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INSTABILITY OF GRAPHICAL STRIPS AND A
POSITIVE ANSWER TO THE BERNSTEIN PROBLEM

IN THE HEISENBERG GROUP H1

D. Danielli, N. Garofalo, D.M. Nhieu & S.D. Pauls

Abstract

In the first Heisenberg group H1 with its sub-Riemannian struc-
ture generated by the horizontal subbundle, we single out a class
of C2 non-characteristic entire intrinsic graphs which we call strict
graphical strips. We prove that such strict graphical strips have
vanishing horizontal mean curvature (i.e., they are H-minimal)
and are unstable (i.e., there exist compactly supported deforma-
tions for which the second variation of the horizontal perimeter
is strictly negative). We then show that, modulo left-translations
and rotations about the center of the group, every C2 entire H-
minimal graph with empty characteristic locus and which is not a
vertical plane contains a strict graphical strip. Combining these
results we prove the conjecture that in H1 the only stable C2 H-
minimal entire graphs, with empty characteristic locus, are the
vertical planes.

1. Introduction

One of the most celebrated problems in geometry and calculus of
variations is the Bernstein problem, which asserts that a C2 minimal
graph in R3 must necessarily be an affine plane. Following an old tradi-
tion, here minimal means of vanishing mean curvature. Bernstein [Ber]
established this property in 1915. Almost fifty years later a new insight
of Fleming [Fle] sparked a major development in the geometric measure
theory which, through the celebrated works [DG3], [Al], [Sim], [BDG]
culminated in the following solution of the Bernstein problem.

Theorem 1.1. Let S = {(x, u(x)) ∈ Rn+1|x ∈ Rn, xn+1 = u(x)} be
a C2 minimal graph in Rn+1, i.e., let u ∈ C2(Rn) be a solution of the
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minimal surface equation

(1.1) div

(
Du√

1 + |Du|2

)
= 0,

in the whole space. If n ≤ 7, then there exist a ∈ Rn, β ∈ R such that
u(x) =< a, x > +β, i.e., S must be an affine hyperplane. If instead
n ≥ 8, then there exist non affine (real analytic) functions on Rn which
solve (1.1).

The purpose of this paper is to study, in the simplest model of a
sub-Riemannian space, the three-dimensional Heisenberg group H1, the
structure of C2 minimal graphs with empty characteristic locus and
which, on every compact set, minimize the horizontal perimeter. As a
corollary of our results, we obtain a positive answer to a sub-Riemannian
analogue of the Bernstein problem. From the perspective of geome-
try the relevance of H1 lies in the fact that this Lie group constitutes
the simplest prototype of a class of graded nilpotent Lie groups which
arise as “tangent spaces” in the Gromov-Hausdorff limit of Riemannian
spaces, see [Be], [Gro1], [Gro2], [Mon], [CDPT]. Furthermore, Hn is
an interesting model of a metric space with a non-trivial geometry.

The Bernstein problem in H1 has recently received increasing at-
tention, see [P1], [GP], [CHMY], [CH], [RR1], [RR2], [HP],
[ASV], [DGN2], [GS], [CHY], [BSV]. While we refer to the discus-
sion below, to Section 2, and to the cited references for a detailed de-
scription of the relevant geometric setting, it seems appropriate here to
provide the reader with some historical perspective and a brief overview
of the main contributions of the present paper.

When approaching the sub-Riemannian Bernstein problem, one is
confronted with the fact that there exist smooth entire minimal graphs
that are not affine. For instance, in H1 the surface S defined by t = xy/2
is minimal, in the sense that its horizontal, or H-mean curvature, de-
fined in (2.11) below, vanishes identically. This is of course in sharp
contrast with Theorem 1.1. What lurks in the dark here are two as-
pects: (i) On the one hand, the so-called characteristic locus of the
surface S, i.e., the collection of points at which the fiber of the subbun-
dle generated by the horizontal distribution coincides with the tangent
space of S: on this set the horizontal Gauss map becomes singular (for
instance, the surface t = xy/2 has non-empty characteristic locus); (ii)
The drastically different nature of the relevant minimal surface equa-
tion, with respect to the classical case. To explain this latter point we
recall that a quasilinear elliptic equation auxx +2buxy +cuyy = d, where
a, b, c, d depend on x, y, u, ux, uy, is called elliptic (on the solution u) if
ac− b2 > 0, hyperbolic if ac− b2 < 0. As it is well-known the classical
minimal surface equation (1.1) is a quasilinear elliptic equation. One
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has in fact for a C2 graph S ⊂ R3 of the type t = u(x, y) that (1.1) is
equivalent to

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0,

for which one has ac − b2 = 1 + u2
x + u2

y > 0. On the other hand,
the condition for which the same C2 graph S is H-minimal in H1 is
expressed by the fact that u must satisfy the quasi-linear equation
(1.2)(

uy − x

2

)2
uxx − 2

(
ux +

y

2
uy

)(
uy − x

2

)
uxy +

(
ux +

y

2

)2
uyy = 0.

Away from the characteristic locus of S this is a quasilinear degen-
erate equation with one vanishing eigenvalue since ac − b2 ≡ 0. Unlike
(1.1), the equation (1.2) displays non-smoothing features typical of hy-
perbolic equations. For instance, given any function f ∈ C2(R) which
is not C3(R), the surface t = xy/2+f(x) is H-minimal, and of course it
is not smoother than C2. For this reason it seems appropriate to think
of the equation (1.2) as degenerate hyperbolic.

It is interesting to observe that since away from the characteristic
locus we can always locally parameterize S in one of the two forms (1.9),
(1.10) below, then by (4.19) below, in terms of the function φ(u, v) the
H-minimality of S is expressed by the pde

(1.3) φuu + 2φφuv + φ2φvv = −φv(φφv + 2φu),

which again would be appropriate to think of as degenerate hyperbolic.
We emphasize in fact that (1.3) represents a double Burger equation, see
(4.17), (4.18) and (4.19) below.

The above example t = xy/2 is not isolated since a basic result first
proved in [CHMY], and also independently with a different proof in
[GP], shows in particular that every H-minimal entire graph over the
horizontal plane t = 0 must have non-empty characteristic locus, see
Theorem 5.5 below. These considerations suggest that, in order to have
a reasonably behaved horizontal Gauss map, in the sub-Riemannian
Bernstein problem one should impose the restriction that the horizontal
bundle HH1 be transversal to the tangent bundle TS at every point of
the surface, i.e., S should have empty characteristic locus. This, in
turn, immediately imposes a restriction on the type of planes which
are appropriate. Since every plane ax + by + ct = γ, for which c 6= 0,
possesses the isolated characteristic point (−2b/c, 2a/c, γ/c), it is clear
that we want to confine the attention to the non-characteristic vertical
planes

(1.4) P̃0 = {(x, y, t) ∈ H1 | ax + by = γ}.
The appropriateness of these planes is also confirmed by the funda-

mental Rademacher-Stepanov type theorem of Pansu [Pa]. Specialized
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to the present setting, the latter states that if F : H1 → R is a Lips-
chitz map with respect to the Carnot-Carathéodory distance associated
with the subbundle HH1, then F is Pansu differentiable at a.e. point
g = (x, y, t) ∈ H1 (w.r.t. Lebesgue measure), and the Pansu differential
is given by F∗(x, y, t) = ax + by, for some a, b ∈ R. This result un-
derscores the special role of the vertical planes (1.4) in sub-Riemannian
geometric measure theory. A closely related remarkable fact, discovered
in [FSS1], is that the blow-up à la De Giorgi of a set with locally finite
H-perimeter at a point of its reduced boundary is again a plane such as
(1.4). It is time to introduce a basic definition.

Definition 1.2. We say that a surface S ⊂ H1 of class C2 is an
entire graph if there exists a plane P , having equation ax+ by + ct = γ,
such that for every point g0 ∈ P the straight line passing through g0 and
parallel to the Euclidean normal N e = (a, b, c) to P , L(g0) = {g0+sN e |
s ∈ R} intersects the surface S in exactly one point.

The above considerations suggest the natural conjecture that if S ⊂
H1 is an entire H-minimal graph, with empty characteristic locus, then
S should be a vertical plane P̃0 such as (1.4). Since, as we have men-
tioned, H-minimal is intended in the sense that the horizontal mean
curvature H vanishes identically as a continuous function on S, it is
worth stressing that, thanks to the first variation formula in Theorem
3.2 below, a C2 surface with empty characteristic locus is H-minimal if
and only if it is a critical point of the H-perimeter given by (3.5) below.
However, for H1 the situation is very different than in Euclidean space.
In fact, in [GP] the second and the fourth named authors discovered the
following counterexample to such a plausible sub-Riemannian version of
the Bernstein problem. The real analytic surface

(1.5) S = {(x, y, t) ∈ H1 | x = y tan tanh(t)}
is an entire H-minimal graph, with empty characteristic locus, over the
coordinate (y, t)-plane in H1. This example seems to cast a dim light
over the sub-Riemannian Bernstein problem.

There is, however, a deeper aspect of the problem which in the clas-
sical case is confined to the background, but which, due to the diverse
nature in the sub-Riemannian setting of the relevant area functional,
the horizontal perimeter, might be playing an important role. What
could be happening, in fact, is that H-minimal surfaces such as (1.5)
are unstable, in the sense that they are only critical points, but not lo-
cal minimizers of the H-perimeter. This phenomenon, which goes back
to the classical findings of Bernoulli, see e.g. [Ca], has of course no
counterpart in the Bernstein problem in flat space, since, thanks to the
convexity of the area functional Area(S) =

∫
Ω

√
1 + |Du|2dx, stability

is automatic for a solution to (1.1), see e.g. [CM]. On the other hand,
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stability had played an important role in the work on complete mini-
mal surfaces in 3-manifolds by Fischer-Colbrie and Schoen [FCS], who
generalized Bernstein’s theorem and proved, in particular, that the only
complete stable oriented minimal surfaces in R3 are the planes. This
latter result was also independently obtained in [DCP].

For the functional which expresses the horizontal perimeter, the con-
vexity fails. To see this negative phenomenon consider for instance the
situation in which S is parameterized by (1.9) below, with a bounded
Ω ⊂ R2

u,v; it was proved in [ASV] that the H-perimeter of S is expressed
by the functional

PH(S) = P(φ) =
∫

Ω

√
1 + Bφ(φ)2 dudv,

where Bφ(φ) = φu +φφv denotes the nonlinear inviscid Burger operator
acting on φ, see (4.20). If we set ξ = φu, η = φv, then the integrand of
the above functional is given by

F (φ, ξ, η) =
√

1 + (ξ + φη)2.

The Hessian of F is given by

∇2F = F−3




η2 η φη + (ξ + φη)F 2

η 1 φ
φη + (ξ + φη)F 2 φ φ2


 ,

and therefore det∇2F = −(ξ + φη)2F−5, which shows that F is not
convex.

These considerations suggest that the above conjecture could be re-
paired as follows: In H1 the vertical planes are the only stable entire
H-minimal graphs. As a corollary of our results, we will answer af-
firmatively this amended conjecture in Theorem 1.8. We note that in
Theorem 3.5 below we show that the vertical planes (1.4) are stable. An
H-minimal surface with empty characteristic locus is called stable if the
second variation of the H-perimeter is nonnegative for every compactly
supported deformation, see Definition 3.3 below. The role of stability
in the sub-Riemannian Bernstein problem has been recently highlighted
in [DGN2], where the first three named authors have proved the in-
stability of the H-minimal entire graphs x = y(αt + β), with α > 0,
β ∈ R. This result also clarified an incorrect belief by several experts in
the field, namely that such surfaces should constitute a counterexample
to the above formulated amended form of the Bernstein conjecture.

We are ready to give a summary of our results. In H1 we single out
a large class of H-minimal surfaces, which we call graphical strips, see
Definition 1.3 below, and which, after possibly a left-translation and
rotation about the t-axis, can be represented in one of the two forms
(1.6), or (1.7). If for the function G in these definitions we have G′ > 0
on some sub-interval, we call the relative surface a strict graphical strip.
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In Theorem 1.5 we show that graphical strips are H-minimal, and have
empty characteristic locus. Our first main result shows that every strict
graphical strip is unstable, in the sense that there exist local deforma-
tions of the surface which strictly decrease the horizontal perimeter, see
Theorem 1.6. Our second main result, Theorem 1.7, shows that, modulo
left-translations and rotations about the group center, every H-minimal
entire graph in H1, with empty characteristic locus, and which is not
itself a vertical plane, contains a strict graphical strip. Combining this
result with Theorem 1.6, we prove that the only stable H-minimal entire
graphs in H1, with empty characteristic locus, are the vertical planes,
see Theorem 1.8.

To state our main theorems we begin with a definition that plays a
central role in our work.

