP4

(
2r

)∣∣∣
H

and 2r > d. Suppose that S has at most isolated ordinary double points.

Theorem 13. Suppose that the inequalities∣∣∣ Sing
(
R

)∣∣∣ 6
(
2r + d− 2

)
r
/
2

and r > d + 7 hold. Then the threefold U is factorial.

Proof. The subset Sing(R) ⊂ P4 is a set-theoretic intersection of hy-
persurfaces of degree 2r + d− 2. Then U is factorial by Theorem 1, be-
cause it is factorial if the points of Sing(R) impose independent linear
conditions on homogeneous forms of degree 3r + d− 5 (see [8]). q.e.d.
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The author thanks I. Aliev, A. Corti, V. Iskovskikh, J. Park, Yu. Pro-
khorov, V. Shokurov, and K. Shramov for very useful comments.

2. Main result

Let Σ be a finite subset in Pn, where n > 2. Now we prove the
following special case of Theorem 1, leaving the other cases to the reader.

Proposition 14. Let r > 2 be a natural number. Suppose that∣∣∣Σ
∣∣∣ <

(
2r − 1

)
r,

and at most (2r − 1)k points in Σ lie on a curve of degree k. Then

h1
(
IΣ ⊗OPn

(
3r − 4

))
= 0.

The following result is Corollary 4.3 in [7].

Theorem 15. Let π : Y → P2 be a blow up of points P1, . . . , Pδ ∈ P2,
and let Ei be the π-exceptional divisor such that π(Ei) = Pi. Then

∣∣∣π∗
(
OP2

(
ξ
))−

δ∑

i=1

Ei

∣∣∣

does not have base points if at most k(ξ+3−k)−2 points in {P1, . . . , Pδ}
lie on a curve of degree k for every k 6 (ξ + 3)/2, and the inequality

δ 6 max
{⌊ξ + 3

2

⌋(
ξ + 3−

⌊ξ + 3
2

⌋)
− 1,

⌊ξ + 3
2

⌋2
}

holds, where ξ is a natural number such that ξ > 3.

Therefore, it follows from Theorem 15 that to prove Proposition 14,
we may assume that n = 3 due to the following result.

Lemma 16. Let Π ⊂ Pn be an m-dimensional linear subspace, and
let

ψ : Pn 99K Π ∼= Pm

be a projection from a linear subspace Ω ⊂ Pn such that
• the subspace Ω is sufficiently general and dim(Ω) = n−m− 1,
• there is a subset Λ ⊂ Σ such that∣∣Λ∣∣ > λk + 1,

but the set ψ(Λ) is contained in an irreducible curve of degree k,
and n > m > 2. Let M be the linear system that contains all hypersur-
faces in Pn of degree k that pass through all points in Λ. Then

dim
(
Bs

(M))
= 0,

and either m = 2, or k > λ.
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Proof. Suppose that there is an irreducible curve Z such that

Z ⊂ Bs
(M)

,

and put Ξ = Z ∩Λ. We may assume that ψ|Z is a birational morphism,
and

ψ
(
Z

) ∩ ψ
(
Λ \ Ξ

)
= ∅,

because Ω is general. Then deg(ψ(Z)) = deg(Z).
Let C be an irreducible curve in Π of degree k that contains ψ(Λ),

and let W be the cone in Pn over the curve C and with vertex Ω. Then

W ∈M,

which implies that W contains the curve Z. Thus, we have

ψ
(
Z

)
= C,

which implies that Ξ = Λ and deg(Z) = k. But |Z ∩Σ| 6 λk. We have

dim
(
Bs

(M))
= 0.

Suppose that m > 2 and k 6 λ. Let us show that the latter assump-
tion leads to a contradiction. We may assume that m = 3 and n = 4,
because ψ as a composition of n−m projections from points.

Let Y be the set of all irreducible reduced surfaces in P4 of degree
k that contains all points of the set Λ, and let Υ be a subset of P4

consisting of points that are contained in every surface of Y. Then

Λ ⊆ Υ,

but the previous arguments imply that Υ is a finite set.
Let S be the set of all surfaces in P3 of degree k such that

S ∈ S ⇐⇒ ∃ Y ∈ Y
∣∣∣ ψ

(
Y

)
= S and ψ

∣∣
Y

is a birational morphism,

and let Ψ be a subset of P3 consisting of points that are contained in
every surface of the set S. Then S 6= ∅ and

ψ
(
Λ

) ⊆ ψ
(
Υ

) ⊆ Ψ.

The generality of Ω implies that ψ(Υ) = Ψ. Indeed, for every point

O ∈ Π \Ψ

and for a general surface Y ∈ Y, we may assume that the line passing
through O and Ω does not intersect Y , but ψ|Y is a birational morphism.

The set Ψ is a set-theoretic intersection of surfaces in Π of degree k,
which implies that at most δk points in Ψ lie on a curve in Π of degree δ.

We see that at most k2 points in Ψ lie on a curve in Π of degree k,
but the set ψ(Λ) contains at least λk + 1 points that are contained in
an irreducible curve in Π of degree k, which is a contradiction. q.e.d.
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We have a finite subset Σ ⊂ P3 and a natural number r > 2 such that∣∣Σ∣∣ <
(
2r − 1

)
r,

and at most (2r − 1)k points in Σ lie on a curve of degree k. Then∣∣Σ∣∣ <
(
2r − 1

)(
r − ε

)

for some integer ε > 0. Let us prove the following result.

Proposition 17. The equality h1(IΣ ⊗OP3(3r − 4− ε)) = 0 holds.

Fix a point P ∈ Σ. To prove Proposition 17, it is enough to construct
a surface2 of degree 3r−4−ε that contains Σ\P and does not contain P .

We assume that r > 3 and ε 6 r− 3, because the assertion of Propo-
sition 17 follows from Theorem 2 in [9] and Theorem 15 otherwise.

Lemma 18. Suppose that there is a hyperplane Π ⊂ P3 that contains
the set Σ. Then there is a surface of degree 3r−4−ε that contains every
point of the set Σ \ P and does not contain the point P .

