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R I E M A N N - R O C H F O R T O R I C O R B I F O L D S 

VICTOR GUILLEMIN 

1. Introduct ion 

Let « i , . . . , oid and ß be elements of the integer lattice, Z n, and let 
N(jj) be the number of solutions, k = (ki,... , k d), of the equation 

(1.1) kxoix + . . . + k dad = fi , 

the fci's being non-negative integers. For this equation to be well-posed 
we will assume that the QJi's lie in a fixed open half-space. In other 
words: for all i, £(«i) > 0, for some £ G (R n)*. (Otherwise, for every 
fj, for which (1.1) admits a solution it will admit an infinite number 
of solutions!) Also, in order for (1.1) to be solvable, fj, has to be con­
tained in the lattice generated by the QJi's, and, with no essential loss 
of generality, we can assume that this lattice is Z n itself. 

For every subset, I , of { 1 , . . . , dg let R be the subspace of R n 
spanned by those QJi's for which i is in I. We will say that fj, is in 
general position with respect to « i , . . . , ad if fi G R I -H- R I = R n. 
(Thus the elements of R are not in general position with respect to « i , 
. . . , ad if R I is a proper subspace of R n.) 

Let us consider the real analogue of (1.1): 

(1.2) s i « i + . . . + s dad = n + e , e G R n, 

the s i s being non-negative real numbers. The set of solutions, s, of this 
equation is a convex polytope in R d. We will denote this polytope by 
Aß+e and its I- th face: 

(1.3) AIß+t = {s=(si,...,s d)e Aß+t, s i = 0 for i G Ig 

by AI(_|_e. We claim: 
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L T h e o r e m 1.1. If p is in general position with respect to oi\, 
ad the volume of A I + e is, for e small, a polynomial of degree d — n— jIj 
in e. 

Denoting this polynomial by v (e), we will prove below the following: 

T h e o r e m 1.2. For p in general position with respect to ct\, ..., oid, 

;i.4) N) = ET'(£v(e) 
evaluated at e = 0, the T 's being constant coefficient differential opera­
tors of "infinite order" (explicit formulas for which will be given in x5. 
See (3.28)-(3.29).) 

For instance for I = (f>, T} is the Todd operator 

d d f ( d_ 

hi ;i.5) Y ^ ! -exp 
i=l 

de; d 

We will break the proof of (1.4) into two parts: 
1. Let T be the standard n-torus and let p be the linear action of 

T on C defined by 

(1.6) p(expx)z = (e2mai-x z l , . . . , e 2 ™ z ) 

x being in R n and exp x its image in T. If we equip C d with the 
symplectic form 

d 

(1.7) to = p — 1 y dz r A d~z r 
r = l 

p becomes a Hamiltonian action, and its moment map is 

d 

(1.8) *(x) = £ z * \JCr 

r = \ 

If fj, is in general position with respect to « i , . . . , ad, p is a regular value 
of <I>; so the reduced space 

(1.9) X = $-1(p)/T 

is a symplectic orbifold. Let B d be the Bargmann space, i.e., the space 
of holomorphic functions on C which are L2-integrable with respect to 
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the Gaussian measure, ( — i)e~'z' dzdz. By a result of Meinrenken [18] 
and Vergne [25] the multiplicity with which fj, occurs as a weight of the 
representation of the group, T, on B d is equal to the Kawasaki-Riemann-
Roch number of X. On the other hand the elements of the Bargmann 
space which transform according to the weight, fj,, are precisely the 
monomials 

k _ ki k d 

z — zx . . . z d , 

for which k is a solution of (1.1). Thus N(fj,) is equal to the Kawasaki-
Riemann-Roch number of X. 

2. Hence it suffices to show that the Kawasaki-Riemann-Roch num­
ber of X is given by an expression of the form (1.4). This we will do by 
using the fact that the volume of the I- th s t ra tum of the reduced space 

(1.10) X e = $ " V + e)/T 

is equal, on one hand, to the volume of A^ + e ; and, on the other hand, 
by the Duistermaat-Heckman theorem, is equal to the integral over the 
I- th s t ra tum of X of exp(uj + P 6 « c ) J W being the reduced symplectic 
form and the c-'s being the Chern classes of X. From this identity it 
follows that every "mixed characteristic number" of X 

;i.n) X Z expMT/(cl,... c d) 

(for example, the Kawasaki-Riemann-Roch number) can be written as 
an expression of the form (1.4). 