Definition 1.3. We say that a C2 surface S ⊂ H1 is a graphical strip
if there exist an interval I ⊂ R, and G ∈ C2(I), with G′ ≥ 0 on I, such
that, after possibly a left-translation and a rotation about the t-axis,
then either

(1.6) S = {(x, y, t) ∈ H1 | (y, t) ∈ R× I, x = yG(t)},
or

(1.7) S = {(x, y, t) ∈ H1 | (x, t) ∈ R× I, y = −xG(t)}.
If there exists J ⊂ I such that G′ > 0 on J , then we call S a strict
graphical strip.

Remark 1.4. We stress the importance of the assumed strict posi-
tivity of G′ in the definition of strict graphical strip, as opposed to the
weaker requirement G′ ≥ 0. This positivity will play a crucial role in
the proof of Theorem 1.6. We also mention explicitly that while a ver-
tical plane such as (1.4) is a graphical strip, it is not a strict graphical
strip. If for instance a 6= 0, then we can re-write (1.4) as x = αy + β,
with α = −b/a, and β = γ/a. Assuming β = 0, which can be always
achieved by a left-translation (see (1.8) below), we would have G(t) ≡ α,
and therefore G′ ≡ 0, against the assumption in Definition 1.3.

We now state a first theorem which, besides having an interest in its
own right, also serves to motivate our main results.

Theorem 1.5. Let S ⊂ H1 be a graphical strip; then S is H-minimal
and it has empty characteristic locus. When I = R, and G′ > 0 on the
whole line, then every surface such as (1.6) or (1.7) is a global intrinsic
H-minimal graph.

We stress that in the Heisenberg group the left-translations (2.2) are
affine transformations, and thereby they preserve planes and lines. For
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instance, if P denotes the plane ax + by + ct = γ, then denoting by
P ′ = g0 ◦ P , where g0 = (x0, y0, t0), one easily sees that P ′ is given by

(1.8)
(
a +

cy0

2

)
x +

(
b− cx0

2

)
y + ct = γ + ax0 + by0 + ct0.

Notice that a vertical plane (c = 0) is mapped into a vertical plane
by a left-translation. More generally, the left-translations preserve the
property of a surface of having empty characteristic locus. Furthermore,
they preserve the H-mean curvature, and therefore the H-minimality,
the H-perimeter, and the property of a surface of being stable. We also
notice that rotations about the t-axis (the group center) have the same
properties.

The notion of intrinsic graph in the second part of Theorem 1.5 is that
introduced in [FSS3], but see also [FSS2]. The proof of Theorem 1.5
shows that if S is of type (1.6) with I = R, then it is a global X1-graph,
whereas if it is of type (1.7), then S is a global X2-graph. We recall that
S is said to be an intrinsic X1-graph if there exist an open set Ω ⊂ R2

u,v,
and a C2 function φ : Ω → R, such that on Ω we can parameterize S
as follows: (x, y, t) = (0, u, v) ◦ φ(u, v)e1 = (0, u, v) ◦ (φ(u, v), 0, 0). This
means that
(1.9)
S =

{
(x, y, t) ∈ H1 | (u, v) ∈ Ω, (x, y, t) =

(
φ(u, v), u, v − u

2
φ(u, v)

)}
.

When we can take Ω = R2
u,v, then S is called a global X1-graph.

Similarly, if the points of S can be described by (x, y, t) = (u, 0, v) ◦
φ(u, v)e2 = (u, 0, v) ◦ (0, φ(u, v), 0), i.e., if
(1.10)
S =

{
(x, y, t) ∈ H1 | (u, v) ∈ Ω, (x, y, t) =

(
u, φ(u, v), v +

u

2
φ(u, v)

)}
,

then S is said an intrinsic X2-graph (global, if Ω = R2
u,v). Clearly, the

vertical planes (1.4) are global intrinsic graphs. If, for instance, a 6= 0,
then P̃0 can be parameterized as in (1.9), with

φ(u, v) = − b

a
u +

γ

a
.

Before proceeding, we pause to give some examples which illustrate
the situation of Theorem 1.5.

Example 1. The choice G(t) = tan tanh(t) makes (1.5) a special
case of Theorem 1.5. We stress that in this example G′(t) > 0 for
every t ∈ R, and therefore the surface S is a strict graphical strip with
I = R. According to Theorem 1.5, we conclude that S is also a Cω

global X1-graph.

Example 2. The class of strict graphical strips is not contained in
that of global intrinsic graphs. Consider, for instance, the function
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G(t) = cot(−t + π
2 ), with −π

2 < t < π
2 . We note that G′(t) > 0, and

therefore the corresponding surface in (1.6),

x = y cot
(
−t +

π

2

)
,

is a strict graphical strip, with I = (−π
2 , π

2 ). This surface is the helicoid

x = r cos θ, y = r sin θ, t = −θ +
π

2
, 0 ≤ r < ∞, 0 < θ < π.

If we set D = R × I, then the map Φ(y, t) = (y, t + y2

2 G(t)) is not
a diffeomorphism of D onto the whole (u, v)-plane. However, the argu-
ments in the proof of Theorem 1.5 show that it is a diffeomorphism onto
the connected open subset Ω ⊂ R2

u,v defined by Ω = R2 \ (L+ ∪ L−),
where L+ = {(0, v) ∈ R2 | v ≥ π

2 }, L− = {(0, v) ∈ R2 | v ≤ −π
2 }.

As a consequence, the helicoid is not a global intrinsic graph, although
it is a Cω X1-graph on the domain Ω. If we denote by Ψ(u, v) =
(Ψ1(u, v),Ψ2(u, v)) = Φ−1(u, v), then the function φ(u, v) in (1.9) is
given by

φ(u, v) = uG(Ψ2(u, v)), (u, v) ∈ Ω.

Example 3. The choice G(t) = αt + β, with α > 0, β ∈ R, gives the
strict graphical strips x = y(αt + β) studied in [DGN2], where it was
proved that these surfaces are unstable. We note that such surfaces are
Cω global H-minimal X1-graphs . We also observe that in this example
it is possible to compute explicitly the function φ(u, v) in (1.9) which
describes S as a global X1-graph. One finds

(1.11) φ(u, v) =
2u(αv + β)

2 + αu2
.

Example 4. The surface described by

S = {(x, y, t) ∈ H1 | (y, t) ∈ R× (0,∞), x = yt2}
is a strict graphical strip with I = (0,∞), but like the surface in Exam-
ple 2, it is not a global intrinsic graph.

We are now ready to state the first main result of this paper. In
what follows we indicate with νH the horizontal Gauss map of S, see
Section 2, and by VH

II(S;X ) the second variation of the H-perimeter
with respect to a deformation of S in the direction of the vector field X ,
see Definitions 3.1 and 3.3 below. An H-minimal surface S with empty
characteristic locus is called stable if VH

II(S;X ) ≥ 0 for every compactly
supported X = aX1 + bX2 + kT . Otherwise, it is called unstable. We
note that, since thanks to Theorem 1.5 every graphical strip has empty
characteristic locus, the horizontal Gauss map νH of such a surface is
globally defined.

Theorem 1.6. Let S be a strict graphical strip; then S is unstable. In
fact, there exists a continuum of h ∈ C2

0 (S), for which VH
II(S; hνH) < 0.
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The main ingredients in the proof of Theorem 1.6 are the second
variation formulas for the H-perimeter, see Theorem 3.4 below, and
the explicit construction of deformations of the surface along which
the H-perimeter decreases strictly. This part is delicate and it has
been influenced by the recent paper [DGN2]. As a consequence of
Theorem 1.6, the H-minimal surfaces corresponding to Examples 1,
2, 3 and 4, are all unstable, i.e., they are not local minimizers of the
H-perimeter. We emphasize that the class of strict graphical strips
is very wide. For instance, as we show in Theorem 1.7 below, every
H-minimal entire graph in H1, with empty characteristic locus, and
which is not itself a vertical plane, contains a strict graphical strip. In
connection with Theorem 1.6 we mention that, after the present work
was completed, we have received the interesting paper [BSV] in which
the authors, using the construction in [DGN2] in combination with
other tools in part also independently developed in [GS], establish the
instability of global intrinsic graphs, thus answering affirmatively the
above formulated Bernstein type conjecture in this setting. As we have
seen, Theorem 1.6 includes surfaces, such as for instance the helicoid in
Example 2, or that in Example 4, which are not global intrinsic graphs.

The following theorem is our second main result.

Theorem 1.7. Let S ⊂ H1 be an H-minimal entire graph, with
empty characteristic locus, and that is not itself a vertical plane such as
(1.4); then there exists a strict graphical strip S0 ⊂ S.

We mention explicitly that the above statement should be interpreted
in the sense that, after possibly composing with a suitable rotation
about the t-axis and a left-translation, the transformed surface contains
a portion of the type (1.6), or (1.7). The proof of Theorem 1.7 is based
on some of the main results in [GP]. For clarity of exposition we present
in Section 5 a detailed account of the main reduction steps. We mention
that, alternatively, one could use the results independently obtained in
[CHMY] and [CH].

Finally, by combining Theorems 1.6 and 1.7, we answer affirmatively
the above formulated Bernstein conjecture.

Theorem 1.8 (of Bernstein type). In H1 the only stable H-minimal
entire graphs, with empty characteristic locus, are the vertical planes
(1.4).

Concerning the higher-dimensional case of Theorem 1.8 we mention
that, using the construction in [BDG], we obtain the following negative
result.

Theorem 1.9. In Hn, with n ≥ 5, there exist Cω stable H-minimal
graphs, with empty characteristic locus, which are not vertical hyper-
planes.
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What happens when n = 2, 3, 4 is, presently, terra incognita. We
will now briefly describe the organization of the paper. In Section 2 we
collect some basic facts about the Heisenberg group, and introduce the
main geometric set-up. In Section 3 we collect some results from sub-
Riemannian geometric measure theory, specifically the first and second
variation formulas for the horizontal perimeter. Sections 4 and 5 are the
central parts of the paper. After proving Theorem 1.5, the remainder
of Section 4 is devoted to proving Theorem 1.6. In Section 5 we prove
Theorems 1.7 and 1.8. Finally, in Section 6 we prove Theorem 1.9.
Acknowledgment. This paper was presented by the second named
author in the UCI-UCSD joint Differential Geometry Seminar at the
University of California, San Diego, La Jolla, in February 2006. He
would like to thank Lei Ni for stimulating discussions and for his gracious
hospitality during his visit, and Salah Baouendi, Dima Khavinson, Peter
Li and Linda Rothschild for their interest in the problem.

2. Preliminaries

In this section we collect some definitions and known results which
will be needed in the paper. We recall that the Heisenberg group Hn is
the graded, nilpotent Lie group of step r = 2 whose underlying manifold
is Cn × R ∼= R2n+1, with non-Abelian left-translation

L(z,t)(z
′, t′) = (z, t) ◦ (z′, t′) =

(
z + z′, t + t′ − 1

2
Im(z · z′)

)
,

and non-isotropic dilations

(2.1) δλ(z, t) = (λz, λ2t), λ > 0.

These dilations provide a natural scaling associated with the grading
of the Heisenberg algebra hn = V1⊕V2, where V1 = Cn×{0}, V2 = {0}×
R. The homogeneous dimension associated with (2.1) is Q = 2n+2. We
recall that identifying hn with R2n+1, by identifying z = x+iy ∈ Cn with
(x, y) ∈ R2n, we have for the bracket of ξ = (x, y, t), ξ′ = (x′, y′, t′) ∈ hn

[ξ, ξ′] = (0, 0, x · y′ − x′ · y).

Here, and throughout the paper, we will use v · w to denote the
standard Euclidean inner product of two vectors v and w in Rn. From
the above bracket relation it is clear that [V1, V1] = V2, and that V2 is
the group center. Via the Caley map, Hn can be identified with the
boundary of the Siegel upper half-space Un = {z ∈ Cn+1 | Im zn+1 >
2

∑n
j=1 |zj |2}, see Ch.12 in [S] and [Fo]. See also [P2]. In the real

coordinates g = (x, y, t) ∈ R2n+1 the non-Abelian group law of Hn is
given by
(2.2)

g ◦ g′ = (x, y, t) ◦ (x′, y′, t′) =
(

x + x′, y + y′, t + t′ +
1
2
(x · y′ − x′ · y)

)
.
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Let (Lg)∗ be the differential of the left-translation Lg(g′) = g ◦ g′. A
simple computation shows that

(Lg)∗

(
∂

∂xi

)
def= Xi(g) =

∂

∂xi
− yi

2
∂

∂t
, i = 1, . . . , n,(2.3)

(Lg)∗

(
∂

∂yi

)
def= Xn+i(g) =

∂

∂yi
+

xi

2
∂

∂t
, i = 1, . . . , n,

(Lg)∗

(
∂

∂t

)
def= T (g) =

∂

∂t
.

