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I N T E G R A L I N V A R I A N T S O F 3 - M A N I F O L D S 

RAOUL B O T T & ALBERTO S. CATTANEO 

Abstract 
This note describes an invariant of rational homology 3-spheres in terms of 
configuration space integrals, which in some sense lies between the invariants 
of Axelrod and Singer [2] and those of Kontsevich [9]. 

1. In troduct ion 

In their seminal paper [2] of 1994, Axelrod and Singer showed that 
the asymptotics of the Chern-Simons theory led to a series of C°°-
invariants associated to triples {M;f;p} with M a smooth homology 
3-sphere, f a homotopy class of framings of M , and p an "acyclic" 
conjugacy class of orthogonal representations of 7 T I ( M ) . That is, the 
cohomology H* (M; Ad p) of M relative to the local system associated 
to Ad p vanishes. 

The primary purpose of this note is to show that the basic ideas 
of their paper can be adapted quite easily—but not quite trivially—to 
yield invariants of smooth, framed 3-dimensional homology spheres as 
such. Put differently, we will present a treatment somewhat analogous 
to theirs for the trivial representation of 7Ti(M). We say somewhat 
because in our work we have put aside the physics inspired aspects of 
Axelrod and Singer's paper. Instead we have simply taken our task to 
be the production of invariants of framed manifolds (M; f ) out of some 
fixed Riemannian structure on M. 

There is of course Kontsevich's solution by "softer methods" to the 
problem of finding the residual invariants of the Chern-Simons theory 
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at the trivial representation. In a note (see [9]), Kontsevich sketched 
how to define a series of invariants for "framed" 3-dimensional homology 
spheres, and developed his "graph cohomology" to explain the combi­
natorial diversity of these invariants. 

In 1995 Taubes [10] carefully investigated the first of these Kontse­
vich invariants—the one associated to the ©-graph—and clarified the 
appropriate concept of "framing" for all of the graph cohomology. He 
coined the term "singular framings" for them, and they differ from or­
dinary framings in that they exhibit a singularity at one point of M. 

Our invariants—which are less "soft" than Kontsevich's in the sense 
that they do depend on Riemannian concepts—are therefore, on the 
face of it, different from his. But they are also indexed by cocycles, T, 
in an appropriate graph cohomology, and structurally take the form: 

(1.1) I ( M , f ) = AT(M) + </>(T) CS(M, f ) . 

Here Ar(M) is an integral over the configuration spaces specified by 
r and defined by a fixed Riemannian structure on M, 0 ( r ) is a real 
number universally associated to T, and CS(M, f ) denotes the Chern-
Simons integral of the Levi-Civita connection of M relative to the frame 

f• 
The Axelrod-Singer invariants for a flat connection exhibit a similar 

dependance on the framings, and (1.1) is also in general conformity with 
the self-linking invariants in knot theory—as described in [5] (see also 
[1]). There the invariants of a knot K C R3 are described as 

(1.2) IT{K) = AT{K) + fi(T) • self-linking of K, 

where Ir(K) is a configuration space integral which is corrected by an 
anomalous term which is a multiple of the self-linking of K. 

Similarly we now obtain invariants of oriented homology 3-spheres, 
one for every connected cocycle T, of the form 

(1.3) JV(M) = AV(M)-A<J>(T)AQ(M), 

so that AQ(M) is seen to play the role of the self-linking integral in knot 
theory. 

Although the invariants of [2] and [5], as well as the ones described 
here, are all spin-offs from Witten 's [11] original Chern-Simons invari­
ants for homology 3-spheres, it seems to us that , from a purely math­
ematical point of view, they have now, in retrospect, even older an­
tecedents. These are the "iterated integrals" of Chern, or—even older— 
the Adams constructions for the loop-space of a space. 
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Quite generally, the principle of these constructions is to describe 
the cohomology of a function-space F = Map(X,Y) in terms of the 
various evaluation maps: 

Map(X, Y) x X ^ Y . 

When we are dealing with corresponding spaces of imbeddings, or dif-
feomorphisms, then the configuration spaces enter the discussion quite 
naturally, and give rise to new invariants of the type we have been dis­
cussing. 

In this context it is also possible to extend our considerations to local 
systems on M , and derive similar invariants, all governed by some graph 
cohomology. From this point of view the original invariants of Axelrod-
Singer are associated to the "Feynman cocycles" of this cohomology. 

We hope to explore these ideas in a subsequent paper [4]. Here we 
will only deal with the constant coefficient case and the plan of this note 
is as follows: In section 2 we review some facts from the theory of char­
acteristic classes. In section 3 we describe the 0-invariant explicitly, but 
implicitly rely on the description of configuration spaces as developed 
in [2], in analogy with the corresponding algebraic construction given 
by Fulton and MacPherson in [7]. In section 4 we discuss the higher in­
variants while the last, fifth, section is devoted to extending the results 
of [5] to knots in general homology 3-spheres. 

A c k n o w l e d g e m e n t s 

We are indebted for very useful conversations pertaining to these 
matters with Scott Axelrod, Robin Forman, Stavros Garoufalidis and 
Cliff Taubes. 

2. R e v i e w of c h a r a c t e r i s t i c c lasses of SO(n) 

Consider an oriented vector bundle E with odd fiber dimension, 
n = 2k + 1, over a base space M. Also let S(E) denote the associated 
sphere bundle to E, which we may consider to be the space of rays in E; 
or, if E is given a Riemannian structure, as the unit sphere bundle of E. 
In any case S(E) has even fiber dimension 2k over M , and this together 
with the orientability of E allows one to specify a canonical integral 
generator of the rational cohomology of S(E) as a module over H*(M). 
Namely, we consider the "tangent bundle along the fiber," T F S(E), of 
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S (E). This, being an even dimensional oriented bundle, has a canonical 
Euler class: 

(2.1) e = e(T F S(E))eH2k(S(E)), 

which restricts to twice the generator of H2k(S2k) on each fiber, because 
the Euler number of S is 2. 

But then it follows from general principles that e generates H*(S(E)) 
over H*(M) over the rationals. 

Concerning the generator e we have the following lemma, which in 
some sense explains the Chern-Simons term in our subsequent construc­
tion. 

Lemma 2.1. Let 7r* denote integration along the fiber in the bundle 
S(E) over M. Then 

(2.2) 7T*e3 = 2p k{E), 

where p k denotes the k-th Pontrjagin class of E. In fact one has, quite 
generally: 

(2.3) ^e2s+l = 2(p k(E)s, 

and 

(2.4) n,e2s = 0, 

for s = 1,2,... . 

Proof. It suffices to prove these formulae for the universal sphere 
bundle over the classifying space BSO(n), n = Ik + 1, that is for the 
fibering 

BSO(2k) 

(2.5) 

BSO(2k + l) 

with fiber SO{2k + l)/SO{2k) = S2k. 
Here we can keep track of the rational cohomology of the spaces 

involved by choosing a maximal torus T = (Sl)k for SO(2k + 1) in the 
usual manner, so that T corresponds to diagonal 2 x 2 blocks ending 
with a 1 in the last diagonal position. In this way H*(BT) becomes 
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identified with the polynomial ring Q [ x i , . . . , x k] and the Weyl group 
of SO(2k + 1) acts on this cohomology by 1) permutations of the x i, 
and 2) changes of sign x i —> ±x i. On the other hand the Weyl group of 
SO(2k) acts as the subgroup which 1) permutes the x i, and 2) allows 
only even changes of sign x i —> e x , i = ± 1 , with FJ i-ì = 1-

It follows that the invariants of H*(BT) under SO(2k + 1) are given 
by the invariant polynomials 0~r 0~r ( x1 « . . . « x k), r < k, while those 
invariant under SO(2k) are generated by r and an additional element 

(2.6) e = x1...x keH2k(BT). 

From the well-known identification of H*(BSO(2k + 1)) and 
H*(BSO(2k)) with these rings of invariants respectively, we conclude 
that: 

(2.7) e2 = ir* (x2 ... x2k) = n*ak in (2.6). 

But then 

(2.8) 7T*e = 7T*(e7r*k) = 2 ( k 

by the permanence relation and the fact that 7r*e = 2 remarked upon 
earlier. If we take ar to be universal Pontrjagin class—as opposed to 
the convention p r = (—l)r ar—then (2.7) implies (2.2), and the general 
case follows similarly from e2s+l = e-K*(ok)s. q.e.d. 

3. T h e s imples t invariant 

From now on we will only consider a 3-dimensional rational homol­
ogy sphere M. The boundary of the configuration space of two points in 
M, C2(M), is then isomorphic to the 2-sphere bundle S(TM) over M. 
In the previous section we have seen how to construct a vertical gener­
ator e in a sphere bundle using Riemannian concepts. In this section 
we will give this generator explicitly as an element of Q2(dC2(M)). In 
the de Rham theory we can divide by 2 and so we will actually describe 
r] = e/2. Then we will extend it to the whole of 0 2 (C2(M)) and will 
show that its differential is the Poincare dual of the diagonal in M x M. 
The next step will be to use this element to construct a closed form in 
Cl2(C%(M)). It is precisely through this form that we will be able to 
write the simplest invariant of the rational homology sphere M as an 
integral over C$(M) (notice that in [2], [9] and [10] the "corresponding" 
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0-invariant is written as an integral over C2(M)). Finally, we will prove 
that , apart from an anomalous term which we compute explicitly, this 
is actually an invariant. 

