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Abstrac t 
We investigate the geometry and topology of the Tits boundary associated 
with 4-dimensional closed, real-analytic manifolds of nonpositive curvature. 
We show that each homotopically nontrivial component is a union of geo
metric boundaries of flats in the corresponding Hadamard manifold and this 
can be used to describe the structure of its maximal dimensional quasi-flats. 
The homotopically trivial components are intervals of length smaller than 
7T and we give a necessary and sufficient criterion for the existence of such 
intervals of length greater than zero. 

Int roduct ion 

The Tits boundary T X = (X(oo),Td) of a complete, simply con
nected, nonpositively curved Riemannian manifold X is a metric space 
which reflects parts of the asymptotic geometry of X. In this paper we 
obtain a description of this space in the case that X is the universal 
covering of a compact real-analytic Riemannian manifold of nonposi
tive sectional curvature and dimension < 4. While the situation in the 
2- and 3-dimensional case is quite obvious and easy to describe (com
pare Section 1), new and interesting phenomena occur in dimension 4. 
Roughly speaking, up to dimension 3 the nontrivial components of T X 
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are completely determined by the structure of the flat subspaces, while 
in dimension 4 other 'nonstandard' components occur. However, we will 
show that the nonstandard components are always intervals of length 
< IT. In particular these components are contractible. It follows that 
the homotopy type of T X is already determined by the structure of 
the flat subspaces in X. This enables us to apply results of B. Kleiner 
on the structure of quasi-flats in X. In special cases this leads to a 
complete description of all quasi-flats in X. 

To describe the results in more detail, let M = T,\X be a compact 
real-analytic Riemannian manifold of dimension 4, X its Riemannian 
universal covering space. For our description we can assume that X is 
irreducible, i.e., X does not split as a nontrivial product. The structure 
of flat subspaces of X was determined in [8] and we recall the main 
results in Section 1. We say that a geodesic c: R —> X has higher 
rank, if there exists a geodesic c': R —> X with c(R) / c'(R) which is 
parallel to c, i.e., their Hausdorff distance satisfies Hd(c(R), c'(R)) < oo. 
A submanifold V C X is called a higher rank submanifold if V is a 
complete totally geodesic submanifold of X with the property that every 
geodesic c in V has a parallel c' with c'(R) / c(R) in V. In our situation 
there are only the following possible types of higher rank submanifolds, 
namely: 

(i) V is a k-flat for k = 2 or k = 3, i.e., V is the image of a totally 
geodesic and isometric embedding R —> X. 

(ii) V is isometric to Q X R, where Q is a 2-dimensional visibility 
manifold. 

A higher rank submanifold V is closed, if S y = { a G S j aV = V g 
operates with compact quotient on V. We say that a higher rank sub
manifold V is maximal, if V is not contained properly in a higher rank 
submanifold V. Clearly every 2-flat F is contained in some (maybe 
several) maximal higher rank submanifolds. 

In [8] it is proved that modulo S, there are only finitely many max
imal higher rank submanifolds and all of them are closed. As a conse
quence the structure of higher rank submanifolds can be recognized in 
the fundamental group. 

In this paper we address the question whether the flat subspaces 
determine already the whole asymptotic geometry which is reflected in 
the Tits boundary T X. 
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We call a connected component of T X standard if it contains a 
boundary point of a flat and nonstandard if it is not trivial (i.e., is not 
a single point) and not standard. 

The standard components of T X are described in Section 2, and 
the main result there is that the standard components are built from 
the geometric boundaries of the maximal higher rank submanifold. 

The nonstandard components are investigated in Section 3. It fol
lows from the properties of the Tits metric that a ray representing a 
point in a nontrivial component is asymptotically arbitrarily close to 
the flats and hence to the maximal higher rank submanifolds in X. If a 
ray represents a point in a nonstandard component, it is close to a single 
higher rank submanifold at most on a bounded interval. This gives rise 
to an infinite sequence of maximal higher rank subspaces associated to 
such a ray. Up to some initial elements, this sequence is determined 
by the corresponding nonstandard component (see Proposition 3.4). In 
particular, each nonstandard component can be encoded by a sequence 
of maximal higher rank subspaces. 

Below we state the main result of the present paper. It is an exis
tence result for nonstandard components in T X, and we show that the 
nonstandard components are always intervals of some length < IT. In 
particular they are contractible. 

T h e o r e m 1. Let X be the Riemannian universal covering space of 
a Jr dimensional closed, real-analytic manifold of nonpositive curvature. 
Then the following are true: 

(1) Every nonstandard connected component of T X is an interval of 
length < IT — 8Q where 8Q > 0 depends only on X. 

(2) The Tits boundary T X contains nonstandard connected compo
nents if and only if X contains two maximal higher rank submani
folds Wi and W2 of dimension 3 with W\_ l~l W2 / 0 and Wi^W2. 

Part (1) of this theorem is proved in Section 3, and Par t (2) in 
Section 4. 

R e m a r k s . 

1. The connected components of a length space coincide with its path 
connected components. 

2. There are examples of Hadamard manifolds X, constructed in [1], 
satisfying the assumption of the theorem and the condition in 
part (2). 
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3. Investigating the geometric boundary of graphmanifolds, C. Croke 
and B. Kleiner [4] found, to our knowledge, the first examples of 
a Tits geometry with nontrivial nonstandard components. 

We can use our result to study the structure of quasi-flats f: R —> X 
in the case that X does not contain a 3-flat. 

A 2-dimensional quasi-flat in X is a map f: R2 -> X such that there 
are constants L > 1 and C > 0 with the property 

L-'dix, y)-C< d(f(x)f(y)) < Ld(x, y) + C 

for all x,y £ R . In this case f is also called an (L, C)-quasi-flat. 
In Section 5 we will define the conical quasi-flats in X. The image 

of a conical quasi-flat is a cone over a simple closed Tits geodesics in 
T X and it is contained in a distance tube around a finite union of flats 

in X. 

Then one can prove the following result which depends essentially 
on the structure theory for quasi-flats of B. Kleiner [6]. 

T h e o r e m 2. Let X be as in Theorem 1 and assume additionally 
that X does not contain any 3-flat. Then the image of every (L,C)-
quasi-flat R2 —> X lies in finite distance to a conical quasi-flat and thus 
infinite distance to a finite number of 2-flats. Furthermore, that number 
can be bounded depending only on L, and it is equal to one, provided the 
constant L is sufficiently close to 1. 

R e m a r k . The reader should compare this result with the structure 
of quasi-flats in symmetric spaces (see Section 7.2. in [7] and [5]). 

We are grateful to the referee who pointed out the following corollary 
of Theorem 2. 

Corollary 3 . Let f: X\ —> Xi be a quasi-isometry between two 
manifolds as in Theorem 2. Then f maps 2-flats to within finite distance 
of 2-flats. 