Theorem 1.2 has the following interesting generalization. 

T h e o r e m 1.3. Let P(s) be a polynomial in s\, ..., s d. Then the 
sum 

(1.12) X P(k) 

k 

over the set of solutions, k, of (1.1) is equal to 

(1.13) X T ' 0 | ) Z , P(si,---,s d)ds 

evaluated at e = 0. 
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The proof of this is similar to the proof we have just sketched: For 
£ G R d the sum 

:i-i4) X i(-x 

over the solutions, k, of (1.1) is equal to the equivariant Kawasaki-
Riemann-Roch number of X; and we will show in §4 that this is equal 
to 

X (BZ ; i . l5) Tz - e*s ds 

evaluated at e = 0. (The identity (1.13), for the polynomial, s ̂ , can be 

proved by differentiating both sides of this identity by D? and setting 

e = o.) 
Finally we will describe what happens if ß is not in general position 

with respect to the QJi's. In this case one can define the Kawasaki 
Riemann-Roch number of the reduced space (1.9) to be equal to 

(1.16) X Z exp(u£ - X e i c i ) T j ( c i , . . . , c d) 

with e = P 6 i a i i ß + e being in general position with respect to the 
Qji's, T being given, as above, by (3.28), and UJ6 being the reduced 
symplectic form on Xe. Using the Duistermaat-Heckman theorem it is 
easy to see that the expression (1.16) does not change if one replaces 
e by e' providing all points on the line segment joining fj, + e to fj, + e' 
are in general position with respect to the QJi's. However, we claim that 
more is true: Let C be the cone 

X s ia i i s i > 0 

i.e., let C be the image of the moment map (1.8). 

T h e o r e m 1.4. If fj, + e is in C and e is sufficiently small, then the 
Riemann-Roch number (1.16) is independent of e and is equal to N(pi). 

This theorem follows from a result of Meinrenken-Sjamaar which we 
will describe in section 5. Noting that (1.16) is a mixed characteristic 
number of Xt of the type (1.12), we obtain the following corollary: 

T h e o r e m 1.5. Let e tend to zero along any ray 

fi + e = fi + tv, 0 < t < t0, 
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all points of which lie in C and are in general position with respect to 
the oji's. Then 

(1.17) N(rì = Limf^0J2T I(y)v I(e). 

Meinrenken and Sjamaar have also proved an equivariant version of 
the result we just cited, from which one gets an analogous formula for 
the sum (1.13). 

C o m m e n t s and acknowledgments 
Theorems 1.3 and 1.5 have been proved independently, using differ­

ent methods from ours, by Michel Brion and Michele Vergne [3]. Sylvain 
Cappell and Julius Shaneson have also announced in [4] a result simi­
lar to (1.13) (not, however, involving the dilated polytope, A ^ + £ ) . An 
important special case of (1.15) was discovered by Askold Khovanskii 
in the late nineteen-eighties. He showed that if the toric variety (1.9) 
is non-singular, the sum (1.12) is equal to the leading term in (1.13). 
See [14] and [13]. The fact that the number of solutions of (1.1) is the 
Riemann-Roch invariant of a toric variety has been known for a long 
time (see, for instance, [5]), and has been used by many people, notably 
by Brion [2], Morelli [20], Pommersheim [21] and Sturmfels [24] to ob­
tain various kinds of explicit formulas for N(fj,). We also appear not to 
have been the first persons to have noticed that Duistermaat-Heckman 
can be useful for computing this invariant. See Brion, loc. cit., page 
662, line 12" . 

The results reported on below are part of a project which we are 
involved in with Viktor Ginzburg and Yael Karshon. The goal of this 
project is a "hands-on" proof of Theorem 2.3 of §2 (the Meinrenken-
Vergne theorem) by cobordism methods. 