3 .1 . T h e generator of H2(dC2{M)). We may consider dC2(M) 
as the sphere bundle P x SO(3) S2 —> M where P —> M is the orthonormal 
frame bundle of TM with respect to some fixed Riemannian structure, 
so that we have the commutative diagram: 

PxSO(3)S2 p— PxS2 

M <-
p 

Note that here 7f9 is a morphism of principal SO(3)-bundles while p is 
a corresponding morphism of S2-bundles. 

We will write our class 77, or more precisely p*r], as a closed form in 
0basic(P x S2) such that Tt^p*r] = 1. For the (0, 2) component of p*r] we 
choose the SO(3)-invariant volume element 

to = xdy dz + ydzdx + zdxdy = - i j x i dx j dx k, 

which satisfies S2 to = An. The SO(3)-action on S2 is given by the 
vector fields 

X - f d 

dx k 

We have 

L X i to = 0, X{to = dx i. 

Let {£1, ^2, £3g be the basis of 50 (3) that corresponds to the vector fields 
Xi,X2,X%\ that is, 

\Si)jk = ^ ijk-

Then a connection 6 on P can be expanded in this basis as 

0 = 0 ^ , 

so that , by the definition of a connection, we have 

L X i j = -ijk0k X t j = i j . 
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In the following we will write Qi also for the pullback of Qi to P x S2, 
and similarly consider the coordinates x i of R3 also as pulled back to 
P x S2. This understood consider the invariant 1-form 6i x i. It then 
follows from this invariance that 

bX i d(6j x j) = —d(iX i j x j) = —dx i. 

Next, we have the following 

Propos i t i on 3 . 1 . The 2-form 

(3.1) T) = — , xx i = l 

is basic in P x S2 —>• P XSO(3) S2- Moreover, if we write fj = p*r), then 

(3.2) 4r, = 1, 7r*V = 0. 

Finally, if (fi is the automorphism of the bundle P XSO(3) S 2 —)• M given 
by the antipodal map on the fiber, then 

(3.3) <fi*r] = —ri. 

Proof. Eqn. (3.1) follows directly from the previous discussion. 
To prove (3.2), we notice that p*ir^ = ïr^p*- Thus, the first identity 

is just a consequence of the fact that 

7ff[u; + d(öi x i) ] = 7ffu; = 47r. 

For the second identity we compute 

(4n)2^(p*vf =7ff[2ü;d(öi x i) +d{0i x i)d{j x j)} 

=2d9i^{u;x i) - Oija^dx i dx j) = 0. 

For the last identity, notice that the integral of LOx i vanishes by symme­
try and that dx i dx j is exact. 

Finally, to prove (3.3), we consider the automorphism cfi of P x S2 —> 
P obtained by the antipodal map on S2: 

(px i — x i. 

Clearly, <fi*p*r] = —p*r]. Moreover, (fip = pep. Then 

p (p 7] = (fi p r] = —p 7], 

which implies (3.3). q.e.d. 
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Digres s ion . If we introduce the covariant derivative D, 

(Dx)i = dx i - eij k6j x k, 

and the curvature F = F iCi, 

(3.4) F i = d6i - \ i jkQjQk, 

then a straightforward but tedious computation shows that we can also 
write 

, ,x » ±eijk x i(Dx)j(Dx)k + F i x i 
3.1' p*ri = l - ^ -• 

47T 

In fact, 

-ijk x i(Dx)j(Dx)k =^ijk x i dx j dx k - -eijk x i ejr s 6r x s dx k 

~ i x i d x j €kr u x s 

2 
1 
2 

~r i x i £jr v x s f,km m x n 

üü-9i dx i + ^ei jk x i9j9k. 

To obtain the last identity we have used 

i 

and the constraint x i x i = 1. 

Note also that , if one considers x = x i ̂  as an element of the funda­
mental representation of 50 (3), then, by using the identities 

Tr i ^ j = -2<i j , Tr i j , Çk] = 2ijk, 

one can rewrite (3.1) and (??') as 

(3.5) p*i] 
to ìdTr(ox) Tr(x D x D x - F x) 2 

47T 87T 

End of the digression. 
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3.2. The extension to C2(M). First we want to extend our 
form 7] to a small neighborhood U of dC2{M). We can think of this 
neighborhood as the complement TM' of the zero section of the tangent 
bundle TM. We still have an SO(3)-bundle 

P x (JR\0) A TM'. 

Scaling each coordinate x i in M\0 by r = (x\)2 + (x ̂ ) 2 + (x3)2, we get 
the closed, basic form 

(3-6) p = W + 4d 

with a; defined as before. Then we consider a second neighborhood 
V containing U and contained in C2(M), and choose a function p on 
C<2{M) that is constant and equal to —1 in U, and constant and equal 
to 0 in the complement of V. It is thus clear that d(pri) represents a 
class in H3(M x M) = H3(M) <g> H3(M). 

Let us denote by 7ri and 7T2 the two natural projections from M x M 
to M, i.e., 

7Ti(mi ,m 2 ) = m i 

and by v a unit volume form on M (not necessarily the volume form 
determined by the metric). In fact any v with R M v = 1 would do, and 
we will use the term "unit volume" form in this sense throughout. Then 
the generators of H3(M x M) are v\ and v2, defined by 

and we can write [d(prf)\ = c\v\ + c2v2 for some constants c\ and c2-
Since 

d(pv)v i = / pr/v i = - r/v i = - v = - 1 , 
C 2 (M) dC2(M) dC2(M) M 

we see that actually 

[d(pr])] = v 2 - vi; 

that is, d(pr?) represents the Poincare dual of the diagonal in M x M. 
This means that there exists a form a G Q2(M x M) such that 

(3.7) d(prj) = v2 — v 1 — da. 
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Now consider the involution 

(3.8) T : C2(M) -+ C2(M) 

(mi,m2) >->• (m2 ,mi), 

and its analog on M x M, which we still denote by T. Since T restricted 
to dC2(M) is the automorphism (f> considered in Prop. 3.1, then 

T*(pv) = -pi], 

provided we choose p symmetric (e.g., we can take p to be a function of 
the distance between m\ and m2). It follows that in (3.7) we can choose 
a such that 

T*a = —a. 

Define 

(3.9) fj = prj + a£il2(C2(M)). 

We have therefore proved 

Proposition 3.2. There exist forms r) G Q2(C2(M)) with the fol­
lowing three properties: 

(3.10a) Trf̂ T) = - 1 , 

(3.10b) dfj = v2 — vi, 

(3.10c) T*'i) = -fj. 

Moreover, there exist forms fj with the additional property 

(3.11) L%ri = - n . 

Here id is the inclusion dC<i{M) ̂ - C2(M). 

Remark 3.3. A metric, a compatible connection and a unit volume 
form are not enough to determine a unique fj, for 

(3.12) rj' = fj + dß, 

with ß G Çll{C2{M)) such that T*ß = -ß, still satisfies (3.10). If we 
moreover want fj to satisfy (3.11), then we must also put the restriction 
that ilß = 0. 
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Digress ion (The Riemannian parametrix). Given a Riemannian 
structure g o n a manifold M, a linear operator 

P g : n*(M) ->• fì'-^M) 

with the property that 

(3.13) dP g + P g d = 1 - TTh, 

where 7h is the orthogonal projection onto the harmonic forms, will be 
called a Riemannian parametrix. Of course (3.13) does not define a 
unique P g, for 

(3.14) P g = P g + dQ-Qd 

still satisfies it for any Q : fi*(M) -)• 0 * " 2 ( M ) . 
The harmonic projection can be written as a convolution on M x M 

(or C 2 (M)) as 

where T)A is the representative of the Poincare dual of the diagonal in 
M x M determined by the metric on M. In the case where M is a 
rational homology sphere we have 77A = v2 — vi. 

Now we have the following proposition. 

Propos i t i on 3 .4 . A form r) G 0 2 (C2(M)) satisfying (3.10) with v 
the volume form determined by the metric g is the Schwartz kernel for 
a Riemannian parametrix P g. More precisely, given a form a G Q*(M), 
the operator P g defined by 

(3.15) P ga = -7r2*(r?7r*a) 

satisfies (3.13). 

Proof. We need the following generalization of Stokes' formula: 

(3.16) d-K2* = —vT2*d + 7rftg, 

which holds in the case of an odd-dimensional fiber with boundary. It 
follows that 

dP gCx + P g da =iT2*{d'i) 7r*a) — IT* i*d('i) 7r*a) 

= — v 7T2»7r*a — 7T2*7T* (v a) + a IT* 1] = ( 1 — 7 h ) a , 

where we have also used the fact that IQ-i* = nd*. q.e.d. 
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R e m a r k 3.5 . To define the Riemannian parametrix, we have only 
used properties (3.10). The additional property (3.11) will be crucial 
to define the manifold invariants. Notice, moreover, that the freedom 
(3.12) in defining fj corresponds to the freedom (3.14) in defining P g. 