We would like to thank S. Buyalo, C. Croke and B. Leeb for stim
ulating discussions, and B. Kleiner also for explaining to us his results 
on quasi-flats in [6]. The first author is grateful to the Department of 
Mathematics at the University of Pennsylvania for its hospitality. 
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1. Higher rank submanifolds and discreteness 

In this section we briefly recall the relevant results of [8] and state 
some discreteness properties. We also fix some of our notation. 

In the sequel, X denotes a real-analytic Hadamard manifold, and 
S a group acting freely and properly discontinuously by isometries on 
X such that the quotient T\X is compact. We let d and d1 be the 
induced distance functions on X and the unit tangent bundle TlX of 
X, respectively. The geometric boundary X(oo) of X together with the 
Tits metric Td is the Tits boundary denoted by T X. We write Z for 
the Tits angle. For the basic results on the Tits metric we refer to [2] 
or [3]. 

If X is reducible, the Tits geometry of X is the spherical join of the 
Tits geometries of its lower-dimensional, irreducible factors (see 2.3.4 
in [7]). For completeness, we describe briefly the structure of T X in 
the case that X is irreducible and dim X < 4: If dim X < 3 then T X 
is discrete. If d i m X = 3, then the connected components of T X are 
points and circles of length 2ir; the circles are precisely the boundaries 
at infinity of the 2-flats in X (see [8]). 

By the above and under the additional assumption that X is re
ducible, the statement of Theorem 1 holds trivially and the statement 
of Theorem 2 follows directly from [6]. Hence we will assume for the 
rest of the paper that dim X = 4 and X is irreducible. 

Unless otherwise stated, geodesic segments in X or T X are sup
posed to be parametrized by arc length. A geodesic ray in X is always 
parametrized on the interval [0, oo) = : R . If c is a geodesic segment, 
c(oo) and c( —oo) denote the limit points in T X of the complete ex
tension of c in positive and negative direction, respectively. Suppose 
p,q £ X and x,y £ T X. Then we mean by p~q the geodesic segment in 
X connecting p to q, and by ~px the geodesic ray in X starting at p and 
representing x. If Z(x, y) < IT we write ~xy for the unique Tits geodesic 
in T X connecting x to y. By pz we denote the unit vector tangent to 
~pz at p in the direction of z G X U X(oo) . 

If v G TlX is a unit tangent vector, then c v: R —> X is the geodesic 
with c v(0) = v. We also write v(±oo) instead of c v(oo). By P v we 
denote the parallel set of c v, i.e., the subset of X consisting of the union 
of all unparametrized geodesics parallel to c v. By analyticity, P v is 
either equal to c v(R) or a higher rank subspace of X. We recall tha t 
a higher rank subspace of X is a totally geodesic submanifold V of X 
with the property that every geodesic c in V has a parallel c' in V with 
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c'(R) / c(R). The rank of v G TlX is equal to the dimension of P v, 
and thus there are four possibilities for the rank of a vector v G TlX: 

(i) rank(v) = 1, then c v is not contained in a 2-flat. 

(ii) rank(v) = 2, then c v is contained in exactly one 2-flat. 

(iii) rank(v) = 3, then P v = Q X R with a complete 2-dimensional 
factor Q. 

(iv) rank(v) = 4, then X = P v, i.e., X is reducible. 

We denote the set of unit tangent vectors in X of rank > k by 

R>k := n v G T 1 X | rank(v) > k o, 

and put R>k(°°) '•= fv(oo) j v G R>k g• Since we assumed that X is 
irreducible, we have that Ry^ = 0 . Then there are three types of higher 
rank submanifolds: 2-flats, 3-flats and spaces of the form W = Q X R , 
where Q is not flat. 

We denote by V the set of all maximal higher rank subspaces of X, 
and by W C V the subset of all W with W = Q X R, Q not flat. 

For a higher rank subspace V G V, the boundary V(oo) is a path 
connected subset of T X. Tits geodesics in T V are also Tits geodesics 
in T X. If V is a 2- or 3-flat, then V{po) is an S 1 of length 2ir or 
a standard round sphere S 2 , respectively. If W = Q X R e W, then 
W(oo) C T X is a graph with two vertices, and for each point in Q(oo) 
an edge of length IT connecting these two vertices. The union of any 
two different edges in this graph is a closed Tits geodesic. These closed 
Tits geodesics are precisely the Tits boundaries of the 2-flats in W. The 
vertices of this graph are called the singular points of W(oo) and they 
are the limit points of the geodesics of rank 3 in W. 

It is proved in [8] that modulo S there are only finitely maximal 
higher rank submanifolds and all of them are closed. We now describe 
the possible intersection properties of maximal singular submanifolds 
(compare [8]): 

(i) If F is a 3-flat and V G V with V / F, then F n V = 0 . 

(ii) If F G V is a 2-flat and F n V / 0 for some V / F and V C V, 
then V is also a 2-flat and F fi V is a single point. 

(iii) If W G W and W n V / 0 for some V G V n fWg, then V G W 
and W n V is a 2-flat. 
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Suppose W\,W2 G W intersect in a 2-flat F. This intersection is re
flected in T X as follows: W\(oo) f]W2(oo) = F(oo) and F(oo) contains 
both, the singular points of W\(oo) and W2(oo). Notice also that the 
singular points of W\(oo) do not coincide with the singular points of 
W2 (oc). We write 

F int :=n W 1 n W 2 \ W l ì W 2 e W, dim Wx n W2 = 2 o 

for the set of intersection flats. 
In the following Lemma, we describe the intersection of maximal 

higher rank subspaces in more detail (see also Lemma 3.4 in [8]). 

L e m m a 1.1 (Discreteness Lemma). There exist positive constants 
D and a with D > 2a such that the following holds: 

(1) IfVllV2 G V with dim V = 3 and d{p, V i) < D for i = 1,2 and 
some p G X, then Vi, V2 G W and V\ l~l V2 / 0 . 

(2) For p G X there are at most two maximal higher rank subspaces 
Vi, V2 G V with dim V i = 3 and d{p, V i) < D for i = 1, 2. 

(3) Let vi,v2 G T 1 X with rank(vi) = rank(v2) = 3. If dl(vi,v2) < 2a 

(4) If v\,v2 G R > 2 and dl(vi,v2) < 2a, then v\,v2 G TV for some 
V e V or there are Wi,W2 G W with vt G TW\, v2 G TW2 and 
WiDW2^0. 

(5) Let p e X with d(p, W) < a for some W G W. If d(p, V) < a for 
some V G V then V G W and V l~l W / 0 . 

^ Let c: [0,£] —> X be a geodesic of length £ > D. Assume 
d(c(t),V) < a for some V G V and for all t G [0,£]. Further
more suppose that d1 (c(£), R>2) < d(c(£),V); Then there exists 
some W eW with d(c(£),W) < d(c(£),V). furthermore, V eW 
andV C\W / 0 . 

