WHITNEY FORMULA IN HIGHER DIMENSIONS

G. MIKHALKIN & M. POLYAK

Abstract

The classical Whitney formula relates the algebraic number of times that a generic immersed plane curve cuts itself to the index ("rotation number") of this curve. Both of these invariants are generalized to higher dimension for the immersions of an *n*-dimensional manifold into an open (n + 1)-manifold with the null-homologous image. We give a version of the Whitney formula if *n* is even. We pay special attention to immersions of S^2 into \mathbb{R}^3 . In this case the formula is stated in the same terms which were used by Whitney for immersions of S^1 into \mathbb{R}^2 .

1. Introduction

Let $f : S^1 \to \mathbb{R}^2$ be a generic immersion (i.e., an immersion without triple points and self-tangencies). The *index* of f is the degree of the Gauss map (which maps S^1 to the direction of df(v) where v is a tangent vector field positive with respect to the standard orientation of S^1). Whitney in [7] showed that the index is the only invariant of f up to deformation in the class of immersions.

Fix a generic point $x \in S^1$. The cyclic order on S^1 determined by the orientation defines a linear order on $S^1 - \{x\}$. This determines an ordering of the positive vectors tangent to the two branches of f at every double point d of f. Following Whitney we define the sign $\epsilon_x(d)$ of d to be +1 (resp. -1) if the frame composed of these tangent vectors is *negative* (resp. *positive*) in \mathbb{R}^2 .

We define the function ind : $\mathbb{R}^2 \to \frac{1}{2}\mathbb{Z}$ in the following way. The (integer) value of ind at $y \in \mathbb{R}^2 - f(S^1)$ is defined as the linking number of the oriented cycle $f(S^1)$ and the 0-dimensional cycle composed of the point y taken with the positive orientation and a point near infinity taken with the negative

Received October 10, 1995.

orientation. The value of ind at $y \in f(S^1)$ is defined as the average of the indices of the components of $\mathbb{R}^2 - f(S^1)$ adjacent to y.

Theorem 1 (Whitney [7]).

$$\operatorname{index}(f) = \sum_{d} \epsilon_x(d) + 2 \operatorname{ind}(f(x)).$$

This formula was found in 1937. However, no high-dimensional versions have been known though the problem of generalization of the Whitney formula is not new (see Arnold [2]). Both the left-hand side and the right-hand side can be defined for codimension-1 immersions of n-manifolds $f: S \to \mathbb{R}^{n+1}$. A straightforward approach to generalize the left-hand side is to define it as the degree of the Gauss map (i.e., the map $S \to S^n$ defined by the coorienting unit vector field normal to $f(S) \subset \mathbb{R}^{n+1}$). Unfortunately, already for n = 2 this number does not depend on immersion — it equals to $\frac{1}{2}\chi(S)$ for any even n. This reveals the important difference between the immersions of even- and odd-dimensional manifolds. We use another natural way of generalizing the left-hand side of the Whitney formula; the outcome coincides with the degree of the Gauss map for odd n (when it is non-trivial), but it is also non-trivial for even n. Our generalization makes sense not only for immersions to \mathbb{R}^{n+1} but also for the immersions to an open (n+1)-manifold with null-homologous image. For its definition we use the integral calculus based on the Euler characteristic χ (developed by Viro [6]).

Let M be a simplicial complex. A stratification of M is a decomposition of M into a disjoint finite union of (open) strata where each stratum τ is a union of open simplices of M. Let $F: M \to \mathbb{R}$ be a function constant on each stratum (and, therefore, on each open simplex) which vanishes on all but finitely many simplices. The integral $\int_M F d\chi$ is defined by the following summation over all strata τ of M

$$\int_M F d\chi = \sum_{ au} F(au) \chi(au),$$

where by $\chi(\tau)$ we mean the combinatorial Euler characteristic of τ — the alternated (by dimension) number of simplices of τ .