Proof. Suppose that |Σ \ P | > b(3r − 1− ε)/2c2. Then

(
2r − 1

)(
r − ε

)− 2 >
∣∣Σ \ P

∣∣ >
⌊3r − 1− ε

2

⌋2
+ 1 > (3r − 2− ε)4

4
+ 1,

which implies that (r−4)2+2εr+ε2 6 0. We have r = 4 and ε = 0. Then
∣∣Σ \ P

∣∣ 6
⌊3r − 1− ε

2

⌋(
3r − 1− ε−

⌊3r − 1− ε

2

⌋)
.

Thus, in every possible case, the number |Σ \ P | does not exceed

max
(⌊3r − 1− ε

2

⌋(
3r − 1− ε−

⌊3r − 1− ε

2

⌋)
,

⌊3r − 1− ε

2

⌋2
)

.

At most 3r−4−ε points of Σ\P lie on a line, because 3r−4−ε > 2r−1.
Let us prove that at most k(3r − 1 − ε − k) − 2 points in Σ \ P can

lie on a curve of degree k 6 (3r − 1− ε)/2. It is enough to show that

k
(
3r − 1− ε− k

)− 2 > k
(
2r − 1

)

for all k 6 (3r − 1− ε)/2. We must prove this only for k > 1 such that

k
(
3r − 1− ε− k

)− 2 <
∣∣Σ \ P

∣∣ 6
(
2r − 1

)(
r − ε

)− 2,

because otherwise the condition that at most k(3r − 1 − k) − 2 points
in the set Σ \ P can lie on a curve of degree k is vacuous.

We may assume that k < r − ε. But

k(3r − 1− ε− k)− 2 > k(2r − 1) ⇐⇒ r > k − ε,

which immediately implies that at most k(3r − 1− ε− k)− 2 points in
the set Σ \ P can lie on a curve of degree k.

2For simplicity we consider homogeneous forms on Pn as hypersurfaces.
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It follows from Theorem 15 that there is a curve

C ⊂ Π ∼= P2

of degree 3r − 4− ε that contains Σ \ P and does not contain P ∈ Σ.
A general cone in P3 over the curve C is the required surface. q.e.d.

Fix a general hyperplane Π ⊂ P3. Let ψ : P3 99K Π be a projection
from a sufficiently general point O ∈ P3. Put Σ′ = ψ(Σ) and P ′ = ψ(P ).

Lemma 19. Suppose that at most (2r−1)k points in Σ′ lie on a curve
of degree k. Then there is a surface in P3 of degree 3r−4−ε that contains
all points of the set Σ \ P but does not contain the point P ∈ Σ.

Proof. Arguing as in the proof of Lemma 18, we obtain a curve

C ⊂ Π ∼= P2

of degree 3r− 4− ε that contains Σ′ \P ′ and does not pass through P ′.
Let Y be the cone in P3 over C whose vertex is O. Then Y is a surface

of degree 3r − 4 − ε that contains all points of the set Σ \ P but does
not contain the point P ∈ Σ. q.e.d.

To conclude the proof of Proposition 14, we may assume that there
is a natural number k such that at least (2r− 1)k +1 points of Σ′ lie on
a curve of degree k, where k is the smallest number of such property.

Lemma 20. The inequality k > 3 holds.

Proof. The inequality k > 2 holds by Lemma 16, which implies r > 3.
Suppose that there is a subset Φ ⊆ Σ such that∣∣Φ∣∣ > 2

(
2r − 1

)
,

but ψ(Φ) is contained in a conic C ⊂ Π. Then C is irreducible.
Let D be a linear system of quadrics in P3 containing Φ. Then

dim
(
Bs

(D))
= 0

by Lemma 16. Let W be a cone in P3 over C with the vertex Ω. Then

8 = D1 ·D2 ·W >
∑

ω∈Φ

multω(D1)multω(D2) > |Φ| > 2
(
2r − 1

)
> 8,

where D1 and D2 are general divisors in D. q.e.d.

Therefore, there is a subset Λ1
k ⊆ Σ such that∣∣Λ1

k

∣∣ >
(
2r − 1

)
k,

but the subset ψ(Λ1
k) ⊂ Π ∼= P2 is contained in an irreducible curve of

degree k > 3. Similarly, we obtain a disjoint union
l⋃

j=k

cj⋃

i=1

Λi
j ,
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where Λi
j is a subset in Σ such that

∣∣Λi
j

∣∣ >
(
2r − 1

)
j,

the subset ψ(Λi
j) is contained in an irreducible reduced curve of degree j,

and at most (2r − 1)ζ points of the subset

ψ
(
Σ \

( l⋃

j=k

cj⋃

i=1

Λi
j

))
( Σ′ ⊂ Π ∼= P2

lie on a curve in Π of degree ζ. Put Λ = ∪l
j=k ∪

cj

i=1 Λi
j .

Let Ξi
j be the base locus of the linear system of surfaces of degree j

that pass through the set Λi
j . Then Ξi

j is a finite set by Lemma 16, and

(21)
∣∣Σ \ Λ

∣∣ <
(
2r − 1

)(
r − ε

)− 1−
l∑

i=k

ci

(
2r − 1

)
i.

Corollary 22. The inequality
∑l

i=k ici 6 r − ε− 1 holds.

We have Λi
j ⊆ Ξi

j . But the set Ξi
j imposes independent linear condi-

tions on homogeneous forms of degree 3(j − 1) by the following result.

Lemma 23. Let M be a linear subsystem in |OPn(λ)| such that

dim
(
Bs

(M))
= 0,

where λ > 2. Then the points in Bs(M) impose independent linear con-
ditions on homogeneous forms on Pn of degree n(λ− 1).

Proof. See Lemma 22 in [2] or Theorem 3 in [6]. q.e.d.

Put Ξ = ∪l
j=k ∪

cj

i=1 Ξi
j . Then Λ ⊆ Ξ.

Lemma 24. Suppose that Σ is contained in Ξ. Then there is a sur-
face of degree 3r−4−ε that contains Σ\P and does not contain P ∈ Σ.

Proof. For every Ξi
j containing P there is a surface of degree 3(j− 1)

that contains the set Ξi
j \ P and does not contain P by Lemma 23.