(7) Let WllW2 G W such that F := Wx H W2 G F int. Denote by 
z i ,z~ the two singular points of W i(po), i = l , 2 . If p G X with 
d[p1 F) = D and d(jp, W\) < a, then Zp(zf, z ̂ ) < IT — a. 

Proof. Note that (1), (2) and (3) are proved in [8, Lemma 3.6]. We 
choose D > 0 such that (1) and (2) are satisfied. We will show that 
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for each item (3), . . . ,(7) there are constants a , . . . , a? G (0, D/2) such 
that (i) is satisfied with a = a i. Finally define a := min{ a , . . . , a? }. 
As already mentioned, the existence of a ̂  follows from [8]. 

In order to show (4) we assume the contrary. Then there exist 
sequences (Vj*>i and (V i) i>i in V with V i / V i , v i G T 1 V , v G T 1 V ' for 
each i and l im^oo d1 ( i , v') = 0 such that V i ^ W or V iflV i = 0 . By the 
co-compactness of S we can assume that , after passing to subsequences, 
(v i)i>i and (v0i>i converge to the same vector v. Moreover, by the 
finiteness of V modulo S we can assume that V i = : V and V i = : V 
are independent of i. Consequently, v G TV l~l T V . It follows that 
V , V ' G W and V n V / 0 , a contradiction. 

By (iii) above, we can choose a$ > 0 such that d(W, F) > 2a$ for 
each W £ W and each flat F G V since modulo S there are only finitely 
many maximal higher rank subspaces of X. Now (5) is a consequence 
o f ( l ) . 

To prove (6) we choose ag < a4 such that the following holds: if 
c: [0,£] —?• X is a geodesic of length £ > D and d(c(t) ,V) < a for all 
t £ [0,£],then d1(c(£),T1V) < a4. Consider now a geodesic c: [ 0 , £ ] - > X 
with d(c(t) ,V) < a6 for all t G [0,£] and d 1 (c (^ ) ,^> 2 ) < d(c(^),V). 
Then there is a V' G V \ {V} and v' G TXV with ^ ( c ^ ) , v') < a6. By 
the choice of ag there exists v G TlV with d1(c(£),v) < a , and thus 
dl(v',v) < a + a < 2a4. Hence by (4) we have that V, V G W and 
V n V ' / 0 . 

If (7) were not true, there would exist sequences (W in)n>i, i = 1,2, 
in W, points j n £ X with d(p n, W\n) —> 0 as n —> 00 and d(p n, F n) = D 
with F n = WinnW2n- Furthermore, /_p n{z ^n, z n) —> 7r as n —> 00 where 
z ̂  and z~ denote the singular points of W in. Since X is co-compact 
and by part (2) we can pass to subsequences such that p n converges to 
some p G X as n —> 00 and W in = : W i, F n =: F are independent of n. 
Moreover, z in converge in the sphere topology to the respective points 
z i G W imZ3(oo). Clearly, d(p, F) = 1, p G W\ and Zp(z£, z^) = n and 
hence we see that dim P c = 4 for a geodesic c in W2 with c(±oo) = z2 . 
This is a contradiction. q.e.d. 

N o t i o n . We call arguments as in the previous proof accumulation 
arguments. 

We let \P: X —> V(V) be the function from X to the power set of V 
given by 

ilr(p) : = n V G V J d(p,V) < a o , 
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for p £ X. We denote by j\P(p)j the number of elements in ^(p) which 
is clearly finite. 

2. Standard c o m p o n e n t s 

In this section we investigate the standard connected components 
of the metric space T X. It turns out that these are the components 
which arise in a natural way from the boundaries at infinity of higher 
rank submanifolds. 

Recall tha t x G R>2(oo) if x = c v(oo) with rank(v) > 2. Thus 
R>2(oo) = S Ve^V(oo). The main result of this section is 

Propos i t ion 2 .1 . Let C be a connected component of the Tits 

boundary T X. If C D R>2(°°) / 0 then C C R>2(°°)-

Actually, this proposition justifies the notion standard component for 
a connected component C of the Tits boundary T X with CC\R>2{00) / 
0 . 

The proposition allows us to show that there are only three possible 
types of standard components in T X. 

Corollary 2 .2 . Assume that C is a standard component of T X. 
Then exactly one of the following statements is true: 

(i) C = F(oo), where F C X is a 2-flat. 

(iii) C = F(oo), where F C X is a 3-flat. 

(iiii) C = S WFW* W(°°) where W* C W is a subset which is maximal 
with respect to Property 2.3 stated below. 

P r o p e r t y 2 .3 . If W,W G W*, then there exists a sequence 
Wu ..., W k in W* such that W = WXlW = W k and W i n W i+1 / 0 
for 1 < i < k - 1. 

R e m a r k . It is clear that W* C W with Property 2.3 is maximal if 

and only if S WeW* W is a connected component of S WeW W C X . 

We need some preliminary results: 

L e m m a 2 .4 . For all 0 < e < ir/2 there exists some TJ > 0 such that 

the following holds: Let x\,x2 G T X with e < Z(xi, x ̂ ) < vr — e, and 

let p G X with Z(xi, x ̂ ) — Zp(xi, x ̂ ) < i]. Then d^^^px i, R>2) < £• 

Proof. Assume that the statement does not hold for some 
£ G ( 0 , 7 T / 2 ) . Then, using the co-compactness of the group S, the 
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continuity of Zp and the semicontinuity of Z, we obtain p £ X and 
x\,x2 G T X with 

(2.0.1) Z(x1,x2) = Zp(x1,x2) G (0, 7T), 

but d1 (px i, Ry 2 ) > £ for some i G f 1 , 2 g . However, (2.0.1) implies that 
the sector spanned by ~px\ and ~px~2 is flat and totally geodesic and hence 
by analyticity a part of a complete flat which implies r ank(px) > 2, a 
contradiction. q.e.d. 

L e m m a 2.5 . Let Ç: [0,b] —> T X be a unit speed geodesic with 
0 < b < IT and let c be a ray with c(oo) = Ç(0). Then there exists some 
T G R such such that for all points p = c(t) with t > T, all geodesics 
c s := p^(s), s G [0, b], and all u > 0 we have dl(c s(u), R>2) < a• 

Proof. Let £ and c be as in the assumption of the lemma and choose 
e > 0 small enough, such that 

0 < 2e < Z(£(0), £(b)) = b < n - 2e and e<a. 

Choose T] for e as in Lemma 2.4 and r > 0 such that for p = c(t) with 
t > T 

z(e(o),e(b))-zp(e(o),e(b))< ì ? . 
Then we have for s G [0,b] that 

Z(Ç(s),Ç(0))-Zp(Ç(s),Ç(0))< Î ? , 

Z(Ç(s),Ç(b))-Zp(Ç(s),Ç(b))< Î ? . 