Lemma 1.1 (cf. Pukhlikov-Khovanskii [5]). Let M be a simplicial manifold. Then $\int_M Fd\chi$ depends neither on the stratification of M nor on the simplicial structure of M.

Proof. By additivity of the combinatorial Euler characteristic

$$\int_M F d\chi = \sum_{\sigma} (-1)^{\dim(\sigma)} F(\sigma),$$

where the sum is taken over all the simplices σ of M. Therefore, $\int_M F d\chi$ does not depend on the stratification. The independence on the symplicial structure follows from the Alexander theorem [1] connecting any triangulation with the star moves, since $\int_M F d\chi$ is invariant under the Alexander moves.

We may express $\operatorname{index}(f)$ for $f: S^1 \to \mathbb{R}^2$ in terms of such integral. Denote by $\widetilde{f(S^1)}$ the smoothening of the curve $f(S^1)$ respecting the orientation. The singularities of a generic f are ordinary double points, so in local coordinates $(x, y) f(S^1)$ is given by xy = 0, and $\widetilde{f(S^1)}$ is given by $xy - \epsilon = 0$. Define $\operatorname{ind}(y), y \in \mathbb{R}^2 - \widetilde{f(S^1)}$ as the linking number of the oriented cycle $\widetilde{f(S^1)}$ and the 0-dimensional cycle composed of y taken with the positive orientation.

Lemma 1.2 (cf. McIntyre-Cairns [4]).

$$\operatorname{index}(f) = \int_{\mathbb{R}^2 - \widetilde{f(S^1)}} \widetilde{\operatorname{ind}} d\chi.$$

Proof. Note that index(f) does not change after smoothening (by the index of a multicomponent curve we mean the sum of indices of its components). To establish the equality $index \tilde{f} = \int_{\mathbb{R}^2 - \widetilde{f(S^1)}} indd\chi$ we use induction on the number of components of $\widetilde{f(S^1)}$.

This allows us to rewrite the Whitney formula.

Theorem 1'.

$$\int_{\mathbb{R}^2 - \widetilde{f(S^1)}} \widetilde{\mathrm{ind}} d\chi = \sum_d \epsilon_x(d) + 2 \operatorname{ind}(f(x)).$$

The following corollary is a well-known application of the Whitney formula. Let n be the number of the double points of $f: S^1 \to \mathbb{R}^2$.

Corollary 1.

$$|\operatorname{index}(f)| \le n+1.$$

Proof. To deduce the corollary from Theorem 1 it suffices to choose the base point $x \in S^1$ with exterior image (sitting on the boundary of the component of $\mathbb{R}^2 - f(S^1)$ with the non-compact closure) so that $|\operatorname{ind}(f(x))| = \frac{1}{2}$.

Remark 1.3. Presentation of the Whitney formula in the form of Theorem 1' helps to generalize the formula to generic planar fronts. The front is a smooth map $f : S^1 \to \mathbb{R}^2$ equipped with a coorienting normal direction defined on $f(S^1)$, where f is an immersion except for a finite set of (semicubical) cusp points. We define index(f) as the degree of the Gauss

G. MIKHALKIN & M. POLYAK

map given by the coorientation. To obtain the "smoothened" (multicomponent) front (which has cusps but no double points) $\widetilde{f(S^1)}$ we smoothen the double points of $f(S^1)$ respecting both the orientation and the coorientation; see Figure 1. Other definitions stay the same.

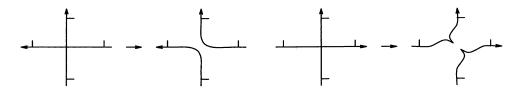


FIGURE 1.Smoothening of a double point of a front

Define the sign $\epsilon(c)$ of a cusp c to be +1 if the coorienting vector turns in the positive direction while going through a neighborhood of c in the orientation direction and -1 otherwise. Then

$$\operatorname{index}(f) = \int_{\mathbb{R}^2 - \widetilde{f(S^1)}} \widetilde{\operatorname{ind}} d\chi + \frac{1}{2} \sum_c \epsilon(c),$$