For every Ξi
j not containing P there is a surface of degree j that

contains Ξi
j and does not contain P by the definition of the set Ξi

j .
We have j < 3(j − 1), because k > 2. For every Ξi

j there is a surface

F j
i ⊂ P3

of degree 3(j−1) that contains the set Ξi
j \(Ξi

j∩P ) and does not contain
the point P . The union ∪l

j=k ∪
cj

i=1 F i
j is a surface of degree

l∑

i=k

3(i− 1)ci 6
l∑

i=k

3ici − 3ck 6 3r − 6− 3ε 6 3r − 4− ε

that contains the set Σ \ P and does not contain the point P . q.e.d.
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The proof of Lemma 24 implies that there is surface of degree
l∑

i=k

3(i− 1)ci

containing (Ξ∩Σ)\(Ξ∩P ) and not containing P , and a surface of degree
l∑

i=k

ici

containing Ξ ∩ Σ and not containing any point of the set Σ \ (Ξ ∩ Σ).

Lemma 25. Let Λ and ∆ be disjoint finite subsets in Pn such that
• there is a hypersurface in Pn of degree ζ that contains all points

in the set Λ and does not contain any point in the set ∆,
• the points of the sets Λ and ∆ impose independent linear conditions

on hypersurfaces in Pn of degree ξ and ξ − ζ, respectively,
where ξ > ζ are natural numbers. Then the points of the set Λ∪∆ impose
independent linear conditions on hypersurfaces in Pn of degree ξ.

Proof. Let Q be a point in Λ∪∆. To conclude the proof we must find
a hypersurface of degree ξ that passes through the set (Λ ∪∆) \Q and
does not contain the point Q. We may assume that Q ∈ Λ.

Let F be the homogenous form of degree ξ that vanishes at every
point of the set Λ \Q and does not vanish at the point Q. Put

∆ =
{

Q1, . . . , Qδ

}
,

where Qi is a point. There is a homogeneous form Gi of degree ξ that
vanishes at every point in (Λ∪∆)\Qi and does not vanish at Qi. Then

F
(
Qi

)
+ µiGi

(
Qi

)
= 0

for some µi ∈ C, because gi(Qi) 6= 0. Then the homogenous form

F +
δ∑

i=1

µiGi

vanishes on set (Λ ∪∆) \Q and does not vanish at the point Q. q.e.d.

Put d = 3r − 4− ε−∑l
i=k ici and

Σ̄ = ψ
(
Σ \ (

Ξ ∩ Σ
))

.

To prove Proposition 17, we may assume that ∅ 6= Σ̄ ( Σ′.
It follows from Lemma 25 that to prove Proposition 17 it is enough

to show that Σ̄ ⊂ Π and d satisfy the hypotheses of Theorem 15.

Lemma 26. The inequality |Σ̄| 6 b(d + 3)/2c2 holds.



POINTS IN PROJECTIVE SPACES 585

Proof. Suppose that the inequality |Σ̄| > b(d+3)/2c2+1 holds. Then

(
2r − 1

)(
r − ε−

l∑

i=k

cii
)
− 2 >

∣∣Σ̄∣∣ >

(
3r − 2− ε−∑l

i=k ici

)2

4
+ 1

by Corollary 22. Put ∆ = ε +
∑l

i=k cii. Then ∆ > k > 3 and

4
(
2r − 1

)(
r −∆

)− 12 >
(
3r − 2−∆

)2
,

which implies that 0 < r2 − 8r + 16 + 2r∆ + ∆2 6 0. q.e.d.

The inequality d > 3 holds by Corollary 22, because r > 3.

Lemma 27. Suppose that at least d + 1 points in the set Σ̄ are con-
tained in a line. Then there is a surface in P3 of degree 3r − 4 − ε
that contains all points of the set Σ \P and does not contains the point
P ∈ Σ.

Proof. We have |Σ̄| > d + 1. It follows from inequality 21 that

3r − 3− ε−
l∑

i=k

ici <
(
2r − 1

)(
r − ε

)− 1−
l∑

i=k

ci

(
2r − 1

)
i,

which gives
∑l

i=k ici 6= r− ε− 1. Now it follows from Corollary 22 that
l∑

i=k

ici 6 r − ε− 2,

but 2r−1 > 3r−3−ε−∑l
i=k ici. Then

∑l
i=k ici = r−ε−2 and d = 2r−2.

We have a surface of degree
∑l

i=k 3(i−1)ci 6 3r−4− ε that contains
(
Ξ ∩ Σ

)
\

(
Ξ ∩ P

)

and does not contain P . But we have a surface of degree r− ε− 2 that
contains Ξ ∩ Σ and does not contain any point of the set Σ \ (Ξ ∩ Σ).

The set Σ\(Ξ∩Σ) contains at most 4r−4 points, at most 2r−1 points
of the set Σ lie on a line. It follows from Theorem 2 in [9] that the set

Σ \
(
Ξ ∩ Σ

)

imposes independent linear conditions on homogeneous forms on P3 of
degree 2r − 2. Applying Lemma 25, we complete the proof. q.e.d.

So, we may assume that at most d points in Σ̄ lie on a line.

Lemma 28. For every t 6 (d + 3)/2, at most

t
(
d + 3− t

)− 2

points in Σ̄ lie on a curve of degree t in Π ∼= P2.
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Proof. At most (2r− 1)t of the points in Σ̄ lie on a curve of degree t,
which implies that to conclude the proof it is enough to show that

t
(
d + 3− t

)− 2 >
(
2r − 1

)
t

for every t 6 (d + 3)/2 such that t > 1 and t(d + 3− t)− 2 < |Σ̄|. But

t(d + 3− t)− 2 > t(2r − 1) ⇐⇒ r − ε−
l∑

i=k

ici > t,

because t > 1. Thus, we may assume that t(d + 3− t)− 2 < |Σ̄| and

r − ε−
l∑

i=k

ici 6 t 6 d + 3
2

.

Let g(x) = x(d + 3− x)− 2. Then

g
(
t
)

> g
(
r − ε−

l∑

i=k

ici

)
,

because g(x) is increasing for x < (d + 3)/2. Therefore, we have

(
2r−1

)(
r− ε−

l∑

i=k

ici

)
−2 >

∣∣Σ̄∣∣ > g(t) >
(
r− ε−

l∑

i=k

ici

)(
2r−1

)−2,

because inequality 21 holds. q.e.d.