Thus for all s G [0,b] and all u > 0 we have 

Z(Ç(s),Ç(0))-Zc s(u)(Ç(s),Ç(0))< î?, 

Z(Ç(s),Ç(b))-Zc s (u )(Ç(s),Ç(b))<î?. 

where c s = pÇ(s). Since for all s G [0, b] 

0 < e < Z ( Ç ( 0 ) , Ç ( s ) ) = s < 7 r - e 

or 0 <e < Z(Ç(s),Ç(b)) = b-s < n - e, 

we see by Lemma 2.4 that 

d1(c s(u),R>2) < £ < a 

for each s G [0, b] and each u G [0, co). q.e.d. 
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L e m m a 2 .6 . Let c: R> —> X be a ray with c(oo) G V[po) for some 
V G V. Assume that l im^oo d(c(t), V) > 0. Then there exists some 
W C W such that l im^oo d(c(t), W) = 0 and c(oo) is a singular point 
of W{oo). Furthermore, V G W and V f)W ^ 0. 

Proof. We first use the co-compactness of S to show that 

lim d1(c(t),R) = 0. 
t—>oo 

It suffices to show that for any sequence t i —> oo and any isometries 
ai G S such that d (ai ° c)(t i) converges, the limit vector has rank 3. Let 
c i . R -> X be the ray c i(t) = Ci O c(t + t) , i.e., i(0) = d (Ci O c)(t-). 
Consider the convex function 

t^d{c i(t),(Ti V) =d(c(t + t i),V), 

an accumulation ray c of c i and an accumulation higher rank subman-
ifold V of Gi V. It follows that d(c(t),V) is a positive constant. Thus 
the complete geodesic which extends c has a parallel in V, and since V 
itself has higher rank, this geodesic is of rank 3. 

Since dl(c(t),R) —> 0 as t —> oo, we see by part (3) of Lemma 1.1 
that there exists some W := P v G W such that d1(c(t),RnT1W) -> 0 
as t —> oo. Thus d(c(t), W) —> 0 and c(oo) is a singular point of W(oo). 

q.e.d. 

L e m m a 2.7 . There exists a constant £\ > 0 with the following 
property. Let x\ = c v(oo) G T X with rank(v) = 3, and let xi G T X 
with /_{x\,x2) < £\. Then xi G P v(p6). 

Proof. Assume the contrary. Then there are v i G R , 
x i G T X n P c j(oo), where c i := c v i, with Z(c i(oo), x-) < 1/i and 
i = 1 ,2 , . . . . 

Choose p i G P c i and let c be the ray p~i x i . Since x- ^ P ct (oo), there 
are t i G [0, oo) with d(c i(t i), P c i) = 1. Note that t i —> oo as i —> oo. Let 
q i := i(t-). Since Z(c i(oo), x-) < 1/i we have 

ai = Zq i(c i(oo),x i) -> 0, 

/ i = Zq i(c i ( -oo) ,p i) < 7T - Zp(c i ( - o o ) , i ) < - -> 0 

as i —> oo. We now use a similar accumulation argument as in Lemma 2.6. 
Choose ai G S such that CTJ-q- converges to some q G X , d ( i ° c i) (t-) 
converges to some v G T ̂  X, and <i P c i to some P c*. Since a i , / i —> 0 
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we have c v(oo) = c*(oo) and c v( — oo) = c*(oo), and hence c v is parallel 
to c* with d(c v( • ), P c*) = 1. Thus c v has rank 4 in contradiction to the 
irreducibility of X. q.e.d. 

L e m m a 2.8 . Let £: [0, b] —> T X be a unit speed Tits geodesic with 
0 < b < 7T. Let £(0) G V(oo) for some V G V and £(s) ^ V(oo) for 
s > 0. Then there exists some W G W n fVg such that £(0) G W(oo) 
and £(0) is a singular point ofW (oo); furthermore, V G W. 

Proof. Consider a ray c: R> —> X with c(oo) = £(0). If 
lim t^oo d(c(t), V) > 0, the claim follows by Lemma 2.6. Thus we can 
assume that 

lim d(c(t),V) = 0 . 
t—>oo 

If t > 0 is sufficiently large, then for p = c(t) and c s = p£(s) we have 

d(p,V) < a and d}~(c s(u),R>2) < a 

for each s G [0,b] and each u > 0. The second inequality follows from 
Lemma 2.5. This implies that j\P(c s(u))j > 1 for each s G [0,b] and 
u > 0. For s G [0, b] define 

<f (s) := sup n u > 0 J d(c s(u), V) < a o . 

Note that (f(0) = oo, and that (f(s) < oo for all s G (0, b] since 
c s(oo) ^ V(oo). The function ip is continuous, since d( •, V) is convex 
and d(p, V) < a. Now fix a small s > 0 such that (f(s) > D . Note that 
V £ V(c s(u)) for u > (p(s), but V G * ( c s(<^(s))). Since 

d1(c s (^ ( s ) ) ,R> 2 ) <a = d(c s(tp(s)),V), 

by part (6) of Lemma 1.1 there exists some W G W with 
W G *&(c s((p(s))), W O V / 0 . From the same lemma we also have 
that V eW. 

By continuity of (f(s) and part (1) of Lemma 1.1 we see that 
W G ^(c s((p(s)) for all small s > 0, so that £(0) G W^oc). Again 
by the use of Lemma 2.6 we can assume that l im^oo d(c(t), W) = 0 
and hence also that d(p, W) < a. 

We now claim that £([0, bi]) C W^oo) for some b\ > 0. If not the 
same arguments as above will yield V" G W, then V" / V, W with 
£(0) G V' (oo) and l im^oo d(c(t), V") = 0. This is a contradiction to 
part (1) of Lemma 1.1. 
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Now ?j[o,6i]: [0,bi] -> W(oo) is a geodesic with £(0) G V(oo). By 
the discussion in Section 1, W(oo) n V(oo) consists of two geodesics 
P11P2 (of length IT) between the singular points ofW(oo). If £(0) is an 
interior point of one of the pi, then £(s) lies on pi for small s and hence 
is contained in V (00) fi W (00). This contradiction shows that £(0) is a 
singular point of W(00). q.e.d. 

Proof of Proposition 2.1 and Corollary 2.2. Let C be a connected 
component of T X and assume that F(oo) DC / 0 for some flat F G V. 
Then F(oo) C C. If there were a point xi G C n F ( o o ) , then there would 
be a geodesic £: [0, b] -> C with £(0) G F(oo) ,£(b) = x 1 and £(s) ^ F(oo) 
for all s > 0. By Lemma 2.8 we get F G W, a contradiction. 