where c goes over all cusps of $f(S^1)$. Note that $\sum_c (\epsilon(c))$ is equal to the sum of the signs of all cusps of $\widetilde{f(S^1)}$ since the cusps appearing after smoothening are of opposite signs. Theorem 1', which also works for fronts, produces $\int_{\mathbb{R}^2 - \widetilde{f(S^1)}} \widetilde{\operatorname{ind}} d\chi = \sum_d \epsilon_x(d) + 2 \operatorname{ind}(f(x))$, so

$$\operatorname{index}(f) = rac{1}{2}\sum_{c}\epsilon(c) + \sum_{d}\epsilon_{x}(d) + 2\operatorname{ind}(f(x)).$$

Note that one can also incorporate the contribution of cusps into the integral by the following modification χ' of the Euler characteristics. For a component τ of $\mathbb{R}^2 - \widetilde{f(S^1)}$ we add $+\frac{1}{2}$ to $\chi(\tau)$ for each cusp of $\partial \tau$ turned inwards τ and $-\frac{1}{2}$ for each cusp turned outwards. Then index $(f) = \int_{\mathbb{R}^2 - \widetilde{f(S^1)}} \widetilde{\mathrm{indd}} \chi'$.

Remark 1.4. The definitions of the function ind and the signs $\epsilon_x(d)$ make sense as well for a generic immersion f of S^1 into a connected open oriented surface F other than \mathbb{R}^2 if $f(S^1)$ is homologous to zero. This leads to a new integer-valued invariant gen defined on the set of classes of null-homologous loops on F up to free homotopy. We define

$$\operatorname{gen}(f) = rac{1}{2} (\sum_{d} \epsilon_x(d) + 2 \operatorname{ind}(f(x)) - \int_{F - \widetilde{f(S^1)}} \widetilde{\operatorname{ind}} d\chi)$$

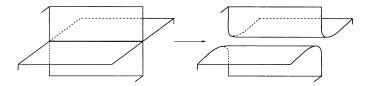


FIGURE 2. Smoothening of a double curve

for any choice of a base point $x \in S^1$. Note that if f is an embedding, then $|\operatorname{gen}(f)|$ equals the genus of the compact surface in F bounded by $f(S^1)$, so gen can be viewed as an "algebraic" version of genus which makes sense for immersed curves as well.

2. Immersions $S^2 \rightarrow R^3$

Let $f: S^2 \to \mathbb{R}^3$ be a generic immersion. Denote $\Sigma = f(S^2)$.

The inverse image of the double points $\Delta \subset \Sigma \subset \mathbb{R}^3$ is an immersed (multicomponent) curve $D \subset S^2$. The orientation of \mathbb{R}^3 and the orientation of S^2 determine a coorientation of the image $\Sigma - \Delta = f(S^2 - D)$, i.e., an orientation of the normal bundle $N_{\mathbb{R}^3}(\Sigma - \Delta)$ of $\Sigma - \Delta$ in \mathbb{R}^3 , via the identity

$$T\mathbb{R}^3 = N_{\mathbb{R}^3}(\Sigma - \Delta) \oplus T(\Sigma - \Delta).$$

The set of non-singular points D' of D is equipped with the free involution $j: D' \to D'$ such that fj = f. The curve D' admits a natural coorientation in S^2 which comes from the coorientation of $\Sigma - \Delta$ via the identity

$$N_{S^2}(D') = N_{\mathbb{R}^3} \Sigma|_{jD'}.$$

The singular surface Σ admits a canonical smoothening $\tilde{\Sigma}$ respecting the coorientation (see Figure 2 and Figure 3). Choose local coordinates (x, y, z) at a point of D' so that Σ is given by xy = 0, and the coorientation of Σ is positive (given by the gradient of the coordinates). Then $\tilde{\Sigma}$ is given by $xy - \epsilon = 0$ for a small $\epsilon > 0$. Similarly, at a triple point Σ is given by xyz = 0 and $\tilde{\Sigma}$ is given by $xyz - \epsilon(x + y + z) = 0$.