2. Kawasak i -R iemann-Roch 

Let M be a manifold, G a compact connected Lie group and r : G X 
M —7- M an action of G on M . r is locally free if, for every point, m, 
the stabilizer group of m is a finite subgroup of G. If r is an action of 
this type the quotient space 

(2.1) X = : M/G 

is an orbifold. A theorem of Satake [22] says that the converse is true: 
every orbifold has a presentation of the form (2.1). For the orbifolds 
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we will be concerned with in this article G can be taken to be abelian, 
i.e., to be the standard n-torus. We will also assume below that X 
and M are compact and that r is faithful (i.e., is an injective map 
of G into Diff(M).) For a summary of basic facts about orbifolds we 
refer to [22]. One of the facts we will need is that an orbifold has an 
intrinsic stratification and that to each s t ra tum one can assign, in an 
intrinsic way, the "structure group" of that s t ra tum. In terms of the 
presentation (2.1) the description of this stratification is the following: 
Since M is compact there are only a finite number of subgroups of G 
which can occur as isotropy groups of points. For each of these groups, 
r , let Z be a connected component of M r and let Z° be the subset 
of Z consisting of those points for which the stabilizer group is exactly 
T. Z is a compact submanifold of M, and Z° an open dense subset of 
Z. Moreover both Z and Z° are G-invariant, and the quotient group, 
G/T = GYI acts in a locally free fashion on Z and acts freely on Z°; so 
the quotient space 

(2.2) F = Z/GT 

is a suborbifold of X, and the quotient space 

(2.3) F° = Z°/Gr 

is an open dense submanifold of F. 

Definit ion 2 .1 . The sets, F°, are the s t ra ta of the orbifold strati­
fication of X, and the structure group of F° is F. 

The set of s t ra ta forms a poset (partially ordered set) and so does 
the set of subgroups of G which occur as isotropy groups; however, the 
correspondence 

s t ra tum —> structure group 

inverts the ordering in these posets: If F° is contained in the closure of 
the s t ra tum F ° the structure group of F ° is contained in T. We will 
denote by T* the set of all elements, g G T, having the property that 
g is not contained in the structure group of any s t ra tum whose closure 
contains F°. 

The orbifolds we will be interested in here are symplectic orbifolds, 
and in terms of the presentation (2.1), a symplectic form on X can be 
defined as follows: A k-form, UJ G Q(M), is basic if 

4 (£M) W = ^ M ) ^ = ° 
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for every £ £ ß, and a symplectic form is a basic two-form, UJ, with the 
property that , for every point, m, the annihilator of UJ at m: 

{v £ T m M,i(v)cj = 0} 

is the tangent space to G-m at m. Notice that if a; has this property, and 
F° is a s t ra tum of X with the presentation (2.3), then the restriction of 
UJ to Z° also has this property; so it is the pull-back to Z° of a symplectic 
form on F°. Thus each s t ratum, F°, is a symplectic manifold. 

Let T be the "horizontal component" of the tangent bundle of M , 
i.e., at each point, m, let T m be the quotient 

T m M/T m{G-m) . 

From a symplectic structure on X one gets a symplectic structure on 
this vector bundle i.e., a symplectic bilinear form on each fiber, and 
this implies that this vector bundle can be given a G-invariant complex 
structure which is compatible with this structure. Moreover, though this 
complex structure will not be unique, it will be unique up to isotopy; so 
in particular the Chern classes of T will be well-defined independent 
of the choice of this structure. 

One other assumption which we will make is that the symplectic 
structure on X is "pre-quantizable". In terms of (2.1) this means that 
there exists a line bundle, L —> M, an action 

T"L : G —> automorphisms of L 

which is compatible with r and a G-invariant connection on L whose 
curvature form is UJ. 

By now we have listed all the prerequisites needed for our definition 
of Kawasaki-Riemann-Roch; however, it will be convenient in addition 
to make the following assumption about T H. Let Cl be the trivial 
vector bundle with fiber C . We will assume that there is a G-invariant 
splitting 

(2.4) T H (BCe = L1(B...(BL q 

each of the summands on the left being a complex line bundle. At 
first glance this might seem to be an unduly restrictive assumption; 
but, fortunately, the orbifolds which we will discuss in §3 will have this 
property. Moreover, tha t deux ex machina, the "splitting principle" 
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says that one can always operate as if such a splitting did exist (see 

[1, §21])-
The Kawasaki-Riemann-Roch number of X is by definition an "in­

variant of stratified spaces", i.e., it can be written as a sum over the 
s t ra ta of X: 

