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WHITNEY FORMULA IN HIGHER DIMENSIONS
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Abstract
The classical Whitney formula relates the algebraic number of times that a
generic immersed plane curve cuts itself to the index ("rotation number") of
this curve. Both of these invariants are generalized to higher dimension for
the immersions of an π-dimensional manifold into an open (n + l)-manifold
with the null-homologous image. We give a version of the Whitney formula
if n is even. We pay special attention to immersions of S2 into E 3 . In this
case the formula is stated in the same terms which were used by Whitney
for immersions of S1 into R2.

1. Introduction

Let / : S1 —> IR2 be a generic immersion (i.e., an immersion without
triple points and self-tangencies). The index of / is the degree of the Gauss
map (which maps Sι to the direction of df(v) where v is a tangent vector
field positive with respect to the standard orientation of Sι). Whitney in
[7] showed that the index is the only invariant of / up to deformation in the
class of immersions.

Fix a generic point x e S1. The cyclic order on S1 determined by the
orientation defines a linear order on Sι — {x}. This determines an ordering
of the positive vectors tangent to the two branches of / at every double point
d of /. Following Whitney we define the sign ex(d) of d to be +1 (resp. —1)
if the frame composed of these tangent vectors is negative (resp. positive) in
TCP2

IK. .

We define the function ind : E2 -» \TL in the following way. The (integer)
value of ind at y G M2 —/(S1) is defined as the linking number of the oriented
cycle f{Sλ) and the O-dimensional cycle composed of the point y taken with
the positive orientation and a point near infinity taken with the negative
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orientation. The value of ind at y G f(Sι) is defined as the average of the
indices of the components of M2 — /(S1) adjacent to y.

Theorem 1 (Whitney [7]).

index(/) = ^ex(d) + 2'md(f(x)).
d

This formula was found in 1937. However, no high-dimensional ver-
sions have been known though the problem of generalization of the Whit-
ney formula is not new (see Arnold [2]). Both the left-hand side and the
right-hand side can be defined for codimension-1 immersions of n-manifolds
/ : S ->• Rn+1. A straightforward approach to generalize the left-hand side
is to define it as the degree of the Gauss map (i.e., the map 5 —>• Sn defined
by the coorienting unit vector field normal to f(S) C R n + 1 ) . Unfortunately,
already for n = 2 this number does not depend on immersion — it equals
to ^χ(S) for any even n. This reveals the important difference between
the immersions of even- and odd-dimensional manifolds. We use another
natural way of generalizing the left-hand side of the Whitney formula; the
outcome coincides with the degree of the Gauss map for odd n (when it is
non-trivial), but it is also non-trivial for even n. Our generalization makes
sense not only for immersions to Mn+1 but also for the immersions to an
open (n + l)-manifold with null-homologous image. For its definition we use
the integral calculus based on the Euler characteristic χ (developed by Viro

[6])
Let M be a simplicial complex. A stratification of M is a decomposition

of M into a disjoint finite union of (open) strata where each stratum r is a
union of open simplices of M. Let F : M -» R be a function constant on
each stratum (and, therefore, on each open simplex) which vanishes on all
but finitely many simplices. The integral JM Fd,χ is defined by the following
summation over all strata r of M

f
J M

where by χ(τ) we mean the combinatorial Euler characteristic of r — the
alternated (by dimension) number of simplices of r.

Lemma 1.1 (cf. Pukhlikov-Khovanskii [5]). Let M be a simplicial
manifold. Then JM Fdx depends neither on the stratification of M nor on
the simplicial structure of M.

Proof. By additivity of the combinatorial Euler characteristic

/ Fdx
JM
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where the sum is taken over all the simplices σ of M. Therefore, JM Fd,χ
does not depend on the stratification. The independence on the symplicial
structure follows from the Alexander theorem [1] connecting any triangu-
lation with the star moves, since JM Fdχ is invariant under the Alexander
moves.

We may express index(/) for / : 5 1 ->• R2 in terms of such integral.

Denote by f(Sι) the smoothening of the curve /(Sfl) respecting the orienta-
tion. The singularities of a generic / are ordinary double points, so in local

coordinates (x,y) f{Sλ) is given by xy = 0, and f{Sλ) is given by xy — e = 0.