We note that the only non-trivial commutator is

[Xi, Xn+j ] = δijT, i, j = 1, . . . , n,

therefore, the vector fields {X1, . . . , X2n} generate the Lie algebra hn,
see [H].

Henceforth, Hn will be endowed with a left-invariant inner product
〈·, ·〉, with respect to which {X1, . . . , X2n, T} constitute an orthonormal
basis. With the exception of the Euclidean inner product, which, as we
have said above, we denote v ·w, no other inner product will be used in
this paper, so when we write 〈·, ·〉 there will be no danger of confusion.
The horizontal bundle is HHn = ∪g∈HnHgHn, where

HgHn = span {X1(g), . . . , X2n(g)}.
We denote by ∇XY the Levi-Civita connection with respect to 〈·, ·〉.

Projecting such a connection onto the horizontal subbundle HHn ⊂
THn, we obtain a connection∇H

XY on HHn, which we call the horizontal
Levi-Civita connection. This idea goes back to that of E. Cartan’s non-
holonomic connection, see [C]. For any X ∈ Γ(THn), Y ∈ Γ(HHn) we
let

(2.4) ∇H
XY =

2n∑

i=1

〈∇XY, Xi〉Xi,

and one can easily verify that ∇H
XY is metric preserving and torsion

free, in the sense that if we define the horizontal torsion of S as

TH(X,Y ) = ∇H
XY −∇H

Y X − [X,Y ]H ,

where [X,Y ]H =
∑2n

i=1〈[X,Y ], Xi〉Xi, then TH(X,Y ) = 0. If f ∈
C1(Hn), we let

∇Hf =
2n∑

i=1

〈∇f, Xi〉Xi,

where we have denoted by ∇f the Riemannian gradient of f .
Given an oriented hypersurface S ⊂ Hn, we denote by N a Riemann-

ian non-unit normal to S and with ν = N/|N | the Riemannian Gauss
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map. Throughout the paper, we will indicate with

Σ(S) = {g ∈ S | TgS = HgHn}
the characteristic locus of S. Notice that g ∈ Σ(S) is equivalent to
having 〈N , Xi〉 = 0, i = 1, . . . , 2n, at g. We recall that it was proved
in [B] that HQ−1(Σ(S)) = 0, where Hs indicates the s-dimensional
Hausdorff measure constructed with the Carnot-Carathéodory distance
associated with the subbundle HHn. If S is of class C2, then we define
a non-unit horizontal normal on S by

(2.5) NH =
2n∑

i=1

〈N , Xi〉Xi.

We note in passing that in (2.5) we could have chosen as definition
of NH the following one: NH =

∑2n
i=1〈ν, Xi〉Xi. There is no real

distinction between the two, except that in the computations one has
to take into account the extra term |N | in the denominator. In order
to avoid this we have preferred working with a non-unit normal rather
than with the Gauss map.

It is clear that at a given g ∈ S one has NH 6= 0 if and only if
g 6∈ Σ(S). If g 6∈ Σ(S), then the horizontal tangent space to S in g is
defined by

(2.6) HTgS = {v ∈ HgHn | 〈v, NH〉 = 0}.
It is easy to recognize that HTgS = TgS ∩ HgHn. The horizontal

tangent bundle of S is HTS = ∪
g∈S

TH
g S. At every non-characteristic

point of S we define the horizontal Gauss map by letting

νH =
NH

|NH | .

Since
HgHn = HTgS ⊕ span {νH

g },
we have dim(HTgS) = 2n − 1. For instance, in H1 we simply have
HTS = span{e1}, where

e1 = (νH)⊥ = 〈νH , X2〉X1 − 〈νH , X1〉X2.

Definition 2.1. Let S ⊂ Hn be a Ck hypersurface, k ≥ 2, with
Σ(S) = ∅; then we define the horizontal connection on S as follows.
Let ∇H denote the horizontal Levi-Civita connection introduced above.
For every X,Y ∈ C1(S; HTS) we let

∇H,S
X Y = ∇H

X
Y − 〈∇H

X
Y , νH〉νH ,

where X, Y ∈ C1(Hn;HHn) are such that X = X, Y = Y on S.
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One can check that Definition 2.1 is well-posed, i.e., it is independent
of the extensions X, Y of the vector fields X, Y . For every X,Y ∈
C1(S; HTS) one has

(2.7) ∇H,S
X Y −∇H,S

Y X = [X,Y ]H − 〈[X, Y ]H , νH〉νH ,

in other words ∇H,S
X Y −∇H,S

Y X equals the projection of [X, Y ]H onto
HTS.

It is clear from (2.7) that the horizontal connection ∇H,S on S is not
necessarily torsion free. This depends on the fact that it is not true
in general that, if X, Y ∈ C1(S; HTS), then [X,Y ]H ∈ C1(S; HTS).
However, since in the first Heisenberg group H1 this is trivially true, in
this setting ∇H,S is torsion free, and therefore it has the properties of
a Levi-Civita connection.

Given a function f ∈ C1(S) we will denote

(2.8) ∇H,Sf = ∇Hf − 〈∇Hf, νH〉νH ,

where f ∈ C1(Hn) denotes any extension of f . Henceforth, we will let

∇H,S
i f = 〈∇H,Sf, Xi〉 = Xif − 〈∇Hf, νH〉〈νH , Xi〉.

Definition 2.2. Let S ⊂ Hn be a Ck hypersurface, k ≥ 2, with
Σ(S) = ∅; then for every X, Y ∈ C1(S; HTS) we define a tensor field
of type (0, 2) on S, as follows

(2.9) IIH,S(X, Y ) = 〈∇H
XY,νH〉νH .

We call IIH,S(·, ·) the horizontal second fundamental form of S. We also
define AH,S : HTS → HTS by letting for every g ∈ S and u, v ∈ HTgS
(2.10) 〈AH,Su, v〉 = −〈IIH,S(u, v),νH〉 = −〈∇H

XY, νH〉,
where X,Y ∈ C1(S,HTS) are such that Xg = u, Yg = v. We
call the linear map AH,S : HTgS → HTgS the horizontal shape op-
erator. If e1, . . . ,e2n−1 denotes a local orthonormal frame for HTS,
then the matrix of the horizontal shape operator with respect to the
basis e1, . . . , e2n−1 is given by the (2n − 1) × (2n − 1) matrix

[ −
〈∇H

ei
ej , ν

H〉]
i,j=1,...,2n−1

.

Definitions 2.1 and 2.2 are taken from [DGN1]. A different notion of
the second fundamental form has been explored by the last named au-
thor and R. Hladky [HP] using a generalization of the Webster-Tanaka
connection on a wide class of sub-Riemannian manifolds. This second
fundamental form and the (un-symmetrized) operator AH,S are used
to analyze the minimal and constant mean curvature surfaces in this
setting. We emphasize that, when restricted to the case of the Carnot
groups, these two formulations are equivalent.



264 D. DANIELLI, N. GAROFALO, D.M. NHIEU & S.D. PAULS

We call horizontal principal curvatures the real eigenvalues κ1, . . . ,

κ2n−1 of the symmetrized operator AH,S
sym = 1

2(AH,S + (AH,S)t). The
horizontal mean curvature of S is defined as follows:

(2.11) H = κ1 + · · ·+ κ2n−1.

When the hypersurface S has non empty characteristic locus, then at
every g0 ∈ Σ(S) we define

H(g0) = lim
g→g0,g∈S\Σ

H(g),

provided that such a limit exists, finite or infinite. We do not define the
H-mean curvature at those points g0 ∈ Σ at which the above limit does
not exist.

Definition 2.3. A C2 surface S ⊂ H1 is called H-minimal if H ≡ 0
as a continuous function on S.

We will need the following result, which will prove useful for comput-
ing the H-mean curvature, see Proposition 9.8 in [DGN1].

Proposition 2.4. The H-mean curvature in definition (2.11) coin-
cides with the function defined by the equation

H =
2n∑

i=1

∇H,S
i 〈νH , Xi〉.

Given a vector field X ∈ C1(Hn; HHn), we denote by

divHX =
2n∑

i=1

Xi〈X,Xi〉

the horizontal divergence of X.

3. First and second variation of the H-perimeter

In this section we introduce the relevant notions of stationary and
stable surface which enter in the statement of Theorem 1.8, and we re-
call the first and second variation formulas from [DGN1] and [DGN2]
which will be used in its proof.

Given an oriented C2 surface S ⊂ H1, with a Riemannian (non-unit)
normal N , we introduce the quantities

(3.1) p = 〈N , X1〉, q = 〈N , X2〉, ω = 〈N , T 〉, W =
√

p2 + q2,

and, at every point where W 6= 0, we set

(3.2) p =
p

W
, q =

q

W
, ω =

ω

W
.

Notice that

(3.3) NH = pX1 + qX2, νH = pX1 + qX2, 〈NH , N〉 = W 2.
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From (3.3) we easily recognize that

(3.4) cos(NH∠N) =
W

|N | .

In the classical theory of minimal surfaces, the concept of area or
perimeter occupies a central position, see [DG1], [DG2], [G], [MM],
[Si], [CM]. In sub-Riemannian geometry there exists an appropriate
variational notion of perimeter. Given an open set U ⊂ H1 we denote
F(U) = {ζ ∈ C1

0 (U ; HH1) | ||ζ||L∞(U) ≤ 1}. A function f ∈ L1(U) is
said to belong to BVH(U) (the space of functions with finite horizontal
bounded variation), if

V arH(f ;U) = sup
ζ∈F(U)

∫

U
f divHζdg < ∞.

This space becomes a Banach space with the norm ||f ||BVH(Ω) =
||f ||L1(Ω)+V arH(u; Ω). Given a measurable set E ⊂ H1, the H-perimeter
of E with respect to the open set U ⊂ H1 is defined as follows, see for
instance [CDG], and [GN],

PH(E ;U) = V arH(χE ;U).

When E is a C1 domain, one can recognize that

(3.5) PH(E ;U) =
∫

∂E∩U
cos(NH∠N) dσ,

where dσ indicates the standard surface measure on ∂E . We will denote
by dσH the H-perimeter measure concentrated on S = ∂E . According to
(3.4), (3.5), we have for any Borel subset E ⊂ S such that PH(E) < ∞,

(3.6) σH(E) =
∫

E

W

|N | dσ.

Two important properties of the H-perimeter are its invariance with
respect to the dilations (2.1) and the left-translations (2.2). The former
is expressed by the equation

σH(δλ(S)) = λQ−1σH(S).

In keeping up with the notation of [DGN2] it will be convenient to
indicate with Y ζ and Zζ the respective actions of the vector fields νH

and (νH)⊥ on a function ζ ∈ C1(S), thus

(3.7) Y ζ
def= pX1ζ + q X2ζ, Zζ

def= q X1ζ − pX2ζ.

The frame {Z, Y, T} is orthonormal. It is worth observing that, since
the metric tensor {gij} with respect to the inner product 〈·, ·〉 has the
property det{gij} = 1, then the (Riemannian) divergence in H1 of these
vector fields is given by

(3.8) div Y = X1p + X2q = H, div Z = X1q −X2p,
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where the first equality is justified by Proposition 2.4 and by the fact
that |νH | = 1. Using Cramer’s rule one easily obtains from (3.7)

(3.9) X1ζ = q Zζ + p Y ζ, X2ζ = q Y ζ − p Zζ.

One also has

(3.10) ∇H,S
1 ζ = q Zζ, ∇H,S

2 ζ = −p Zζ,

so that

(3.11) |∇H,Sζ|2 = (Zζ)2.

We notice that

(3.12) qZp− pZq = H.

This can be easily recognized using the first equation in (3.8), and
(3.9), as follows:

H = X1p + X2q = qZp− pZq + pY p + qY q = qZp− pZq,

where we have used the fact that 0 = 1
2Y (p2 + q2) = pY p + qY q.

Definition 3.1. Let S ⊂ H1 be an oriented C2 surface, with Σ(S) =
∅. Consider the family of vector fields X = aX1 + bX2 + kT , with
a, b, k ∈ C2

0 (S), and the family of surfaces Sλ, where for small λ ∈ R we
have let

(3.13) Sλ = Jλ(S) = S + λX .

We define the first variation of the H-perimeter with respect to the
deformation (3.13) as

VH
I (S;X ) =

d

dλ
PH(Sλ)

∣∣∣
λ=0

.

We say that S is stationary if VH
I (S;X ) = 0, for every X .

Classical minimal surfaces are stationary points of the perimeter (the
area functional for graphs). It is natural to ask what is the connection
between the notion of H-minimal surface and that of H-perimeter. To
answer this question we recall the following results from [DGN1].

Theorem 3.2. Let S ⊂ H1 be an oriented C2 surface, with Σ(S) =
∅; then

(3.14) VH
I (S;X ) =

∫

S
H cos(X∠N)

cos(νH∠N)
|X | dσH .