Definition 2.1. The value of the function $\operatorname{ind} : \mathbb{R}^3 - \tilde{\Sigma} \to \mathbb{Z}$ at $y \in \mathbb{R}^3 - \tilde{\Sigma}$ is defined as the linking number of the cooriented surface $\tilde{\Sigma}$ and the 0-dimensional cycle $[y] - [\infty]$ composed of y taken with the positive orientation and a point near infinity taken with the negative orientation.

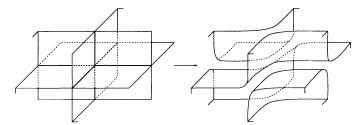


FIGURE 3. Smoothening of a triple point

Fix a base point $x \in S - D$. Define ind(f(x)) as the average of the indices of the components of $\mathbb{R}^3 - \Sigma$ adjacent to f(x).

The singular curve $D \subset \Sigma$ admits a canonical smoothening $D \subset \Sigma$ respecting the coorientation.

Definition 2.2. The sign $\epsilon_x(\tilde{d})$ of a component \tilde{d} of \tilde{D} is 1 (resp. -1) if the coorientation of \tilde{d} induced from Σ coincides with (resp. opposite to) the coorientation of \tilde{d} determined by the outer vector field of the component of $S^2 - \tilde{d}$ not containing x (i.e., by the normal vector field to \tilde{d} pointing out to x).

Theorem 2.

$$-\int_{\mathbb{R}^3-\tilde{\Sigma}}\widetilde{\mathrm{ind}}d\chi=\sum_{\tilde{d}}\epsilon_x(\tilde{d})+2\operatorname{ind}(f(x)).$$

This theorem is a special case of Theorem 4 proven in Section 4.

Remark 2.3. Recall that the left-hand side of the original Whitney formula (Theorem 1) is the only degree-0 Vassiliev invariant of immersions of S^1 to \mathbb{R}^2 . In the paper of Gorunov [3] $\int_{\mathbb{R}^3-\tilde{\Sigma}} \operatorname{ind} d\chi$ appeared as the only non-trivial (apart from the number of double curves and triple points) degree-1 Vassiliev invariant of immersions of S^2 to \mathbb{R}^3 ; note that there are no non-trivial degree-0 invariants since the space of immersions $S^2 \to \mathbb{R}^3$ is connected.

The following corollary is similar to Corollary 1. Let n_{δ} be the number of double curves of f (i.e., the number of components of Δ after normalization). Let n_{τ} be the number of triple points of f.

Corollary 2.

$$\left|\int_{\mathbb{R}^{3}-\tilde{\Sigma}}\widetilde{\mathrm{ind}}d\chi\right|\leq 2n_{\delta}+2n_{\tau}+1.$$

Proof. Similarly to the proof of Corollary 1 we choose an exterior base

point x so that $|ind(f(x))| = \frac{1}{2}$. Theorem 2 implies that

$$\left|\int_{\mathbb{R}^{3}-\tilde{\Sigma}}\widetilde{\mathrm{ind}}d\chi\right|\leq \left|\sum_{\tilde{d}}\epsilon_{x}(\tilde{d})\right|+1.$$

Note that $\sum_{\tilde{d}} \epsilon_x(\tilde{d})$ is equal to $\int_{S^2 - \{x\}} \widetilde{\operatorname{ind}}' d\chi$, where $\widetilde{\operatorname{ind}}'(y), y \in S^2 - \{x\}$, is the linking number of \tilde{D} and $[y] - [\infty]$ in $S^2 - \{x\} \approx \mathbb{R}^2$. By Lemma 1.2 the latter is equal to the sum $\sum_d \operatorname{index}(d)$ over all the components $d \subset S^2 - \{x\} \approx \mathbb{R}^2$ of D. Corollary 1 yields that $|\operatorname{index}(d)|$ is not greater than one plus the number of self-intersections of d. Combining all this we obtain

$$|\int_{\mathbb{R}^3- ilde{\Sigma}}\widetilde{\mathrm{ind}}d\chi| \leq |\sum_d \mathrm{index}(d)| + 1 \leq n_d + n_t + 1,$$

where n_d is the number of components of D after normalization, and n_t is the total number of self-intersections of components of D. The following lemmas imply that $n_d = 2n_\delta$ and $n_t \leq 2n_\tau$ finishing the proof of the corollary.