Now let C be a connected component and W ( o o ) n C / 0 for some 
Wo G W. Let W* be the maximal set with Property 2.3 and W0 G 
W*. Obviously C C SvFeW* W(°° ) - We claim equality. We will show 
the following: if x\ G W{oo) for some W G W* and x2 G T X with 
Z(xi, x2) < £\ (the constant of Lemma 2.7), then xi G W'(oo) for some 
W with W n W ' / 0 . This gives the result. Let £: [0, b] -> 9T X be 
the geodesic from x\ to xi and let so = sup f s G [0,b] j £(s) G W g . 
If so = b we are finished. If not, Lemma 2.8 implies that £(so) is a 
singular point of some W with W" fl W / 0 . Hence Lemma 2.7 yields 
that £([0,b]) C W'(00). q.e.d. 

3. D i a m e t e r e s t i m a t e for nonstandard c o m p o n e n t s 

In this section we prove part (1) of Theorem 1, i.e., the diameter of 
each nonstandard component of T X is uniformly smaller than TT and 
that nonstandard components are intervals. Recall tha t we say that a 
component of T X is nonstandard if it is not standard and not a single 
point. 

To begin with, we state two lemmas which follow immediately from 
accumulation arguments. We omit the proofs. 

L e m m a 3 . 1 . For any e > 0 there exists some 8 > 0 such that the 
following is true. Assume F C X is a 2-flat, i\ [0, D] —> X, i = 1,2, are 
two geodesic segments parametrized by arc length with ci(0) = c2(0) = : 
p, d(p, F) = D and d(c i(t), F) < D for each t G [0, D] and i = 1,2. If 
Z(ci(0),c2(0)) > TT -S thend1(c1(0),R) <e. 

L e m m a 3 .2 . For each e > 0 there exists some S > 0 such that 
the following is true: Suppose that o,p,q,o',p',q' G X with d(o,p) > 1, 
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d(o,q) > 1 and d(o,o') < 8, d(p,p') < 8, d(q,q') < 8. Then jZo(p,q) — 

Zo,(p',q')j <£• 

For a point x G T X we denote by C(x) the connected component of 
T X containing x. By definition and Proposition 2.f, C(x) is standard if 

and only if x G R>2(°°)- Furthermore, from the previous section we see 
the following: Given a ray c in T X, its limit point c(oo) is contained 
in a standard component of T X if and only if 

P| $ o c / 0 
t>t0 

for some t > 0. We now investigate the function \P o c for rays c 
representing points in nonstandard components. 

L e m m a 3 .3 . Suppose that x G T X and C(x) is nonstandard. Let 
c: R ^ X be a ray representing x. Then there exists some r > 0 such 
that the following are true: 

(i) For each t > T, * o c(r) C W. 

(ii) For each t > T, j * ° c(t)j G f 1, 2 g. 

(iii) T t>t ^ ° c = 0 for each t\ > 0. 

For a ray c as in the lemma, we denote by T(c) the minimal r > 0 
such that (i) and (ii) in the lemma hold. 

Proof. Lemma 2.5 implies in particular that there exists some r £ R 
such that for t > r , dl(c(t), R>2) < a and hence jty ° c(t)j > 1 for t > T. 
Thus there exists some V G V with dl(c(t), TlV) < a. Since C(x) is 
nonstandard, we see that c(oo) g- V(oo) and thus d(c(t),V) —> oo as 
t —T- oo. Hence T\ := sup ft > T j dl(c(t),TlV) = ag < oo and let 
v G T 1 V with d 1 (c( r i ) ,v) = a. Since d1 (c(TI), R>2) < a> there exist 
some V G V n fVg and some v' G TlV with d 1(c(r i ) , v') < a. By 
part (4) of Lemma 1.1 we see that V,V G W. 

This shows that C := ft > T j * o c(t) n W / 0 g is not empty. 
Clearly, C is closed. We claim that it is an open subset of [r, oo). Let 
t e C and W G * ° c(t) n W. Since t > r , there exists some V G V 
with d(c(t) ,V) < a. By part (5) of Lemma 1.1 we have V G W. Since 
V G ^ ° c(s) for s in an open neighbourhood of t, we see that C is 
open. Hence we have proved that $ o c(t) f i W / 0 for each t > T. Now 
part (5) of Lemma 1.1 implies that $ o c(t) C W. By part (2) of that 
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lemma, j\P o c(t)j < 2 and by our assumption x g- R>2(°°) we have that 
T t>t $ ° c = 0 for each t\ > 0. q.e.d. 

Under the assumption of Lemma 3.3 we consider the set 

A{c) : = n t e (r(c),oo) | jtf °c(t) j = 1 o. 

The set A{c) has the following properties: 

(i) A(c) = S i^i(a i> b') where a i < b i - D < b i < a i+1 and * o cj(a ijb i) 
is constant. We denote the value of $ o c on (a i, b-) by f W i (c )g . 

(ii) There is a unique sequence i\ < i2 < • • • < i k < i k+i < • • • such 
that fi j W n c) = W*(c) g = fi j i n < i < i n+1 g. We define 
W n(c) := W* (c) for each integer n > 1. 

Indeed, the previous lemma implies that A{c) has infinitely many con
nected components. Moreover, for a connected component (a', b') we 
have j$ o c(a')j = j$ o c(b')j = 2, and thus b' — a' > D by Lemma f.f. 
Let (a i, b-), i = f, 2 , . . . , with (ii < a-+ i be the connected components of 
A{c). This shows (i). In order to see (ii), suppose that W*(c) = W*+l{c) 
for some i and some l > 0. Since the function d(W*(c), • ) is convex on 
X, d(W*(c),c(t)) < a for each t G (a j , b j+l). Thus W*{c) = W*+k for 

k X . Zi . . . . . l . 

Let c and c' be rays in X. We call the corresponding sequences 
(W n(c))n>i and (W n(c'))n>i equivalent if there exist no, mo G Z with 
n > —mo such that W n(c) = W njrmo (c') for each n > no-

The next proposition states a property of nonstandard components 
which is of interest itself, but not directly needed for the proof of The
orem 1. For that purpose Lemma 3.5 below is enough. 

Propos i t ion 3 .4 . Let C be a nonstandard component of T X. Let 
c and c' be two rays in X with c(oo),c'(oo) G C. Then (W n(c))n>i is 
equivalent to (W n(c'))n>i. 

Proof. In the first step we consider two rays c and c' with c(oo) = 
c'(oo) we show that the corresponding sequences of higher rank sub-
spaces are equivalent. We parametrize c and c' by arc length, and 
we may clearly assume that c(0) and c'(0) lie on the same horosphere 
around c(oo) = c'(oo). We first assume that d(c(t), c'(t)) —> 0 as t —> oo. 
Let A{c) = S i^i(a i )b ) as above with jb i — a i j > D. Again an accu
mulation argument shows that there exists an e > 0 such that the 
following holds: If d(c(b i), V) = a = d(c(a i), V) and jb i — a i j > D, then 
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d(c((b- + a-) /2) , V) <a — e. Since finally d(c(t), c(t)) < e, we easily see 
that the corresponding sequences are equivalent. 

