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1. Introduction

Let M be a compact differentiable manifold of dimension n, and

(1.1) φ:M->Rn+k

an immersion of M into a Euclidean space Rn+k of dimension n -f k. The
total curvature, in the sense of Chern and Lashof [1], [12], can be defined
as follows.

Let B be the set of unit normal vectors of M in j?Λ + λ. Then B is a bundle
of (k — l)-sphere over M and is a manifold of dimension n + k — 1. Let
S be the unit (n + k — l)-sphere of ΛΛ+Λ, da the volume element of 5, and

(1.2) <—!•

the volume of S. If

(1.3) v:B-> S

is the Gauss map, which assigns each unit normal vector of B the unit vector
through the origin and parallel to the normal vector, then the total curvature
of the immersed manifold M is defined as

(1.4) —L

Since the total curvature depends on M as well as ψ:M —>Rn*k, we shall
denote it by r(Λf, ψ, Rn*k) or simply by τ(φ).

The height function ha in the direction a e Rn+k takes the value

(1.5) ha(x) = (a,φ(x))

a t xeM, w h e r e ( , ) d e n o t e s t h e u s u a l i n n e r p r o d u c t o n R n * k . x e M i s a

Received September 18, 1967, and, in revised form, December 1, 1967.



56 SHIN-SHENG TAI

critical point of ha, a e Rn*k, if and only if a is normal to M, and ha,a<zS has
a degenerate critical point if and only if a is a critical value of the map
v: B —>5. By Sard's theorem, the image of the set of critical points of v has
measure 0 in 5. Hence for almost all aεS,ha has only nondegenerate critical
points. Let β(M,f) denote the number of critical points of a differentiable
function / defined over M. Then β(M, ha) is well defined and is finite for
almost all a e 5. We have [12]

(1.6) r(Af, φ, /T+*)= fβ(M,ha)dσ.

So, to evaluate the total curvature τ(φ), it is sufficient to determine the num-
ber of critical points of the height functions.

Let F be the set of differentiable functions on M whose critical points are
all nondegenerate, and define

(1.7)

It follows from Morse inequality [13, p. 29] that

(1.8) β(M) > b(M) =

where bi(M) is the z'-th Betti number and b(M) the sum of Betti numbers of
M. Kuiper [12] has shown that

(1.9) wfτ(M,φ,Rn+*) = β(M) .

An immersion ψ: M —> Rn+k is said to be minimal if τ(φ) = β(M). Given
a compact differentiable manifold M, it is not true in general that M can al-
ways be minimally immersed. As Kuiper has pointed out [12], if M is an
exotic sphere, it admits a function with two critical points and hence β(M) = 2.
On the other hand, by a theorem of Chern and Lashof [1], an immersed com-
pact differentiable manifold M with r(M, φ, Rn+k) = 2 is a convex hyper-
surface in some Rn+1 c Rn+k, which implies that M is diffeomorphic to an
ordinary sphere. Ferus [3] proved that every imbedding of an exotic n-sphere
(n > 5) in R71*2 has a total curvature ^ 4.

If φ(M) is not contained in any hyperplane of Rn+k, then we say that the
immersion ψ:M —> Rn+k is substantial. A theorem of Kuiper [12] asserts that
if φ: M —• Rn+k is minimal and substantial, then k < n(n + l)/2. He also gives
examples of minimal and substantial imbeddings of various codimensions
k, 1 < k < n{n + l)/2, [12, pp. 82-83]. In particular, the Hopf imbeddings
of real projective space Pn(R) into Rn+k, n+\<k <n(n + l)/2, are minimal
and substantial. In the same paper [12, p. 86], he exhibited a minimum im-
bedding of the real projective plane P2(R) into R*.
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Kobayashi [11] proved that every compact homogenous Kahler manifold
can be minimally imbedded into a Euclidean space. In particular, the Man-
noury imbedding [7, pp. 150-151] of a complex projective space Pn(C) into
jj(«+i)a-i i s shown to be minimal (cf. Remark 2.6).

In this paper, we are going to construct minimum imbeddings of compact
symmetric spaces of rank one in a unified fashion. Beside being minimal and
substantial, these imbeddings are also equivariant and isometric.