We can apply Theorem 15 to the blow up of the plane Π at the points
of the set Σ̄ and to the integer d. Then applying Lemma 25, we obtain
a surface in P3 of degree 3r−4−ε containing Σ\P and not containing P .

The assertion of Proposition 17 is completely proved, which implies
the assertion of Proposition 14. The proof of Theorem 1 is similar.

3. Auxiliary result

Now we prove Theorem 6. Let π : X → P3 be a double cover branched
over a surface S of degree 2r > 4 with isolated ordinary double points.

Lemma 29. Let F be a hypersurface in Pn of degree d that has iso-
lated singularities, and let C be a curve in Pn of degree k. Then

• the inequality |Supp(C) ∩ Sing(F )| 6 k(d− 1) holds,
• the equality | Supp(C) ∩ Sing(F )| = k(d− 1) implies that

Sing
(
C

) ∩ Sing
(
F

)
= ∅.

Proof. Let f(x0, . . . , xn) be the homogeneous form of degree d such
that f(x0, . . . , xn) = 0 defines F ⊂ Pn, where (x0 : . . . : xn) are homo-
geneous coordinates on Pn. Put

D =

∣∣∣∣∣
n∑

i=0

λi
∂f

∂xi
= 0

∣∣∣∣∣ ⊂
∣∣OPn(d− 1)

∣∣,
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where λ0, . . . , λn are complex numbers. Then

Bs
(D)

= Sing
(
F

)
,

which implies that the curve C intersects a generic member of the linear
system D at most (d− 1)k times, which implies the assertion. q.e.d.

Lemma 30. Let Π ⊂ P3 be a hyperplane, and let C ⊂ Π be a reduced
curve of degree r. Suppose that the equality

Supp
(
C

) ∩ Sing
(
S

)
=

(
2r − 1

)
r

holds. Then S can be defined by equation 5.

Proof. Put

S
∣∣∣
Π

=
α∑

i=1

miCi,

where Ci is an irreducible reduced curve, and mi is a natural number.
We assume that Ci 6= Cj for i 6= j, and C =

∑β
i=1 Ci, where β 6 α.

It follows from Lemma 29 and from the equalities

(31)
β∑

i=1

deg(Ci) = r =
∑α

i=1 mideg(Ci)
2

that Ci ∩ Sing(S) = (2r − 1)deg(Ci) if i 6 β, and

Sing
(
C

) ∩ Sing
(
S

)
= ∅.

Suppose that mγ = 1 for some γ 6 β. Then

Cγ ∩ Sing(S) =
(
2r − 1

)
deg

(
Cγ

)
,

but the curve S|Π =
∑α

i=1 miCi must be singular at every singular point
of the surface S that is contained in Cγ . Thus, we have

Sing
(
S

) ∩ Supp
(
Cγ

) ⊆
⋃

i 6=γ

Ci ∩ Cγ ,

but |Ci ∩Cγ | 6 (Ci ·Cγ)Π = deg(Ci)deg(Cγ) for i 6= γ. Hence, we have
∑

i 6=γ

deg(Ci)deg(Cγ) >
(
2r − 1

)
deg(Cγ),

but on the plane Π we have the equalities
(
2r − deg(Cγ)

)
deg(Cγ) =

(
S

∣∣∣
Π
− Cγ

)
· Cγ =

∑

i6=γ

mideg(Ci)deg(Cγ),

which implies that deg(Cγ) = 1 and mi = 1 for every i.
Now, equalities 31 imply that β < α, but every singular point of the

surface S that is contained in the curve C must lie in the set

C ∩
α⋃

i=β+1

Ci
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that consists of at most r2 points, which is a contradiction.
Thus, we see that mi > 2 for every i 6 β. Therefore, it follows from

the equalities 31 that α = β and mi = 2 for every i.
Let f(x, y, z, w) be the homogeneous form of degree 2r such that

f
(
x, y, z, w

)
= 0

defines the surface S ⊂ P3, where (x : y : z : w) are homogeneous
coordinates on P3. We may assume that Π is given by x = 0. Then

f
(
0, y, z, w

)
= g2

r

(
y, z, w

)
,

where gr(y, z, w) is a form of degree r such that C is given by

x = gr

(
y, z, w

)
= 0,

which implies that S can be defined by equation 5. q.e.d.

It follows from Lemma 29 that at most (2r − 1)k singular points of
the surface S can lie on a curve in P3 of degree k.

Lemma 32. Let C be an irreducible reduced curve in P3 of degree k
that is not contained in a hyperplane. Then

∣∣∣C ∩ Sing
(
S

)∣∣∣ 6
(
2r − 1

)
k − 2.

Proof. Suppose that the curve C contains at least (2r−1)k−1 singular
points of the surface S. Then C ⊂ S, because otherwise we have

2rk = deg
(
C

)
deg

(
S

)
6 2

(
2r − 1

)
k − 2 = 4rk − 2k − 2,

which leads to 2k(r − 1) 6 2. But r > 2 and k > 3.
Let O be a sufficiently general point of the curve C, and let

ψ : P3 99K Π

be a projection from O, where Π is a general plane in P3. Then

ψ
∣∣∣
C

: C 99K ψ
(
C

)

is a birational morphism, because C is not a plane curve.
Put Z = ψ(C). Then Z has degree k − 1.
Let Y be a cone in P3 over Z with the vertex O. Then C ⊂ Y .
The point O is not contained in a hyperplane in P3 that is tangent to

the surface S at some point of the curve C, because C is not contained
in a hyperplane. Then Y does not tangent S along the curve C. Put

S
∣∣∣
Y

= C + R,

where R is a curve of degree 2rk − k − 2r. The generality in the choice
of the point O implies that R does not contain rulings of the cone Y .
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Let α : Z̄ → Z be the normalization of Z. Then the diagram

Ȳ
β //

π

²²

Y

ψ
∣∣
Y

²²Â
Â
Â

Z̄ α
// Z

commutes, where β is a birational morphism, the surface Ȳ is smooth,
and π is a P1-bundle. Let L be a general fiber of π, and E be a section
of the P1-bundle π such that β(E) = O. Then E2 = −k + 1 on Ȳ .

