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Abstract
We study the symplectic geometry of moduli spaces Mr of polygons with
fixed side lengths in Euclidean space. We show that Mr has a natural
structure of a complex analytic space and is complex-analytically isomorphic
to the weighted quotient of ( 5 2 ) n by PLS(2,C) constructed by Deligne and
Mostow. We study the Hamiltonian flows on Mr obtained by bending the
polygon along diagonals and show the group generated by such flows acts
transitively on Mr. We also relate these flows to the twist flows of Goldman
and Jeffrey-Weitsman.

1. Introduction

Let Vn be the space of all n-gons with distinguished vertices in Eu-
clidean space E 3. An n-gon P is determined by its vertices Vι,...,vn.
These vertices are joined in cyclic order by edges eχ,...,en where ê  is
the oriented line segment from V{ to υ ί + 1 . Two polygons P = (t>i,..., vn)
and Q = (wu ...,wn) are identified if and only if there exists an orien-
tation preserving isometry g of E3 which sends the vertices of P to the
vertices of Q, that is

gυi = Wi, 1 < i < n

Let r = (?"i,...,rn) be an n-tuple of positive real numbers. Then Mr

is defined to be the space of n-gons with side lengths r i , ...,rn modulo
isometries as above. The group R+ acts on Vn by scaling and we obtain
an induced isomorphism Mr = M λ r for λ E M+. Thus we lose nothing
by assuming

We make this normalization to agree with [4], §2.
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We observe that the map

π : Vn -* Wl

which assigns the vector r of side lengths to an n-gon P has image the
polyhedron Vn of [10], §2. The moduli spaces Mr then appear as the
fibers of π and their topology may be obtained by the wall- crossing
arguments of [10] and [21]. We recall that the moduli space Mr is a
smooth manifold iff Mr does not contain a degenerate polygon. We
denote by Σ the collection of hyperplanes in Vn described in [10], then
Mr is singular iff r £ Σ.

This paper is concerned with the symplectic geometry of the space
Mr. We prove two main results. The space (S2)n is given the symplectic
structure

where vol is the standard symplectic structure on S2. Our first re-
sult gives a natural isomorphism from Mr to the weighted quotient of
(S2)n by PL5(2, C) for the weights rx,..., rn constructed by Deligne and
Mostow in [4]. The construction goes as follows. The closing condition

ei + . . . . + e n = 0

for the edges of the polygon P defines the zero level set for the mo-
mentum map for the diagonal action of SO(3) on (S2)n. Thus Mr is
the weighted symplectic quotient of (S2)n by 50(3). We give Mr the
structure of a complex-analytic space with at worst quadratic singular-
ities. This is immediate at smooth points of Mr since (S2)n is Kahler.
However it requires more effort at the singular points.

We then extend the Kirwan-Kempf-Ness theorem [12], [13], [19] to
show that the complex- analytic quotient constructed by Deligne and
Mostow is complex analytically isomorphic to the symplectic quotient.
We observe that the cusp points QCUSp of [4] correspond to the singular
points of Mr which in turn correspond to degenerate polygons, i.e.,
polygons that lie in a line.

Our second main result is the construction of "bending flows". Sup-
pose P has edges βi, ...,en. We let

μk = ei + .... + eΛ+i, 1 < k < n - 3

be the Λ -th diagonal of P and define functions

fit ""> fn-3
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on Mr by

UP) = \\\μk\\2

We check that the functions fk Poisson commute and that the corre-
sponding Hamiltonian flows have periodic orbits. Since dimMr = 2n —6
we see that Mr is completely integrable and is almost a toric variety-
unfortunately we cannot normalize the flows to have constant periods
if the functions fk have zero's on Mr. The Hamiltonian flow for fk has
the following geometric description. Construct a polyhedral surface S
bounded by P by filling in the triangles

Δi,Δ 2,...,Δn_ 2

where Ak has edges μk φ 0,efc+i,μfc+i, 1 < k < n — 1 (we have μn_i =
en). Some of these triangles may be degenerate. The diagonal μk divides
S into two pieces. Keep the second piece fixed and rotate the first piece
around the diagonal with angular velocity equal to fk{P). Thus the
surface S is "bent" along the diagonal and we call our flows bending
flows. If μk — 0 then P is fixed by the flow. However the bending flow
does not preserve the complex structure of Mr.