The problem is trivial for spheres. We will treat real, complex and quater-
nionic projective spaces in § 2, and the Cayley projective plane in § 3.

The author is deeply indebted to Professor S. Kobayashi who directed this
work. He wishes to thank Professor S. S. Chern who guided his interest in
this direction. Also he would like to thank Professors A. Friedman, H. C.
Wang and D. Zelinsky for their encouragements and mathematical education.

2. Projective spaces

Throughout this section, F will denote the field R of real numbers, the field
C of complex numbers or the field Q of quaternions. In a natural way,
R C C C Q. For each element x of F, we define the conjugate of x as follows.
If

(2.1) x = *0 + xj + xj 4- xzkeQ ,

with x0, xl9 x2, x3 € R, then

(2.2) x = x0 — xλi — JCJ — x3k .

If x is in C, then x coincides with the ordinary complex conjugate of x. If JC
is in R, then x = x.

It is convenient for us to define

( 1 if F = R 9

(2.3) d = d(F) = j 2 if F = C ,

( 4 if F = Q .

Let x = (*0, , xn) e Fn+1. A matrix A = (a^), 0 < i, / < n, operates on
F Λ + 1 b y the rule:

(2.4)

The transpose and conjugate of a matrix A are denoted by ιA and A,
respectively Λ*dentes tA. We will use the following notations:
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(2.6)

(2.5) M{n + 1, F) = the space of all (n + 1) x (n + 1) matrices over F.

(n + l,F) = {A<z M(n + 1, F) \A* == Λ}, the space of all

(n + 1) x (n + 1) Hermitian matrices over F.

If /4 € H(n + 1, R), then -4 is symmetric.

(2.7) J7(Λ + 1, F) = [X € M(ιi + 1, F)\X*X = /} ,

where I denotes the identity matrix. Then C/(n + 1,Λ) = 0(n + 1),
ί/(n + 1, C) = ί/(n + 1) and U(n + 1 , 0 = Sp(n + I), in standard nota-
ions.

Fn+1 can be considered as a Euclidean space of dimension (n + l)d. The
usual inner product for Fn+1 = R<n+1)d is defined as

(2.8) (x9 y) = Re(x*y) ,

where x and y'eFn+1 are represented as column matrices. M(« + 19F) can
also be considered as a Euclidean space of dimension (n + l)2d, and

(2.9) (A, B) = #67Y(Λβ*) , A, B € Af(π + 1, F),

defines the usual inner product. If A and B belong to H(n + 1, JF), then

(2.10) (i4,B)

We will endow H(n + 1,F) with this induced inner product.
Let Pn(F) denote the projective space over F. Consider Pn(F) as the

quotient space of unit ((n + \)d — l)-sphere {x = (x0, ,x n) €Fn+I\x*x =
1} obtained by identifying (*0, , xn) with (JC0̂ , , xnλ), where ?>zF and
I i I = 1. Hence for x e Pn(F), we can use homogeous coordinates

(2.11) with x*x = 1 .

Consider the following map

(2.12) ψ:Pτ

such that

(2.13)

H(n + 1,

φ(χ) = xx* =
X\X-n
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It is clear that this is a well defined function from Pn(F) into a Euclidean

space of dimension Γ £ \d + n + 1. The conditions x*x = 1,

= 1 and Σ l^il2 = 1 are obviously equivalent to each other. It follows that
ί = 0

the image of Pn{F) under φ lies on the hyperplane

(2.14) Hx(fi + 1, F) = {X = (*<,) € Jϊ(π + 1, F) | ± xit = 1} .
ί0

For c and y € P n ( f ) , 9?(JC) = 9?(y), which is equivalent to xx* = yy*, implies
x = yλ, with ^ 6 JF and | λ | = 1. Thus φ is a substantial imbedding of Pn(F)

into / ? * , # = Π ^ j d + Tz. W e w i s h t 0 s h o w * a t 9 i s a minimum imbed-

ding.
Let ί/(n + 1, F) act linearly on M(n + 1, F) in the obvious manner:

(2.15) X(A) = XAX* ,

XeU(n + 1,JF)
Lemma 2.1. J/ze action of U(n + 1,F) preserves inner product of

Λf(n + 1,F).
The proof is straightforward.
Lemm 2.2. Γ/ie imbedding

is equivariant with respect to and invariant under the action of U(n + 1, F),

(2.16) ψ(Xx) = *(*>(*)) € φ(Pn(F))

for x 6 Pn(F) and X € l/(π + 1, F).
The proof is straightforward.
Let AzH(n + 1, F) and /zΛ be the height function defined over Pn(F) in

the diretion A. Then

(2.17) hA{x) = (A, φ)) = Γr(i4pW) = Γr(i4(xx*))

at x e Pn(F). By Lemmas 2.1 and 2.2,

(2.18) hXU)(Xx) = * , ( ! ) , Z € U(n + 1, F) .