If we assume that t H-> d(c(t),c'(t)) is bounded from below by a 
positive constant, then "asymptotically" c and c' bound a flat strip. 
More precisely, an accumulation argument shows that for t large enough, 
c(t) and c'(t) are close to the same higher rank submanifold, i.e., there 
exists some t > 0 such that 

(3.0.1) * o c(t) n * o c'(t) / 0 for each t > t. 

Pick some ko > 0 such that for each integer k > ko, 

i n f ( * o c ) - 1 f T k ( c ) g > t . 

We claim that for each k > ko there exists some integer l such that 
W k(c) = W l(c') and W k+1(c) = W l+1(c') which imply that 
{W n{c))n>i is equivalent to {W n{c'))n>i. 

To prove this claim, we pick any k > ko and abbreviate W\ := W k(c) 
and W2 := W k+i(c)- Observe that ( $ ° c ) _ 1 ( f Wi , W2 g) = : [ti,t2] is a 
closed interval. By (3.0.1) we have that W i G * ° c'(t-) for i = 1, 2. Put 

t+ := sup n t | Wx G * o c'(t) o, t_ := inf n t | W2 G * ° c ( t ) o, 

and claim that t_ < t+. Otherwise there exists some t G ( t+ , t_ ) C 
( t i , t 2 ) with * o c ' ( t ) = fWg for some W G W n f Wx, W2 g. Thus 
by (3.0.1), fW,W1,W2g C * « c(t3) in contradiction to part (2) of 
Lemma 1.1. 

Therefore, \P o c'(t) = fWig for each t < t_ sufficiently close to t_ 
and \P o c'(t) = fW2g for each t > t+ sufficiently close to t+. This 
proves the above claim. 

With the result proved so far, the proposition is now an immediate 
consequence of (ii) in the next lemma. q.e.d. 

L e m m a 3 .5 . Let £: [0, b] —> T X be a Tits geodesic with 0 < b < IT 
which is contained in a nonstandard component. Then there exists a 
point p G X such that for the geodesic variation c s := p£(s), s G [0, b], 
the following are true: 

(i) T(s) = 0 for each s G [0, b]. 

(ii) For each integer n > 1, W n(c s) = : W n is independent of s £ [0, b]. 

(iii) d(p, V) > D for each V eVnfWxg. 
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Proof. We pick any ray c with c(oo) = £(0). By Lemma 3.3 and 
part (2) of Lemma 1.1, there exists an arbitrary large to such that 
j$ o c(to)j = 1 and (iii) is satisfied with p = c(to) and W\ = \P ° c ( t ) -

If t with these properties is sufficiently large, we see from Lemma 2.5 
that dl(c s(u),R>2) < a for all s G [0, b] and all u > 0. Now the proof 
of Lemma 3.3 shows that T(s) = 0 for each s G [0, b]. 

With this choice of p it remains to prove (ii). To that end, we 
consider for each integer n > 1 the set 

I n:=n se[01b]\W n(c s)=W n(co)o. 

By the above, I\ = [0, b]. Given n > 2, we prove by induction that I n = 
[0,b]. By Lemma 1.1, I n and [0, b] n I n are open subsets of I n-\ = [0, b]. 
Since I n ^ 0 this finishes the proof of the lemma. q.e.d. 

After these preparations, we now prove part (1) of Theorem 1. 

Proof (Diameter estimate). Arguing indirectly, we assume there 

exist x,y £ T X n R>2(°°) such that 

TT - S0 < Z(x,y) < TT, 

where we can choose So as small as we wish. With £ := ~xy parame
trized on [0,1] we choose p £ X according to Lemma 3.5 and such that 
IT — So < Z.p(x, y). We let c s, s G [0,1], and (W i)i>I be as in the previous 
lemma. Then we denote by t i, i = 0,1, the real numbers such that 

d(c i(t i),W2nW3) = D and * o c i(t-) = fW2g . 

By Lemma 3.1 applied to the geodesic segments co ( t ) c i ( t i ) j coj[t0,t0+D] 
and to the flat W ̂ n W ̂  we see that d 1 ( c ( t ) î vo) < ^i for some v G R , 
and in the same way that dl(ci(ti), v\) < S\ for some v\ G R . Here we 
can choose 8\ G (0, a) as small as we wish, provided So > 0 is sufficiently 
small. Par t (4) of Lemma 1.1 shows that i G TlW2 for i = 0 , 1 . 

Let q i denote the base point of i . Since clearly t i > D, applying 
Lemma 3.2 yields that 

^ p{q i, c i{t)) < 52 and Zqt (p, i(oo)) > K - 52 

for some S2 as small as we wish, provided Si is small enough. Conse
quently, 

Zp(vi(oo),v2(oo)) > K - 50 -4:52, 
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in contradiction to part (7) of the Discreteness Lemma 1.1 q.e.d. 

Proof (Nonstandard components are intervals). Suppose there exist 
x\, x2) x3 G X(oo)\7^.>2(oo) with 0 < Z(x i, x j) < IT for each i,j = 1, 2, 3. 
Pick p £ X and let c i := ~px i. 

By the previous results, there exist a sequence {F n)n>i C F int of 
intersection flats, for each i = 1, 2, 3 a sequence (t in)n>i in R and v r a G 
TlF n such that 

t-n —T- oo and d ( i (t„,), v r a) —> 0 as n —> oo. 

Indeed, d1(i(t),TZ>2) -> 0 as t -> oo and any Wi,W2 G W with Wi n 
Ŵ2 G F int intersect orthogonally. 

Claim 1. lim v r a(oo) = Xi in the sphere topology. 
n—>oo 

Let a > 0 and E i := { q G X j Zp(q,x i) < a}, and let o in be the 
base point of in. Arguing indirectly, we may assume w.l.o.g. tha t 
c v n ( R ) çZl E i for some i and each n. Thus there exists some e n G 
dE i fi c v n ( R ) . Lemma 3.2 implies that Zo in(p,e n) —> IT as n —> oo. 
Since Zp(o in,c(t in)) —> 0, we conclude that the sum of the interior an
gles of the triangle (p, o in, e n) is greater than IT for each large n. This 
shows Claim 1. 

Claim 2. lim Z(v in(oo), v jn(oo)) = Z(x i,x j). 

F i g u r e 1 
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We put 

an • = ^ c i(t in){p, c j ( t j n ) ) , ßn •= Z c j ( t j n ) ( p , c i(t in)) , 

a'n := 7T - Zo in (v in (oc), o jn), ß'n := IT - Zo jn (v jn (oc), o in), 

as illustrated in Figure 3. Clearly, Z(Xi,Xj) = lim n_>00(7r — an — ßn). 
We conclude from Lemma 3.2 that jan — a'n j —> 0 and jßn — ß'n j —> 0 as 
n —T- oo. Since IT — an — ßn > Zp(x-, x j) > 0, we have that a'n + ß'n < 7r 
for n large enough. Thus the geodesics c v in and c v.n are not parallel 
and intersect at a point c in(s in) = c v n(s jn) with negative s in and s jn. 
Therefore Z(v r a(oo), v jn(oo)) = 7r — a'n — ß'n. Thus Claim 2 holds. 