Let M'r denote the dense open subset of Mr consisting of those poly-
gons P such that none of the above diagonals have zero length. Thus
M'r contains all the embedded polygons. Then the functions ίi — y/2jii
1 < i < n — 3, are smooth on M'r. The resulting flows are similar to
those above except they have constant periods. We obtain a Hamilto-
nian action of an n — 3-torus T on M[ by bending as above. If we further
restrict to the dense open subset M° C M'r consisting of those polygons
so that μι and e<+i are not collinear, 1 < i < n, then we can introduce
"action-angle" coordinates on Mr°. Note that under the above hypoth-
esis none of the triangles Δ^ is degenerate. We let θι G M/2πZ be the
oriented dihedral angle between Δ* and Δ i + i . In §4 we prove that

θι = π — 0i, ...,0n_3 = π — 0n_3,^i, ...,^n_3

are action-angle variables.
In Section 5 we relate our results on bending to the "twist" deforma-

tions of [7], [9] and [22]. Our main new contribution here is the discovery
of an invariant, nondegenerate symmetric bilinear form on the Lie al-
gebra of the group of Euclidean motions. Also in Proposition 5.8 we
give a general formula for the symplectic structure on the space of rela-
tive deformations of a flat G-bundle over an n times punctured sphere.
Here we assume that the Lie algebra Q of G admits a non-degenerate,
G-invariant symmetric bilinear form.
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In §6 we show that the subgroup of the symplectic diίfeomorphisms
of Mr generated by bendings on the diagonals of P acts transitively on
Mr. In Figure 1 we show how to bend a square into a parallelogram.

It is a remarkable fact that most of the results (and arguments) of this
paper generalize to the space of smooth isometric maps from S1 with a
fixed Riemannian metric to E3 modulo proper Euclidean motions, i.e.,
to regular oo-gons. These results will appear in [16] and [17].

After this paper was submitted for publication we received the paper
[14] by A. Klyachko . Klyachko also discovered a Kahler structure on Mr

and that it is biholomorphically equivalent to the configuration space
(S2)n/PSL(2, C), however he did not use the conformal center of mass
construction and did not give a proof of this equivalence. Otherwise, the
main emphasis of [14] is on construction of a cell-decomposition of Mr

and calculation of (co)homological invariants of this space; [14] does not
contain the geometric interpretation and transitivity of bending flows,
action-angle coordinates and connections with gauge theory.

2. Moduli of polygons and weighted quotients of configuration
spaces of points on the sphere

Our goal in this section is to give Mr the structure of a complex
analytic space and to construct a natural complex analytic equivalence
from Mr to Qsst, the weighted quotient of the configuration space of n
points on S2 by P5X(2,C) constructed in [4], §4. We define a subspace
Mr C (S 2)n by

Each polygon P in the moduli space MΓ corresponds (up to translation)
to the collection of vectors

( e l r . , e n ) G ( R 3 - { 0 } Γ

The normalized vectors Uj = ej/rj belong to the sphere 5 2 . The polygon
P is defined up to a Euclidean isometry, therefore the vector

is defined up to rotation around zero. Since the polygon P is closed we
conclude that
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Thus there is a natural homeomorphism

e : Mr -> Mr = Mr/S0(3)

We will call e the Gauss map.

We now review the definition of the weighted quotient Q88t of the
configuration space of n points on S2 following [4], §4. Let M C (S2)n

be the set of n-tuples of distinct points. Then Q = M/PSL(2,C) is a
Hausdorff complex manifold.

Definition 2.1. A point it G (5 2 ) n is called r-stable (resp. semi-
stable) if

Σ rά < 1 ( resp. < 1)

for all v e S2. The sets of stable and semi-stable points will be denoted
by Mst and M8St respectively. A semi-stable point it G (S2)n is said to
be a nice semi-stable point if it is either stable or the orbit PSL(2, C)ΊΪ
is closed in Msst.