Let Q be an arbitrary point of the set

Sing
(
S

) ∩ C,

and let C̄ and R̄ be proper transforms of the curves C and R on the sur-
face Ȳ , respectively. Then there is a point Q̄ ∈ Ȳ such that

Q̄ ∈ Supp
(
C̄ · R̄

)

and β(Q̄) = Q. But we have

R̄ ≡ (
2r − 2

)
E +

(
2rk − k − 2r

)
L

and C̄ ≡ E + kL. Therefore, we have
(
2r − 1

)
k − 2 = C̄ · R̄ >

(
2r − 1

)
k − 1,

which is a contradiction. q.e.d.

Now we prove Theorem 6 by reductio ad absurdum, where we assume
that r > 4, because the case r = 3 is done in [11].

Put Σ = Sing(S), and suppose that the following conditions hold:
• the inequalities |Σ| 6 (2r − 1)r + 1 and r > 3 hold;
• the surface S can not be defined by equation 5;
• the threefold X is not factorial.

There is a point P ∈ Σ such that every surface in P3 of degree 3r− 4
that pass through the set Σ \ P contains the point P as well.

Lemma 33. Let Π be a hyperplane in P3. Then |Π ∩ Σ| 6 2r.

Proof. Suppose that the inequality |Π ∩ Σ| > 2r holds. Let us show
that this assumption leads to a contradiction.

Let Γ be the subset of the set Σ that consists of all points that are
not contained in the plane Π. Then Γ contains at most

(
2r − 1

)(
r − 1

)− 1

points, which impose independent linear conditions on homogeneous
forms of degree 3r − 5 by Proposition 17.
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Suppose that P 6∈ Π. There is a surface F ⊂ P3 of degree 3r− 5 that
contains the set Γ \ P and does not contain the point P . Then

F ∪Π ⊂ P3

is the surface of degree 3r − 4 that contains the set Σ \ P and does not
contain the point P , which is impossible. Therefore, we have P ∈ Π.

Arguing as in the proof of Lemma 29, we see that
∣∣Π ∩ Σ

∣∣ 6
(
2r − 1

)
r,

because S|Π is singular in every point of the set Π ∩ Σ.
It follows from Lemma 30 that Π ∩ Σ is not contained in a curve of

degree r if |Π ∩ Σ| = (2r − 1)r. Arguing as in the proof of Lemma 18,
we see that there is a surface of degree 3r − 4 that contains the set

(
Π ∩ Σ

)
\ P

and does not contain P , which concludes the proof by Lemma 25. q.e.d.

The inequality |Σ| > (2r − 1)r holds by Proposition 14.

Lemma 34. Let L1 6= L2 be lines in P3. Then
∣∣(L1 ∪ L2

) ∩ Σ
∣∣ < 4r − 2.

Proof. Suppose that |(L1 ∪ L2) ∩ Σ| > 4r − 2. Then
∣∣L1 ∩ Σ

∣∣ =
∣∣L1 ∩ Σ

∣∣ = 2r − 1

by Lemma 29. Then L1 ∩ L2 = ∅ by Lemma 33.
Fix two points Q1 and Q2 in the set

Σ \
((

L1 ∪ L2

) ∩ Σ
)

different from P such that Q1 6= Q2. Let Πi be a hyperplane in P3 that
contains Li and Qi. Then |Πi ∩ Σ| = 2r by Lemma 33.

Suppose that P 6∈ Π1∪Π2. There is a surface F ⊂ P3 of degree 3r−6
that does not contain the point P and contains all points of the set

(
Σ \

(
Σ ∩ (

Π1 ∪Π2

)))
\ P

by Proposition 17. Hence, the union

F ∪Π1 ∪Π2

is a surface in P3 of degree 3r − 4 that contains Σ \ P and does not
contain P , which is impossible. Therefore, we have P ∈ Π1 ∪Π2.

The set Σ∩(Π1∪Π2) consists of 4r points by Lemma 33. The points in

Σ ∩
(
Π1 ∪Π2

)
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impose independent linear conditions on homogeneous forms P3 of de-
gree 3r − 4 by Theorem 2 in [9]. On the other hand, the inequality∣∣∣Σ \

(
Σ ∩ (

Π1 ∪Π2

))∣∣∣ <
(
2r − 1

)(
r − 2

)

holds. Then the points in Σ\ (Σ∩ (Π1∪Π2)) impose independent linear
conditions homogeneous forms of degree 3r−6 by Proposition 17, which
leads to a contradiction by applying Lemma 25. q.e.d.

Lemma 35. Let C be a curve in P3 of degree k > 2. Then∣∣C ∩ Σ
∣∣ < (2r − 1)k.

Proof. Suppose that |C ∩ Σ| > (2r − 1)k. Then∣∣C ∩ Σ
∣∣ = (2r − 1)k

by Lemma 29, and C is not contained in a hyperplane by Lemma 33.
The curve C must be reducible by Lemma 32. Put

C =
α∑

i=1

Ci,

where α > 2 and Ci is an irreducible curve. Then

k =
α∑

i=1

di,

where di = deg(Ci). Then |Ci ∩ Σ| = (2r − 1)di by Lemma 29.
The curve Ci is contained in a hyperplane in P3 by Lemma 32. Then

d1 = d2 = · · · = dα = 1

and α = k 6= 1 by Lemma 33, which contradicts Lemma 34. q.e.d.

Lemma 36. Let L be a line in P3. Then |L ∩ Σ| 6 2r − 2.

Proof. Suppose that the inequality |L ∩ Σ| > 2r − 1 holds. Then∣∣L ∩ Σ
∣∣ = 2r − 1

by Lemma 29. Let Φ be a hyperplane in P3 such that Φ passes through
the line L, and Φ contains a point of the set Σ \ (L ∩ Σ). Then∣∣Φ ∩ Σ

∣∣ = 2r

by Lemma 33. Put ∆ = Σ \ (Φ ∩ Σ). Then |∆| 6 (2r − 1)(r − 1).
The points in ∆ impose dependent linear conditions on homogeneous

forms of degree 3r − 5, because otherwise the points in Σ impose inde-
pendent linear conditions on forms of degree 3r − 4 by Lemma 25.