(2.5) X R R ( F ° ) , 

where KRR(F°) is the "Kawasaki-Riemann-Roch number" of the stra­
tum, F°. To define this we will assume that F° has a presentation of 
the form (2.3), and its closure a presentation of the form (2.2). Let 

c(L,-) eH G{M,C) 

be the equivariant Chern class of L;, and 

c(L)GfG(M,C) 

the equivariant Chern class of the pre-quantum line bundle, L. Let TT 
be the projection of M onto the quotient space, M/G. By (2.1) this 
induces a contravariant map on cohomology 

TT*: H*(X,C) - • H G(M, C) , 

and, by the Cartan theorem, this is a bijection. Let 

(2.6) c(L,-) = (7r#) -1c(L t-) and c(L) = (7r # ) _ 1 c(L) , 

and let i be the inclusion map of Z into M. From (2.4) we get a splitting 
of vector bundles (over Z) : 

(2.7) 4*Tff e e ' = 4*Li e . . . e 4*L, . 

We will call i*L r a normal or a tangential summand of (2.7) depending 
on whether it is a summand of the normal bundle or not. This distinc­
tion between normal and tangential can also be formulated in terms of 
the action of T on i*L r. Since T acts trivially on Z, it acts on the line 
bundles L; and L by multiplication by characters of the group, T; and 
we will denote these characters by 7; and 7. 

L e m m a 2 .1 . Let g be an element of T*. Then L r is normal or 

tangential depending on whether jr(g) / 1 or jr(g) = 1. 
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Proof. If jr(g) = 1, g acts trivially on the 2-dimensional subspace 
of the normal bundle of Z spanned by L r; and hence the fixed point set 
of r(g) in M is strictly larger than Z itself. Thus g ^ r * . q.e.d. 

Let 

(2.8) 

T r= '£7{g)Y'(l-7i{g)-1exp(-c(L i)))-1 , 
ger# i 

the superscript "prime" indicating that the product is over those i's for 
which i*L i is a normal summand of (2.7), and let 

(2.9) T F tan = expc(L) Y "c{L) (1 - e x p ( - c ( L i ) ) ) - 1 , 
i 

the superscript "double-prime" indicating that the product is over those 
i's for which /,*L i is a tangential summand of (2.7). Finally let T F be 
the product of (2.8) and (2.9). 

Definit ion 2 .2 . The Kawasaki-Riemann-Roch number of F° is the 

integral over F of (#F)~1T F-

We will say a few words about why this invariant is interesting: 
Let W be a compact manifold, and UJ G Çl2{W) a symplectic form. 
Suppose (W,uj) is prequantizable, i.e., suppose there exist a complex 
line bundle, L —> W, and a connection on this bundle whose curvature 
form is LO. Let J be a complex structure on the tangent bundle of W 
which is compatible with UJ. From the data (UJ, L, J ) one gets a "spin-C 
structure" on W, and the connection on L enables one to attach to this 
spin-C structure a "spin-C Dirac operator." We will not a t tempt to 
define here either of these objects. See, however, [16, appendix D]. 

Let Q be the virtual vector space, 

(2.10) Q+-Q~, 

where Q+ is the kernel of the spin-C Dirac operator, and Q~ the cok-
ernel. 

Suppose now that one has an action of G, 

(2.11) T : G —> symplectomorphisms of W , 

and a compatible action, 

(2.12) T\ : G —> automorphisms of L , 
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which preserves the connection. If one chooses J to be G-invariant 
(which one can always do) one gets a representation of G on Q, and 
one can compute the weight multiplicities of this representation as fol­
lows: The existence of the homomorphism (2.12) implies that the action 
(2.11) is a Hamiltonian action. In fact the existence of (2.12) not only 
guarantees that there exists a moment map, 

(2.13) Q-.W^g*, 

but, in fact, via the connection on L, gives one a canonical choice of <I> 
(see [15, p.169]). 

T h e o r e m 2.2 . Let fj, G g* be in the weight lattice of G. If ß is 
a regular value of the moment map (2.13), the multiplicity with which 
fj, occurs as a weight of the representation of G on Q is equal to the 
Kawasaki-Riemann-Roch number of the reduced space 

(2.14) Xß=:^-\fi)/G. 