Define ind(y), j / G R 2 - f{Sλ) as the linking number of the oriented cycle

/(S1) and the 0-dimensional cycle composed of y taken with the positive
orientation and a point near infinity taken with the negative orientation.

Lemma 1.2 (cf. Mclntyre-Cairns [4]).

index(/) = / inddχ.

Proof. Note that index(/) does not change after smoothening (by the
index of a multicomponent curve we mean the sum ofjndices of its compo-
nents). To establish the equality index/ = J -rrzr: Ίnddχ we use induction

on the number of components of /(S 1).
This allows us to rewrite the Whitney formula.
Theorem 1\

/ inddχ = ^ ex(d) + 2ind(/(x)).
J \ ) d

The following corollary is a well-known application of the Whitney for-
mula. Let n be the number of the double points of / : S1 —> M2.

Corollary 1.
| index(/) |<n + l.

Proof. To deduce the corollary from Theorem 1 it suffices to choose the
base point x G 5 1 with exterior image (sitting on the boundary of the com-
ponent of E2 -f(Sλ) with the non-compact closure) so that | ind(f(x))\ = \.

Remark 1.3. Presentation of the Whitney formula in the form of
Theorem Γ helps to generalize the formula to generic planar fronts. The
front is a smooth map / : S1 ->> R2 equipped with a coorienting normal
direction defined on /(-S1), where / is an immersion except for a finite set
of (semicubical) cusp points. We define index(/) as the degree of the Gauss
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map given by the coorientation. To obtain the "smoothened" (multicompo-

nent) front (which has cusps but no double points) /(5 1) we smoothen the
double points of/(51) respecting both the orientation and the coorientation;
see Figure 1. Other definitions stay the same.

- I

FIGURE l.Smoothening of a double point of a front

Define the sign e(c) of a cusp c to be +1 if the coorienting vector turns

in the positive direction while going through a neighborhood of c in the

orientation direction and —1 otherwise. Then

index(/) = / 'mddx + - V e(c),

where c goes over all cusps of f(Sλ). Note that Σc(e(c) is equal to the sum of

the signs of all cusps of /(5 1) since the cusps appearing after smoothening

are of opposite signs. Theorem 1', which also works for fronts, produces

/ £ Σdtχ(d) + 2ind(/(x)), so

index(/) = i £ e(c) + £ ex(d) + 2 ind(/(s)).
c d

Note that one can also incorporate the contribution of cusps into the inte-

gral by the following modification χf of the Euler characteristics. For a com-

ponent r of M2 —/(51) we add +^ to χ(τ) for each cusp of dr turned inwards

r and — i for each cusp turned outwards. Then index(/) = J - ~ - inddχ'.

Remark 1.4. The definitions of the function ind and the signs ex(d)
make sense as well for a generic immersion / of S1 into a connected open
oriented surface F other than E2 if /(S'1) is homologous to zero. This leads
to a new integer-valued invariant gen defined on the set of classes of null-
homologous loops on F up to free homotopy. We define

ώddχ)
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FIGURE 2. Smoothening of a double curve

for any choice of a base point x (Ξ S1. Note that if / is an embedding, then
|gen(/)| equals the genus of the compact surface in F bounded by /(S 1),
so gen can be viewed as an "algebraic" version of genus which makes sense
for immersed curves as well.

2. Immersions 5 2 -> R3

Let / : S2 -> R3 be a generic immersion. Denote Σ = f(S2).
The inverse image of the double points Δ C Σ C R3 is an immersed

(multicomponent) curve D C S2. The orientation of R3 and the orientation
of S2 determine a coorientation of the image Σ — Δ = f(S2 — D), i.e., an
orientation of the normal bundle iVK3 (Σ — Δ) of Σ — Δ in R3, via the identity

TR3 = i \ Γ E 3 ( Σ - Δ ) Θ T ( Σ - Δ ) .