On the other hand, for each A e H(n + 1, F), there exists an Z e ί/(n + 1, F)
such that X(A) = AT/iY* is a diagonal matrix. (The fact is well known
for R and C. We will deal with the quaternionic case in the appendix.)
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Therefore, to study the critical points of hA, we may assume that A is a dia-
gonal matrix,

0
(2.19) A =

' 0

Then the height function takes the simple form:

(2.20) hΛ(x) = Σ *i\*i I2, x * P*(F) .

The following is a standard trick to determine the critical points of hA on
Pn(F) [13, pp. 26-27].

Consider the following coordinate system. Let C70 be the set of x =
(JC0, JC15 , xn) with x0 Φ 0, and let

(2 21) |
«f = ui0 + uj + ui2j + uiZk e F .

Then

(2.22) Uia' Uo^R, 1 < i < n , 0 < cr < d - 1 ,

are the required coordinate functions mapping Uo diffeomorphically onto the
open unit ball in Rnd. Clearly

(2.23) I *<[•:= Σ<> 0 < α < d - 1 .
a

(2.24) *=i-ΣW=i-Σ«ί,

1 <i<n , 0 < α <d- 1 ,

so that

Λx = ô + Σ ft - ^t)«i.,
(2.25) *•«

l

throughout the coordinate neighborhood £/0. Thus the only critical point of
Λ4 within UQ lies at the center point

(2.26) P 0 = ( l , 0 , -.-,0)

of the coordinate system. At this point, hA is nondegenerate if and only if all
other eigenvalues are distinct from λQ.
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Similarly one can consider other coordinate neighborhoods centered at the
points

(2.27) Λ = (0, 1, . . , 0), . ., Pn = (0, . ., 0, 1) ,

It follows that Po, Pl9 , Pn are the only critical points of hA. Thus we have
Theorem 2.3. For AeH(n + l,F) the height function hΛ defined over

Pn(F) is nondegenerate and has exactly n + 1 isolated critical points if and
only if all eigenvalues are distinct from each each other.

Remark 2.4 (cf. [13]). Every nondegenerate height function has indices
id, 0 <i <n, respectively at n + 1 different critical points. From the cell
decomposition of such a function, it follows immediately that the sum of Betti
numbers b(Pn(F)) = n + 1 if d{F) = 2 or 4. But it is well known that
b(Pn(R)) = n + 1. Therefore by Morse inequality (1.8), every nondegenerate
height function has β(M) ( = n + 1) critical points, and we have proved

Theorem 2.5. The imbedding (cf. (2.14))

is substantial, minimal, isometric and equivariant.
The assertion that φ is an isometric imbedding follows from the fact that

there is a Riemannian metric, unique up to a constant factor, on Pn(F) which
is invariant under U(n -f 1, F), and the fact that the metric on Pn(F) induced
by φ is invariant under U(n + 1, F) (Lemma 2.1). Or more generally, every
equivariant imbedding of an irreducible symmetric space is isometric, since
an invariant metric on a homogeneous space with irreducible linear isotropy
group is unique up to a constant factor.

Remark 2.6. In our notations, the Mannoury imbedding of complex pro-
jective space Pn(C) can be described as follows [7, pp. 150-151]:

Let R<n+v~ be a Euclidean space with coordinate system (Xh, Xhk, Yhk),
where h, k = 0,1, , nand h Φ k. The imbedding Pn(C) -* Rin*l)2 is defined
by

Xh =

(2.28) Xhk = x Λ + tux* = 2 Re xhxk ,

Yhk = i(xhxk - xhxk) = 2 I m * Λ .