R e m a r k s 

1. The assumption that fj, is a regular value of <I> implies that 3>_1(/i) 
is a manifold and that the action of G on this manifold is locally 
free. Hence, by (2.14), Xß is an orbifold (and hence KRR(X /U) is 
well-defined). 

2. Special cases of this theorem were proved by us and by Shlomo 
Sternberg in [9] and [10], and we conjectured that this theorem 
should be true in the generality stated above. This conjecture 
has recently been proved, independently, by Eckhard Meinrenken 
and Michele Vergne. For some other recent results bearing on the 
conjecture see [7], [11], [6], [17] and [19]. 

3. In Theorem 2.3 the manifold W need not necessarily be compact. 
If the moment map, <I>, is proper, this theorem is true providing 
solutions of the spin-C Dirac operator are appropriately defined 
at infinity. For instance, for the action of T on C d discussed in x1 
one should take Q to be the Bargmann space, B d. 

3. R i e m a n n - R o c h for toric orbifolds 

We will show below that the Kawasaki-Riemann-Roch number of the 
orbifold (1.9) is given by an expression of the form (1.4) and explicitly 
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compute the T/'s. Let K be the linear action of the standard d-torus, 
T d, on C d defined by 

(3.1) K(e ie)z=(e ieiz1,...,e ie<z d) . 

This action preserves the symplectic form (1.7) and is Hamiltonian, its 
moment map being the map 

(3.2) V(z) = (\z1\
2,...,\z d\2) . 

Moreover it commutes with the action (1.6); so one gets an induced 
Hamiltonian action of T d on the reduced space (1.10). Letting J be the 
moment map associated with this action we will prove: 

T h e o r e m 3 .1 . The image of J is the polytope, Aß+e. 

Proof. By (1.10) the image of J coincides with the image under \P 
of the set, <I>_1(^ + e). However, by (1.8) this is the set of all d-tuples 
(zi,... , z d), z i e C, satisfying 

(3.3) \z1\
2a1 +.. .+ \z d\2ad = n +e . 

Therefore, by (3.2), \P maps this set onto the set of non-negative d-tuples 
( s i , . . . , s d), Si e R, satisfying 

(3.4) s i « i + . . . + s dad = n + e . 

q.e.d. 
For e small, fj, + e is in general position with respect to « i , . . . , ad; 

so the subset of C defined by (3.3) is a T-invariant submanifold of C , 
and T acts on this manifold in a locally free fashion. Let us denote this 
manifold by Me. To describe the orbifold stratification of the spaces 
(1.10), which we will need to know in order to compute the Kawasaki-
Riemann-Roch number of X, we must compute, for each point, m G Me, 
the stabilizer group of m in T. These groups turn out to be the following: 
Let I b e a subset of { 1 , . . . , dg and let M I be the subset of Me defined 
by the equations 

(3.5) z i = 0 , ie I 

and the inequalities 

(3.6) z i ^ o , ieI 
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By (1.6) the element, exp x, of T acts trivially on this set iff 

(3.7) aii(x) G Z 

for i G I c. Hence: 

T h e o r e m 3.2 . Let TI be the subgroup of T defined by (3.7). If 
m G M I , YI is the stabilizer of m . 

The group, TI, has a somewhat nicer description than (3.7): From 
the exponential map, x —> exp x one gets an isomorphism 

(3.8) R n/Z n ^ T . 

Let Z be the sublattice of R n defined by 

(3.9) x ^ Z I ^ ai{x) G Z for i G I c . 

This lattice contains Z n and under the isomorphism (3.8), TI gets 
mapped isomorphically onto the quotient, i.e., 

(3.10) TI = Z I / Z n . 

The M( s define a T-invariant stratification of Mei and from this 
stratification, one gets a symplectic stratification of Xe with s t ra ta 

(3.11) X I = M I jT, 

the structure group of this s t ra tum being TI. An alternative description 
of this stratification is the following: 

T h e o r e m 3 .3 . The strata, X I, of Xe are the pre-images with re­
spect to J of the faces, A I ^ , of Aß+e. 