Claims 1 and 2 imply that nonstandard components are intervals. 
Indeed, assume that Z(x i,x j) < ir/2 for each i,j. Then, after renum
bering, we have that Z(xi, x?) + Z(x2, x ) = Z(x i , x ) and in particular 
that x2 is contained in the geodesic segment x\x ^. q.e.d. 

4. Ex i s tence of nonstandard c o m p o n e n t s 

In this section we show the existence of nonstandard components in 
the case that X contains intersection flats. This is part (2) of Theorem 1 
and it follows from Proposition 4.1 below. 

We assume that there exist different higher rank submanifolds 
W0lWx G W with F0 = W0 n Wx being a 2-flat. For v = 0,1 we 
choose one singular point xv G Wv(p6). Then x , x \ G F ( o o ) . 

Propos i t ion 4 . 1 . Given e > 0, there exists a nonstandard compo
nent with diameter larger than Z(xo, x\) — 2e. 

Proof. We call a sequence ( c i , . . . , c k) of geodesic segments 

c i. [0,t i]^X 

with i_|_i(0) = c i (t i) a polygon. We also consider infinite polygons 
( c i , c 2 , . . . ) . For a geodesic segment c i . [0,t i\ —> X let c i: R —> X be 
the complete geodesic with i jr0t i = i . For a given e > 0 we will 
construct a sequence (<i)i>i in S and two polygons, the 'even' polygon 
(co, c2, c , . . . ) and the 'odd' polygon (ci, c , c 5 , . . . ) where c i: [0, t i] —> X 
for i = 0 , 1 , 2 , . . . . The whole construction will satisfy the following 
conditions (see also Figure 4): 

(i) Let Wo, W\ be as above. Then (<i)i>i satisfies: i W i = W i and 
Oi x i = x i where we define inductively W i+\ := (i W i-I, Xi+\ := 
Gi x i-i and F i := i F i_\ = W i n W i+i. The W i are all distinct. 
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Note that the conditions imply that Xi is a singular point of W i (oo), 
and that Z(Xi,Xi+I) = Z(xo,xi) since Oi is an isometry. 

(ii) We have to = t\ = 1, co(0) = ci(0) = p G F and i(oo) = x- for 

i = 0 ,1 ,2 , 

(iii) d(c i(t i ) . W i) < e f o r i = 1,2,3,. . . 

(iv) Hd(c*([0, t*])Uc*+ 2([0, t*+2])U---Uc i_ 2 ( [0 , t -_2])Uc(R>),pSi) < 
(1 — 2 _ i )e for i = 0 , 1 , 2 , . . . where * is 0 for i even and 1 for i odd. 

F i g u r e 2 

Let us assume that we have constructed the situation above. We 
assume w.l.o.g. tha t e < (1/2) min{ a, Z(xo, x\) }. For i > 0 let r i be 
the ray px i. Since d(c i(t i),p) —> oo by (iii), we obtain from (iv) that 
(r2i(0))i>i and (r2i+i(0))i>i are Cauchy sequences. Let r + (resp. r~) 
be the limit ray of ro, r ̂ , r^ ... (resp. r\, r ̂ , r$,...). By (iv) we have 
that 

oo 

H d ( | J c 2 i ( [ 0 , t i ) , r + ( R ) ) <e and 
i=0 
oo 

H d ( | J c 2 i + i ( [ 0 , t 2 i + i ] ) , r - ( R > ) ) < e . 

Since t0 = 1 and d ( c 0 ( t ) , r + ( R ) ) < e we have Z p ( c ( 0 ) , r + (0 ) ) < e 
and in the same way Zp(ci(0), r~(0)) < e. Since p £ Fo and x„ = 
cj,(oo) G Fo(oo), z/ = 0 , 1 , we have Z p ( c ( 0 ) , ci(0)) = Z ( x , x i ) . Since 
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e < (l/2)Z(xo,xi) the rays r + and r are distinct. Furthermore, 

Z ( r+ (oo) , r - (oo ) ) > Zp(r+(0), r~(0)) 

> Z p ( c ( 0 ) , ci(0)) - 2e = Z(x0, xx) - 2e . 

Since x2i —T- r + (oo) and x2i+1 —> r~(oo) in the sphere topology as i —> oo 
and / ( x - , x '+i) = Z(xo, x\), it follows from the semicontinuity of Z that 

Z ( r + ( o o ) , r " ( o o ) ) < Z(x0,x1) . 

In particular, r + (oo) and r~(oo) are in the same connected component. 
We recall tha t $(p) = fV G V j d(p, V) < ag . By (iii) and (iv) 

and since e < a /2 we see the existence of t i G [0, oo) for i = 2, 4, 6 , . . . 
with PP7i G \P(r+ ( t - ) ) . We want to show that r + (oo) is in a nonstandard 
component. Arguing indirectly, there exists some W G W with W G 
$ o r+(t) for each large enough t. This implies that W l~l Wik / 0 for 
all large k. Thus we can find a configuration of four pairwise distinct 
W[,...,W^ G W, with W n W + i / 0 and indices taken modulo 4. 
Indeed, put W ' := W, W2 := W2k, W := W i and W := W2k+2 

for some large k. An easy argument using the distance nonincreasing 
property of the geodesic projections onto higher rank subspaces shows 
the existence of a flat totally geodesic quatrilateral with a vertex in 
each W Pi W + 1 . By analyticity, this quatrilateral is contained in a flat 
intersecting W (iW+1. This contradicts part (5) of Lemma 1.1. Hence 
r + (oo) is not contained in a standard component. 

To finish the proof it remains to construct the required situation 
which we do inductively. First we choose a point p G Fç> and let 
c , c\: [0,1] —T- FQ be the geodesics with co(0) = ci(0) = p into the direc
tion of x , x 1 , respectively. Then d(co(l),Wu) = d(ci(l),Wu) = 0 < e 
for v = 0 , 1 . We now assume that we have already constructed c , . . . , c k 
and <7i,. . . ,Ck-i such that all the conditions (i) - (iv) are satisfied up 
to index k. 

We now construct k and c k+i- Note that by induction hypothesis 
W k is already defined. Let 

Sk := n a G S | CTPPk = W k and ux k = x k o . 