R e m a r k 3.6. A particular choice of P g is given by P g = d* o G, 
where G is the inverse of D + -h and D is the Laplace operator de­
termined by g. We will not concentrate our interest on this particular 
Riemannian parametrix—as was the case in [2]—but will stick to the 
general case. In [2] it is precisely the Schwartz kernel for this Rieman­
nian parametrix P g that is constructed, and found to be represented on 
the boundary precisely by the form r] we have been considering. Close 
to the boundary there are corrections which are continuous but not 
smooth as forms on M x M (corresponding to the singular part of G). 
These forms, however, become smooth when lifted to C2(M). Then, 
with a suitable choice of ß G Ül{C2{M)) in (3.12), we can recover the 
fj representing P g. 

End of the digression. 

3.3 . E x t e n s i o n t o C${M). Consider the three natural projections 

7Ti, 7T2 and 7T3 from Cz(M) to M given by 

7 i ( m i , m 2 , m 3 ) = m i 

and call 

v i = -Ïi*v. 

Then consider the three natural projections nu, 1^23 and 7ri3 from C${M) 
to C2{M): 

7 i j (mi ,m 2 ,m 3 ) = (m^m j), 1 < i < j < 3, 

and define 

TTji = T 7 i j , 

where T is the involution defined in (3.8). We will denote by 

the pullbacks of the form fj defined in (3.9). We can recast the properties 
of fj as 

dfij = v j — v i, 
(3.17) M _ \ 

f]ji — ~f]ij-
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Finally, introduce 

(3-18) rjijk = Vij + tljk + Vki, 

for i, j and k different from each other. A simple consequence of (3.17) 
is: 

(3.19) d ^ k = ° ' „ 
Vijk — tijkVl-23-

This way we have constructed a closed form in Vt2(C ^(M)). 

R e m a r k 3.7. The form fj depends on the choice of the unit volume 
form. In fact, if we pick up a different volume form v' = v + dr, then, 
by (3.10b), we must replace fjij by j i j = fjij + j — i From (3.18), we 
see that fjijk is unchanged. 

We have not used property (3.11) yet. First notice that the boundary 
of C${M) has four faces of codimension one, which we denote by (12), 
(23), (31) and (123), by indicating the underlying diagonal. Then it 
follows that 

(3.20a) t(i2)'?i23 = -Vu, 

(3.20b) i(23)'7l23 = -Ì123, 

(3.20c) i(3i)0i23 = -mi, 

and 

(3.20d) t(i23)'7i23 = -{rii2 + %3 + mi)-

Here by rij we mean the pullback of the form r] G dC2(M) by the 
restriction to the boundary of the maps Tij. 

More precisely, a face like (12) is a sphere bundle over C2(M). If 
we denote by mi the point in C2(M) where the collapse has happened, 
then (12) can be expressed as 7rj~ dC2(M), where IÏ\ is the corresponding 
projection C2(M) —> M. Then 7712 = iï\rj. Similarly for the faces (23) 
and (31). 

The face (123) is a bundle over M whose fiber F is given by C3(M3) 
modulo global translations and scalings. If we denote by x i , x2 and x3 
the coordinates of F, then we have the projections 

(3.21) ij: F -+ S2, i ? j , 

( x i , x 2 , x 3 ) h^ -x— -, 
x x 
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and their trivial extension to PxF —> PxS2. Since they are equivariant, 

they descend to P Xso(3) F ^ P Xso(3) x^ = dC2(M). Then 7i^ = 

R e m a r k 3.8 . The form 77 is defined up to the differential of a 1-
form that vanishes on the boundary. Under the transformation (3.12), 
we have fj'123

 = V123 + d{ß\2 + /?23 + ßzi)- More generally, since the 
properties we are interested in are (3.19) and (3.20), we can allow the 
addition of any exact term, 

7/123 = O123 + dß, 

with ß G Q1(C3(M)) and vanishing on the boundary. 

3.4. T h e s imples t invariant. We now have all the necessary 
elements to define the configuration space integral: 

(3.22) Ae= Z fjl23vl. 
C3(M) 

The apparent asymmetry in the choice of v\ can be removed if we notice 
that , by cyclically exchanging the three points in Cz(M), we also have 

AQ(M)= rjf23v2= fjl23v3 = ^ fJl23(vl+v2 + v 3 ) -
C3(M) C3(M) C3(M) 

The definition of AQ relies on many choices: a metric, a connection 
compatible with that metric and a unit volume form; moreover, 77123 is 
defined up to the differential of a 1-form that vanishes on the boundary. 
The last freedom is immediately seen not to have consequences on AQ 
since 77123 and v3 are closed forms. As we will see in the next subsection, 
AQ is not completely independent of all the other choices. However, we 
will be able to prove the following. 

T h e o r e m 3 .9 . Given a section f of the frame bundle P, the com­
bination 

(3.23) IQ(Mf) = AQ(M) + ^CS(Mf) 

is independent of all the choices involved (except for the framing). Here 

CS(M,f) = - - ^ Z f*Tr(ede + le3 

8TH M V 3 

( 3 2 4 ) 1 1 
A 2 i dQi — TT €Qi0:>0 
47T M 6 
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is the Chern-Simons integral of the same metric connection used to 
define 77. 

Thus, Io(M,f) is an invariant for the framed rational homology 
sphere (M, f ) . 

R e m a r k 3 .10 . In an SO(3)-bundle, it is half the Chern-Simons 
form that restricted to the fiber yields the integral generator [6]. There­
fore, the Chern-Simons term is defined up to an even integer, and the 
©-invariant IQ up to half an integer. 

R e m a r k 3 .11 . So far we have considered v to be a unit volume 
form (not necessarily determined by the metric). We can drop this 
assumption defining the invariant as 

Ie(M,f) = ±Ae(M) + jCS(M,f), 

where V = R M v. Notice that , for 77 to satisfy (3.10), we must now take 
the function p in (3.9) to be constant and equal to — V close to the 
boundary. 

If one expands 775*23 in terms of the 7ij's, one obtains AQ as the sum 
of nine integrals. However, many of these integrals vanish for purely 
dimensional reasons. After rearranging the points in Cz(M), we can 
rewrite AQ as the sum of three contributions: 

Ae(M) = At(M) + 6 A2(M) + 6 A3(M), 

with 

A1(M)= Z 775*2 v 3 = Z f , 
C3(M) C2(M) 

A2(M) = Z 7712 l?23v3, 
C3(M) 

A3(M) = 77i2l?23?731v3, 
C3(M) 

which are graphically represented in Figure 1. 

R e m a r k 3 .12 . The integral A\(M) has the same form as the 0 -
invariant in [2], [9] and [10]. 

D i g r e s s i o n . The three integrals A i are not the only possible com­
binations containing three 77's. In fact we can also consider 

A4(M) = Z vl7?i2l?23 7734v4-
CA(M) 
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A A2 A3 

Figure 1 

However, one has 

Proposition 3.13. For any choice of a metric g and a metric con­
nection 6 involved in the definition of fj, 

A2(M) + 2A4(M) = 0 

if v = v g is the unit volume form determined by the metric. 

Proof. First we notice that, by (3.15), we can rewrite 

A4(M)= Z v g P g v g. 
M 

By (3.13) we have dP g v g = 0; since H2(M) = 0, there exists a form 
7 G Q1(M) such that P g v g = d'y. By (3.13) we also have 

dP2g-P2g d=P gTïh-Tïh P g. 

Therefore, we get 

A4(M)= Z v g P g2dj= Z v g (dP g2 - P gTTh + TTh P g)j = Z v g P gJ, 
M M M 

since h v g = v g and 71h7 = 0. Notice that this expression is independent 
of the choice of 7. For, if we take 7' G Q1(M) such that d'y' = P g v, then 
Hl(M) = 0 implies Z' — 7 = do for some ö G 0°(M); therefore, 

Z v g P gl' - v g P gl= v g P g dô = - Z v g dP g5 = 0-
M M M M 

Now we introduce the linear operator R g : Çl*(M) —> 0*+1(M) de­
fined by 

R g = 2 7r2*(i727r*a), 
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so we can write 

A2(M) = 2 Z R g P g v g. 
M 

Following the same lines of the proof of Prop. 3.4 and using the second 
identity of (3.2), we can show that 

dR g + R g d = -(v g P g + P g v g), 

where v g is the operator that acts by multiplication for the volume form 
v g. Therefore, 

A2{M) = 2 Z R g d-f = - 2 Z (dR g + v g P g + P g v gh =~2 Z v g P gll 
M M M 

since v gj = 0. q.e.d. 

R e m a r k 3 .14 . If fj is so chosen as to represent P g = d* o G, then 
both A2(M) and A±(M) vanish since P g v g = 0. 

End of the digression. 

3.5. P r o o f of T h e o r e m 3.9. We will use here a technique similar 
to that discussed in [2]. That is, we will extend our previous construction 
from C n(M) to C n(M) x I , where I is a parameter space. 