This, combined with Theorem 6.4 of [8] implies: 

T h e o r e m 3.4 . The symplectic volume of X I is equal to the volume 
of the polytope, A I . 1 

Euclidean volume in the (d — n — | I | ) -plane 

(*) / s iai = ß , s i = 1 for i G I 

has been normalized so tha t the quotient of this plane by the latt ice of integer-valued 
solutions of (*) has volume (2n)n. 
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Since the symplectic form (1.7) is exact, the symplectic structure 
on C d is pre-quantizable. In fact (by [15], loc. cit.) the prequantum 
line bundle, L PQ, over C admits a T -invariant connection and a non-
vanishing T -invariant section with covariant derivative: 

d 

(3.12) r s o / s o = 27Ti y x r dy r — y r dx r . 
r = l 

We will show that when e = 0 this pre-quantum structure on C induces 
a pre-quantum structure on the reduced space (1.10): For e = 0 let 

Me = M , Xe = X , etc. 

and let i be the inclusion of M into C d. Recall tha t since X is the 
quotient, M/T, there is a branched fibration 

(3.13) n:M^X. 

L e m m a 3.5 . A section, s, of L*L PQ is autoparallel along the fibers 
of IT iff it transforms under T according to the character 

(3.14) T ^ e x p x ) = e 2 ^ x . 

Proof. By (1.6) the infinitesimal action of T on C d is given by 

(3.15) v M = £ « i ( v ) x _ y i ^ _ ) 

for v e t = R n. From (3.12) it follows that 

Vv M s0 = {^2ai(v)jz i j2j s0 = Mv)s 0 1 

so that if s = fso, and s is autoparallel along the fibers of IT, then 

D v M f = -n(v) . 

Hence f has to transform under T according to the character, j ß . 
q.e.d. 

The line bundle, i*L PQ, is not necessarily the pull-back of a line 
bundle on X. However, the autoparallel sections of L*L PQ are the sec­
tions of a rank-one sheaf, and we will, by abuse of language, refer to the 
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sections of this sheaf as sections of the "pre-quantum line bundle" on 
X. If s is a section of i*L PQ, which is autoparallel along the fibers of IT, 
and v is a T-invariant vector field, then Vv s is also autoparallel along 
the fibers of IT, so this "pre-quantum line bundle" has a well-defined 
connection. 

To apply the results of Section 2 to X we will need another de­
scription of this pre-quantum line bundle: We will need a line bundle, 
L ̂  —T- M, and an action of T: 

(3.16) T0:T^aut(Lß) , 

which is compatible with the action (1.6), such that the sheaf of T-
invariant sections of L coincides with the sheaf of sections of the pre­
quantum line bundle on X. By Lemma 3.5, however, one can simply 
take L to be the trivial bundle 

(3.17) C = M x C 

and define To by requiring that the constant section of (3.17) transforms 
according to the character, j . 

Let L r be another copy of the trivial bundle (3.17) and let 

(3.18) Tr:T - > a u t ( L r) 

be defined by the property that the constant section of (3.17) transforms 
under r according to the character 

(3.19) 7 r ( expx) = e2™r ̂ ) ) r = l,...,d. 

We claim that , in analogy with (2.4), there is an equivariant splitting 

(3.20) T H M®C n = L1®...®L d • 

Proof. By (1.6) the restriction of the tangent bundle of C d to M 
is equal to the right-hand side of (3.20). On the other hand, since fj, 
is a regular value of <£> and M = 3>_1(/i), the normal bundle to M in 
C can be identified with p — l R n, and the vertical component of the 
tangent bundle of M can be identified with R n, so the restriction of the 
tangent bundle of C d to M can also be identified equivariantly with the 
left-hand side of (3.20). q.e.d. 

Let 

c{L) EH G M,C) 
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be the equivariant Chern classes of the line bundles, L i, and let 

(3.21) c i = c(L i) , i = 1 , . . . ,d 

be their images in H2(X, C ) . We will describe how these Chern classes 
are related to the Chern classes 

(3.22) c r e H 2 ( X , C ) , r = l,...,n 

of the principal bundle, M —> X? Let v1,... ,v n be the standard basis 
vectors of R n (R n being the Lie algebra of T) and let e 1 , . . . , e be the 
standard basis vectors of R d. By (1.6) T imbeds in T d. Let 

(3.23) i : R n ^ R d 

be the corresponding imbedding of Lie algebras. By (1.6) the dual map, 
i*, is the map 

(3.24) i*(e r) = ar 

the e r 's being the dual basis vectors in (R d)* to the e r 's . We claim 

n d 

(3.25) J c , v ) = I c e i-
r = l i=l 

Proof. Since L k is the line bundle associated to the principal bundle, 
M —T- X, by means of the character (3.19), its Chern class is 

c(L k) = ^2ak(v r)c r , 

so the right-hand side of (3.25) is 

£ c r ( k « k ( v r k ) • 

However, by (3.24), the expression in the parentheses is i{v r). q.e.d. 
Recall tha t the group, TI, is the subgroup of T defined by the equal­

ities 

(3.26) 7i(g) = 1 , i e I c . 