The set of non-singular points D' of D is equipped with the free in-
volution j : Df -> D' such that fj = f. The curve D' admits a natural
coorientation in S2 which comes from the coorientation of Σ — Δ via the
identity

The singular surface Σ admits a canonical smoothening Σ respecting the
coorientation (see Figure 2 and Figure 3). Choose local coordinates (x,y,z)
at a point of D' so that Σ is given by xy = 0, and the coorientation of Σ
is positive (given by the gradient of the coordinates). Then Σ is given by
xy — e = 0 for a small e > 0. Similarity, at a triple point Σ is given by
xyz — 0 and Σ is given by xyz — e(x + y + z) = 0.

Definition 2.1. The value of the function ind : R3 - Σ -> Z at
y £ M3 — Σ is defined as the linking number of the cooriented surface Σ
and the 0-dimensional cycle [y] — [oo] composed of y taken with the positive
orientation and a point near infinity taken with the negative orientation.



588 G. MIKHALKIN & M. POLYAK

FIGURE 3. Smoothening of a triple point

Fix a base point x G S — D. Define ind(/(α;)) as the average of the
indices of the components of R3 — Σ adjacent to f(x).

The singular curve D C Σ admits a canonical smoothening D C Σ
respecting the coorientation.

Definition 2.2. The sign ex(d) of a component d of D is 1 (resp. —1)
if the coorientation of d induced from Σ coincides with (resp. opposite to)
the coorientation of d determined by the outer vector field of the component
of S2 — d not containing x (i.e., by the normal vector field to d pointing out
to x).

Theorem 2.

= Tex(d)+2md(f(x)).

This theorem is a special case of Theorem 4 proven in Section 4.
Remark 2.3. Recall that the left-hand side of the original Whitney

formula (Theorem 1) is the only degree-0 Vassiliev invariant of immersions
of S1 to M2. In the paper of Gorunov [3] JR3_^inddχ appeared as the
only non-trivial (apart from the number of double curves and triple points)
degree-1 Vassiliev invariant of immersions of S2 to M3; note that there are
no non-trivial degree-0 invariants since the space of immersions S'2 -» R3 is
connected.

The following corollary is similar to Corollary 1. Let n$ be the number of
double curves of/ (i.e., the number of components of Δ after normalization).
Let nr be the number of triple points of /.

Corollary 2.

< 2n$ + 2nτ + 1.

Proof. Similarity to the proof of Corollary 1 we choose an exterior base
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point x so that | ind(/(x))| = \. Theorem 2 implies that

Note that £je x (d) is equal to /52_{x} ind cfχ, where ind (y), y G S2 - {x},
is the linking number of I) and [y] — [00] in 5 2 — {x} « R2. By Lemma 1.2
the latter is equal to the sum ̂ 2d'mdex(d) over all the components d C
S2 - {x} « E2 of D. Corollary 1 yields that | index(d)| is not greater than
one plus the number of self-intersections of d. Combining all this we obtain

inddχ| < | V" index(d)| + 1 < nd + nt + 1 ,
έ ~

where nd is the number of components of D after normalization, and nt is the
total number of self-intersections of components of D. The following lemmas
imply that n<ι = 2ns and nt < 2nτ finishing the proof of the corollary.

Lemma 2.4. The inverse image of every component δ of Δ consists of
two components.1

Proof. Let p G δ be a generic point. The coorientation of Σ equips p
with two vectors normal to δ and allows us to translate these vectors over
δ. Since IR3 does not contain disorienting loops, the monodromy at p does
not swap the vectors and therefore they correspond to different components
of the inverse image of δ.

Lemma 2.5. Not more than two out of the three points in the inverse
image of a triple point r of f correspond to self-inter section points of com-
ponents of D.

Proof. Suppose all the three points ίx, ty, tz of the inverse image of r
correspond to self-intersection points of the components of D. Let tx be a
self-intersection point of a component a of D. Then Lemma 2.4 implies that
ty and tz are self-intersection points of a component b φ a of D which maps
onto the same component of Δ as a. In a similar way Lemma 2.4 leads to
that tx and tz are self-intersection points of a and we get a contradiction.