We introduce a parameter r ranging over the unit interval I , and let 
all our quantities—the metric g, the metric connection 9 and the unit 
volume form v—depend smoothly on r . Then AQ will become a function 
on I. More precisely, we introduce the trivial bundles C n(M) x I and 
denote by n and a the two projections to C n(M) and I respectively. 
Then we define 

AQ,T{M) =a*(r)3
123v3), 

where now 57123v3 is seen as a form in Çfi(Cz(M) x I). 

As for v we take a representative of the class in H3(M x I ) = 
H3(M) that satisfies a*v = 1. Notice that , as a form, v belongs to 
the completion of 0 3 ( M ) <g> Q°(I) © Q2(M) <g> fi1 ( I ) . 

To let the connection vary on I , we consider it as a connection on 
the pulled-back bundle 

7T - 1P p M X I . 
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Now we will construct r\ as a closed form in Q2(dC2{M) x I). As 
before, we can think of the sphere bundle dC2{M) x I —> M x I as 
n~lP Xso(3) S12- Consider the commutative diagram: 

^ Pxso^S2 ^ - ix^PxS2 

M 
p 

A form f\ defined as in (3.1) will be a closed, basic form in Q2(-K~1PXS2). 

As such, it will be the pullback through p of a form n G O2 (ÔC2 (M) x I ) . 
This form will satisfy the same properties (3.2) and (3.3) described in 
Prop. 3.1. Moreover, in accordance with Lemma 2.1, we have 

Lemma 3.15. If n is defined as before, then 

1 

where 

< y = 4 pi, 

öirz 4irz 

is the first Pontrjagin form on M x I. 

Proof. Consider fj as in (3.1). Since LO2 = 0, we have 

(47T) W =7ff {3a; [d(^x i)}2 + [d(#x)]3g 

=3 dei dOj 7ff (w x i x j) - 3 d i 6j 0fe 7ff (x i dx j dxfc). 

A simple evaluation of these integrals shows that 

-d 4 -a 4 

7T* (w x i x j ) = -7T i j , 7T* (a;i cfej dx*;) = ^ ij£. 

Therefore, 

(47T) p T T ^ 3 = (47r)27fff/3 = doi döi - ijfcd i j #fc, 

which is equal to F i F i by (3.4). (Notice that Tré»4 = 0.) q.e.d. 

The extension of 77 to 77 G Q2(C2(M) x I) and the definition of 77123 
as a representative of H2(C ^(M) x I) = H2{C%{M)) proceed as before, 
by taking an appropriate p G Q°(C2(M) x I) and a G Q2(M x M x I). 
(Notice only that the involution T and the projections 7i and Tij act as 
the identity on I ) In particular, the properties (3.17), (3.19) and (3.20) 
still hold. 

Now we are in a position to define AQ T and to prove 
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L e m m a 3.16. For an arbitrary dependence of g, 9 and v on I, we 
have 

Ae,i(M) - Aefi(M) = Z dAe,T(M) = -\ Z pl. 
I 4

 MXI 

Then Theorem 3.9 follows immediately since 

CSi(M,f)-CS0(M,f)= Z pl. 
MXI 

Proof. We use formula (3.16) and get 

3 d * 3 * 3 
dAetT{M) = -a*d(rii23 v3) + < 4 f ó i 2 3 vs) = / 4fói23 va), 

dCs(M) 

since 77̂ 23 ^ is closed. 
We will first consider the principal faces of dCz(M), i.e., the faces 

(12), (23) and (31). The last two are immediately seen to give no 
contribution since, by (3.20b) and (3.20c), there are no forms depending 
on the point 1 in the first case and no forms depending on the point 2 
in the second case. Therefore, we are left only with the contribution of 
face (12), viz., 

3 Z 3 1 
^12v3 = - / V = —7 pU 

(12) dC2(M) 4 

by Lemma 3.15. 
To end our proof we have only to show that the integral over the 

hidden face (123) vanishes. This face is a bundle over M x I, 

(123) > M x I , 

whose fiber F can be described as C3(R3) modulo translations and scal-
ings. Therefore, F is a 5-dimensional space whose boundary has three 
components, denoted by ((12)3), (1(23)) and ((31)2). A component of 
dF, say ((12)3), can be then described as follows: fix the translations 
by x3=0; so F close to a component of the boundary looks like C ^ R 3 ) 
divided by scalings. Since d C ^ R 3 ) is a S ̂ -bundle over R3 , dividing by 
the scaling makes each component of dF a S ̂ -bundle over S2. 

The integral that we want to evaluate can be written as 

- Z {rn2 + mz + mif v = v^i ( ^ + V23 + mif• 
(123) M 
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We now consider the commutative diagram: 

TT^PXSO^ F ^— n-iPxF 

T (123) * < 1 2 3 ) 

M X I < 7 T - 1 P 
p 

Then, denoting by r i j , uij and x ijk the pullbacks of 77, LO and x k through 
the map Tij defined in (3.21), we have 

( 4 7 r ) 3 p * 7 r i 1 2 3 ) ( 7 ? i 2 + 7 ? 2 3 + r ? 3 i ) 3 

= ( 4 7 T ) 3 7 f i 1 2 3 ) r ( m 2 + % 3 + % l ) 3 

=7fi1 2 3 ) {wi2 + W23 +L03i+d [9i (xi2,i + x23,i + x31,i)] } 

= 3 0i Z (LÜ12+LÜ23+U3I)
2 d(xi2,i+x23,i + x3ììi) 

Z F 

= 3 ei (wi2 + W23 + W31)2 (xi2,i + x23,i + x3iyi) = 0, 
ÔF 

The last identity follows from the fact that 

(wi2 +W23 + W31) = 0 

on OF. In fact, on a face, say ((12)3), we have 

W12 + LO23 + W3I = w12, 

and similarly on the other faces. q.e.d. 

This concludes the proof of Theorem 3.9. 

3.6. T h e evaluat ion of AQ on t h e 3-sphere. We may think 
of S3 as the group SU(2). Then, given an element h, we take as unit 
volume form 

v = C Tr(h-1 dhf, C l 

96TT 2 

where the trace is taken in the adjoint representation. 
In a left and right invariant metric the Levi-Civita connection is 

given by 

r X i X j = - [X i,X j] 
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on a left invariant basis of vector fields. This implies that the connection 
form on P when pulled back by a left invariant, orthonormal frame f L 
is given by 

f*L9 = \h-1dh. 

Consider now the orientation reversing involution 

7 : S3 ->• S3, 

h t-> h-1, 

and its lifts to C ̂ ( S 3 ) and Cs(S'i). With our choice ofv, we have 

(3.25) 7*v = -v. 

Moreover, if we denote by R the adjoint representation which corre­
sponds to projecting S3 to SO(3), we can write 

(3.26) j* f Le = f LeR{-h~^ = hf Leh'1 + hdh~l. 

Let us now consider the action of 7 on dC2(S3). On the base we have the 
action of 7 defined before; a point x G S2 is however sent into —R(h) x. 
In fact, a point in the tangent bundle is given by h exp(x), with x in 
the Lie algebra. Then 

j[h exp(x)] = exp(—x) h~ = h~ h exp(—x) h~ . 

By (3.26), we also have 

j*F = R(h)F, 7*Dx = -R(h) D x . 

Therefore, using (3.5), we conclude that 

(3.27) j*7] = -T). 

We can always choose p G C ̂ (M) to be invariant under the action 
of 7. Then, from (3.7), we see that 

7*da = —da. 

Thus, up to an exact term, we can choose a to be odd and, finally, 
obtain 

(3.28) 7*77 = -fj; 
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consequently, 

(3.29) 7**?i23 = -17123 • 

We know by Theorem 3.9 that the value of AQ does not depend on 
these choices, as long as we do not change our connection 9. Therefore, 
with this fixed choice of 6, we have 

(3.30) Ae(S
3) = 0 

since we have found an involution, 7, that reverses the orientation of 
Cz(M) but leaves 17123v3 unchanged. Therefore, 

Ie(S\f L) = jCS(S\f L). 

Moreover, since 

df Le = -2f*Le\ 

we get 

(3.31) Ie(S\f L) = ̂ Z f*L Tr()3 = \ 

If we had instead chosen a right invariant section f R = h~l f L h, 
then 

f Re = -\dhh-\ 

and we would have obtained 

(3-32) Ie{S\f R) = -1-. 

Remark 3.17. The left and right framings are related by the ad­
joint map from S3 to SO(3), and hence it has degree 2. So the corre­
sponding Chern-Simons terms differ by 4 (see Remark 3.10). As the 
Chern-Simons terms of these two framings are clearly opposite in sign, 
we could have concluded a priori that CS(S3,f LtR) must be ±2. 

Note also that the same arguments would have worked for M = 
SO(3) and would have yielded half the answer for the 0-invariant. 
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4. The higher invariants 

Our first step is the construction of closed forms on C n(M). To do 
so, we consider the natural projections 

i : C n(M) - • M, 

Tij:C n(M)^C2(M), ijLj, 

and then pull back the volume form v G Q3(M) and the form fj G 
Q2(C2(M)). We will denote them by v i and rjij. The combination fjijk 
defined in (3.18) is now a closed form in Q2(C n(M)) for any triple of 
distinct indices ijk. Of course, not all these forms are independent. In 
particular, we notice that 

Vijk = ( -1) ' 7 Va(jik), 

where a is a permutation. Finally, if n = 2V, a product of 3V fjij ̂ s will 
be a top form on C n(M), while a product of 3V fjij ̂ s and one volume 
form will be a top form on C n+\(M). It is then natural to consider the 
relation between these integrals and trivalent graphs. We start with the 
following definition. 