Therefore, we see that there is a point Q ∈ ∆ such that every surface
of degree 3r − 5 containing ∆ \Q must pass through Q. Then∣∣∆∣∣ =

(
2r − 1

)(
r − 1

)

and |Σ| = (2r − 1)r + 1 by Proposition 17.
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Fix sufficiently general hyperplane Π ⊂ P3 and a point O ∈ P3. Let

ψ : P3 99K Π

be a projection from O. Put ∆′ = ψ(∆) and Q′ = ψ(Q).
At most 2r − 2 points in ∆′ lie on a line by Lemmas 16 and 34.
Suppose that at most (2r − 1)k points in the set ∆′ lie on any curve

of degree k for every k, and there is a curve Z ⊂ Π of degree r− 1 that
contains the whole set ∆′. Then

h1
(
I∆ ⊗OP3

(
3r − 5

))
= 0

by Lemmas 16, 23 and 35 in the case when Z is irreducible. So, we have

Z =
α∑

i=1

Zi,

where α > 2, and Zi is an irreducible curve of degree di. Then
∣∣Zi ∩∆′∣∣ = (2r − 1)di,

because r =
∑α

i=1 di. Then every point of the set ∆′ is contained in one
irreducible component of the curve Z. We have di 6= 1 for every i.

Let Zβ be the unique component of the curve Z such that Q′ ∈ Zβ,
and let Γ ⊂ ∆ be a subset such that

ψ
(
Γ
)

= ∆′ ∩ Zβ ⊂ Π ∼= P2,

which implies that Q ∈ Γ. There is a surface Fβ ⊂ P3 of degree 3(dβ−1)
that contains Γ \Q and does not contain Q by Lemmas 16, 23 and 35.

Let Yi be a cone over Zi whose vertex is the point O. Then

Fβ ∪
⋃

i6=β

Yi

is a surface of degree 3di − 3 +
∑

i6=β di = 2di + r − 4 containing ∆ \Q
and not containing Q, which is impossible, because 2di + r−4 6 3r−5.

Hence, we proved that
• either at least (2r−1)k +1 points in ∆′ lie on a curve of degree k;
• or there is no curve of degree r − 1 that contains the set ∆′.

Suppose that at most (2r−1)k points of the set ∆′ lie on every curve
of degree k for every natural k. Then it follows from Theorem 15 that
there is a curve in Π of degree 3r− 5 that contains ∆′ \Q′ and does not
contain the point Q′, which is a contradiction.

So, at least (2r−1)k+1 points in ∆′ lie on some curve in Π of degree k,
where k > 3 by Lemma 20. Thus, the proof of Proposition 17 implies
the existence of a subset Ξ ⊆ ∆ such that

• at most (2r − 1)k points in ψ(∆ \ Ξ) lie on a curve of degree k,
• there is a surface in P3 of degree µ 6 r−2 that contains all points

of the set Ξ and does not contain any point of the set ∆ \ Ξ,
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• the inequality |∆ \ Ξ| 6 (2r − 1)(r − 1− µ)− 1 holds and

h1
(
IΞ ⊗OP3

(
3r − 5

))
= 0.

Put ∆̄ = ψ(∆\Ξ) and d = 3r−5−µ. The points of ∆̄ impose depen-
dent linear conditions on homogeneous forms of degree d by Lemma 25,
which implies that there is a point Q̄ ∈ ∆̄ such that ∆̄ \ Q̄ and d do not
satisfy one of the hypotheses of Theorem 15.

We have d > 3, because r > 4. The proof of Lemma 26 gives
∣∣∆̄ \ Q̄

∣∣ 6
⌊

d + 3
2

⌋2

,

which implies that at least t(d+3−t)−1 points of the finite set ∆̄\Q̄ lie
on a curve of degree t for some natural number t such that t 6 (d+3)/2.

Suppose that t = 1. Then at least d + 1 points of ∆̄ lie on a line, but
at most 2r − 2 points of ∆′ lie on a line by Lemmas 16 and 34, which
implies that d = 2r− 3 and |∆̄| = 2r− 2. Then the points in ∆̄ impose
dependent linear conditions on homogeneous forms of degree d, which
is impossible. Therefore, we see that t > 2.

At least t(d+3−t)−1 points in ∆̄\Q̄ lie on a curve of degree t. Then

t
(
d + 3− t

)− 1 6
∣∣∆̄ \ Q̄

∣∣ 6
(
2r − 1

)(
r − 1

)− 2− µ
(
2r − 1

)
i,

but t(d+3− t)−1 6 (2r−1)t, because at most (2r−1)t points in ∆̄ lie
on a curve of degree t. Hence, we have t > r − 1− µ, which gives
(
2r−1

)(
r−1−µ

)
−2 >

∣∣∆̄\Q̄∣∣ > t(d+3−t)−1 >
(
r−1−µ

)(
2r−1

)−1,

which is a contradiction. q.e.d.

Corollary 37. Let C be any curve in P3 of degree k. Then∣∣C ∩ Σ
∣∣ <

(
2r − 1

)
k.

Fix a hyperplane Π ⊂ P3 and a general point O ∈ P3. Let

ψ : P3 99K Π ⊂ P3

be a projection from O. Put Σ′ = ψ(Σ) and P ′ = ψ(P ).

Lemma 38. Let C be an irreducible curve in Π of degree r. Then∣∣C ∩ Σ′
∣∣ <

(
2r − 1

)
r.

Proof. Suppose that |C∩Σ′| > (2r−1)r. Let Ψ be a subset in Σ that
contains all points mapped to the curve C by the projection ψ. Then∣∣Ψ∣∣ >

(
2r − 1

)
r,

but less than (2r − 1)r points in Σ lie on a curve of degree r.
Let H be a linear system of surfaces in P3 of degree r that pass

through the set Ψ, and let Φ be the base locus of H. Then

dim
(
Φ

)
= 0
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is finite by Lemma 16. Put Υ = Σ ∩ Φ. The points in Υ impose
independent linear conditions on homogeneous forms of degree 3r − 3
by Lemma 23.