Remark 2.6. Theorem 2 extends to generic maps / : S2 —> R3 which
are not necessarily immersions. The definitions of this section make also
sense in this situation. The (integer) number ind(w), where u is a Whitney
umbrella point is the average of the indices of the 3 components of M3 — Σ
adjacent to u (it equals the index of the component which is "the most

Recall that we consider components in "algebro-geometricaΓ, not in "point-set-
topological" sense
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adjacent" to u). The coorientation does not extend to the Whitney umbrella
points, but the smoothening Σ of Σ = f(S2) is still a smooth surface which
is defined by the coorientation at other points. Theorem 2 extends to

- / -mddχ = Vind(ti) + Ve x (d) + 2ind(/(z)),

where u and d go over respectively all Whitney umbrellas and all components
of D (some of them contain Whitney points).

3. Indices and smoothening of the image of immersion
in higher dimensions

Let / : S —> R be a generic immersion of an oriented n-dimensional
manifold S to an open oriented (n + l)-manifold i?, and assume that Σ =
f(S) is homologous to zero in R. The definitions from the previous section
generalize in the following way.

The inverse image of the double points Δ C Σ C R is a singular hy-
persurface D C S equipped with the free involution j : D' -+ D' defined
by the property fj = f on the set D' of the non-singular points of D.
The orientation of R and the orientation of S determine a coorientation of
Σ - Δ = f(S-D) via the identity TR = NR(Σ)®TΣ at non-singular points
of Σ.

The hypersurface D1 admits a natural coorientation in 5, which comes
from the coorientation of Σ via the identity Ns(Dr) = iV#Σ|j£>/. The coori-
entation of D' determines an orientation of D via TS\D = Ns(D) Θ TO.

The singular hypersurface Σ C R admits a canonical smoothening Σ
respecting the coorientation. We may obtain this smoothening by the fol-
lowing inductive procedure.

The multiplicity of x G Σ is the cardinality of f~λ(x). The multiplicity
induces a stratification of Σ. A stratum Σ^ of multiplicity A; is a smooth
open manifold of dimension n — k + 1. The stratum Σ2 is the singular
locus of U2 = Σi U Σ2. The proper regular neighborhood of Σ2 in (i?, U2)
is isomorphic to Σ2 x (D2,C2), where D2 is the 2-disk and C2 is the cone
over 4 points. The coorientation of C2 in D2 induced by the coorientation
of Σ determines a smoothening of C2 in D2 and, therefore, it determines
a smoothening of the regular neighborhood of Σ2 (similar to the previous
section, see Figure 2). Denote the resulting smoothening of U2 by 172.

Inductively we assume that Um is the smoothening of Um. Denote
Um+ι = Um U Σm +χ. The singular locus of Ϊ7m+i is Σ m +i. The regular
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FIGURE 4.The smoothening of Σ m +i

neighborhood of Σ m +i in (i£, Um+ι) is isomorphic to Σ m +i x ( D m + 1 , Cm+i),
where Dm+1 is the (m + l)-disk, and Cm+i is the cone over m + 1 copies of
Sm~ι (see Figure 4). The coorientation of Cm+i in Dm+ι induced by the
coorientation of Σ determines a smoothening of Cm+i in Dm+ι (see Fig-
ure 4) and therefore a smoothening of the regular neighborhood of Σm+χ.
Finally Σ = ZJn+\ is a smooth (multicomponent) manifold.

Remark 3.1. We can also describe the smoothening of Σ locally with-
out going through the above inductive procedure. Choose local coordinates
(xi,..., xn+ι) at x G Σjt so that Σ is given by equation x\... Xk = 0, and
the coorientation of Σ is positive (given by the gradient of the coordinates).
Then Σ is described by

Σ x3ι

m = l 3l<-<3k-2n

for a small e > 0. _
Definition 3.2. The value of the function ind# : R -> \Z at y is defined

as the linking number of the cooriented (null-homologous) hypersurface Σ
and the 0-dimensional cycle [y] - [oo] composed of y taken with the positive
orientation and a point near infinity taken with the negative orientation (if
y G Σ then ind#(y) is the average of the indices of the components of R — Σ
adjacent to y). By the point near infinity we mean any point in a component
of R — Σ with a non-compact closure. Since Σ is closed and homologous to
zero, the linking number does not depend on the choice of oo.