Definition 4.1 (Kontsevich). In our context the simplest way to 
describe the graph cohomology is as follows. We call a decorated graph 
a graph with oriented edges and numbered vertices (by convention we 
start the enumeration by 1). We require edges always to connect distinct 
vertices. If two vertices are connected by exactly one edge, we call that 
edge regular. Moreover, denoting by V the number of vertices and by 
E the number of edges, we grade the collection of decorated graphs by 

ordY = E-V, 
(4.1) V ' degr = 2 E - 3 V . 

The O-graph has order 1 and degree 0. Examples of decorated 
graphs of order 2 are shown in Figure 2; Y\ and V^ have degree 0, 
while r" has degree 1. Notice that a trivalent graph Y has always degree 
zero; moreover, its order can be written as 

V 
ordr = - . 

2 
To each decorated trivalent graph Y and 3-manifold M we can as­

sociate a number Ar(M) given by 

(4.2) AT(M) = Z vo Y Vijo, 
C n+1(M) {ij)eT 
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r' 

where n = 2 ordì1, and (ij) denotes the oriented edge connecting the 
vertex i to the vertex j . Notice that each vertex carries a number 
between 1 and n, while 0 denotes the (n + l)-st point in C n+i(M). 

Remark 4.2. If we expand the product of 7ij0's in Ar(M), the 
term coming from choosing fjij in each factor will read 

C n+l(M) {ij Y C n(M) 
Y ij, 

(ij)er 

that is, it corresponds to the usual association of a configuration space 
integral to a trivalent graph. 

Example 4.3. Referring to the trivalent decorated graphs of Figure 
2, we have the following integrals: 

AVl{M) 

Ar2(M) 

vo 7/120 7/230 7/340 7?410 ??130 77240? 
C Z(M) 

CB(M) 
vO 5?140 ^120 5?230 7/340 • 

In view of the definition of Ar(M), we give the collection of deco­
rated graphs the structure of an algebra over Q, and extend (4.2) by 
linearity. We will denote by D this algebra. Moreover, we introduce the 
following equivalence relation: if two decorated graphs T and T' have 
the same underlying graph, we set 

(4.3) i)(p+l) r ' , 

where p is the order of the permutation of the labeling of the vertices 
to go from r to T', and l is the number of edges whose orientation must 
be reversed. Notice that to equivalent graphs we associate the same 
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number Ar(M). We will denote by D the algebra of graphs modulo 
the above equivalence relation. 

Finally, we introduce a coboundary operator 8 on D. By definition, 
ST is the signed sum of the decorated graphs that are obtained by con­
tracting a regular edge one at a time in V. If the new graph is obtained 
by contracting the oriented edge connecting the vertex i to the vertex 
j , we relabel the vertices by letting decrease by one the vertices greater 
than maxfi, jg and denote by minfi, jg the vertex where the contrac­
tion has happened. Moreover, associate to this contraction a sign <r(i, j) 
defined by 

(4.4) a(i,j) 
ii+i i f j < i . 

Proposition 4.4. The operator ö descends to D and satisfies 82 = 
0 there. Moreover, if we denote by D'n t the (equivalence classes of) 
decorated graphs of order n and degree t, we have 

0 :D'n,t ->D n,t+i-

Proof. If we exchange i and j or reverse the arrow connecting them, 
we get a minus sign from (4.3). In both cases the roles of i and j are 
exchanged. However, a(i,j) = —a(j,i). Therefore, it does not matter 
if we exchange i and j first and then apply ö to the edge (ij) or vice 
versa. 

Then consider three vertices i, j and k. We want to prove that the 
exchange of j with k does not interfere with the action of ö on (ij). 
By the previous step, we can assume i < j and (ij) oriented from i to 
j . First suppose k > i. We can also assume k > j . If we contract 
(ij) we get a factor (—1)j. If we exchange j and k we get a factor —1 
and then we have to contract (ik) with a factor (—\)k. Now we have 
to consider what happens to the relabeling. In the first case all indices 
greater than j are reduced by one, in the second only those greater than 
k. The vertices labeled as j(j + 1 ) . . . (k — 2)(k — 1) in the first case are 
labeled as (j + l)(j + 2 ) . . . (k — l)j in the second. Since the two strings 
have length k — j and are related by one cyclic rotation, we get a factor 
( — \)k~j+l if we want to turn one graph into the other. In summary, if 
we contract (ij) we get a sign (—1)j, while if we echange j and k and 
then contract (ik) we get a sign (—l)k+1 and a labeling that is related 
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to the previous one by the sign (—l)k _ j + 1 . Similarly, we can treat the 
case k < i. Therefore, ö descends to D . 

To prove that ö2 = 0 on D ' , we check that contracting two different 
pairs (ij) and (rs) in the opposite order gives opposite signs. First 
assume j ^ s and i ^ r. By reordering the vertices, we can assume 
that i < j , r < s and j < s. Then contracting i with j gives (—l j 
and let s (and possibly r) decrease by one, so contracting r with s gives 
(—l)s_1; if we instead contract r with s first and then i with j , we get 
(—l)s(—1)j since j is not reduced by one. If s = j and i ^ r, then the 
two orders in which we can contract the pairs (ij) and (rj) are related 
by exchanging i with r, which changes sign on D . Similarly we treat 
the case s ^ j , i = r. 

Finally, we observe that a contraction decreases by one both the 
number of vertices V and the number of edges E (remember that we 
contract only regular edges). The last claim is thus a consequence of 
(4.1). q.e.d. 

E x a m p l e 4 .5 . The 0-graph is a cocycle since it has no regular 
edges. 

E x a m p l e 4 .6 . Referring to the decorated graphs in Figure 2, we 
have 

6T1 = 6 r ' , 

#r2 = 2r'. 

Therefore, the combination 

r = -— ri + - r 2 
12 4 

is a cocycle. 

Notice that the action of ö can be restricted to the algebra of con­
nected graphs. Then we have the following theorem: 

T h e o r e m 4.7 . If V is a connected, trivalent cocycle in graph coho-
mology, then there exists a constant (f)(T) such that 

IT(Mf) = AT(M) + <p(T)CS(M,f) 

is an invariant for the framed rational homology 3-sphere M. Moreover, 
if o rdT is even, then (p(T) = 0. 

From Theorems 3.9, 4.7 and the discussion in subsection 3.6, we get 
the following corollary: 
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Corollary 4.8. If T is a connected, trivalent cocycle in graph co-
homology, then the quantity 

JT (M) = AT (M) - 4 <f>{V) Ae (M) 

is an invariant for the rational homology 3-sphere M. Moreover, if 
ordr is even, then 0(r) = 0; if ordT is odd, then Jr(S3) = 0. 

The last statement follows from the fact that, if we choose the con­
nection 9 as in subsection 3.6, then AQ(S ^) = 0; moreover, the involu­
tion 7 we defined there reverses the orientation of C n+i(S3) since n is 
even, and sends each fjijo and the unit volume form into minus them­
selves. Since the number of forms fjijo is equal to the number of edges 
of r , that is, to 3ordr , we see that the integrand is even when ordT is 
odd. 

4.1. Proof of Theorem 4.7. As in the proof of Theorem 3.9 we 
introduce the unit interval I on which all our quantities depend. In 
the following we will use notation similar to that of subsection 3.5. In 
particular, we still denote by n the projection M x I —>• M and by n~lP 
the pulled-back orthonormal frame bundle. 

If S is a connected component of codimension one of dC n(M) x I 
describing the coincidence of p points, we will denote by ird its projection 
to C n-p+i(M) x I and by F its fiber. This fiber is given by C p(R3) 
modulo translations and rescalings. Therefore, it is a (3p — 4)-manifold 
with corners. Then we have 

Lemma 4.9 (Kontsevich [9]). If F is the fiber of the face S asso­
ciated with the collision of q points x i , . . . ,x q, and by Lij we denote the 
pullbacks of the volume form of the sphere through the projections Tij 
defined in (3.21), then, for any triple of indices i,j,k (i ^ j,i^ k), 

Z i j LOik = 0. 

Proof. If j = k the identity follows since ij = 0. 
If j ^ k, then we have at least three vertices in F. Thus the integra­

tion on x extends to all R3 with some points blown up since we can use 
the other two vertices to fix translations and scalings. The form uij uik 
is regular except at the points x i = x j and x = x k; so we can extend 
the integration of x to R3 with only these two points blown up. Next 
consider the orientation reversing involution 

x i = x j + x k i . 
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The forms uij and tik depend only on the difference of x with x j and 
xfc, so they are sent to Lki = — u ik and Wji = — ciij respectively. Since 
this involution reverses the orientation of the manifold and leaves the 
integrand form unchanged, the integral must vanish. q.e.d. 