Lemma 2.4. The inverse image of every component δ of Δ consists of two components.¹

Proof. Let $p \in \delta$ be a generic point. The coorientation of Σ equips p with two vectors normal to δ and allows us to translate these vectors over δ . Since \mathbb{R}^3 does not contain disorienting loops, the monodromy at p does not swap the vectors and therefore they correspond to different components of the inverse image of δ .

Lemma 2.5. Not more than two out of the three points in the inverse image of a triple point τ of f correspond to self-intersection points of components of D.

Proof. Suppose all the three points t_x , t_y , t_z of the inverse image of τ correspond to self-intersection points of the components of D. Let t_x be a self-intersection point of a component a of D. Then Lemma 2.4 implies that t_y and t_z are self-intersection points of a component $b \neq a$ of D which maps onto the same component of Δ as a. In a similar way Lemma 2.4 leads to that t_x and t_z are self-intersection points of a and we get a contradiction.

Remark 2.6. Theorem 2 extends to generic maps $f: S^2 \to \mathbb{R}^3$ which are not necessarily immersions. The definitions of this section make also sense in this situation. The (integer) number $\operatorname{ind}(u)$, where u is a Whitney umbrella point is the average of the indices of the 3 components of $\mathbb{R}^3 - \Sigma$ adjacent to u (it equals the index of the component which is "the most

¹recall that we consider components in "algebro-geometrical", not in "point-set-topological" sense

adjacent" to u). The coorientation does not extend to the Whitney umbrella points, but the smoothening $\tilde{\Sigma}$ of $\Sigma = f(S^2)$ is still a smooth surface which is defined by the coorientation at other points. Theorem 2 extends to

$$-\int_{\mathbb{R}^2- ilde{\Sigma}}\widetilde{\mathrm{ind}}d\chi=\sum_u\mathrm{ind}(u)+\sum_{ ilde{d}}\epsilon_x(ilde{d})+2\mathrm{ind}(f(x)),$$

where u and \tilde{d} go over respectively all Whitney umbrellas and all components of \tilde{D} (some of them contain Whitney points).

3. Indices and smoothening of the image of immersion in higher dimensions

Let $f : S \to R$ be a generic immersion of an oriented *n*-dimensional manifold S to an open oriented (n + 1)-manifold R, and assume that $\Sigma = f(S)$ is homologous to zero in R. The definitions from the previous section generalize in the following way.

The inverse image of the double points $\Delta \subset \Sigma \subset R$ is a singular hypersurface $D \subset S$ equipped with the free involution $j: D' \to D'$ defined by the property fj = f on the set D' of the non-singular points of D. The orientation of R and the orientation of S determine a coorientation of $\Sigma - \Delta = f(S-D)$ via the identity $TR = N_R(\Sigma) \oplus T\Sigma$ at non-singular points of Σ .

The hypersurface D' admits a natural coorientation in S, which comes from the coorientation of Σ via the identity $N_S(D') = N_R \Sigma|_{jD'}$. The coorientation of D' determines an orientation of D via $TS|_D = N_S(D) \oplus TD$.

The singular hypersurface $\Sigma \subset R$ admits a canonical smoothening $\tilde{\Sigma}$ respecting the coorientation. We may obtain this smoothening by the following inductive procedure.