In a similar way we define indβ(y), y G R, as the linking number of Σ
and [y] - [oo].
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Lemma 3.3.

/ mdRdχ = / mdRdχ.
JR JR

Proof. Recall our smoothening process. The ra-th step smoothens the
regular neighborhood Σ m + i x (2?m + 1,Cm+i) of Σ m + i in t/m+i. It suffices
to prove that the integral of index does not change after this smoothening.
Let a component A of Σ m +i be of index j in R. In the regular neighborhood
of A we have (n + l)-dimensional strata of indices j — mϊpL, .., j ' + m^ ,
n-dimensional strata of indices j — y , . . . , j + y and the core ra-dimensional
stratum A. The smoothening adds (—l)m to the Euler characteristics of
((n + l)-dimensional) strata of indices j — 2Zy^,..., j , . . . , j + mγ^ and adds
(—I)771"1 to the Euler characteristics of (n-dimensional) strata of indices
j — y , . . . , j , . . . , j + y. The Euler characteristics of stratum of index j
decreases by 1 + (—l)m + 1. Therefore the total change of the integral is 0.

4. Immersions of even-dimensional manifolds

Lemma 4.1. The oriented hypersurface D C S is homologous to zero
in S.

Proof.

The sum is taken over all the components s of S — -D, s is the closure of 5
equipped with the orientation induced from S, and ind#(s) is the value of
the (constant) function ind^|5 (^ is added to make the coefficients of the
chain integer).

Denote by D the unique smoothening of D C S respecting the coorien-
tation. Fixing a base point x £ S — D and substituting S — {#}, D and D
to the Definition 3.2 give the definitions of ind^.^} : S - ({x} U D) -» Z
and ind5_{x} : S - {x} -» \ΊL.

Theorem 3.

- / indβdx = / 'mdS-{x}dχ + χ(S) mdR{f(x)).
JR-Σ, JS-b

Lemma 4.2.

/ ind# dx = 0.
JR

Remark 4.3. The proof of the lemma works for any function
R - Σ -> Z extended to p : R -> ±Z by averaging (cf. Definition 3.2).
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Proof of Lemma 4-2. By Lemma 3.3, JR'mάRdχ = JR'mdRdχ. Denote

M±j = (±indβ)~ 1[ |,+oo), j E N. Following Lebesgue, we decompose

oo - 1

(M) Σ
j=-oo

-1

2l)+x{M2k))~ Σ ϊ
k=l j=-oo

Note that M±^k-ι)^ k E N, is a compact odd-dimensional manifold with
the interior int(M±(2fc-i)) = ^±2k The double W±k of M±(2k-i) ιs a closed
odd-dimensional manifold, thus χ{W±h) = 0. On the other hand for the
(combinatorial) Euler characteristic we have

0 = χ(W±k) =x(M±{2k_l)) + χ{uA{M±{2k-i)))

-l)) + X(M±2k)

and the lemma follows.
Proof of Theorem 3. Recall again our smoothening process. The rath

step of the smoothening adds ra /Σ ind# dχ to — JR_Έ indβ c/χ, thus

(4.1)

r r ϊtj r
- / indRdχ = - indβ dχ+}Z(j -1) / indβ dχ

JR-t JR-Σ ~2 JZj

Lemma 4.2 implies that — JR_Έ indβdχ = /Σ indβcίχ. Substituting this in
(4.1) gives

— / mdRdχ = / indR dx + y^(j — I) / ΊndRdχ
JR-t JΣ ~£

n+l

(4.2)

By the Fubini theorem [6] we get

n+l

= / indΛ
J s
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Note that ind#o/ = inds-_{x} + ind#(/(x)), so

/ indβofdχ= / indS-{x}dχ + χ(S) indR(f{x)).
Js Js

By Lemma 3.3, fs'mds-{x}dχ = Js'mds-{x}dχ; substituting this in the
previous equality and noticing that

/ ind 5_ { x}dχ= / ind5_
Js Js-D

since the dimension of a smooth manifold D is odd, we finally get

- / indβ dχ = / mdS-{x}dχ + χ(S) indR{f{x)).

JR-Σ JS-D
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