Since the action of T on M is merely "locally free" there should perhaps be 
quotation marks about "principal". 
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Let TI be the subset of T defined by the equalities (3.26) and the 
inequalities 

(3.27) i(g) / l , i e I . 

We will define the "Todd function" T i ( x i , . . . , x d to be the function: 

(3.28) 

wIr1 (Y x i X T.g Y a - i g)-1e)"1, 
ieI c ger# i=1 

where the factor in front of the summation sign is a "counter-term" 
introduced to cancel the infinities caused by the fact that , by (3.26), 
ji(g) = 1 when i G I c. This function is regular at x = 0; so we can 
expand it in a Taylor series. We will denote by 

<3-29» T (£, . . . ,d 
the "infinite-order" constant coefficient differential operator which one 
gets by substituting — for Xi in this Taylor series. We claim that , with 
this definition of the T ' s , the Kawasaki-Riemann-Roch number of X is 
given by the right-hand side of (1.4). 

Proof. Let e = P e i « i . By the Duistermaat-Heckman theorem and 
(3.25), the symplectic volume of X I is equal to 

(3.30) Z exp k J l X f i i . exp redl + X 
X I i = i 

This expression is a polynomial in ei, . . . , ed; so we can apply the 
infinite-order differential operator, T to it. Setting e = 0 this gives us 

(3.31) Z exp[ur d ] T / ( c i , . . . ,c d), 
X I 

which, by (3.28) and (2.8)-(2.9) is the Kawasaki-Riemann-Roch number 
of X . On the other hand, by Theorem 3.4, the expression (3.30) is equal 
to the volume of the polytope, A I + e , so (3.31) is equal to 

T , ( | ) v I,<> 

evaluated at e = 0. Summing these expressions over I, we get for the 
Kawasaki-Riemann-Roch number of X the right-hand side of (1.4). 
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4. Equivariant Kawasak i -R iemann-Roch 

Let X be a compact pre-quantizable symplectic orbifold, and let 
p: T d —> Diff(X) be a Hamiltonian action of the torus, T d, on X. The 
equivariant Kawasaki-Riemann-Roch number of X is defined, as in x2, 
to be the sum, over the strata, F, of X, of the integrals 

(4.1) (XT)-1 Z J F n-J nor, 
F 

where J F an and J nor are defined as in 2 by the expressions (2.8) and 
(2.9) with one small modification. In (2.x) and (2.9) one has to replace 
c(L) and c-(L) by their equivariant counterparts, which are, by defini­
tion, elements of H T d(X). Thus the integral (4.1) is no longer just a 
number. It is an element of the formal power series ring, C [ [ £ i , . . . , d]]. 

Suppose now that the manifold, W, figuring in Theorem 2.3 is 
equipped with a Hamiltonian action of T which commutes with the 
action of G. One then gets an induced Hamiltonian action of T d on the 
space (2.14) and induced representations of T on each of the weight 
spaces, Qß, of Q; the equivariant version of Theorem 2.3 states: 

T h e o r e m 4 .1 . Let y be the character of the representation of T 
on Qß. Then the Taylor series of 7(expÇ) at £ = 0 is equal to the 
equivariant Kawasaki-Riemann-Roch "number" of Xß. 