Then Pn(C) lies in the hyperplane

(2.29) X° + - + Xn = J T

of J? ( n + 1 ) 2. It is easy to see that this imbedding differs from ours only by an
aflδne transformation. It follows from Theorem 2.5 that the Mannoury im-
bedding is minimal by the following theorem of Kuiper [12]:



62 SHIN-SHENG TAI

Theorem 2.7. If φ:M -*Rn+k is minimal and A: Rn+k - » R n + k is an affine

transformation, then A o φ is minimal.

Remark 2.8. In his paper 'On isometric imbeddings of compact sym-
metric spaces" (to appear), Kobayashi exhibits the same type of imbeddings
for a class of symmetric spaces and conjecture that they are all minimal.

Added in proof. Kobayashi and Takeuchi have recently proved the above
conjecture.

3. Cayley projective plane

Let x = *0 -I- JCJ/J. + +JC7/7 be an element of the Cayley algebra over
the real field. Denote

(3.1) x = x0 - xJ! - - *7/7 ,

the conjugate of x. Then the norm n{x) of x is equal to

(3.2) xx = xl + . . + x\ ,

and we have

(3.3) n(xy) = n(x)n(y) , x, ye Cay .

An element x Φ 0 € Cay has an inverse xjn[x).
If H(3,Cay) is the space of 3 X 3 Hermitian Cayley matrices, then

H(3, Cay) is a Jordan algebra under the following multiplication [9]:

(3.4) X o Y = i(XY + YX) , X,YεH(3, Cay) .

For simplicity, we express an element X 6 H(3, Cay) in the form:

(3.5)

Using the usual matrix unit Eυ and setting Eu = Et, and let

(3.6) xiS = *E ί y + xEυ ,

we can write

(3.7) Z = f ^ + ξ2E2 + f3E3 + JC12 + y23 + z31 .

The Et are orthogonal idempotents, and the trace and norm of X are defined
respectively as in [8]:
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(3.8) Tr(X) = ξ, + ξ2 + ξ3 ,

(3.9) N(X) = fAf, + Tr((xy)z) - ftπ(y) -

The minimum polynomial of X is defined as

(3.10) N{λl - X) = *3 - Γr(Z)^2 + ^ T Y ^ ) 2 - TYC^))* - N(X) ,

and we have

(3.11) Xz - Γr(Z)Λ:2 + %(Jr(Xf ~ ΓrίZ 2 ))^ - N(X)l = 0 ,

where / = Eλ + E2 + £ 3 is the identity matrix.
Following Jordan [10], we can define the Cayley projective plane P2(Cay)

as the set

(3.12) {xx* € H(3, Cay) \x*x = 19 x = I x, I e

This set is equivalent to ([4], [6])

(3.13) {X € Jϊ(3, Coy) | Z o Z = Z , ! > ( * ) = 1} ,

and is contained in

(3.14) JΪ.O, Cαj;) = {X € Jϊ(3, Cαj;) | Tr(X) = 1} .

Consider # ( 3 , Cβp) as a Euclidean space of dimension 27 endowed with
the inner product

(3.15) {X, Y) = Tr(X o 7 ) , Z , Γ € fl(3, C«y) ,

which is induced from the usual inner product of M(3, Cay), the space of
3 x 3 Cayley matrices considered as R72.

Lemma 3.1. An automorphism of the Jordan algebra H(3, Cay) preserves
the inner product.

Proof, From (3.11), the trace function is invariant under the automor-
phisms of # ( 3 , Cay). The rest is straightforward.

The following two results can be found in Freudenthal [4]:
Lemma 3.2 [4, p. 25]. The automorphism group of H(3,Cay) is the

exceptional Lie group F4.
Lemma 3.3 [4, p. 26]. For each XeH(3, Cay), there is an aeF4 such

that

(3.16) a(X) = 1& + λ2E2 + λ3Ez
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i.e. the elements of H(3, Cay) can be diagonalized by the action of F4.
Lemma 3.4. P2(Cay) is invariant under the action of F4.
The proof is obvious from (3.13) and the fact that the trace function is

invariant under automorphisms. Now, we are going to show that the in-
clusion

(3.17) φ:P2(Cay)-*H(3,Cay)

is a minimum imbedding.
As in § 2, we first consider the height functions hA, Ae H(3, Cay). We

can also treat x = (xl9 x2, xz) e Cayz, x*x = 1 , as a sort of homogeneous co-
ordinate for P2(Cay). Owing to Lemmas 1, 3 and 4, we may assume that

(3.18) A = λJEτ + 12E2 + Λ3E3 .