In particular, S is stationary if and only if it is H-minimal.

Versions of Theorem 3.2 have also been obtained independently by
other people. An approach based on motion by H-mean curvature can
be found in [BC]. When X = aνH + kT , then a proof based on CR-
geometry can be found in [CHMY], and [RR2]. Recently, a general
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first variation formula for a wide class of sub-Riemannian spaces has
been found in [HP].

Definition 3.3. Given an oriented C2 surface S ⊂ H1, with Σ(S) =
∅, we define the second variation of the H-perimeter with respect to
the deformation (3.13) as

VH
II(S;X ) =

d2

dλ2
PH(Sλ)

∣∣∣
λ=0

.

We say that S is stable if it is stationary (i.e., H-minimal), and if

VH
II(S;X ) ≥ 0, for every X .

If there exists X 6= 0 such that VH
II(S;X ) < 0, then we say that S is

unstable.

The following second variation formula from [DGN1], see also The-
orem 3.3 in [DGN2], will play a crucial role in the proof of Theorem
1.6.

Theorem 3.4. Let S ⊂ H1 be a C2 oriented surface, with empty
characteristic locus; then the second variation of the H-perimeter with
respect to the deformation (3.13), with X = hνH , h ∈ C2

0 (S), is given
by

VH
II(S;hνH)

(3.15)

=
∫

S

{
(Zh)2 + h2

[
2(pTq − qTp) + 2ω(qY p− pY q) + ω2

]}
dσH .

If instead we choose X = aX1, a ∈ C2
0 (S), in (3.13), then the corre-

sponding second variation is given by

VH
II(S; aX1) =

∫

S

{
p2(Za)2 + p2ω2 a2(3.16)

+ ωZ(a2)− p q
(
T (a2)− ωY (a2)

) }
dσH .

Theorem 3.4 is a special case of a general second variation formula
found in [DGN1], see also Theorem 3.3 in [DGN2]. Using such general
result, in combination with some integration by parts formulas from
[DGN1], we can prove the following theorem.

Theorem 3.5. Every vertical plane such as (1.4) is stable.

Proof. Since the notion of stability is invariant under left-translations,
and rotations about the t-axis, we can assume without restriction that
P̃0 = S is the plane x = 0. Since for this surface we have p ≡ 1, q =
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ω ≡ 0, the formula (3.3) in Theorem 3.3 in [DGN2] gives for X =
aX1 + bX2 + kT ,

VH
II(S;X ) =

∫

S

{
(Za)2 + 2(TbZk − TkZb) + T (ab)

}
dσH .

Since a, b, c are compactly supported in S, Lemma 3.7 in [DGN2]
gives ∫

S
T (ab)dσH = 0.

We also have∫

S
TbZk dσH =

∫

S
T (bZk) dσH −

∫

S
bT (Zk) dσH

= −
∫

S
bZ(Tk) dσH +

∫

S
b[Z, T ]k dσH .

We now use the following commutator formula from [DGN1]:

[Z, T ] = (qTp− pTq) Y,

valid on any non-characteristic surface. In the present case, such formula
gives [Z, T ] = 0, and we thus conclude

∫

S
TbZk dσH = −

∫

S
bZ(Tk) dσH

= −
∫

S
Z(bTk) dσH +

∫

S
TkZb dσH .

Since Lemma 3.6 in [DGN2] gives for every ζ ∈ C1
0 (S),

∫

S
Zζ dσH = −

∫

S
ζ ω dσH = 0,

we finally obtain

VH
II(S;X ) =

∫

S
(Za)2dσH ≥ 0.

This proves the stability of S. q.e.d.

4. Instability of strict graphical strips

After these preparations we turn to the core of the proof of Theorem
1.6. To put the subsequent discussion on a solid ground, we begin with
proving Theorem 1.5.

Proof of Theorem 1.5. We provide the proof only for the class of sur-
faces in (1.6), leaving it to the interested reader to develop the com-
pletely analogous details for the second class. It is obvious from the
definition (1.6) that S is a C2 graph over the open subset R× I of the
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(y, t)-plane. We next observe that S has empty characteristic locus. We
can use the global defining function

(4.1) φ(x, y, t) = x− yG(t),

and assume that S is oriented in such a way that a non-unit Riemannian
normal on S be given by N = ∇φ = (X1φ)X1 + (X2φ)X2 + (Tφ)T .
Recalling (3.1), we find

p = X1φ = 1 +
y2

2
G′(t), q = X2φ = −G(t)− xy

2
G′(t),(4.2)

ω = Tφ = −yG′(t).

Since p ≥ 1 > 0, we see from (4.2) that Σ(S) = ∅. In order to prove
the H-minimality of S, we use (3.8), which gives

H = X1p + X2q.

From now on, to simplify the notation, we will omit the variable t
in all expressions involving G(t), G′(t), G′′(t). The second equation in
(4.2) becomes on S

(4.3) q = −G

(
1 +

y2

2
G′

)
.

We thus find on S

(4.4) W 2 = p2 + q2 =
(
1 + G2

) (
1 +

y2

2
G′

)2

.

Since they will be useful in the proof of Lemma 4.1, in what follows
we compute several quantities, even if they are not strictly necessary for
the calculation of H. From (4.2) we find

(4.5) X1p = −y3

4
G′′, X2p = yG′ +

xy2

4
G′′,

(4.6) X1q =
xy2

4
G′′, X2q = −xG′ − x2y

4
G′′.

From (4.2), (4.3), (4.5), (4.6) we find on S

(4.7) X2q = −yG

(
G′ +

y2

4
GG′′

)
,

and

(4.8) X1W =
pX1p + qX1q

W
= −y3

4
G′′ (1 + G2

) 1
2 ,

(4.9) X2W =
pX2p + qX2q

W
= y

(
1 + G2

) 1
2

{
G′ +

y2

4
GG′′

}
.
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We now compute

(4.10) H =
X1p

W
− p

X1W

W 2
+

X2q

W
− q

X2W

W 2
.

Using (4.2), (4.3), (4.5), (4.7), (4.8) and (4.9), we find

X1p

W
− p

X1W

W 2
= 0,

X2q

W
− q

X2W

W 2
= 0.

Inserting the latter two equations in (4.10) we conclude that S is
H-minimal.

We now prove the second part of the theorem, i.e., that when I = R
and G′ > 0 on R, the surface S in (1.6) is a global intrinsic X1-graph
according to [FSS3]. To prove this, we want to show that there exist
curvilinear coordinates (u, v) ∈ R2, and φ ∈ C2(R2), such that S can
be globally parameterized by

(4.11) θ(u, v) =
(
φ(u, v), u, v − u

2
φ(u, v)

)
, (u, v) ∈ R2.

We thus see that we must have

φ(u, v) = x, u = y, v − u

2
φ(u, v) = t.

These equations give

u = y, v = t +
u

2
φ(u, v) = t +

y

2
x = t +

y2

2
G(t).

We want to show next that the map Φ : R2
y,t → R2

u,v given by

Φ(y, t) = (u, v) =
(

y, t +
y2

2
G(t)

)

defines a global diffeomorphism onto. Now, its Jacobian is given by
(4.12)

det
(

1 0
yG(t) 1 + y2

2 G′(t)

)
= 1 +

y2

2
G′(t) 6= 0, for every (y, t) ∈ R2.

Furthermore, Φ is globally one-to-one. Assume in fact that Φ(y1, t1) =
Φ(y2, t2); then we have

(4.13) y1 = y2, t1 +
y2
1

2
G(t1) = t2 +

y2
2

2
G(t2).

Now, let α = y1 = y2; then either α = 0, in which case (4.13)
gives t1 = t2, or α 6= 0. In this second case, we look at the function
f(t) = t + (α2/2)G(t), and we see that f is strictly increasing over R.
Therefore, (4.13) forces again the conclusion t1 = t2. It is also easy to
see that Φ is onto. Thanks to the assumption G′ > 0 one has in fact for
every y ∈ R

lim
t→±∞ t +

y2

2
G(t) = ±∞.
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Therefore, given (u, v) ∈ R2, if we choose y = u, then we can always
find t ∈ R such that t + y2

2 G(t) = v. In conclusion, Φ is globally
invertible on R2. Denote by Ψ(u, v) = (Ψ1(u, v), Ψ2(u, v)) the inverse
of Φ. Clearly, Ψ1(u, v) = u. But then the function

(4.14) φ(u, v) = uG(Ψ2(u, v))

defines S as a global intrinsic X1-graph. We note that, using (4.12) and
the inverse function theorem, we obtain for the Jacobian matrix of Ψ

(4.15) JΨ(u, v) =

(
1 0

− uG

1+u2

2
G′

1

1+u2

2
G′

)
,

where for brevity we have written G instead of G(Ψ2(u, v)), and simi-
larly for G′. This completes the proof of the theorem. q.e.d.

For the benefit of the reader, we provide a second derivation of the
H-minimality of the surface (1.6) based on the fact that it is locally an
intrinsic X1-graph as in (4.11), with φ(u, v) given by (4.14). We stress
that the following computations only use the fact that S be locally
defined as in (4.11) in the neighborhood of any fixed point, for some
C2 function φ(u, v). We will use the following formula, found in [GS],
[BSV], for the H-mean curvature of an intrinsic graph in H1

(4.16) H = −Bφ

(
Bφ(φ)√

1 + Bφ(φ)2

)
,

where for a function f ∈ C1(R),

(4.17) Bφ(f) = fu + φfv

denotes the linear transport operator. One can easily verify that

(4.18) H = − Bφ(Bφ(φ))

(1 + Bφ(φ)2)
3
2

,

and therefore the condition that S be H-minimal becomes

(4.19) Bφ(Bφ(φ)) = 0, φ ∈ C2(R2),

where now

(4.20) Bφ(φ) = φu + φφv

denotes the nonlinear inviscid Burger operator. Using (4.14), (4.15), we
compute

φu = G + uG′∂Ψ2

∂u
= G + uG′

(
− uG

1 + u2

2 G′

)
=

G
(
1− u2

2 G′
)

1 + u2

2 G′ ,

φv = uG′∂Ψ2

∂v
=

uG′

1 + u2

2 G′ .
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From the last two formulas we find

Bφ(φ) = G.

This gives

Bφ(Bφ(φ)) = Bφ(G) = Gu + φGv

= G′∂Ψ2

∂u
+ uGG′∂Ψ2

∂v
= − uGG′

1 + u2

2 G′ +
uGG′

1 + u2

2 G′ = 0,

which, according to (4.19), proves the H-minimality of S.
We now turn to the proof of Theorem 1.6. Since we will want to

compute the second variation of a graphical strip such as (1.6) with
respect to deformations along the horizontal normal νH , we will need
to use formula (3.15) in Theorem 3.4. As a first step, we will compute
the quantities which appear as the coefficient of h2 in the integral in the
right-hand side of (3.15). This is the content of the next lemma.

Lemma 4.1. Let S be the H-minimal surface given by (1.6); then
one has

2(pTq − qTp) + 2ω(qY p− pY q) + ω2 = −2G′(t)
W 2

.(4.21)

Proof. As in the proof of Theorem 1.5, we use the global defining
function (4.1), and we obtain (4.2). Using (3.7) and (4.5), (4.6), we
obtain on S
(4.22)

Y p =
1
W
{pX1p + qX2p} = − y

(1 + G2)
1
2

{
y2

4
G′′(1 + G2) + GG′

}
,

(4.23)

Y q =
1
W
{pX1q + qX2q} =

yG

(1 + G2)
1
2

{
y2

4
G′′(1 + G2) + GG′

}
.

Combining (4.22), (4.23) we find

(4.24) Y W =
1
W
{pY p + qY q} = −y

{
y2

4
G′′(1 + G2) + GG′

}
.

Combining (4.22), (4.23) and (4.24), two small miracles happen,
namely

(4.25) Y p =
WY p− pY W

W 2
= 0, Y q =

WY q − qY W

W 2
= 0.

We now turn to the computation of the derivatives along the character-
istic direction T . Differentiating (4.2) we obtain on S

(4.26) Tp =
y2

2
G′′, T q = −

(
G′ +

y2

2
GG′′

)
.
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From (4.26), we find

(4.27) TW =
1
W
{pTp + qTq} =

1

(1 + G2)
1
2

{
GG′ +

y2

2
G′′(1 + G2)

}
.

Using (4.26) and (4.27), we obtain

(4.28) Tp = − GG′

W (1 + G2)
, T q = − G′

W (1 + G2)
.

From (4.2) and (4.28), we conclude that

(4.29) p Tq − q Tp = − G′

W (1 + G2)
1
2

.

Finally, combining (4.29) with (4.26) and (4.2), we obtain

2(pTq − qTp) + 2ω(qY p− pY q) + ω2 = −2G′(t)
W 2

,

which proves (4.21). q.e.d.

From Theorem 3.4 and Lemma 4.1, we obtain the following corollary.