Let Γ be a subset in Υ such that Υ\Γ consists of 4r−6 points. Then
∣∣Γ∣∣ 6 2r2 − 5r − 5 6 (r + 2)(r + 1)r

6
− 1,

because r > 4. Therefore, there is a surface F ⊂ P3 of degree r− 1 that
contains all points of the set Γ.

Let Θ be a subset of the set Υ such that Θ consists of all points that
are contained in the surface F . Then Θ imposes independent linear
conditions on homogeneous forms of degree 3r− 4 by Theorem 3 in [6].

Put ∆ = Υ\Θ. Using Theorem 2 in [9], we easily see that the points of
the set ∆ impose independent linear conditions on homogeneous forms
of degree 2r − 3 by Lemmas 33 and 36. Then

h1
(
IΥ ⊗OP3

(
3r − 4

))
= 0

by Lemma 25, which also follows from Theorem 3 in [6].
We have |Σ\Υ| 6 1. Thus, the points in Σ impose independent linear

conditions on homogeneous forms of degree 3r− 4 by Lemma 25. q.e.d.

Lemma 39. There is a curve Z ⊂ Π of degree k such that
∣∣Z ∩ Σ′

∣∣ > (2r − 1)k + 1.

Proof. Suppose that at most (2r − 1)k points of the set Σ′ lie on a
curve of degree k for every integer k > 1. Let us derive a contradiction.

The finite subset Σ′ \ P ′ ⊂ Π and the natural number 3r − 4 do not
satisfy at least one of the hypotheses of Theorem 15. But

∣∣Σ′ \ P ′∣∣ 6 max
(⌊3r − 1

2

⌋(
3r − 1−

⌊3r − 1
2

⌋)
,
⌊3r − 1

2

⌋2
)

,

and at most 2r− 1 6 3r− 4 points in Σ′ \P ′ lie on a line by Lemma 16.
We see that at least

k
(
3r − 1− k

)− 1

points in Σ′ \P ′ lie on a curve of degree k such that 2 6 k 6 (3r− 1)/2,
which implies that k = r, because at most k(2r − 1) points in Σ′ lie on
a curve of degree k, and |Σ′ \ P ′| 6 (2r − 1)r.

Thus, there is a curve C ⊂ Π of degree r such that
∣∣∣Supp

(
C

) ∩
(
Σ′ \ P ′

)∣∣∣ > (2r − 1)r − 1,

which implies that P ′ ∈ C, because otherwise there is a curve in Π of
degree 3r − 4 that contains Σ′ \ P ′ and does not contain P ′. Then

∣∣Supp
(
C

) ∩ Σ′
∣∣ > (2r − 1)r,
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which implies that C is reducible by Lemma 38. Put

C =
α∑

i=1

Ci,

where Ci is an irreducible curve of degree di > 1 and α > 2. Then

(2r − 1)r 6
∣∣C ∩ Σ′

∣∣ 6
α∑

i=1

∣∣Ci ∩ Σ′
∣∣ 6

α∑

i=1

(2r − 1)deg
(
Ci

)
= (2r − 1)r,

which implies that Ci contains (2r− 1)di points of the set Σ, and every
point of the set Σ is contained in at most one curve Ci.

Let Cυ be the component of C that contains P ′, and let Υ be a subset
of the set Σ that contains all points of the set Σ that are mapped to
the curve Cυ by the projection ψ. Then

∣∣Υ∣∣ =
(
2r − 1

)
dυ,

but less than (2r − 1)dυ points of the set Σ lie on a curve of degree dυ.
The points in Υ impose independent linear conditions on the homo-

geneous forms of degree 3(dυ − 1) by Lemmas 16 and 23.
There is a surface F ⊂ P3 of degree such that

Υ \ P ⊂ F 6∈ P

and deg(F ) = 3(dυ−1). Let Yi be a cone in P3 over the curve Ci whose
vertex is the point O. Then the surface

F ∪
⋃

i6=υ

Yi ∈
∣∣OP3

(
2dυ − 3 + r

)∣∣

contains the set Σ \ P and does not contain the point P . But

2dυ − 3 + r 6 3r − 4,

which is a contradiction. q.e.d.

Arguing as in the proof of Theorem 1, we construct a disjoint union

l⋃

j=k

cj⋃

i=1

Λi
j ⊆ Σ

such that |Λi
j | > (2r−1)j, the subset ψ(Λi

j) is contained in an irreducible
curve of degree j, and at most (2r − 1)t points of the subset

ψ
(
Σ \

( l⋃

j=k

cj⋃

i=1

Λi
j

))
( Σ′ ⊂ Π ∼= P2

lie on a curve in Π of degree t. Then r > k > 3 by Lemmas 20 and 38.
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Put Λ = ∪l
j=k ∪

cj

i=1 Λi
j . Let Ξi

j be the base locus of the linear system
of surfaces in P3 of degree j that pass through Λi

j . Then

(40)
∣∣Σ\Λ∣∣ 6

(
2r−1

)
r+1−

l∑

i=k

ci

((
2r−1

)
i+1

)
6

(
2r−1

)(
r−

l∑

i=k

ici

)
,

which implies that
∑l

i=k ici 6 r. The set Ξi
j is finite by Lemma 16.

Remark 41. We have
∑l

i=k ici 6 r − 1, because the equality
l∑

i=k

ici = r

and inequalities 40 imply that k = l = r, but k < r by Lemma 38.

It follows from Lemma 23 that the points of Ξi
j impose independent

linear conditions on homogeneous forms on P3 of degree 3(j − 1).
Put Ξ =

⋃l
j=k

⋃cj

i=1 Ξi
j . Then

(42)
∣∣Σ \

(
Ξ ∩ Σ

)∣∣ 6
(
2r − 1

)
r −

l∑

i=k

ci

(
2r − 1

)
i.