We denote the space of nice semi-stable points by Mnsst. We have
the inclusions

Mst C Mnsst C M88t

Let Mcusp — Msst — Mst. We obtain the points in Mcusp in the following
way. Partition S = {l,...,n} into two disjoint sets S = Si U S2 with
Si = {ii,...,ΰ})5

r2 = {ji,»jn-k} in such a way that rh + ... + rik = 1
(whence Γj1+...+rjn_k = 1). Then it is in Mcusp if either uiλ = ... = uik

or Ujx = ... = ujn_k. The reader will verify that it G MCU8p is a nice
semi-stable point if and only if both sets of the equations above hold.
All points in Mcusp are obtained in this way. Clearly the nice semi-
stable points correspond under e"1 to the degenerate polygons with SΊ
determined by the forward-tracks and 5 2 by the back-tracks. On Msst

we define a relation Ή, via:
it = lί{mod Έ) if either
(a) Tf, ttf G Mst and ΰf G PSL{2,C)ΊΪ,
or
(b) it ,~υ} G M c u s p and the partitions of 5 corresponding to l/, iti

coincide.
The reader will verify that if it, ϋϊ G M n s s ί then it = UΪ(mod Έ) if

and only if ΰt G PSL{2,C)!Ϊ.
It is clear that 7£ is an equivalence relation. Set

Qsst = MS8t/π, Qn88t = Mnsst/π, Q8t = Mst/π, QCU8P = MCU8p/n

each with the quotient topology. The elements of QCU8p are uniquely
determined by their partitions. Thus QCU8p is a finite set. It is clear



484 M. KAPOVICH & J. J. MILLSON

that each equivalence class in Qcusv contains a unique P5L(2,C)-orbit
of nice semi-stable points whence the inclusion

Mnsst C Msst

induces an isomorphism

= Mnsst/PSL(2,C) -> Qsst

In case ru ..., rn are rational then the quotient space Qsst can be given a
structure of an algebraic variety by the techniques of geometric invariant
theory applied to certain equivariant projective embedding of (S2)n, see
[4], §4.6. This concludes our review of [4], §4. We now establish the
connection with the moduli space Mr.

We recall several basic definitions from symplectic geometry. Suppose
that N is a simply-connected Kahler manifold with symplectic form ω
and Gc is a complex reductive Lie group acting holomorphically on N.
Let G be a maximal compact subgroup in Gc. We may assume that G
acts symplectically. Then the Lie algebra Q of G maps naturally into the
space of vector-fields on N. Each element X G G defines a Hamiltonian
fx : N -> R so that dfx{Y) = ω{X,Y) for every Y G T{N). There
exists a map μ : N —>• G* such that (μ(z),X) = fχ{z). The map μ is
called the momentum map for the action of G. The space μ~ι(Q)/G is
called the symplectic quotient of N by G to be denoted by N//G.

Let υol be the 5O(3)-invariant volume form on S2 normalized by

υol = 4π

Fix a vector r = (ri,...,rn) with positive entries. We give (S2)n the
symplectic form

where p* : (5 2) n -» 5 2 is the projection on the j-th factor. The maximal
compact subgroup SΌ(3) C PSL(2,C) acts symplectically on

ω). We let

μ : (5 2) n -> R3

be the associated momentum map.
Here we have identified the Lie algebra so(3) of SO(3) with the space

(M3,x) where x is the usual cross-product and E3 = (E3)* via the
Euclidean structure on R3. The identification (M3, x) -» so(3) is given
by u ^ adu where adu(i?) = u x υ, u, v G M3.

Lemma 2.2.
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(compare Lemma 3.1)
Proof. First note that in case n = 1 the momentum map μ : S2 —> R3

for the symplectic structure p vol is given by

μ ( μ ) =p-u

But the momentum map of a diagonal action on a product is the sum
of the individual momentum maps.

Thus the space Mr is the symplectic quotient of (S2)n (equipped
with the symplectic structure ω defined above) by 5O(3), which is the
subquotient μ"1(0)/5O(3).

We obtain the following
Theorem 2.3. The Gauss map e is a homeomorphism from the

moduli space Mr of n-gons in M3 with fixed side lengths to the weighted
symplectic quotient of (S2)n by 50(3) acting diagonally.