Let us denote by nx the projection C n-p+i(M) —> M corresponding 

to the point where all the p points collapsed. Then we define TT = n o nx 

and consider the pulled-back bundle 7r _ 1 P = -x~1IT~1P. We can now 

identify S with n~lP XSO(3) F and consider the commutative diagram: 

IT8 7T9 

C n.p+1(M)xI< Tt-iP 
p 

The form t]ij on this boundary is the pullback of the form r] on dC2(M) x 
I = 7T_1P XSO(3) S2 through the projection -xÌij given by the composi­
tion of the projection Tij : F —> S2 defined in (3.21) with the projection 
irx. Wi th this notation we can state 

L e m m a 4.10 (Axelrod and Singer [2]). If X is a form in Q*(S) 

given by a sum of products of forms r/ij, then 7rf A is the pullback through 

nx of a characteristic form on M x I. In particular, it vanishes unless 

it is of degree zero, in which case it is a constant, or of degree four, in 

which case it is a multiple of the first Pontrjagin form p\. 

Proof. By construction p*X is a polynomial in irx6 and x ^ dô with 
coefficients in Çl*(F). Therefore, p*n^\ = ït^p*\ is a polynomial in -x*J) 

and TTx d0 and is basic. This means that it is a characteristic form on 
C n-p+i(M) x I obtained by pullback from M x I through nx. Since 
M x I is 4-dimensional, its only characteristic forms are the constant 
function and the first Pontrjagin form. q.e.d. 

Now we introduce the projection a from C n+\(M) x I to I , and, for 
each decorated trivalent graph, we define 

Ar,r(M) = a* iv0 Y fjijo • 

\ (ij)er / 

Since the integrand is a closed form, d A , T will be given only by bound­
ary contributions. We have the following: 
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L e m m a 4 .11 . The only boundary terms that contribute to dAr,r 
come from: 

1. faces corresponding to the collapse of two points connected by ex­
actly one edge in F; 

2. the face corresponding to the collapse of all points but the point 
labeled 0; in this case, the contribution is a multiple of the first 
Pontrjagin form if ord T is odd, and vanishes if ord T is even. 

Assuming this lemma for the moment, suppose that 1 and 2 are 
points as in case 1. Then, on the face where 1 and 2 come together, 
f)i20 = —i]i2 and its pushforward gives — 1. Notice that the rest of the 
graph is left unchanged. Now compare what happens if we contract the 
pair (ij), assuming i < j , instead of (12). To do so we bring the pair i 
to 1 and j to 2 by using cyclic rotations, then contract and rotate again 
to bring the vertex i into its original position. More explicitly, first we 
rotate the points 12 . . . i... j ... n to i(i + l)... j ... n l 2 . . . (i — 1). Since 
we have done i — 1 cyclic rotations in an even chain, we get the sign 
(—l)i_ 1 . Then we rotate (i + 1 ) . . . j to j(i + 1 ) . . . (j — 1). This gives 
sign (— i j~i + l since we have done one cyclic rotation in a chain of j — i 
elements. Then we contract the two vertices. Finally, we rotate i back 
to its original position; this gives no sign since the chain is odd now. 
Thus, the contraction of i with j , with i < j , has sign (—1)j. This 
is in accordance with the sign convention (4.4) in the definition of the 
coboundary operator ö. Therefore, we have proved 

Corollary 4 .12 . If V is a connected, trivalent cocycle in graph 
cohomology, then for an arbitrary dependence of g, 9 and v on I, 

Artl(M) - AT,o(M) = Z dAT,T(M) = -</>(T) Z p l , 
I MXI 

where (f)(T) is a number that depends only on the cocycle T and vanishes 
if o rdT is even. More generally, if F is not a cocycle, we have 

dAr,T(M) = -Asr,T(M) - <f>(F) Z p l . 
MxI 

From this corollary we obtain Theorem 4.7. 

Proof of Lemma 4-H- To fix our notation, in the following we will 
denote by S a boundary face and by nd its projection to C n-q+2(M) x I , 
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where q (q > 1) is the number of collapsing points. We will denote by 
F the (3q — 4)-dimensional fiber. We will denote by A the restriction to 
the boundary of one summand of the integrand form in ArjT, and will 
write 

A = A l 7T A 2 . 

First we show that the boundary faces involving the point labeled 
by 0 do not contribute. Suppose that , besides 0, we have p other points 
(p > 0) coming together (that is, we are taking q = p+1). The boundary 
then projects to C n-p+\ and the fiber F has dimension 3p — 1. Denote 
by e the number of edges in V connecting two points on the boundary 
face S and by eo the number of edges in V connecting a point in S to a 
point outside S. Since T is a trivalent graph, we have 

2e + eo = 3p. 

Notice that , if both i and j belong to S, then 7ij0 = — (Vij + Vjo + Voi)', 
if only i belongs to S, then fjijo = —r]io. Therefore, each edge with at 
least one vertex in S contributes with a 2-form in the vertical direction; 
that is, 

deg Ai = 2(e + e0) = 3p + e0. 

Since the fiber has dimension 3p — 1, we see that 

deg7if Ai = e0 + 1. 

Thus, if eo > 0, then vo 7rf Ai = 0 since M x I has dimension four. On 
the other hand, if eo = 0, then 7rf Ai vanishes by Lemma 4.10. 

Next we come to the case where q points (1 < q < n + 1) come 
together and the point labeled by 0 is not involved. In this case, if both 
i and j belong to S, then 7ij0 = — Vij- If) however, at least one vertex 
does not belong to S, then fjijo will be basic (that is, it will contribute 
to A2). Therefore, the form degree in the vertical direction is equal to 
the number e of edges connecting vertices inside S. Again we have the 
relation 

2e + e0 = 3q, 

which implies 

deg Ai = 3q-e0. 
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Since the fiber has dimension 3q — 4, we get 

deg7if Ai = 4 - e 0 . 

By Lemma 4.10, we see that we have a nonvanishing contribution only 
if eo = 4 or eo = 0; moreover, in the latter case, 7rf Ai is a multiple 
of the first Pontrjagin form. Notice that , since we are considering only 
connected diagrams, this case corresponds to case 2 in the Lemma we 
are proving. To prove that this contribution vanishes if ord T is even, 
consider the involution that reverses all coordinates x i in F. Since n 
is even, this involution is orientation reversing. (Notice that we can 
represent F as S 3 n - 4 , with some submanifolds blown up, and that the 
involution corresponds to the antipodal map.) On the other hand, each 
r]ij is sent into —rjij, and since the number of 77's is E = 3 o r d T , we see 
that the integrand does not change sign if ord T is even. In this case, 
then, the integral vanishes. 

We are now left with case eo = 4. Notice that , since degAi = dim F 
now, we must select the top form on F in Ai; that is, we must replace 
each r]ij with ij/(47r). We have two possibilities: 

1. there is at least one vertex in S connected to a vertex outside S 
through exactly one leg; 

2. there are two vertices in S each of which is connected with the 
outside through exactly two legs (the two legs can connect the 
vertex inside with the same vertex outside or with two distinct 
vertices outside), and no other vertex in S is connected to the 
outside. 

In case 1, we can apply Lemma 4.9 and conclude that 7rf Ai = 0. In case 
2, we notice that the two vertices under consideration can be connected 
by an edge only if q = 2 since the diagram is connected, and this corre­
sponds to case 1 in the Lemma we are proving. Thus, we assume that 
the two vertices, which we denote by i and j , are not connected and 
q > 2. In this case, there exists a third vertex k that is conncted to i 
through exactly one edge to which we associate the form ik. Then we 
integrate Uik over the position of the point i. If we make the change of 
variables 

x i = x i x k? 

we realize that the result of this integration does not depend on x k. 
Thus, we can see the vertex k as if it were not connected to i. It will 
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however be connected to two other vertices, possibly not distinct, in S. 
Then we can use Lemma 4.9 and conclude that 7rf Ai vanishes also in 
this case. q.e.d. 

This concludes the proof of Theorem 4.7. 

5. Knots in a rational homology 3-sphere 

The forms fijk we have introduced in the previous sections allow for 
the construction of invariants of knots K C M—when M is a rational 
homology 3-sphere—generalizing the case of knots in R3 discussed in 
[5]. 

In general (for details see [5]), an imbedding 

gives rise to natural imbeddings 

f n :X n ^ Y n, 

and 

C n : C n{X) ^ C n{Y). 

Moreover, since we have natural projections n : C n+t(Y) —> C n(Y), we 
can consider the pulled-back bundles 

C t = {C n ) - l C n+t{Y) ->• C n(X). 

We will then have natural projections C n t —> C n_r t_s. 
In our case we set X = Sl and Y = M, and consider a family of 

imbeddings 

KT : S1 ^ M, reI, 

where I is the unit interval, and the correspomding families of imbed­
dings C n T and of bundles C n \. 