The multiplicity of $x \in \Sigma$ is the cardinality of $f^{-1}(x)$. The multiplicity induces a stratification of Σ . A stratum Σ_k of multiplicity k is a smooth open manifold of dimension n - k + 1. The stratum Σ_2 is the singular locus of $U_2 = \Sigma_1 \cup \Sigma_2$. The proper regular neighborhood of Σ_2 in (R, U_2) is isomorphic to $\Sigma_2 \times (D^2, C_2)$, where D^2 is the 2-disk and C_2 is the cone over 4 points. The coorientation of C_2 in D^2 induced by the coorientation of Σ determines a smoothening of C_2 in D^2 and, therefore, it determines a smoothening of the regular neighborhood of Σ_2 (similar to the previous section, see Figure 2). Denote the resulting smoothening of U_2 by \tilde{U}_2 .

Inductively we assume that \tilde{U}_m is the smoothening of U_m . Denote $U_{m+1} = \tilde{U}_m \cup \Sigma_{m+1}$. The singular locus of U_{m+1} is Σ_{m+1} . The regular

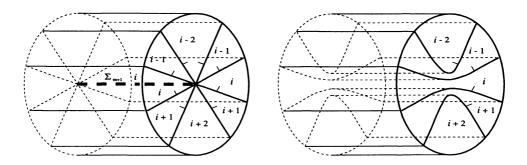


FIGURE 4. The smoothening of Σ_{m+1}

neighborhood of Σ_{m+1} in (R, U_{m+1}) is isomorphic to $\Sigma_{m+1} \times (D^{m+1}, C_{m+1})$, where D^{m+1} is the (m+1)-disk, and C_{m+1} is the cone over m+1 copies of S^{m-1} (see Figure 4). The coorientation of C_{m+1} in D^{m+1} induced by the coorientation of Σ determines a smoothening of C_{m+1} in D^{m+1} (see Figure 4) and therefore a smoothening of the regular neighborhood of Σ_{m+1} . Finally $\tilde{\Sigma} = \tilde{U}_{n+1}$ is a smooth (multicomponent) manifold.

Remark 3.1. We can also describe the smoothening of Σ locally without going through the above inductive procedure. Choose local coordinates (x_1, \ldots, x_{n+1}) at $x \in \Sigma_k$ so that Σ is given by equation $x_1 \ldots x_k = 0$, and the coorientation of Σ is positive (given by the gradient of the coordinates). Then $\tilde{\Sigma}$ is described by

$$x_1 \dots x_k + \sum_{m=1}^{\left[\frac{k}{2}\right]} (-\epsilon)^m (\sum_{j_1 < \dots < j_{k-2m}} x_{j_1} \dots x_{j_{k-2m}}) = 0$$

for a small $\epsilon > 0$.

Definition 3.2. The value of the function $\operatorname{ind}_R : R \to \frac{1}{2}\mathbb{Z}$ at y is defined as the linking number of the cooriented (null-homologous) hypersurface $\tilde{\Sigma}$ and the 0-dimensional cycle $[y] - [\infty]$ composed of y taken with the positive orientation and a point near infinity taken with the negative orientation (if $y \in \Sigma$ then $\operatorname{ind}_R(y)$ is the average of the indices of the components of $R - \tilde{\Sigma}$ adjacent to y). By the point near infinity we mean any point in a component of $R - \Sigma$ with a non-compact closure. Since Σ is closed and homologous to zero, the linking number does not depend on the choice of ∞ .

In a similar way we define $\operatorname{ind}_R(y)$, $y \in R$, as the linking number of Σ and $[y] - [\infty]$.