We now prove that Mr is a complex analytic space. Let Σ C Mr

be the subset of degenerate polygons (Σ is a finite collection of points).
Then Mr — Σ is the symplectic quotient of a Kahler manifold and is
consequently a Kahler manifold [18], Ch. 8, §3. It remains to give Mr

a complex structure in the neighborhood of a degenerate polygon.
To this end let P be a degenerate n-gon which has p + 1 "forward-

tracks" and q + 1 "back-tracks". The following lemma is a special case
of [1], Corollary 4.2, except for the connection with the number of back-
tracks and forward-tracks. To establish this connection and for the sake
of clarity we prove the following

L e m m a 2.4. There is a neighborhood of P in Mr homeomorphic
to the symplectic quotient U//S0(2) where U is a neighborhood of 0
in C"1""2, S0(2) acts by symplectic isometries of the parallel symplec-
tic form of Cn~ 2 and is the Hamiltonian flow for the Hamiltonian h :
(£n-2 _^ j£ given ty the formula

p Q

h(z1,...,zp,wu...,wq) =Σ\zi\2 -J2\wi\2

Proof. Let {ei,c2,€3} be the standard basis of W. We may assume
that P is contained in the x-axis and that the last edge en of P is given
by en = rnci- We lift e(P) G Mr to it G {S2)n with

Here ηk G {±l},ηn = 1, there are p + 1 plus ones and q + 1 minus ones
and

n-l

k=l
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Our goal is to investigate the symplectic quotient of (5 2 ) n by 50(3)
near 1^. We let H =* 50(2) be the subgroup of 50(3) fixing ex. Thus
H is the isotropy subgroup of P. We will often write 50(2) instead H
in what follows.

We begin by constructing a slice 5 through it for the action of 50(3)
on (5 2 ) n . Define 5 = {~s> = (su...,sn) G (5 2 ) n : sn = d} . Then 5 is a
smooth submanifold of (5 2 ) n of dimension 2n — 2. It is immediate that
5 satisfies the slice axioms:

• hS C S,he H]
• If gSnS^Q,geS0(3) then g G H
• The natural map a : 50(3) xHS -> (5 2 ) n given by a([g, ~Ϋ]) =

g s is a diίfeomorphism.

We transfer the symplectic form ω from (5 2 ) n to X = 50(3) xH S.
It is then immediate that the induced momentum map μ : X —>> R3 is
given by

We define 5 0 C 5X C 5 by

5 = ί~Ŝ  = (s s ) G (5 2 ) n *

= ( β l ) ...,Sn) € (S2)n : £ r ί S j = 0}
i = l

We note that μ~ι{0) = 50(3) Xso(2) ^o and consequently the map a
induces a homomorphism a : 50/5O(2) ->• (52)n//5O(3). We are done
if we can prove that there is a neighborhood V of u in SQ such that
V/SO(2) is isomorphic to a neighborhood of 0 in the symplectic quotient
Cn"2//5O(2) described above.

We let / : 5 -* R3 be the map given by f(Ί?) = ΣΓ=i ri 5i W e

want to investigate f~ι{0) near lit. Let fuf2,fo be the components
of /. Let g = (/2,/3) whence g : 5 -> R2 and p " 1 ^ ) = 5i. Since
rffftx : TU(S2) —>• T0(R2) is onto there is a neighborhood V of it (which
we may assume is 5O(2)-invariant) such that VΠSi is a smooth manifold
of dimension 2n — 4. Then

v n So = {^ e v n 5X: Λ(^) = 0}

We observe that /i = μ ex is the Hamiltonian function for the 50(2)
action on 5. Clearly 50(2) carries Sλ into itself.

Let p denote the isotropy representation of 50(2) on TU(V Π 5i). We
note that p preserves the almost complex structure J on TU(V Π Si)
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given by J(δ) = Ίjt x δ and p preserves the parallel symplectic form
ω^ on T-rf(Sι). After shrinking V and applying Darboux's Theorem we
may assume that the Riemannian exponential map exp^ : 7V(SΊ) —> SΊ
induces a SΌ(2)-equivariant symplectic isomorphism from a neighbor-
hood U of 0 in T-rf(Si) to V Π Si. Thus exp^ induces an isomorphism
from U//SO{2) onto VΠ5i//5O(2). We have accordingly reduced the
problem to the linear case.