Notice however that C n(S t ) has n\ distinct connected components. 
We pick up one of them by choosing a fixed ordering of the points on 
S1. This connected configuration space will be denoted by C n(Sl). 
Correspondingly we will have the families of imbeddings C KT and of 
bundles C e K . 
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Then we recall that we are also interested in varying the metric, 
the connection form and the unit volume form on M. We can take the 
parameter r to belong to the same unit interval I , so we are led to 
consider the map 

K : S1 x I ->• M x I, 

( a , r ) i-» (KT(O),T), 

and its generalizations 

C f l : C n(Sl)xI^C n{M)xI. 

Finally, the natural projections n : C n+t(M) x I —> C n(M) x I allow us 
to define the pulled-back bundles 

C K t = {C K)-l(C n+t{M)xI). 

Again we have natural projections C n t —> C n_rt_s; the case r = n,t = s 
yields the projection 

a : C K t ->• I. 

Using the maps C n we can pull back the forms rjij G Q2(C n(M)). 
We will keep denoting them by fjij to avoid cumbersome notation. Sim­
ilarly we can pull back the forms fjij G Q2(C n(M) x I ) by the maps 
C K 

n ' 
Notice that a form fjij G Vt2(C ̂ t) (more precisely we should write 

C n*Vij) depends on r in two ways: through the metric connection 6 

and through the map C n • 

As in the case of manifold invariants, we will look for configuration 
space integrals that yield functions on I. A constant function will then 
be a knot invariant. 

The simplest quantity we can write down with these ingredients is 
the self-linking number 

(5.1) sln(K,M) = Z fi, 
"•-2,0 

which is not a knot invariant. In fact, given a family of imbeddings KT, 
we can write 

s ln (K T ,M) = cr*57, 
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where a is the projection C K —> I. We then note that C K*v i = 0, so r) 

is a closed form on C K0; moreover, dC K0 = S1 x {—1,1}. Therefore, we 
have 

(5.2) dsln(KT,M) = aU = Z fj = - 2 Z Kr , . 

For a given imbedding K, the map 

(5.3) Î/IK-.S1-* dC2(M) 

is defined as follows: Consider the tangent map K* : TS1 —> TM and 
its restriction to the sphere bundles. Since S(TSl) = S1 x {—1,1}, we 
actually have two maps—opposite to each other—from Sl to S(TM) = 
dC2(M), one corresponding to the point —1 and the other to the point 
1. We take ipK as the latter. 

In the next subsection we will show how to associate knot invariants 
to cocycles in a new graph cohomology. We will see that the only possi­
ble failure for the integrals we write down to be true invariants is given 
by a term proportional to dsln(KT, M). Therefore, subtracting the cor­
rect multiple of the self-linking number, we obtain knot invariants. 

5.1 . K n o t invariants. To define knot invariants, we have to in­
troduce an appropriate graph cohomology. Essentially we use the same 
diagrams considered in sec. 4, but with some important modifications. 

Defini t ion 5 .1 . We call a decorated graph for knots a decorated 
graph with a distinguished loop (representing the knot) on which we 
orient all the edges consistently. We call external the vertices on the 
knot and internal the others. We assume that there are always at least 
two external vertices. We call internal the edges which do not constitute 
the knot and external those which do. Following [5], we call connected 
a decorated graph for knots such that its underlying graph is connected 
after removing any pair of external edges. (In [1], such a graph is called 
prime.) Finally, denoting by E the number of internal edges and by 

V i and V e the number of internal and external vertices, we grade the 
collection of decorated graphs for knots by 

ordT = E-V i 
5.4 

V ; degT = 2E - 3V i - V e. 

The ©-graph can be seen as a connected decorated graph for knots 
of order 1 and degree 0 if its outer circle is reinterpreted as the knot. 
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Figure 3 

Figure 4 

Examples of connected decorated graphs for knots of order 2 and degree 
0 are shown in Figure 3; in Figure 3 we have instead connected decorated 
graphs for knots of order 2 and degree 1. In all these graphs it is 
understood that the outer circle represents the knot. 

We will follow the convention of labeling first the external vertices 
following the fixed orientation. Only after we have exhausted the exter­
nal vertices do we start labeling the internal ones. In this we have the 
same freedom as we had before, as well as the freedom in orienting the 
internal edges. We divide the algebra of graphs by the same equivalence 
relation (4.3) we had before. We keep calling D the quotient. 

To a trivalent graph r G D we can associate the number 

(5.5) Ar(K,M)= Z vo Y ijo, 
"~n,t+i (ij)er 

where n and t are the numbers of external and internal vertices in I\ 
Notice that by (ij) now we mean only the internal edges. If we denote 
by E their number, we have 

(5.6) 2E = n + 3t, 
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since the external vertices are univalent as for the internal edges. This 
implies that the order of a trivalent graph is 0 and that the integrand 
in (5.5) is actually a top form on C n t + 1 . Moreover, in this case we have 

(5.7) o r d r = — . 

In most cases it is possible to replace fjijo by fjij in (5.5). Actually, 
we have 

L e m m a 5.2. Unless (ij) belongs to an internal loop, the integral 
AY(K,M) in (5.5) does not change if one replaces fjijo with fjij. 

Proof. Since the dimension at the point 0 is saturated by the volume 
form vo, the integration selects the components of the 2-form fjijo that 
carry either one form degree at each vertex i and j or two form degrees 
at one vertex i or j and zero form degrees on the other. The terms 
fjo and fjoi contribute to the latter case only. Therefore, to prove the 
lemma, it is enough to show that , unless (ij) belong to an internal loop, 
integration selects the component of fjijo that carries one form degree 
on i and one on j . 

Suppose first that i is an external vertex. In this case, it is clear 
that the integral vanishes by dimensional reasons if we put a zero- or a 
2-form on i. 

If both i and j are internal we can reason as follows. Suppose we 
select the component of fjijo that carries two form degrees on i. Call j ' 
and j " the other two vertices connected to i. Necessarily, the form on 
one internal edge, say fjij'o, will carry zero form degrees on i, while the 
form on the other internal edge, say fjij"o, will carry one form degree 
on i. Thus, fjij'o will carry two form degrees on j ' , and so on. Notice 
that no vertex can appear twice in this sequence since otherwise it would 
carry a 4-form. Moreover, no external vertex can belong to the sequence 
since we cannot put a 2-form on the knot. Thus, this procedure gives 
a nonvanishing result only if at some point in this sequence we hit the 
vertex j ; in fact, on j we can put a 2-form since in fjijo we have chosen 
the component that carries no form degrees on j . But this can happen 
only if (ij) belongs to an internal loop. q.e.d. 

E x a m p l e 5 .3 . Referring to the graphs in Figure 3, and taking into 
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account Lemma 5.2, we have the following integrals: 

ATl(K,M) 

Ar2(K,M) 

Ar3(K,M) 

On D we can define a coboundary operator 8 as in the case of dec­
orated graphs for manifolds with the additional constraint that internal 
edges connecting external vertices are not contracted. Thus, 8 con­
tracts external regular edges or internal regular edges with at least one 
endpoint internal. Notice that, if the graph has exactly two external 
vertices, there are no external regular edges. We have then an analogue 
of Prop. 4.4. 

Again we call a cocycle a graph Y killed by 8 and note that 8 can be 
restricted to the algebra of connected graph. 

Example 5.4. The ©-graph with its outer circle seen as the knot 
is a cocycle in the graph cohomology for knots since it has no regular 
edges. 

Example 5.5. Referring to the graphs in Figures 3 and 4, we have 

£r1 = 4r'1, 
SF2 = 3T[ + 3T'2, 
<yr3 = 2r' 2 . 

Therefore, the combination 

r = -Vi - - r 2 + - r 3 
4 3 2 A 

is a cocycle in the graph cohomology for knots. 
Notice that 8Y\ differs here from what we obtained in Example 4.6 

since there we had to contract also the edges (13) and (24). 

Finally we can state the following. 

Theorem 5.6. IfK is a knot in the rational homology 3-sphere M 
and r a connected, trivalent cocycle in the graph cohomology for knots, 
then there exists a constant /J,(Y) such that the quantity 

IT(K,M) =AT(K,M)+n(T) sln(K,M) 

is a knot invariant. Moreover, JJ,(T) = 0 if ordT is even. 

= ecK v0m30fl240 = cK ^ 3 ??24, 

= ecK v0 5?140 5?240 %40 = erK ^ 4 5?24%4, 

= eçK v0fji2ofjhoVuo = ecK voVnfiho^-
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For M = R3 , the analogous theorem was proved in [5]; the vanishing 
of / i ( r ) for ordT even in this case was proved in [1]. The simplest 
knot invariant—which corresponds to the cocycle described in Example 
5.5—had previously been described in [8] and [3]. 

R e m a r k 5.7. In [3] a product structure is introduced on the algebra 
of graphs. With this product, 

ATl.r2(K,M)=ATl(K, M) AT,2(K,M). 

This explains why it is enough to restrict our attention to connected 
graphs only. (Actually, in [1] it is shown that as for the computation 
of / i ( r ) it is enough to consider "primitive" graphs, namely, decorated 
graphs for knots such that their underlying graphs are connected after 
removing all external edges.) 

5.2. P r o o f of T h e o r e m 5.6. Since the integrand form is closed 
by construction, then dIr—as a 1-form on the unit interval I—will be 
given just in terms of boundary integrals. 