Corollary 4.2. Let S be an H-minimal surface given as in (1.6).
For any h ∈ C2

0 (S), one has

VH
II(S; hνH) =

∫

S
|∇H,Sh|2dσH − 2

∫

S

h2G′(t)
W 2

dσH .(4.30)

For any a ∈ C2
0 (S), one has

VH
II(S; aX1)(4.31)

=
∫

S

(
1 + y2

2 G′(t)
)2

W 2
|∇H,Sa|2dσH − 2

∫

S

a2

W 2(1 + G(t)2)
dσH .

To proceed further we rewrite the formulas (4.30), (4.31) by means
of the C2 parametrization θ : R × I → R3 of the surface S given by
θ(y, t) = (yG(t), y, t).

Lemma 4.3. Let S be the H-minimal surface given by (1.6). For
any h ∈ C2

0 (S), one has

VH
II(S; hνH) =

∫

R×I

(
1 + y2

2 G′(t)
)

u2
y

(1 + G(t)2)1/2
dydt(4.32)

− 2
∫

R×I

u2 G′(t)(
1 + y2

2 G′(t)
)

(1 + G(t)2)1/2
dydt,
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where we have set u = h ◦ θ ∈ C2
0 (R× I). For any a ∈ C2

0 (S), one has

VH
II(S; aX1) =

∫

R×I

(
1 + y2

2 G′(t)
)

u2
y

(1 + G(t)2)3/2
dydt(4.33)

− 2
∫

R×I

u2 G′(t)(
1 + y2

2 G′(t)
)

(1 + G(t)2)3/2
dydt,

where this time we have let u = a ◦ θ ∈ C2
0 (R× I).

Proof. In order to prove (4.32) we make some reductions. Keeping in
mind (3.6), from (4.4) we obtain

(4.34)
∫

S

h2 G′(t)
W 2

dσH =
∫

R×I

u2 G′(t)(
1 + y2

2 G′(t)
)

(1 + G(t)2)1/2
dydt.

In order to express the first integral in the right-hand side of (4.30)
as an integral on R×I, we compute |∇H,Sh|2. We have from (3.7), (4.2)
and (4.3)

|∇H,Sh|2 = (Zh)2 = (qX1h− pX2h)2(4.35)

=
(G(t)X1h + X2h)2

1 + G(t)2
.

Now, the chain rule gives uy = G(t)hx +hy, and therefore we see that
we have on S

G(t)X1h + X2h = G(t) hx + hy = uy.

From (4.35), we thus conclude that

(4.36)
∫

S

∣∣∇H,Sh
∣∣2 dσH =

∫

R×I

(
1 + y2

2 G′(t)
)

u2
y

(1 + G(t)2)1/2
dydt.

Combining (4.34) and (4.36) we obtain (4.32). The proof of (4.33)
proceeds analogously, and we omit the details. q.e.d.

The next lemma is the keystone to the proof of Theorem 1.6. In
order to state it, given an interval Iδ = (−4δ, 4δ), with δ > 0, we fix a
function χ ∈ C∞

0 (R), such that 0 ≤ χ(s) ≤ 1, χ ≡ 1 on |s| ≤ δ, χ ≡ 0
for |s| ≥ 2δ, |χ′| ≤ C = C(δ), and

∫
R χ(s)ds = A = A(δ) > 0. For

every k ∈ N we define χk(s) = χ(s/k), so that χk(s) ≡ 1 for |s| ≤ δk,
χk(s) ≡ 0 for |s| ≥ 2δk, and |χ′k(s)| ≤ C/k, with C independent of k.
We also let χ̃k(s) = kχ(ks), and notice that the

∫
R χ̃k(s)ds = A for

every k ∈ N, and that supp(χ̃k) ⊂ [−2δ/k, 2δ/k].
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Lemma 4.4. Let G ∈ C2(Iδ) be such that G′ > 0 on Iδ. Define for
k ∈ N

fk(y, t) =
χk(y)χ(t)√
1 + y2

2 G′
k(t)

where we have let Gk(t) = G ? χ̃k(t). We have fk ∈ C∞
0 (R × Iδ), and

there exists k0 ∈ N such that for all k > k0

(4.37)
∫

R×Iδ

1 + y2

2 G′(t)√
1 + G(t)2

(
∂fk

∂y
(y, t)

)2

dydt

< 2
∫

R×Iδ

G′(t)

(1 + y2

2 G′(t))
√

1 + G(t)2
fk(y, t)2 dydt.

Proof. We begin by observing that since G′ ∈ C(Iδ), such a function
is uniformly continuous on [−2δ, 2δ]. We recall from basic properties
of approximations to the identity that G′

k = G′ ? χ̃k → AG′ uniformly
on [−2δ, 2δ]. As a consequence of this, and of the fact that there exists
ε > 0 such that G′ ≥ ε on [−2δ, 2δ], we can find k0 ∈ N such that for all
k ≥ k0, and for all t ∈ [−2δ, 2δ], one has
(4.38){

1
2 AG′(t) ≤ G′

k(t) ≤ 2AG′(t),
min{1,A}

2 (1 + y2

2 G′(t)) ≤ 1 + y2

2 G′
k(t) ≤ 2 max{1, A}(1 + y2

2 G′(t)).

It will be useful to have the following elementary formula, which is
valid for any α, β > 0,

(4.39)
∫

R

1
1 + αy2

1
1 + βy2

dy =
π√

β +
√

α
.

We begin with the right-hand side of (4.37).

(RHS)k

(4.40)

= 2
∫ 2δ

−2δ

∫

R
fk(y, t)2

(
G′(t)

(1 + y2

2 G′(t))
√

1 + G(t)2

)
dydt

= 2
∫ 2δ

−2δ
χ(t)2

G′(t)√
1 + G(t)2

(∫

R

χk(y)2

(1 + y2

2 G′(t)) (1 + y2

2 G′
k(t))

dy

)
dt

−→ 2
∫ 2δ

−2δ
χ(t)2

G′(t)√
1 + G(t)2

(∫

R

1

(1 + y2

2 G′(t))(1 + y2

2 AG′(t))
dy

)
dt.
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According to (4.39) we have
∫

R

1

(1 + y2

2 G′(t))(1 + y2

2 AG′(t))
dy =

π
√

2
(1 +

√
A)
√

G′ for every A > 0,

and therefore (4.40) gives, as k →∞,
(4.41)

(RHS)k → 2
√

2π

1 +
√

A

∫ 2δ

−2δ
χ(t)2

√
G′(t)

1 + G(t)2
dt, for every A > 0,

where we have used (4.38) and Lebesgue dominated convergence theo-
rem.

On the other hand, we obtain for the integral in the left-hand side of
(4.37)

(LHS)k =
∫

R×Iδ

1 + y2

2 G′(t)
1 + G(t)2

(
∂

∂y
fk(y, t)

)2

dydt

(4.42)

=
∫

R×Iδ

χ(t)2
2 + y2 G′(t)√

1 + G(t)2

{
χ′k(y)2

2 + y2 G′
k(t)

−2 y χk(y)χ′k(y) G′
k(t)

(2 + y2 G′
k(t))

2
+

y2 χk(y)2 G′
k(t)

2

(2 + y2 G′
k(t))

3

}
dydt

=
∫

R×Iδ

χ(t)2√
1 + G(t)2

χ′k(y)2
2 + y2 G′(t)
2 + y2 G′

k(t)
dydt

−
∫

R×Iδ

χ(t)2
G′

k(t)√
1 + G(t)2

y (2 + y2 G′(t))
(2 + y2 G′

k(t))
2

(
χk(y)2

)′
dydt

+
∫

R×Iδ

χ(t)2
G′

k(t)
2

√
1 + G(t)2

χk(y)2
y2 (2 + y2 G′(t))
(2 + y2 G′

k(t))
3

dydt.

Using the fact that

∂

∂y

(
y

2 + y2 G′
k(t)

)
=

2− y2 G′
k(t)

(2 + y2 G′
k(t))

2
,

∂

∂y

(
2 + y2 G′(t)
2 + y2 G′

k(t)

)
=

4 y (G′(t)−G′
k(t))

(2 + y2 G′
k(t))

2
,

we integrate by parts the integral containing the term
(
χk(y)2

)′
, ob-

taining

−
∫

R×Iδ

χ(t)2
G′

k(t)√
1 + G(t)2

y (2 + y2 G′(t))
(2 + y2 G′

k(t))
2

(
χk(y)2

)′
dydt

(4.43)

= 2
∫

Iδ

χ(t)2
G′

k(t)√
1 + G(t)2

(∫

R

χk(y)2

(2 + y2 Gk(t)2)2
2 + y2 G′(t)
2 + y2 G′

k(t)
dy

)
dt
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−
∫

R×Iδ

χ(t)2
G′

k(t)
2

√
1 + G(t)2

χk(y)2
y2 (2 + y2 G′(t))
(2 + y2 G′

k(t))
3

dydt

+
∫

Iδ

χ(t)2
G′

k(t)(G
′(t)−G′

k(t))√
1 + G(t)2

(∫

R
χk(y)2

4 y2

(2 + y2 G′
k(t))

2
dy

)
dt.

Using (4.43) in (4.42), and after canceling one term, we obtain for
the left-hand side of (4.37)

(LHS)

(4.44)

=
∫

R×Iδ

W

1 + G(t)2

(
∂

∂y
fk(y, t)

)2

dydt

=
∫

R×Iδ

χ(t)2√
1 + G(t)2

χ′k(y)2
2 + y2 G′(t)
2 + y2 G′

k(t)
dydt

+ 2
∫ 2δ

−2δ
χ(t)2

G′
k(t)√

1 + G(t)2

(∫

R

χk(y)2

(2 + y2 G′
k(t))

2

2 + y2 G′(t)
2 + y2 G′

k(t)
dy

)
dt

+
∫

Iδ

χ(t)2
G′

k(t)(G
′(t)−G′

k(t))√
1 + G(t)2

(∫

R
χk(y)2

4 y2

(2 + y2 G′
k(t))

2
dy

)
dt

= Ik + IIk + IIIk.

We now analyze each of the three integrals in (4.44). Using the fact
that G′(t) > 0 on Iδ, we also have G′

k(t) = G′ ? χ̃k(t) > 0 on Iδ. When
k →∞ the first integral satisfies

Ik =
∫

R×I

χ(t)2√
1 + G(t)2

χ′k(y)2
2 + y2 G′(t)
2 + y2 G′

k(t)
dydt(4.45)

≤ C

k2

∫ 2δ

−2δ

1√
1 + G(t)2

(∫ 2kδ

−2kδ

2 + y2 G′(t)
2 + y2 G′

k(t)
dy

)
dt

(by (4.38)) ≤ C

k2

∫ 2δ

−2δ

1√
1 + G′(t)2

(∫ 2kδ

−2kδ
2 dy

)
dt

=
8Cδ

k

∫ 2δ

−2δ

1√
1 + G′(t)2

dt −→ 0.
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Similarly, letting k →∞ we have for the third integral

IIIk =
∫

Iδ

χ(t)2
G′

k(t)(G
′(t)−G′

k(t))√
1 + G(t)2

(4.46)

·
(∫

R
χk(y)2

4 y2

(2 + y2 G′
k(t))

2
dy

)
dt

(by (4.38)) ≤ 16 sup
t∈[−2δ,2δ]

∣∣G′
k(t)−G′(t)

∣∣

·
∫ 2δ

−2δ

G′(t)√
1 + G(t)2

(∫

R

y2

(2 + y2 G′(t))2
dy

)
dt −→ 0,

from the uniform convergence of G′
k to G′ on [−2δ, 2δ]. Finally, we have

IIk = 2
∫ 2δ

−2δ
χ(t)2

G′
k(t)√

1 + G(t)2

(∫

R

χk(y)2

(2 + y2 G′
k(t))

2

2 + y2 G′(t)
2 + y2 G′

k(t)
dy

)
dt

(4.47)

−→ 2
∫ 2δ

−2δ
χ(t)2

G′(t)√
1 + G(t)2

(∫

R

1
(2 + y2 G′(t)2)2

dy

)
dt

= 2
∫ 2δ

−2δ
χ(t)2

G′(t)√
1 + G(t)2

( √
2π

8
√

G′(t)

)
dt

=
√

2π

4

∫ 2δ

−2δ
χ(t)2

√
G′(t)

1 + G(t)2
dt.

In the above, we have used (4.38) to deduce that for large enough k

G′
k(t)√

1 + G(t)2

(
χk(y)2

(2 + y2 G′
k(t))

2

2 + y2 G′(t)
2 + y2 G′

k(t)

)

≤ 16
G′(t)√

1 + G(t)2
1

(2 + y2 G′(t))2
∈ L1(R× [−2δ, 2δ]),

and therefore, Lebesgue dominated convergence theorem applies. To
summarize, we have as k →∞

(LHS) =
∫

R×Iδ

W

1 + G(t)2

(
∂

∂y
fk(y, t)

)2

dy dt

−→
√

2π

4

∫ 2δ

−2δ
χ(t)2

√
G′(t)

1 + G(t)2
dt.