We have SΌ(2)-equivariant inclusions of symplectic vector spaces

T1}(S1)cT1t(S)cT1t((S2)n)

where

Ί) = {t:δi e1=O,δn = 0,£>A € R
t = l

But since ίj is orthogonal to the rc-axis for all i, for £ € 7V(SΊ) we
have ΣΓ=i rA = 0 and

!) = {~ί-.δi-e1=0,δn = 0, f>A = 0}

The infinitesimal linear isotropy representation dp is given by the linear
vector field

F(δ) = dpφ(δ) = (e1xδ1,...,e1xδn)

We first compute the Hamiltonian h for F on the larger space TU(S).
We claim that

1

Indeed,

for v = (i/i,...,i/n) G T u ( 5 ) and

n-l

n - l

and the claim is established. We note that h is a quadratic form of
signature {2p,2q + 2) (recall that ηn > 0 since en is a forward-track).
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Also, since SO(2) preserves the complex structure J, the quadratic form
h satisfies h(Jδ,Jδ') = h(δ, <5'), i.e., h is a Hermitian form. Now since
50(2) carries T^S^ into itself, F\Tu(Sl) is tangent to Tu(Sχ). Hence
the restriction of h to TU(SΊ), again denoted by /ι, is the Hamiltonian
for F\τu(S!) Thus we have only to compute the signature of this restric-
tion. Let W be the orthogonal complement of Tu(Sι) in TU(S) for the
quadratic form h. It is immediate that W is spanned by the two vectors

and
w 3 = (77163,

Indeed, for fc = 2,3

n—1 n—1

h(wk,δ) = ] Γ 77^77,6* <J» = ] ζ
ί = l i = l »=1

Thus ^ ( 5 ) = Tu(Sι)+W is a direct sum decomposition which is orthog-
onal for h. But h(w2,w3) = 0 and h(wk,wk) = YJlZl ηiTi = —rn < 0,
k — 2,3. Hence /ι|^ is negative definite and hence h\τu(sx) is a Hermitian
form of signature (p, g).

We now give a complex structure to the symplectic quotient
U//SO(2).

Let C* act on C? x O by

Let (Cp x Cq)st denote the stable points and (Cp x Cq)nsst denote the
nice semi-stable points. Then

(Cp x Cq)st = {{z,w) 6 Cp x σ : z φ 0 and w φ 0}

The Mumford quotient V of C? x Cq by C* is by definition the affine
variety corresponding to the ring of invariants

C[z1,...,zp,w1,...,wq]
σ

It is immediate that this ring is generated by the polynomials f^ = ZiWj
with relations generated by fijfji = fufjj Thus V is a homogeneous
quadratic cone in <CPq. We observe that the topological space V(C)
underlying V is the quotient space is the quotient

Note that we have an inclusion

ι:€n~2//SO{2) -) F(C)
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The following lemma gives the simplest example relating symplectic
quotients with Mumford quotients.

L e m m a 2.5. The induced map i is a diffeomorphism.
Proof. We will construct an inverse of i. Let (z,w) G (Cp x O ) 5 ί .

Then ||2|| H I Φ 0. Let λ - ( N / H I ) 1 / 2 Then (A*, A"1™) G /r^O)
since |jλs|| - prγw\\.

By transport of structure we obtain a complex analytic structure on
UjI'SO(2). This structure clearly agrees with the complex structure
already constructed on U//SO(2) - {P}.

We have proved the following
Theorem 2.6. Mr is a complex analytic space. It has isolated sin-

gularities corresponding to the degenerate n-gons in Mr. These singu-
larities are equivalent to homogeneous quadratic cones.

We will now relate the symplectic quotient Mr to the space Qsst In
case the side-lengths ru ...,rn are rational our theorem is a special case
of a fundamental theorem of Kirwan, Kempf and Ness [13], [12], [19],
relating symplectic quotients with quotients (in the sense of Mumford)
of complex projective varieties by complex reductive groups. We note
that

r iiii + ... + rnun = 0

implies the semi-stability condition. Therefore we have an inclusion
/i~1(0) C Mnsst and whence an induced map of quotients

ξ : Mr = μ-1(0)/5O(3) -> Qsst = Mnsst/PSL(2,C)

Theorem 2.7. The map ξ o e is a complex-analytic equivalence.
Proof. In order to prove the theorem we will need some preliminary

results on the action of PSX(2,C) on measures on S2.
Definition 2.8. A probability measure on S2 is called stable if the

mass of any atom is less than 1/2. It is called semi-stable if the mass of
any atom is not greater than 1/2 and nice semi-stable if it has exactly
two atoms each of the mass 1/2.