Let us apply this result to the representation of T d on the Bargmann 
space, B d- We pointed out in x1 that the vectors in B d which transform 
under T according to the weight, fj,, are just the monomials 

z \ • • • z d 

for which (ki,... , k d) is a solution of (1.1). Thus the character of the 
representation of T d on this space is 

(4.2) xe*'* 

summed over the solutions, k of (1.1). On the other hand, the equiv­
ariant Kawasaki-Riemann-Roch number of the reduced space (1.9) is, 
by (3.30) and (3.31), equal to the sum over the multi-indices, I , of the 
expressions 

(4.3) Tr (j£) Z exp ([£red] + £ e,-c,-) 
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evaluated at e = 0, ^ red being the equivariant reduced symplectic form 
on X, and the ec's being the equivariant Chern classes of X. However, by 
the Duistermaat-Heckman theorem, [^red] + Ptec i is the cohomology 
class of the equivariant symplectic form on the reduced space (1.10). 
This form can also be written as 

(4-4) ^ + p z i X h red 

where re d is the usual reduced symplectic form on the space (1.10), 

and the <fi"s are the coefficients of the T -moment map. Thus (4.3) is 

equal to the operator T ( ^ ) applied to the expression 

(4.5) Z ( e x p ^ red) e 

However, by the measure-theoretic version of Duistermaat-Heckman this 
is equal to 

(4.6) Z e p T P ^ S î d s , 
A1, 

so the sum over the I ' s of (4.3) reduces to (1.15). 

5. Meinrenken-Sjamaar 

As in x2 let W be a compact manifold, UJ G Çl2{W) a symplectic 
form and L a complex line bundle on W whose Chern class in [UJ]. Let 
G be an n-torus and let G act on L by bundle morphisms so that the 
induced action on W preserves UJ. One then gets an induced representa­
tion of G on the space (2.10); and for any integer lattice point, fj,, in g* 
which is a regular value of the moment map (2.13), the multiplicity with 
which fj, occurs as a weight of this representation is equal, by Theorem 
2.2, to the Kawasaki Riemann-Roch number of the orbifold (2.14). If 
fj, is not a regular value of <£>, then Xß is not an orbifold; however, it is 
a stratified space whose s t ra ta are symplectic manifolds satisfying the 
Goresky-MacPherson axioms of intersection cohomology. (C.f. [23].) 
In particular one can define mixed characteristic numbers (in intersec­
tion cohomology) for Xß analogous to the integrals (1.12). Moreover, 
even though Xß is not a manifold (or orbifold), its local structure can be 
described by canonical form theorems analogous to the equivariant Dar-
boux theorems for orbifolds (loc. cit.). Using these results Meinrenken 
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and Sjamaar have recently shown that Xß can be desingularized in a 
more or less intrinsic way, and that one can unambiguously define the 
Riemann-Roch number of Xß as the Kawasaki Riemann-Roch number 
of this desingularization. They have also shown that this Riemann-Roch 
number can be computed (in a slightly less intrinsic way) by means of 
the moment map, <£>. More explicitly, for e small, let fj, + e be a non-
trivial regular value of <£> (i.e., a regular value which actually lies in the 
image of <£>). Let 

(5.1) Xll+£ = $-1(fi + e)/Gi 

and let c; G H2(Xß+f), i = 1 , . . . , n, be the Chern clases of the fibration 

(5.2) G — ^ - ^ / z + e) —>X„+,. 

Finally define c(L) to be the cohomology class 

(5.3) ue - X e 8 c 8 , 

where UJ6 is the reduced symplectic form on Xß+e, and let y : G —> 
S1 be the character (3.14). Meinrenken and Sjamaar prove that the 
intrinsically defined Riemann-Roch number of Xß which we alluded to 
above is equal to the sum 

(5.4) X n " 1 Z T" 
F F 

over the orbifold s t ra ta of Xß+e, n F being the cardinality of the isotropy 
group of F, and T F being defined by (2.8)-(2.9), with c(L) and y defined 
as above. In particular the sum (5.4) is independent of e. They go on 
to prove that Theorem 2.2 remains true for reduction at singular values 
of the moment map: 

T h e o r e m 5 .1 . The Riemann-Roch number (5.4) is equal to the 
multiplicity with which fj, occurs as a weight of the representation of 
G on the space (2.10). 

For details see: E. Meinrenken and R. Sjamaar, "Riemann-Roch for­
mulas for multiplicities and singular reduction," (pre-print MIT, Septem­
ber, 1995). By applying their result to the action of G on B,i described 
in x1, one obtains the recipe (1.17) for computing the number of solu­
tions of the equation (1.1) for fj, not in general position with respect to 
t h e ojj-'s. 
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