Lemma 3.3.

$$\int_R \operatorname{ind}_R d\chi = \int_R \widetilde{\operatorname{ind}}_R d\chi$$

Proof. Recall our smoothening process. The *m*-th step smoothens the regular neighborhood $\Sigma_{m+1} \times (D^{m+1}, C_{m+1})$ of Σ_{m+1} in U_{m+1} . It suffices to prove that the integral of index does not change after this smoothening. Let a component A of Σ_{m+1} be of index j in R. In the regular neighborhood of A we have (n + 1)-dimensional strata of indices $j - \frac{m+1}{2}, \ldots, j + \frac{m+1}{2}, n$ -dimensional strata of indices $j - \frac{m}{2}, \ldots, j + \frac{m}{2}$ and the core *m*-dimensional stratum A. The smoothening adds $(-1)^m$ to the Euler characteristics of ((n+1)-dimensional) strata of indices $j - \frac{m-1}{2}, \ldots, \hat{j}, \ldots, j + \frac{m-1}{2}$ and adds $(-1)^{m-1}$ to the Euler characteristics of (n-dimensional) strata of indices $j - \frac{m}{2}, \ldots, \hat{j}, \ldots, j + \frac{m-1}{2}$ and adds $(j - \frac{m}{2}, \ldots, \hat{j}, \ldots, j + \frac{m}{2}$. The Euler characteristics of stratum of index j decreases by $1 + (-1)^{m+1}$. Therefore the total change of the integral is 0.

4. Immersions of even-dimensional manifolds

Lemma 4.1. The oriented hypersurface $D \subset S$ is homologous to zero in S.

Proof.

$$D=\partial\sum_s(\mathrm{ind}_R(s)+rac{1}{2})ar{s}.$$

The sum is taken over all the components s of S - D, \bar{s} is the closure of s equipped with the orientation induced from S, and $\operatorname{ind}_R(s)$ is the value of the (constant) function $\operatorname{ind}_R|_s$ ($\frac{1}{2}$ is added to make the coefficients of the chain integer).

Denote by D the unique smoothening of $D \subset S$ respecting the coorientation. Fixing a base point $x \in S - D$ and substituting $S - \{x\}$, \tilde{D} and D to the Definition 3.2 give the definitions of $\operatorname{ind}_{S-\{x\}} : S - (\{x\} \cup \tilde{D}) \to \mathbb{Z}$ and $\operatorname{ind}_{S-\{x\}} : S - \{x\} \to \frac{1}{2}\mathbb{Z}$.

Theorem 3.

$$-\int_{R- ilde{\Sigma}}\widetilde{\mathrm{ind}}_Rd\chi=\int_{S- ilde{D}}\widetilde{\mathrm{ind}}_{S-\{x\}}d\chi+\chi(S)\,\mathrm{ind}_R(f(x)).$$

Lemma 4.2.

$$\int_R \operatorname{ind}_R d\chi = 0.$$

Remark 4.3. The proof of the lemma works for any function p_0 : $R - \Sigma \to \mathbb{Z}$ extended to $p: R \to \frac{1}{2}\mathbb{Z}$ by averaging (cf. Definition 3.2).

592

Proof of Lemma 4.2. By Lemma 3.3, $\int_R \operatorname{ind}_R d\chi = \int_R \operatorname{ind}_R d\chi$. Denote $M_{\pm j} = (\pm \operatorname{ind}_R)^{-1}[\frac{j}{2}, +\infty), \ j \in \mathbb{N}$. Following Lebesgue, we decompose

$$\int_{R} \widetilde{\operatorname{ind}}_{R} d\chi = \sum_{j=1}^{\infty} \frac{1}{2} \chi(M_{j}) - \sum_{j=-\infty}^{-1} \frac{1}{2} \chi(M_{j})$$
$$= \sum_{k=1}^{\infty} \frac{1}{2} (\chi(M_{2k-1}) + \chi(M_{2k})) - \sum_{j=-\infty}^{-1} \frac{1}{2} (\chi(M_{2k+1}) + \chi(M_{2k})).$$

Note that $M_{\pm(2k-1)}$, $k \in \mathbb{N}$, is a compact odd-dimensional manifold with the interior $\operatorname{int}(M_{\pm(2k-1)}) = M_{\pm 2k}$. The double $W_{\pm k}$ of $M_{\pm(2k-1)}$ is a closed odd-dimensional manifold, thus $\chi(W_{\pm k}) = 0$. On the other hand for the (combinatorial) Euler characteristic we have

$$0 = \chi(W_{\pm k}) = \chi(M_{\pm(2k-1)}) + \chi(\operatorname{int}(M_{\pm(2k-1)}))$$
$$= \chi(M_{\pm(2k-1)}) + \chi(M_{\pm 2k})$$

and the lemma follows.