We first consider the faces corresponding to the collapse of vertices 
(necessarily internal or carrying the volume form) at an internal vertex. 
In this case we can use the same arguments we used in subsection 4.1 
to prove Theorem 4.7. Essentially we come to the same conclusions of 
Lemma 4.11, with one important difference: since there are always at 
least two external vertices and the diagram is connected, it can never 
happen that all points come together at an internal vertex. Therefore, 
we are left only with case 1 of Lemma 4.11, and this is taken care of by 
the action of the coboundary operator ö. 

Now consider a collapse at an external vertex. Here both internal 
and external vertices can come together. Notice that , if the point 0 is in­
volved, the form vanishes since v is a 3-form and S1 x I is 2-dimensional; 
so we must only consider the case where q external and s internal ver­
tices (with q > 1, s > 0 and q + s > 2) come together at a point x on the 
knot. Let us denote by S the corresponding face. This is a bundle over 
I whose fiber is a component of <9C n t + 1 . However, we can also think 

of S as a bundle over C ̂ _q+1 t_s+i whose projection we denote by ixd. 
Its (q + 3s — 2)-dimensional fiber can be described as given by q copies 
of T x Sl and s copies of T KT(x)M up to global translations along T x S 
and scalings, and with the diagonals blown up. Moreover, since we are 
considering only one connected component of the configuration spaces, 
we must fix an ordering of the q points on T x Sl. 
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To give an explicit description of this fiber, we consider the following 
commutative diagram: 

S ^ - ^ n-tP xSO{3) (S2 n F) 

C n-q+l,t-s+l -^ K 1P XSO(3) S2 

Here n is the projection M x I —> M, and f is the composition of the 
projection 

x : C n_q+1t_s+i —> S x I 

to the point where the collapse has happened with the map 

^ K: SlxI - • -K-'P xSO{3) S2, 

(a,r) !->• (IPKT,T) 

with ipK defined in (5.3). (Remember that dC<i{M) = P xSO(3) S2.) 
The space S2 n F is defined as follows. To each a G S2 we associate 

the imbedding 

a : R ->• R 3 , 

x H- ax. 

Then we call F a the configuration space C qs modulo translations and 
scalings; that is, if we denote by the q coordinates in R (with 

xi < x e < • • • < x q) and by x q + i , . . . , x q+s the s coordinates in R3, we 

divide C qs by the translations 

x i y x i + ç, 

x j —)• x j + Ça, 

with ( £ R , and by the scalings 

x i T Ax i, 

x j —> A x j , 

with A e R * . By S2 n F we then mean the pairs (a, F a) with a e S 2 . 
The action of SO(3) on S2 n F is just the defining action on the 

copies of R3 and on S2, and the trivial action on the copies of R. 
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Next consider the form A G Q*(S) given by the restriction to this 

face of one summand of the integrand form in Ip. We can split A as 

A = A l 7T A 2 . 

Then we have 

L e m m a 5.8. If Ai is a vertical form on S given by the restriction 

to this face of a sum of products of forms fjij, then -n*\i vanishes unless 

it is a zero-form, in which case it is a constant, or is a 2-form, in which 

case it is a multiple of f*r\. 

Proof. We can write Ai = f*Ai, where A\ is a sum of products of 
pullbacks of the form r\ G n~lP XSO(3) S2 through the projections 7ij 
we are going to describe. First define 

-Kij :S2ÌKF^S2, 

by 

7ij {a, x\, . . . , x q, x q+i, . . . , xg_|_s 

asgn(j 

P(x j 

p(ax j 

P(x j 

ax 

x 

x 

if i j < q, 

if i < q, j > q, 

if i > q, j < q, 

if i,j > q, 

with 

P(x) 
x 
jxj 

Since the 7ij's are equivariant, they descend to 

TTij : 7 r _ 1 P XSO ( 3 ) (S2 « F ) 4 TX~lP XSO ( 3 ) S2. 

Now consider the commutative diagram: 

n-iP xSO{3) (S2 x F) p — TT^P x (S2 x F) — 13 TT-'P X S2 

•ïï 

SO(3) S 2 K~lP x S2 

The form p* Ai is given in terms of pullbacks of the form rj = p*r], defined 

in (3.1), through the projections Tij. Since the maps 7i j ' s and n act 
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Q -

as the identity on ir P, we conclude that fr^ p*Xi is a polynomial in 9 
and dO with coefficients in Q*(S2). Moreover, we know that it is basic. 
Therefore, it must be either a constant or a multiple of the form 77. As 
a consequence, 7rf Ai is either a constant or a multiple of the form 77. 

q.e.d. 
Now we compute the degree of 7rf Ai. If i and j are in S, then 7)̂ 0 

reduces to 77 .̂ If at least one vertex i or j is not in S, then 77̂ 0 is basic 
in S (that is, it contributes to A2). Thus, the degree of Ai is equal to 
the number of internal edges connecting vertices inside S. Let us denote 
this number by e, and let eo be the number of internal edges connecting 
a point in S with a point outside. Then we have 

2e + e0 = q + 3s, 

since in S we have q univalent and s trivalent vertices (as for the internal 
edges). Since the fiber dimension is q + 3s — 2 we conclude that 

degvif Ai = 2 - e 0 . 

By Lemma 5.8, we then see that 7rf Ai vanishes unless eo = 0 or 
eo = 2. In the former instance all points but the point 0 collapse on the 
knot. The point 0 is now completely disconnected from the point on 
the knot where all points have collapsed; therefore, we can integrate the 
volume form on 0. We are then left with a multiple of f*rj = ip*K 77 to 
be integrated over C e 0 = Sl. But this can also be written as a multiple 
of dsln{KT,M) by (5.2). 

To prove that we do not have this contribution if ordT is even, 
we consider the involution (f> that acts: as the antipodal map on S2, 
trivially on the q = n copies of R, and as the reflection with respect to 
the origin on the s = t copies of R3. Since the maps TTÌJ are equivariant 
and (f)*rj = —77 by Prop. 3.1, we have 

0*Âi = ( - l ) B Â i , 

where E is the number of internal edges. The map ird is also equivariant; 
however, the orientation of the fiber is reversed if t is odd, so 

0*7rfÂi = (-l)B + t7rfÂi. 

On the other hand we know that 7rf Ai is proportional to 77, so 

</>*7rfÂi = -TrfÂi. 
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This means that 7hfÂi vanishes if E + t is even. By (5.6) and (5.7), this 
is equivalent to ordT even. 

To complete our proof, we must finally consider the case eo = 2. In 
this case the fiber dimension is equal to the degree of Ai. As in the 
proof of Lemma 5.8, we write Ai = f*Ai and see that 7rf now selects the 
part of degree 0 in 6. Therefore, we can use the same arguments used 
in [5] to prove that 7rf Ai vanishes unless q + s = 2. This case is taken 
care of by the coboundary operator ö. (Notice that if T has exactly two 
external vertices, say 1 and 2, and we are considering their collapse, 
then we get two opposite contributions as 1 approaches 2 from one or 
the other side, provided that 1 and 2 are not connected by one internal 
edge.) 

This concludes the proof of Theorem 5.6. 

References 

[1] D. Altschuler & L. Freidel, Vassiliev knot invariants and Chern-Simons perturbation 
theory to all orders, Comm. Math. Phys. 187 (1997) 261-287. 

[2] S. Axelrod & I. M. Singer, Chern-Simons perturbation theory, Proc. XXth DGM 
Conf., (ed. S. Catto and A. Rocha) World Scientific, Singapore, 1992, 3-45; 
Chern-Simons perturbation theory. II , J. Differential Geom. 39 (1994) 173-213. 

[3] D. Bar-Natan, Perturbative aspects of the Chern-Simons field theory, Ph. D. Thesis, 
Princeton University, 1991; Perturbative Chern-Simons theory, J. Knot Theory 
Ramifications 4 (1995) 503-548. 

[4] R. Bott & A. S. Cattaneo, Integral invariants of 3-manifolds. II . 

[5] R. Bott & C. Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994) 5247-
5287. 

[6] S. S. Chern & J. Simons, Characteristic forms and geometric invariants, Ann. of 
Math. 99 (1974) 48-69. 

[7] W. Fulton & R. MacPherson, A compactification of configuration spaces, Ann. of 
Math. 139 (1994) 183-225. 

[8] E. Guadagnini, M. Martellini & M. Mintchev, Perturbative aspects of Chern-Simons 
topological quantum field theory, Phys. Lett. B 227 (1989) 111. 

[9] M. Kontsevich, Feynman diagrams and low-dimensional topology, First European 
Congress Math., Paris 1992, Volume II, Prog. Math. 120, Birkhauser, Basel, 
1994, 120. 



i n t e g r a l i n v a r i a n t s o f 3 - m a n i f o l d s 133 

[10] C. Taubes, Homology cobordism and the simplest perturbative Chern-Simons 3-
manifold invariant, Geometry, Topology, and Physics for Raoul Bott, (ed. S.-T. 
Yau), Internat. Press, Cambridge, 1994, 429-538. 

[11] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 
121 (1989) 351-399. 

Harvard University 