Combining this with (4.40), we reach the sought for conclusion. q.e.d.

We are now ready to prove Theorem 1.6.
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Proof of Theorem 1.6. Let S̃ be a graphical strip; then there exist I ⊂
R, G̃ ∈ C2(R), with G̃ ≥ 0, such that, after possibly a left-translation
and a rotation about the t-axis, S̃ can be represented in the form x =
yG̃(t) for (y, t) ∈ R×I. If we assume further that S̃ is a strict graphical
strip, then we can find an interval J = (a, b) ⊂ I, such that G̃′ > 0 on J .
Since the stability, or the instability, is invariant under left-translations
and rotations, it will suffice to prove that S̃ is unstable. Assume without
restriction that −∞ < a < b < ∞, and set t0 = (a + b)/2, g0 =
(0, 0,−t0). Consider the left-translated surface S = g0 ◦ S̃, see (2.2);
then S is described by

x = yG(t), (y, t) ∈ R× Iδ,

with 4δ = (b− a)/2, and G(t) = G̃(t0 + t). Since it is clear that G′ > 0
on Iδ, we can apply Lemma 4.4, and conclude that there exists k0 ∈ N
such that for k ≥ k0 the sequence fk satisfies (4.37). This being said,
we now define hk : H1 → R as follows:

hk(x, y, t) =
1√

1 + y2

2 G′
k(t)

χk(y)χ(t)χk(x− y G(t)).

With θ(y, t) = (yG(t), y, t) we observe that hk(θ(y, t)) = fk(y, t)χk(0)
= fk(y, t), and therefore hk ∈ C2

0 (S). At this point, appealing to (4.32)
in Lemma 4.3, and to Lemma 4.4, we conclude that for every fixed
k ≥ k0, we have

VH
II(S; hkν

H) < 0.

This proves that S is unstable, and therefore such is also the surface
S̃. q.e.d.

Remark 4.5. In particular, since every global minimizer is also a
local one, we have also shown that S cannot be a global minimizer of
the H-perimeter.

5. Instability of H-minimal entire graphs and proof of the
Bernstein conjecture

In this section we prove Theorems 1.7 and 1.8. Our strategy will be to
first establish Theorem 1.7, and then combine this result with Theorem
1.6 to obtain Theorem 1.8. As we have mentioned in the introduction,
our proof of Theorem 1.7 is based on the main results in [GP], but
we reiterate that an alternative proof could be obtained combining the
independently obtained results in the two papers [CHMY] and [CH].

We begin by recalling the basic notion of seed curve from [GP]. In
what follows, Ω ⊂ R2 denotes a given connected, open set of the (x, y)-
plane, and f ∈ Ck(Ω), with k ≥ 2. We consider the graph of f over
Ω

(5.1) S = {(x, y, t) ∈ H1 | (x, y) ∈ Ω, t = f(x, y)}.
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We assume S to be oriented in such a way that a non-unit normal
to S is given by N = ∇φ = (X1φ)X1 + (X2φ)X2 + (Tφ)T , where
φ(x, y, t) = t− f(x, y). From (3.1) we obtain

p = X1φ = −fx − y

2
, q = X2φ = −fy +

x

2
,

W =

√(
fx +

y

2

)2
+

(
fy − x

2

)2
,

and thus we have from (3.3)

νH = − fx + y
2√(

fx + y
2

)2 +
(
fy − x

2

)2
X1 −

fy − x
2√(

fx + y
2

)2 +
(
fy − x

2

)2
X2,

away from Σ(S). We stress that, since S is a graph over the (x, y)-plane,
νH is independent of the variable t. Such a crucial property would not
be true for a graphical portion over the coordinate planes (y, t) or (x, t).
Via the projection mapping taking H1 ∼= R3 to the plane R2

xy, we can
thus identify in a natural fashion νH with a unit Ck−1 vector field
ν̃H onto the (x, y)-plane as follows (recall that k ≥ 2). Given a point
g = (z, t) ∈ S, with z = (x, y), we let

ν̃H(z) =


− fx + y

2√(
fx + y

2

)2 +
(
fy − x

2

)2
,− fy − x

2√(
fx + y

2

)2 +
(
fy − x

2

)2


 .

The notation

(ν̃H)⊥ =


− fy − x

2√(
fx + y

2

)2 +
(
fy − x

2

)2
,

fx + y
2√(

fx + y
2

)2 +
(
fy − x

2

)2




will indicate the unit vector field in Ω perpendicular to ν̃H (with respect
to the Euclidean inner product u · v in R2).

Definition 5.1. Let S be a C2 graph as in (5.1), with Σ(S) = ∅,
and suppose that S be H-minimal. Given a point z ∈ Ω ⊂ R2, a seed
curve of S based at z is defined to be the integral curve of the vector
field ν̃H with initial point z. Denoting such a seed curve by γz(s), we
then have

(5.2) γ′z(s) = ν̃H(γz(s)), γz(0) = z.

We will indicate by L̃z(r) the integral curve of (ν̃H)⊥ starting at the
point z, i.e.,

(5.3) L̃′z(r) = (ν̃H)⊥(L̃z(r)), L̃z(0) = z.

If the base point z is understood or irrelevant, we simply denote the
seed curve by γ(s), and L̃z(r) by L̃(r).
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We emphasize that the assumption of H-minimality on S implies the
crucial property that the vector field ν̃H be divergence free in Ω, with
respect to the standard divergence operator in R2. As a consequence of
this fact, it is proved in [GP] that the integral curves L̃z of (ν̃H)⊥ are
straight-line segments. Furthermore, since |ν̃H | ≡ 1 in Ω, every seed
curve is parameterized by arc-length, and it is a C1 embedded curve in
R2 over its interval of definition. The curves {L̃z, γz} are used in [GP]
to define a local C1 diffeomorphism of a neighborhood Iz × Jz of (0, 0)
in the (s, r)-plane onto an open neighborhood of z in the (x, y)-plane.
Such diffeomorphism is given by

(5.4) (s, r) → (x(s, r), y(s, r)) def= Fz(s, r) = γz(s) + r (ν̃H)⊥(γz(s)).

We note explicitly that Fz maps the straight line r = 0 into the seed
curve γ(s), i.e.,

Fz(s, 0) = γz(s), s ∈ Iz.

On the other hand, the straight line s = 0 is mapped into the straight
line passing through the base point z of the seed curve and having
direction vector (ν̃H)⊥(z), i.e.,

Fz(0, r) = z + r (ν̃H)⊥(z) , r ∈ Jz.

One recognizes that Fz(0, r) = L̃z(r), and therefore L̃z(r) = z +
r(ν̃H)⊥(z) for r ∈ Jz. In particular, replacing z with γz(s) in the latter
identity, we obtain

L̃γz(s)(r) = γz(s) + r (ν̃H)⊥(γz(s)).

Along the seed curve we have (ν̃H)⊥(γ(s)) = γ′(s)⊥= (γ′2(s),−γ′1(s)).
One thus has the following explicit expression for F (s, r):

(5.5) F (s, r) = γ(s) + rγ′(s)⊥ =
(

γ1(s) + rγ′2(s), γ2(s)− rγ′1(s)
)

.

Henceforth, given f ∈ Ck(Ω) as in (5.1), we will use the notation

(5.6) h(s, r) = f(F (s, r)) = f(γ1(s) + rγ′2(s) , γ2(s)− rγ′1(s)),

for all values (s, r) for which the right-hand side is defined, and also let
h0(s) = h(s, 0). Notice that

h0(0) = h(0, 0) = f(γ(0)) = f(z).

We next define

(5.7) (s, r) −→ F(s, r) = (γ1(s) + rγ′2(s), γ2(s)− rγ′1(s), h(s, r)),

and observe explicitly that F(0, 0) = (γ(0), h(0, 0)) = (z, f(z)).
We will need the following result from [GP]. This result shows, in

particular, that, thanks to the assumption that S be H-minimal, the
function h(s, r) must take up a special structure, see (5.8) below.
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Theorem 5.2. Let S be a noncharacteristic H-minimal graph repre-
sented as in (5.1), with f ∈ Ck(Ω), k ≥ 2. Given a point g = (z, t) ∈ S,
let γ = γz be the seed curve with trace in Ω and base point z ∈ Ω.
Correspondingly, locally around g we can represent S as in (5.7), with
h(s, r) as in (5.6). There exist intervals Iz, Jz ⊂ R such that:

(i) On Iz × Jz the function h(s, r) takes the special form

(5.8) h(s, r) = h0(s)− r

2
γ(s) · γ′(s) with h0(s) = h(s, 0);

(ii) γ ∈ Ck+1(Iz) .

We note explicitly that property (ii) of the seed curves will not be
used in an essential way in the remainder of this paper.

Corollary 5.3. Let S ⊂ H1 be given as in Theorem 5.2. At every
θ(s, r) ∈ S, with (s, r) ∈ Iz × Jz, one has

(5.9) W =
∣∣∣∣h′0 − r +

r2

2
κ +

1
2
γ′ · γ⊥

∣∣∣∣ ,

where W is the angle function defined in (3.1). Moreover, the horizontal
Gauss map is given by

(5.10) νH = sgn

(
h′0 − r +

r2

2
κ +

1
2
γ′ · γ⊥

){
γ′1(s) X1 + γ′2(s) X2

}
.

Proof. Suppose that θ̃ : Ω ⊂ R2 → H1, with θ̃(u, v) = x(u, v)X1 +
y(u, v)X2 + t(u, v)T, be a local parameterization of S; then a direct
calculation shows that the coefficients of N = θ̃u ∧ θ̃v, and NH as in
(3.3), with respect to the orthonormal basis {X1, X2, T}, are given by
the equations

(5.11)





p = yutv − yvtu − y
2 (xuyv − xvyu),

q = xvtu − xutv + x
2 (xuyv − xvyu),

ω = xuyv − xvyu.

Applying the formulas (5.11) to the parameterization θ̃(u, v) =F(s, r)
given by (5.7), (5.8), we find

(5.12)





p = γ′1
(
h′0 − r + r2

2 κ + 1
2γ′ · γ⊥

)
,

q = γ′2
(
h′0 − r + r2

2 κ + 1
2γ′ · γ⊥

)
,

ω = −(1− rκ),

where, following [GP], we have denoted by

κ(s) = γ′′(s) · γ′(s)⊥
the signed curvature of the seed curve γ(s). From (5.12) we obtain

W =
√

p2 + q2 =
∣∣∣∣h′0 − r +

r2

2
κ +

1
2
γ′ · γ⊥

∣∣∣∣ .
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The assumption that the characteristic locus of S be empty implies
that for every (s, r) in the domain of W (s, r), one has

h′0 − r +
r2

2
κ +

1
2
γ′ · γ⊥ 6= 0.

From the expression of W , and from (5.12), we thus conclude that
the horizontal Gauss map of S is given by (5.10). q.e.d.

Theorem 5.2 admits the following converse, which is Theorem B in
[GP].

Theorem 5.4. Given an interval I ⊂ R, k ≥ 2, a properly embedded
plane curve γ ∈ Ck(I), parameterized by arc-length, and a function
h0 ∈ Ck(I), let S ⊂ H1 be the surface parameterized by θ : I × R as
in (5.7), with h(s, r) given by (5.8). Then, S is a Ck−1 H-minimal
surface.

Combining Theorems 5.2 and 5.4, we conclude that to specify a patch
of a smooth H-minimal surface, one must specify a single curve in H1

determined by a seed curve γ, parameterized by arc-length, and an
initial height function h0. We will also need the following result, which
is either Theorem A in [CHMY], or Theorem E in [GP].

Theorem 5.5. Suppose that S ⊂ H1 be a connected H-minimal en-
tire graph over the (x, y)-plane; then:

1) Either S is a plane of the form ax + by + ct = γ for some real
numbers a, b, c, γ, with c 6= 0,

2) or, there exist g0 = (x0, y0, t0) ∈ H1, a, b ∈ R such that a2+b2 = 1,
and h0 ∈ C2(R), such that S is globally parameterized by

(
x + x0, y + y0, t0 − 1

2
ab(x2 − y2)

−1
2
(b2 − a2)xy + h0(ax + by) +

1
2
x0y − 1

2
xy0

)
.

We emphasize that both types of surfaces arising in this theorem
have non-empty characteristic loci. For instance, in case (1) we have
Σ(S) = {(−2b/c, 2a/c, γ/c))}. Finally, we recall a basic result in H-
minimal surface theory. We mention that the next result is one half of
Theorem C in [GP], and of Corollary 4.2 in [CHMY].