Proof of Theorem 3. Recall again our smoothening process. The *m*th step of the smoothening adds $m \cdot \int_{\Sigma_{m+1}} \operatorname{ind}_R d\chi$ to $-\int_{R-\Sigma} \operatorname{ind}_R d\chi$, thus

(4.1)

$$-\int_{R-\tilde{\Sigma}}\widetilde{\mathrm{ind}_R}d\chi = -\int_{R-\Sigma}\mathrm{ind}_R\,d\chi + \sum_{j=2}^{n+1}(j-1)\int_{\Sigma_j}\mathrm{ind}_R\,d\chi$$

Lemma 4.2 implies that $-\int_{R-\Sigma} \operatorname{ind}_R d\chi = \int_{\Sigma} \operatorname{ind}_R d\chi$. Substituting this in (4.1) gives

(4.2)
$$-\int_{R-\tilde{\Sigma}}\widetilde{\operatorname{ind}}_{R}d\chi = \int_{\Sigma}\operatorname{ind}_{R}d\chi + \sum_{j=2}^{n+1}(j-1)\int_{\Sigma_{j}}\operatorname{ind}_{R}d\chi$$
$$= \sum_{j=1}^{n+1}j\int_{\Sigma_{j}}\operatorname{ind}_{R}d\chi.$$

By the Fubini theorem [6] we get

$$\sum_{j=1}^{n+1} j \int_{\Sigma_j} \operatorname{ind}_R d\chi = \int_S \operatorname{ind}_R \circ f d\chi.$$

Note that $\operatorname{ind}_R \circ f = \operatorname{ind}_{S-\{x\}} + \operatorname{ind}_R(f(x))$, so

$$\int_{S} \operatorname{ind}_{R} \circ f d\chi = \int_{S} \operatorname{ind}_{S-\{x\}} d\chi + \chi(S) \operatorname{ind}_{R}(f(x)).$$

By Lemma 3.3, $\int_S \operatorname{ind}_{S-\{x\}} d\chi = \int_S \operatorname{ind}_{S-\{x\}} d\chi$; substituting this in the previous equality and noticing that

$$\int_{S} \widetilde{\mathrm{ind}}_{S-\{x\}} d\chi = \int_{S-\tilde{D}} \widetilde{\mathrm{ind}}_{S-\{x\}} d\chi,$$

since the dimension of a smooth manifold \tilde{D} is odd, we finally get

$$-\int_{R-\Sigma} \operatorname{ind}_R d\chi = \int_{S-\tilde{D}} \widetilde{\operatorname{ind}}_{S-\{x\}} d\chi + \chi(S) \operatorname{ind}_R(f(x)).$$

References

- [1] J. W. Alexander, The combinatorial theory of complexes, Ann. of Math. **31** (1930) 294-322.
- [2] V. I. Arnold, Topological invariants of plane curves and caustics, Univ. Lecture Ser. 5 (1994).
- [3] V. V. Gorunov, Local invariants of mappings of surfaces into three-space, Preprint, 1994.
- [4] M. McIntyre & G. Cairns, A new formula for winding number, Geom. Dedicata 46 (1993) 149-160.
- [5] A. V. Pukhlikov & A. G. Khovanskii, Finitely additive measures of virtual polytopes, St. Petersburg Math. J. 4 (1993) 337-356.
- [6] O. Viro, Some integral calculus based on Euler characteristic, Lecture Notes in Math. 1346 (1988) 127-138.
- [7] H. Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937) 276-284.

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, UNIVERSITY OF TORONTO MAX-PLANCK-INSTITUT FÜR MATHEMATIK, HEBREW UNIVERSITY OF JERUSALEM

594