Then Sk operates with compact quotient on W k and by isometries on 
T W k- Since W k splits as Q k X M and Q k has the visibility property, T<k 

operates densely with respect to the sphere topology on the Tits geodes
ics of length IT connecting x k to the other singular point of W k(oo). Thus 
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there exists a sequence ak G T,k, j = 1 ,2 , . . . such that ok x k - i ) ^ 
x k-i but (k . (x k - i ) —T- x k-i in the sphere topology as j —> oo. We 
can also assume ok (W k-i) $ f W\,..., W k g• Let c k : R —> X be the 
geodesic with c i j(0) = c k-\{t k-i) and c k j(oo) = ok j{x k-\). We will 
finally choose c k+i := c k • j [o,t k+1] for a suitable j and t k+i- By induction 
hypothesis we have 

H d ( c * ( [ 0 , t J ) U - - - U c k_i (R>) ,px kZr) < ( l - 2 - ( k " 1 ) ) e . 

Since (k .(x k - i ) —T- x k_i as j —?- oo, it is obvious that for j large enough 

Hd(c*([0,tJ)U---Uc k_i([0,t k_i])Uc k.(R>),pCk.(x k_i)) < ( l - 2 - ( k + 1 ) ) e . 

Choose (k := ok for such j large enough and c k+i :=~c k . 

Then (i), (ii) and (iv) are satisfied for c , . . . , cfc,k j[o,t] and CTi> • • • J ^ k 
where t > 0 is arbitrary. 

It remains to prove the existence of t k+i to show (iii). Note that 
cfc+i(oo) = x k+i is a singular point in W k+i(oo). We claim that 

lim d(c k+1(t),W k+1) = 0. 
t—>oo 

Otherwise, by Lemma 2.6 there would exist some W G W n f W k+ig with 
lim t-too d(c k+i,W) = 0 and x k+i would be a singular point of W(oo). 
Furthermore, W fl W k+i / 0 . But the singular points of W and W k+i 
have to be distinct. This proves the claim. It follows the existence of 
t k+1 > 0 with d(c k+1(t k+1),W k+1) < e. Then c k = c k+1j[0it k+1] is the 
required geodesic. q.e.d. 

5. A n appl icat ion to the s tructure of quasi-flats 

In this section we sketch an application of our results. As above, 
we consider a Riemannian universal covering space X of a closed, real-
analytic manifold of nonpositive curvature and dimension 4. In addition 
we require that X does not contain any 3-flat. 

We consider a special class of quasi-flats. Let S 1 be the standard 
circle of length 2ir and let a: S1 —> T X be a simple closed Tits geodesic 
parametrized proportionally to arc length. Furthermore, let o G X be 
given. Then define a map 

f o,a- R -> X 
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in the following way. For x G R 2 with polar coordinates (r, 0) G R X S 1 

let f o,a(x) = oa(0)(r). We call such a map a conical quasi-flat. Indeed, 
f ota is a quasi-flat and this fact is not obvious. So we sketch the main 
arguments to prove this fact: 

First one shows that a: S1 -> dT X is a bilipschitz embedding. By 
Theorem 1 it is clear that a(Sl) is contained in a standard component. 
It follows that there are points 0\ < 02 < • • • < 0 k in [0, 2ir) which we 
view as points in S 1 and points p i G X, i = 1 , . . . , k, such that 

Zpt(a(i_1,a(i+1)) = Z(a(i_1,a(i+1)) < K 

for each i, where the indices are taken modulo k. Thus the geodesic rays 
from p i to the points in a ( [ i _ i , i+i]) form an isometrically embedded 
flat sector S i which is obviously quasi-isometric to a sector of angle 
d Si (0i-i, 0i+i) in R . Notice that f o)CX(R) is in finite Hausdorff distance 
to S = i S i- Now it is not difficult to prove that f is a quasi-flat. 

From our results in the previous section, we can deduce 

L e m m a 5 . 1 . Suppose that a: S1 —> T X is a topologically embed
ded loop. Then a(Sl) C T X is the image of a simple closed Tits geo
desic. Furthermore, the length spectrum of simple closed Tits geodesics 
in T X is discrete. 

Proof. Under the assumption of the lemma, a(Sl) is contained in a 
standard component of T X by Theorem 1. The standard components 
are described in Corollary 2.2. Since by assumption X contains no 3-
flats, this corollary implies the first part of the Lemma. To that end 
recall also the description of the Tits geometry of the elements in W in 
Section 1. By Lemma 1.1 and Lemma 2.7 the set f T d ^ i , ^ ) j z1,z2 G 
R ( 0 0 ) g is discrete. This shows the final part of the lemma. q.e.d. 

Now Theorem 2 is a consequence of B. Kleiner's results on the struc
ture of maximal dimensional quasi-flats in cocompact Hadamard spaces 
(see [6]). 

Proof of Theorem 2. Let g: R —> X be an (L, C)-quasi-flat. 
By [6], the limit set g (00) C T X of the 2-dimensional quasi-flat is 
a 1-dimensional embedded sphere and its length is close to 2ir if L is 
close to 1. By Lemma 5.1 there exists a conical quasi-flat f: R —> X 
with f(co) = g(oo). Now Kleiner's results for quasi-flats in [6] imply 
that g(R2) is in finite distance to f(R) and thus to a finite number of 
flats in X. By the discreteness of f Td(zi, z ̂ ) j z\,zi G R ( 0 0 ) g and by 
Lemma 5.1, we see that the number of these flats can be bounded in 
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terms of the length of g(oo) and thus in terms of L. Moreover, g(oo) 
has length 2ir provided L is sufficiently close to f. This completes the 
proof. q.e.d. 

Proof of Corollary 3. We assume first tha t X\ and X2 do not 
contain isolated flats. The results of Section 2 show that the standard 
components of the Tits metric have the structure of a combinatorial 
graph. In this graph we can distinguish between two types of edges 
which we call short and long edges respectively. An edge is called long 
if it is contained in a cycle of combinatorial length 2 and short otherwise. 
The reader should observe that the long edges are exactly the edges of 
length IT in the Tits metric. The short edges have smaller Tits length. 
However, the crucial point is tha t this property of an edge can be read 
off purely from the combinatorial graph. 

Each flat in X\ or X2 corresponds to a cycle in such a graph. The 
cycles which correspond to flats can also be detected completely using 
only the combinatorial data . These are precisely the following: 

(i) The cycles of combinatorial length 2. The type of the sequence of 
edges is (long, long). 

(ii) The cycles of length 3. The type of the sequence of edges up to 
cyclic permutation is (long, short, short) . 

(iii) The cycles of length 4 with type (short, short, short, short) . 

Theorem 2 shows that a quasi-isometry f: X\ —> X2 induces a map from 
cycles in the standard components of djXi to the cycles in the standard 
components of d^Xi- Looking at finite intersections of conical quasi-
flats in X\ and X2 and at their images under f and f~l one can show 
that f induces a combinatorial map between the respective graphs. By 
the above it maps cycles corresponding to flats to cycles corresponding 
to flats and therefore f maps flats to within finite distance of flats by 
Theorem 2. It is now clear that the Corollary also holds if X\ or X2 
contains isolated 2-flats. q.e.d. 
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