Then

(3.19) A^z) = λtfiijQ + λ2n(x2) + λzn(x5) .

C*i, ^25 -̂ 3) = G Ί , y*9 y*) implies n(xt) = n{y^), i = 1, 2, 3. Hence it makes
sense to consider the following local coordinate system. Let Ότ be the set of
x = (jcl5 * 2, xz) with xλ Φ 0, and let

(3.20) l^il^Γ1^ = ui0 -I- ujτ + + ui7j7

where | JCX | = n(x^m. Then

(3.21) u^ .U^R, 2<i<3, 0<a<Ί,

are the required coordinate functions mapping U1 diffeomorphically onto the
open unit ball in R16. Clearly

(3.22) #!(*,) = Σ "I ,
σ = 0

(3.23) n(Xl) = 1 - n(x}) - n(x3) = 1 - Σ tfa ,

so that

(3.24) hA(x) = λ,

throughout the coordinate neighborhood Uτ. Thus the only critical point of
hA with U± lies at the center point

Λ = (1,0,0)
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of the coordinate system. At this point, hA is nondegenerate if and only if the
other two eigenvalues are distinct from λτ.

Similarly one can consider other coordinate neighborhoods centered at the
points

P, = ( 0 , 1 , 0 ) , P, = ( 0 , 0 , 1 ) .

If follows that Pl9 P2> ?z are the only critical points of hA. Thus we have
Theorem 3.5. For A€H(3,Cay) the height function hA defined over

P2(Cay) is nondegenerate and has exactly three isolated critical points if and
only if all three eigenvalues are distinct from each other.

Remark 3.6. If hA is nondegenerate, the indices at three different critical
points are respectively 0, 8, 16. From the cell decomposition of hA, it follows
that the sum of Betti numbers b(P2(Cay)) = 3. Therefore every height func-
tion has the minimum number of critical points. Hence

Theorem 3.7. The inclusion

φ:P2ίCay)-*H1(3,Cay)

is a substantial, minimal, isometric and equivariant imbedding.
The equivariance follows from the fact that φ is an inclusion, ψ is isometric,

since every equivariant imbedding of an irreducible symmetric space is iso-
metric (cf. Theorem 2.5).

4. Appendix

This appendix is based on Chevalley's Theory of Lie Groups [2, Chapter
I, §§ III-VII]. Most proofs are omitted, which can be either found, or proved
by similar arguments, for the complex case in that book.

Lemma 4.1. For each A e M(n + 1, Q), there exists an xe β n + 1 such that
Ax = xλ, λ 6 Q.

The author is indebted to Professor Kobayashi for the following simple
proof.

Proof. If A is singular, then there is an x € Qn+1 such that x ψ 0 and
Ax = 0. Suppose A is nonsingular. Since GL(n + 1, Q) is connected,
A ~ I: Qn+1-+Qn+\ where / is the identity transformation. Let Ar be the
induced map on P n(β). Then A' ~Id: Pn(Q) - * P n ( 0 , where Id is the identity
map of Pn{Q). Therefore the Lefschetz number

(4.1) L(Λ') = L(Id) = χ(Pn(β)) = n + 1 Φ 0.

Hence, by Lefschetz fixed point theorem, Ar has a fixed point. Equivalently,
there exists an x € QΛ + 1 such that Ax = Ix.

Lemma 4.2 [2, p. 21, Proposition 2]. If a is a unit vector in Qn+1, there
exists a symplectic matrix X such that Xex = a, where ^ = (1,0, , 0).
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Theorem 4.3, For each AzH(n + l ,β) , there exists an XzSp(n + 1)
such that XAX* is a diagonal matrix.

The existence of an eigenvector (Lemma 4.1) and Lemma 4.2 make the

inductive process possible. The proof is almost the same as the complex case

[2, pp. 12-13]. We have also

Theorem 4.4. The eigenvalues of a Hermitian quaternionic matrix are

real numbers.
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