Therefore, we can find surfaces F and G in P3 of degree
∑l

i=k 3(i−1)ci

and
∑l

i=k ici, respectively, such that
(
Ξ ∩ Σ

)
\ P ⊂ F 63 P,

the surface G contains the set Ξ∩Σ, and the surface G does not contain
any point in Σ \ (Ξ ∩ Σ). In particular, we have Σ 6⊆ Ξ, because

l∑

i=k

3
(
i− 1

)
ci 6

l∑

i=k

3ici − 3ck 6 3r − 6 < 3r − 4.

Put Σ̄ = ψ(Σ \ (Ξ ∩ Σ)) and d = 3r − 4−∑l
i=k ici.

It follows from Lemma 25 that there is a point Q̄ ∈ Σ̄ such that every
curve in Π of degree d that contains the set Σ̄\Q̄ must pass through the
point Q̄ as well. Therefore, we can not apply Theorem 15 to the points
of the subset Σ̄ \ Q̄ ⊂ Π and the natural number d.

The proof of Lemma 26 implies that the inequality

∣∣Σ̄ \ Q̄
∣∣ 6

(
2r − 1

)(
r −

l∑

i=k

cii
)
− 1 6

⌊
d + 3

2

⌋2

holds, but d = 3r−4−∑l
i=k ici > 2r−3 > 3, because

∑l
i=k ici 6 r−1,

which implies that at least t(d + 3− t)− 1 points of the set Σ̄ \ Q̄ lie on
a curve in Π of degree t 6 (d + 3)/2.

Lemma 43. The inequality t 6= 1 holds.
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Proof. Suppose that t = 1. Then at least d + 1 points in Σ̄ \ Q̄ lie on
a line, which implies that d + 1 6 2r − 2 by Lemmas 16 and 36.

The inequality d + 1 6 2r − 2 gives
∑l

i=k ici = r − 1 and d = 2r − 3.
It follows from inequality 42 that

∣∣∣Σ \
(
Ξ ∩ Σ

)∣∣∣ 6 2r − 1,

which implies that the set Σ \ (Ξ ∩ Σ) imposes independent linear con-
ditions on the homogeneous forms of degree 2r− 3 by Theorem 2 in [9],
which is impossible by Lemma 25. q.e.d.

There is a curve C ⊂ Π of degree t > 2 that contains at least

t
(
d + 3− t

)− 1

points of the set Σ̄ \ Q̄, which implies that

t
(
d + 3− t

)− 1 6
∣∣Σ̄ \ Q̄

∣∣
and t(d + 3− t)− 1 6 (2r − 1)t. Therefore, we see that

t > r −
l∑

i=k

ici,

because t > 2. It follows from inequalities 40 that

(
2r − 1

)(
r −

l∑

i=k

ici

)
− 1 >

∣∣Σ̄ \ Q̄
∣∣ > t

(
d + 3− t

)− 1

>
(

r −
l∑

i=k

ici

)(
2r − 1

)− 1,

which implies that t = r −∑l
i=k ici, the curve C contains Σ̄ \ Q̄, and

inequalities 40 are actually equalities. We have Σ ∩ Ξ = Λ and

∣∣Σ \ Λ
∣∣ =

(
2r − 1

)
r + 1−

l∑

i=k

ci

((
2r − 1

)
i + 1

)

=
(
2r − 1

)(
r −

l∑

i=k

ici

)
,

which implies that l = k, ck = 1, d = 3r − 4− k and
∑l

i=k ici = k.

Lemma 44. The curve C contains the set Σ̄.

Proof. Suppose that Σ̄ 6⊂ C. Then Q̄ 6∈ C, which implies that there
is a curve in Π of degree r− k that contains the set Σ̄ \ Q̄ but does not
contain the point Q̄. The latter is impossible, because d > r− k. q.e.d.
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We have deg(C) = r − k and ψ(Σ \ Λ) ⊂ C. The equality∣∣∣ψ
(
Σ \ Λ

)∣∣∣ = (r − k)(2r − 1)

holds. But there is an irreducible curve Z ⊂ Π of degree k that contains
all points of the set ψ(Λ), which consists of k(2r − 1) + 1. Then∣∣Σ∣∣ =

∣∣Σ \ Λ
∣∣ +

∣∣Λ∣∣ =
(
r − k

)(
2r − 1

)
+ k

(
2r − 1

)
+ 1 =

(
2r − 1

)
r + 1.

Lemma 45. The curve C is reducible.

Proof. Suppose that C is irreducible. Then Σ\Λ imposes independent
linear conditions on forms of degree 3(r−k−1) by Lemmas 16, 23, and
35, but the points in Λ impose independent linear conditions on forms
of degree 3(k− 1) by Lemmas 16 and 23. Then Σ imposes independent
linear conditions on forms of degree 3r − 4 by Lemma 25. q.e.d.

Put C =
∑α

i=1 Ci, where Ci is an irreducible curve of degree di. Then

r − k =
α∑

i=1

di,

the curve Ci contains (2r − 1)di points of the set Σ̄, and every point of
the set Σ̄ is contained in a single irreducible component of the curve C.

Lemma 46. The curve Z contains the point P ′.

Proof. Suppose that P ′ 6∈ Z. Let Cυ be a component of C such that

P ′ ∈ Cυ,

and let Υ be a subset of the set Σ that contains all points that are
mapped to the curve Cυ by the projection ψ. Then |Υ| = (2r − 1)dυ.

The set Υ imposes independent linear conditions on the homogeneous
forms of degree 3(dυ − 1) by Lemmas 16, 23 and 35. There is a surface

F ⊂ P3

of degree 3(dυ − 1) that contains Υ \ P and does not contain P .
Let Yi and Y be the cones in P3 over the curves Ci and Z, respectively,

whose vertex is the point O. Then the union

F ∪ Y ∪
⋃

i6=υ

Yi

is a surface of degree 2dυ−3+r 6 3r−4 that contains the set Σ\P and
does not contain the point P , which is a contradiction. q.e.d.

The proof of Lemma 46 implies that the set Σ\Λ imposes independent
linear conditions on homogeneous forms on P3 of degree 3r− 4− k, but
we already know that the set Λ imposes independent linear conditions
on homogeneous forms of degree 3(k − 1) by Lemmas 16 and 23.

Applying Lemma 25, we obtain a contradiction.
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