Theorem 5.6. Let S be a C2, H-minimal surface without boundary,
which is complete, connected and embedded; then S is a ruled surface,
all of whose rules are horizontal straight lines, which are the integral
curves of (νH)⊥.

After these preliminaries, we turn to the proof of Theorem 1.7. To
prepare for it, we first show that an H-minimal surface satisfying the hy-
pothesis of Theorem 1.7 can be reduced to an H-minimal graph over the
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(y, t)-plane, having similar properties. We will need some simple lem-
mas which clarify the effect of left-translations on a graph. As we have
noted in the introduction, the left-translations (2.2) are affine transfor-
mations, thereby they preserve planes and lines, see (1.8). Moreover, the
left-translations preserve the property of a surface of having empty char-
acteristic locus; they also preserve the H-mean curvature, and therefore
the H-minimality, the H-perimeter, and the property of a surface of
being stable or unstable. We note that rotations about the t-axis (the
group center), also have the same properties.

Lemma 5.7. Suppose P ⊂ H1 is a plane with Euclidean normal of
the form N e

P = (a, 0, c), with a2 + c2 6= 0, and let S be a graph over P .
For a fixed g0 = (x0, y0, t0) ∈ H1, g0 ◦ S is a graph over a plane P̃ with
Euclidean normal vector given by N e

P̃
=

(
a, 0, c− ay0

2

)
.

Proof. For g = (x, y, t) ∈ P , consider the straight-line through g and
parallel (with respect to the Euclidean inner product in R3) to N e

P ,
L(g) = {`g(s) = g + s(a, 0, c) ∈ H1 | s ∈ R}. The assumption that S
be a graph over P implies the existence of a unique s0 ∈ R such that
L(g) ∩ S = {`g(s0)}. Consider the left-translated line g0 ◦ L(g), which
is given by

g0 ◦ lg(s) = g0 ◦ g + s
(
a, 0, c− ay0

2

)
, s ∈ R,

and note that g0◦lg(s0) ∈ g0◦S. We see that g0◦S is a graph over a plane
P̃ with Euclidean normal

(
a, 0, c− ay0

2

)
, unless the Euclidean normal to

the plane g0 ◦ P is perpendicular (with respect to the standard inner
product in R3) to

(
a, 0, c− ay0

2

)
. But this cannot happen. To verify

this, observe that from (1.8) the Euclidean normal to g0 ◦P is given by(
a + cy0

2 ,− cx0
2 , c

)
. Since the Euclidean inner product of this vector with(

a, 0, c− y0a
2

)
is a2 + c2 6= 0, we reach the desired conclusion. q.e.d.

We are now ready to accomplish our first reduction.

Lemma 5.8. Let S ⊂ H1 be an H-minimal entire graph over a plane,
with Σ(S) = ∅, and assume that S is not itself a vertical plane such
as (1.4). After composing with a suitable rotation about the t-axis and
with a left-translation, we may assume that there exist ψ ∈ C2(R2) for
which

S = {(x, y, t) ∈ H1 | (y, t) ∈ R2, x = ψ(y, t)}.
Proof. Suppose that S is a graph over the plane P given by ax +

by + ct = γ for a, b, c, γ ∈ R, with a2 + b2 + c2 6= 0. Suppose first that
b = 0, and consider the two cases a = 0 and a 6= 0. In the former case,
keeping in mind that c 6= 0, we see that S is a graph over the plane
t = γ/c. The left-translation by g0 = (0, 0,−γ/c) sends this to the
plane t = 0, and the surface g0 ◦ S becomes a global H-minimal graph
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over the (x, y)-plane, with empty characteristic locus. This, however,
contradicts Theorem 5.5, since this result forces such a graph to have
non-empty characteristic locus. We must thus have a 6= 0. In this case,
left-translating by g0 = (0,−2c/a, 0), Lemma 5.7 shows that g0 ◦S is an
entire graph over the (y, t)-plane. Thus, we can find ψ ∈ C2(R2) which
defines g0 ◦ S, in this way yielding the desired conclusion.

We are thus left with the situation b 6= 0. In this case, however,
performing a rotation of an angle ϕ = cotan−1(−a/b) ∈ (0, π) about the
t-axis, which preserves H-minimality, we obtain a new surface which
is an entire graph over a plane having Euclidean normal in the form
(a, 0, c), and we can thus argue as in the first part to reach the sought
for conclusion. q.e.d.

As it will be useful later, we next prove that the notions of seed curve
and height function are preserved under left-translation.

Lemma 5.9. Suppose there exist intervals I, J ⊂ R so that a portion,
S0, of an H-minimal surface S is parameterized by a seed curve, γ,
and height function, h0, as in (5.7) and (5.8), with s ∈ I, r ∈ J . If
g0 = (x0, y0, t0) ∈ H1, then the surface g0 ◦ S0 is also parameterized as
in (5.7) and (5.8), using a seed curve, γ̂, and height function, ĥ0, given
by γ̂(s) = (x0 +γ1(s), y0 +γ2(s)), and ĥ0(s) = h0(s)+ x0

2 γ2(s)− y0

2 γ1(s),
for s ∈ I, r ∈ J .

Proof. With F (s, r) as in (5.5), consider g0 ◦ S0, which is parame-
terized by g0 ◦ θ(s, r) = g0 ◦ (F (s, r), h(s, r)). Using (2.2), we see that
g0 ◦ θ(s, r) is given by

θ̂(s, r) = (F̂ (s, r), ĥ(s, r)),

with

F̂ (s, r) = γ̂(s) + r(γ̂′(s))⊥ = γ(s) + r(γ′(s))⊥ + (x0, y0),

and
ĥ(s, r) = ĥ0(s)− r

2
γ̂(s) · γ̂′(s),

where ĥ0(s) = h0(s) + x0
2 γ2(s)− y0

2 γ1(s). Applying Corollary 5.3 to the
parameterization θ̂(s, r), we find Ŵ (s, r) = W (s, r), and therefore from
(5.10) we obtain for the horizontal Gauss map of g0 ◦ S0 at the point
g0 ◦ (F (s, r), h(s, r)),

sgn

(
h′0 − r +

r2

2
κ +

1
2
γ′ · γ⊥

){
γ̂′1(s) X1 + γ̂′2(s) X2

}
.

Since γ̂′i(s) = γ′i(s), we have that the components of the horizontal
Gauss map are the same as those of the horizontal Gauss map for S0

at the point (F (s, r), h(s, r)), see Corollary 5.3. Upon projection to the
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plane t = 0, we have that γ̂′, as a vector field on R2, is just a translation
of γ′ by the vector (x0, y0). Thus, γ̂ is a seed curve for S0. q.e.d.

We apply these results to a useful special case.

Corollary 5.10. Suppose that S is a H-minimal entire graph over
the (y, t)-plane with empty characteristic locus, and that S is not itself a
vertical plane. There exist a point g0 ∈ S, an interval I ⊂ R, γ ∈ C3(I),
h0 ∈ C2(I), so that a neighborhood S0 of g0 can be parameterized by
(5.7), (5.8) for s ∈ I and r ∈ R.

Proof. Since we assume S is a graph over the (y, t)-plane, there exists
ψ ∈ C2(R2) such that S is described by x = ψ(y, t). Consider the
defining function Ψ(x, y, t) = x − ψ(y, t). If Ψt = −ψt ≡ 0, then we
would have ψ(y, t) = f(y), and by the H-minimality of S, we would
conclude that f(y) = αy + β, against the hypothesis that S is not a
vertical plane. Therefore, there exists g0 ∈ S such that ψt(g0) 6= 0. The
Implicit Function Theorem implies the existence of a neighborhood of
g0 on S which may be written as a graph over the plane t = 0 (with
empty characteristic locus). Applying Theorem 5.2, we obtain intervals
I, J ⊂ R, γ ∈ C3(I), h0 ∈ C2(I), so that a neighborhood of g0 is
parameterized by (5.7), (5.8) for s ∈ I, r ∈ J . To finish the proof, we
need to show that for every s ∈ I, we may extend the domain of r to
the whole of R. To see this, we note that for each s0 ∈ I, the curve

r → L(γ(s0),h0(s0))(r) = (γ(s0) + rγ′(s0)⊥, h(s0, r)),

with h(s, r) given by (5.8), and r ∈ J , is a horizontal straight line
segment in H1. Using (5.8), we see that the tangent vector to this line
is simply
(5.13)(

γ′(s0)⊥,−γ(s0) · γ′(s0)
2

)
= γ′2(s0) X1(F(s0, r))− γ′1(s0) X2(F(s0, r)),

which, by Corollary 5.3, is precisely (νH)⊥. Thus, by the standard
uniqueness theory for solutions to ordinary differential equations, these
line segments must coincide with subsets of the horizontal line foliation
of S guaranteed by Theorem 5.6. As the entirety of these horizontal
lines are contained in S, we conclude that the parameterization given
by (5.7), (5.8) extends to (s, r) ∈ I × R. q.e.d.

In order to extract some crucial additional information from our as-
sumption that S is an entire graph with Σ(S) = ∅, the following ele-
mentary lemma will be useful.

Lemma 5.11. Let g1, g2 ∈ H1, v = (v1, v2, v3), w = (w1, w2, w3) ∈
R3, and consider the straight lines L1 = {g1 + rv | r ∈ R}, L2 =



INSTABILITY OF GRAPHICAL STRIPS ... 287

{g2 + rw | r ∈ R}. If π : H1 → R2 denotes the projection to the (y, t)-
plane given by π(z1, z2, t) = (0, z2, t), then π(L1)∩π(L2) = ∅ if and only
if π(g1) 6= π(g2), and v × w is (Euclidean) perpendicular to (1, 0, 0).

Proof. Suppose π(L1) ∩ π(L2) = ∅; then it is obvious that it must
be π(g1) 6= π(g2). Furthermore, we must also have π(v) × π(w) =
(v2w3 − w2v3, 0, 0) = 0. Thus, we conclude that (v2, v3) and (w2, w3)
are constant multiples of one another. But then v × w takes the form
(v2w3−w2v3, ?, ?) = (0, ?, ?), and we conclude that v×w is (Euclidean)
perpendicular to (1, 0, 0), one direction of the lemma. The opposite
direction follows by simply reversing the previous argument. q.e.d.

Next, we apply Lemma 5.11 in the case of the parameterization given
in Corollary 5.10. The following lemma plays a crucial role in the proof
of Theorem 1.7.

Lemma 5.12. Let I ⊂ R, γ ∈ C3(I), h0 ∈ C2(I), and consider a
portion S0 of an H-minimal entire graph S over the (y, t)-plane having
empty characteristic locus. Suppose that S0 is parameterized as in (5.7),
(5.8) for (s, r) ∈ I × R. There exists a subinterval, J ⊂ I, such that
γ(J) is either a straight line segment, or a circular arc.

Proof. By re-parameterizing γ, we may assume 0 ∈ I. As in the
proof of Corollary 5.10, for every fixed s ∈ I, we consider the horizontal
straight lines contained in S, and defined by
(5.14)
L(γ(s),h0(s))(r) =

(
γ(s) + rγ′(s)⊥, h0(s)− r

2
γ(s) · γ′(s)

)
, r ∈ R.

For every s ∈ I we consider the two lines L1 = L(γ(0),h0(0)), L2 =
L(γ(s),h0(s)). The assumption that S be an entire graph over the (y, t)-
plane implies, in particular, that for every s ∈ I we must have π(L1) ∩
π(L2) = ∅. We can thus use Lemma 5.11 to infer that the direc-
tional vectors of L1 and L2, v =

(
γ′(0)⊥,−1

2γ(0) · γ′(0)
)

and w =(
γ′(s)⊥,−1

2γ(s) · γ′(s)) satisfy the condition that v×w be perpendicular
to (1, 0, 0). A simple computation now gives

(5.15) v×w · (1, 0, 0) =
1
2

(
γ′1(0)(γ(s) ·γ′(s))−γ′1(s)(γ(0) ·γ′(0))

)
= 0.

We first discuss three special cases. If γ′1(0) = 0 and γ(0) · γ′(0) 6= 0,
then for (5.15) to be satisfied we must have γ′1(s) = 0 for all s in
a neighborhood J of s = 0. Hence, γ(J) is a line segment and we
have reached one of our conclusions. Similarly, if γ(0) · γ′(0) = 0, but
γ′1(0) 6= 0, then (5.15) is only satisfied if γ(s) · γ′(s) = 0 for all s in a
neighborhood J of s = 0. In this case, we claim that γ(J) is a circular
arc. To see this, we note that d/ds(|γ(s)|2) = 2γ(s) · γ′(s) ≡ 0 on J .
Thus, |γ(s)| ≡ C > 0 on J , and hence γ(J) is a circular arc, reaching the



288 D. DANIELLI, N. GAROFALO, D.M. NHIEU & S.D. PAULS

second of our conclusions. Last, if both γ(0) · γ′(0) = 0 and γ′1(0) = 0,
then by the fact that |γ′(0)| = 1, we obtain that |γ′2(0)| = 1, and, using
(5.14), we conclude that S0 contains the straight line

L(γ(0),h0(0))(r) = (γ1(0)± r, γ2(0), h0(0)), r ∈ R.

This clearly violates our assumption that S0 is a graph over the (y, t)-
plane, as the whole line projects to the same point, (0, γ2(0), h0(0)), in
the (y, t)-plane, thus this case cannot occur.

If we are not in any of these cases, then we must have that both
γ′1(0) 6= 0 and γ · γ′(0) 6= 0. By the continuity of γ and γ′, there exists
a neighborhood of s = 0, J , such that γ′1(s) 6= 0, and γ(s) · γ′(s) 6= 0 for
any s ∈ J . In this case we can rewrite (5.15) as

(γ1(s)− C)γ′1(s) + γ2(s)γ′2(s) = 0,

where C = γ(0)·γ′(0)
γ′1(0)

. The latter equation in turn can be rewritten as

1
2

d

ds

{
(γ1(s)− C)2 + γ2(s)2

}
= 0,

which implies the conclusion

(γ1(s)− C)2 + γ2(s)2 ≡ α,

for some α > 0. Therefore, γ(s) is a circular arc on the interval J .
q.e.d.

With these preliminary computations in place, we are finally ready
to establish our main reduction result.

Proof of Theorem 1.7. Let S be an H-minimal entire graph over a plane
P with empty characteristic locus and which is not itself a vertical plane.
In view of Lemma 5.8, after possibly a left-translation and a rotation
about the t-axis, we may assume that P is the plane x = 0, and that S
is given by x = ψ(y, t) for some ψ ∈ C2(R2). Corollary 5.10 guarantees
that there exists g0 ∈ S, an interval I ⊂ R, a unit-speed γ ∈ C3(I),
h0 ∈ C2(I), so that a neighborhood S0 of g0 can be parameterized by
(5.16)
F(s, r) =

(
γ(s) + rγ′(s)⊥, h0(s)− r

2
γ(s) · γ′(s)

)
, (s, r) ∈ I × R.

Since S is a graph over the plane x = 0, Lemma 5.12 yields that γ(J)
is either a straight-line segment, or a circular arc. We next show that the
assumption of empty characteristic locus on S rules out the possibility
that γ(J) be a straight line segment. If, in fact, γ were linear, then it
would have the form

γ(s) = (x0 + a1s, y0 + a2s),
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with a2
1 + a2

2 = 1. In this case, the signed curvature κ(s) ≡ 0, and the
angle function W , given by (5.9), becomes

W (r, s) =
∣∣∣∣h′0(s)− r +

1
2
(a1y0 − a2x0)

∣∣∣∣ , (s, r) ∈ J × R.

Since it is clear that, for each fixed s ∈ J , there exists r ∈ R, r =
h′0(s) + 1

2(a1y0 − a2x0), where W (s, r) = 0, we would conclude that S
has a characteristic point at g = F(s, r), against our hypothesis.

Therefore, γ(J) must be a unit-speed circular arc, i.e.,

(5.17) γ(s) = (x0 + R cos(s/R), y0 + R sin(s/R)),

for some (x0, y0) ∈ R2, and R > 0, and (5.16) becomes

(5.18) F(s, r) =
(
x0 + (R + r) cos(s/R), y0 + (R + r) sin(s/R), h0(s)

+
r

2
(x0 sin(s/R)− y0 cos(s/R))

)
.

Consider the left-translated surface S̃0 = (−x0,−y0, 0) ◦ S0 parame-
terized by
(5.19)
F̃(s, r)= (−x0,−y0, 0)◦F(s, r)=

(
(R + r) cos

s

R
, (R + r) sin

s

R
, h̃0(s)

)
,

where

h̃0(s) = h0(s) +
R

2

(
y0 cos

s

R
− x0 sin

s

R

)
.

By Lemma 5.7, we know that the S̃ = (−x0,−y0, 0) ◦ S is a non-
characteristic entire graph over a plane P̃ , having Euclidean normal
Ñ

e
= (1, 0,−y0/2). Applying (5.11) to the parametrization F̃(s, r) we

obtain

(5.20)





p̃ = − sin s
R

(
(R+r)2

2R − h̃′0(s)
)

,

q̃ = − cos s
R

(
(R+r)2

2R − h̃′0(s)
)

,

ω̃ = −R+r
R .

Using (5.20) we immediately recognize that the angle function W̃ for
S̃0 is given by

W̃ (s, r) =
∣∣∣∣h̃′0(s)−

(R + r)2

2R

∣∣∣∣ .

Since W̃ (s, r) 6= 0 for any (s, r) ∈ J × R, we conclude that we must
either have

(R + r)2

2R
> h̃′0(s), or

(R + r)2

2R
< h̃′0(s)
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for every (s, r) ∈ J×R. It is clear that for no fixed s ∈ J can the second
inequality hold for every r ∈ R, and therefore we must have for every
fixed s ∈ J

h̃′0(s) <
(R + r)2

2R
, for every r ∈ R.

This imposes that we must have the crucial property

(5.21) h̃′0(s) < 0, for every s ∈ J.

Having achieved this conclusion, consider the portion S̃0 of S̃ given
by (5.19). The non-unit Euclidean normal to S̃0 is given by

Ñ
e

= F̃s × F̃r =
(
−h̃′0(s) sin

s

R
, h̃′0(s) cos

s

R
,−R + r

R

)
,

where the cross product is taken with respect to the Euclidean inner
product in R3. The Euclidean Gauss map of S̃0 is thus given by

ν̃e =
1√(

R+r
R

)2 + h̃′0(s)2

(
−h̃′0(s) sin

s

R
, h̃′0(s) cos

s

R
,−R + r

R

)
.

For any fixed s ∈ J , letting r range over R, we see that the im-
age of ν̃e in S2 ⊂ R3 describes a curve, denoted Γ, which is an open
arc of a great circle. We observe that Γ passes through the point
−h̃′0(s)

|h̃′0(s)| (sin( s
R),− cos( s

R), 0) = (sin( s
R),− cos( s

R), 0), and that the closure

of Γ contains the points (0, 0,±1). Since S̃0 is a graph over the plane
P̃ , we must have that ν̃e(S̃0) ⊂ S2 lies entirely to one side of the plane
determined by the vector 1√

1+y2
0/4

(1, 0,−y0/2) ∈ S2. Now, if y0 6= 0,

then the points (0, 0,±1) ∈ Γ would lie on opposite sides of this plane,
thus reaching a contradiction. We conclude that we must have y0 = 0,
and therefore S̃0 is a graph over a portion of the (y, t)-plane.

Since from (5.19) we see that x/y = cot(s/R), when s 6= 0, we fix
an open sub-interval of J , J̃ = (a, b), with either 0 < a < b < π, or
−π < a < b < 0, and we consider the open interval I = h̃0(J̃). We
stress that, in view of (5.21), we know that h̃−1

0 : I → J̃ exists, and
depending on the choice that we have made of J̃ , we have that either
0 < h̃−1

0 (t) < π, or −π < h̃−1
0 (t) < 0, for every t ∈ I. We may thus

re-write S̃0 as

(5.22) x = y cot

(
h̃−1

0 (t)
R

)
= yG(t).

We note that G ∈ C2(I) since h̃−1
0 ∈ C2(I), and that moreover,

thanks to (5.21), we have

G′(t) = − 1
R

(
1 + cot2

(
h̃−1

0 (t)
R

))
1

h̃′0(h̃
−1
0 (t))

> 0.
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Furthermore, since y = (R+ r) sin(s/R) for s ∈ J̃ and r ∈ R, we con-
clude that y attains every real number. In addition, we claim the map
(r, s) ∈ R× I → ((R + r) sin(s/R), h̃0(s)) ∈ R× J is one to one. To see
this, we consider (r1, s1), (r2, s2) so that ((R + r1) sin(s1/R), h̃0(s1)) =
((R + r2) sin(s2/R), h̃0(s2)). The injectivity of h̃0 implies that s1 = s2,
and so we must have r1 = r2 as well. We thus see that the parametriza-
tion (5.22) of S̃ is valid for (y, t) ∈ R × I. This completes the proof.
q.e.d.

With Theorem 1.7 in hand, we can now establish our main result of
Bernstein type.

Proof of Theorem 1.8. Let S ⊂ H1 be a stable H-minimal entire graph,
with Σ(S) = ∅. Assume by contradiction that S is not a vertical plane.
By Theorem 1.7, after possibly a left-translation and a rotation about
the t-axis, the resulting surface S contains a strict graphical strip S0.
By Theorem 1.6 we know that S0 is unstable, and therefore also S must
be unstable, thus reaching a contradiction. We conclude that S must
be a vertical plane. q.e.d.

6. Obstruction to the higher-dimensional Bernstein problem

In this section we prove Theorem 1.9. We begin with a simple propo-
sition, which is fact valid in any Carnot group.

Proposition 6.1. Suppose that the hypersurface S ⊂ Hn be a vertical
cylinder, i.e., it can be represented in the form

(6.1) S = {g = (x, y, t) ∈ Hn | h(x, y) = 0},
where h ∈ C2(R2n), and there exist open sets ω ⊂ R2n and α > 0 such
that |∇h| ≥ α in ω. Under these assumptions, the characteristic locus of
S is empty, and the H-mean curvature of S is therefore globally defined
and it is given by

(6.2) H(x, y, t) = (2n− 1) H(x, y),

where H(x, y) represents the Riemannian mean curvature of the projec-
tion π(S) of S onto R2n × {0}. In particular, S is H-minimal if and
only if π(S) is a classical minimal surface in R2n. Furthermore, the
H-perimeter of S, σH(S), is given by

(6.3) σH(S) = H2n(S),

where H2n is the standard 2n-dimensional Hausdorff measure in R2n+1,
i.e., the surface measure.
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Proof. Consider the defining function for S given by φ(x, y, t) =
h(x, y). We first observe that for i = 1, . . . , n,

Xiφ(x, y, t) =
∂h

∂xi
, Xn+iφ(x, y, t) =

∂h

∂yi
;

hence, since Tφ ≡ 0, we conclude that

(6.4) ∇Hφ = ∇φ = ∇h,

which thanks to the assumption |∇h| ≥ α > 0 proves in particular that
Σ(S) = ∅, and that νH = ∇h

|∇h| = ν, where ν denotes the Riemannian
unit normal of S. Thanks to Proposition 2.4, the H-mean curvature of
S is given by

H =
2n∑

i=1

∇H,S
i < νH , Xi >=

2n∑

i=1

Xiνi = div ν = (2n− 1) H,

where in the third and second to the last equality we have used (6.4).
This proves (6.2). Finally, (6.3) derives from (6.4) and from (3.5), or
equivalently (3.6). q.e.d.

Proof of Theorem 1.9. Consider the Heisenberg group Hn, and denote
by N + 1 = 2n the dimension of the horizontal layer R2n × {0}. For
(x, y) ∈ R2n, we write y = (y′, yn), with y′ ∈ Rn−1, and denote by
RN = Rn

x × Rn−1
y′ . By the fundamental results in [BDG], given any

N ≥ 8 there exists a non-affine f ∈ Cω(RN ) such that S0 = {(x, y) ∈
R2n | yn = f(x, y′)} is an entire minimal graph. Clearly, if we consider
the defining function h(x, y) = yn − f(x, y′) for S0, then

|∇h(x, y′)| =
√

1 + |∇x,y′f(x, y′)|2 ≥ 1, for every (x, y′) ∈ RN .

Consider the vertical cylinder S ⊂ Hn such that π(S) = S0. Thanks
to Proposition 6.1, S is an H-minimal entire graph, over the hyperplane
{(x, y, t) ∈ Hn | yn = 0}, with empty characteristic locus, and which is
not a vertical hyperplane. Using the fact that the unit vector field on S

(x, y, t) → νH

=
1√

1 + |∇x,y′f |2

{
n∑

i=1

(−fxi)Xi +
n−1∑

i=1

(−fyi)Xn+i + X2n

}

is independent of the t-variable, and moreover divHνH = divν = 0,
we can easily prove the stability of S similarly to the classical case,
see [CM], pp. 1–4, and also [BSV] for a general discussion of sub-
Riemannian calibrations in Hn. Finally, we observe that the condition
N ≥ 8 translates into n ≥ 9/2, and hence a counterexample to the
Bernstein problem can be found for any n ≥ 5. q.e.d.
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1984, MR 0775682, Zbl 0545.49018.
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Zbl 0862.53031.

[Gro2] , Metric Structures for Riemannian and Non-Riemannian Spaces,
Ed. by J. LaFontaine and P. Pansu, Birkhäuser, 1998, MR 2307192,
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