The following is the basic example of semi-stable measure. Take a
vector ~ê  E jM r, it defines a measure v = v(u ,r) on S2 by the formula:

This measure has the total mass 1 and is semi-stable .
Let i : S2 —> M3 be the inclusion. Then the center of mass B(v) of a

measure v on S2 is defined by the vector-integral

B(v) = ί i(u)du(u)
Js2



490 M. KAPOVICH & J. J. MILLSON

We note that PSX(2,C) acts on measures by push-forward, to be de-
noted by 7*1/ for 7 G PSX(2, C) and v a measure on S2.

L e m m a 2.9. For each stable measure v on S2 there exists 7 G
P5L(2,C) such that B(j^ιy) = 0. The element 7 is unique up to the
post composition 5 0 7 where g G SΌ(3).

Proof. Denote by B3 the unit ball bounded by S2. Douady and Earle
in [3] define the conformal center of mass C(v) G B3 for any stable
probability measure u on S2. The assignment C(v) has the following
properties:

(a) For any 7 G P S X ( 2 , C )

(b) B(v)=O if and only if C(v) = 0.

Note that in (a) the group PSX(2,C) acts on B3 as isometries of
the hyperbolic 3-space. The lemma follows from the transitivity of this
action.

We can now prove that ξ is an isomorphism of complex- analytic
spaces. By the previous lemma ( o e carries the non-singular points of
Mr continuously to Qst. Also ξoe carries degenerate n-gons to nice semi-
stable points. Thus ξ o e is a continuous bijection and consequently is a
homeomorphism. It is easy to check that the complex-linear derivative
d(ξ o e) is invertible at all non- singular points. Moreover it follows from
the analysis of [4], §4.5, that ξ o e is a complex- analytic equivalence
near the singular points of Mr.

The theorem follows.

We obtain the following

Corollary 2.10. Mr has a natural complex hyperbolic cone structure
(see [20] for definitions).

Proof. It is proven in [20] that Mnsst/PSL(2,C) has a complex hy-
perbolic cone structure.

3. Bending flows and polygons

In this section we will show that Mr admits actions of Mn~3 by
bending along n — 3 "non-intersecting" diagonals (note that n — 3 =
I dimM r ) . The orbits are periodic and there is a dense open subset M'r
(including the embedded n-gons) such that the action can be renormal-
ized to give a Hamiltonian action of the (n — 3)-torus (Sι)n~3 on M[.
Thus Mr is "almost" a toric variety.
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In this paragraph it will be more natural to work with the product

3=1 3=1

whence Mr — Mr/S0(3). We need to determine the normalizations of
the symplectic forms on factors of Mr in order that the zero level set of
the associated momentum map μ : Mr —> R3 is the set of closed n-gons.
In what follows we will use Sr to be the product Πj=i S2{rj)-

Let v be the 2-form on S2{r) given by

vx(u,v) = x (u x v) = rvolx{u,v), x G S2(r),u,v e Tx(S2(r))

Here vol denotes the Riemannian volume form on S2(r). We define the
symplectic form ω on Mr by

ω= > —Όv= > —i

Lemma 3.1. T/ie momentum map μ : Sr —> R3 /or ί/ie diagonal
action of 50(3) on (5 r ?^) w #wen 6?/

Proof It suffices to treat the case n = 1. We replace ri by r. Let
ί ϋ G K 3 = 5O(3). Then the induced vector field w on 52(r) is given by

w(x) = w x x

Let /i^ be the associated Hamiltonian. It suffices to prove that hw(x) =

W'X. To this end let υ E Tx(S2(r)). Then dhw(υ) =wυ and

i>w(x)Ux(v) = -^x ' [(w x x) xυ] = —x [(w v)x] = w-υ

Remark 3.2. The equation μ(e) = 0 is the "closing condition" for the
n-gons in R3 with edges (βi,...,en). Thus the above normalization for
ω is the correct one. However the map w *-+ w from (R3, x) to the Lie
algebra of vector fields on R3 is an antihomomorphism of Lie algebras.

We observe that Mr has an 5O(3)-invariant Kahler structure. The
following are the formulas for the Riemannian metric ( , ), symplectic
form ω and almost complex structure J for u , v E T-?Mr:

(a)

(c) Jit = (efi x t i i , . . , ^ x« n ) .
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Remark 3.3. The normalization for ω is chosen in order that μ(Ί?) =
0 will be the "closing condition" for n- gons. The normalization for J
is determined by J 2 = —/. Consequently the normalization for ( , )
is determined as well.

Now let [P] E Mr and choose ~~& E Mr corresponding to a closed
n-gon P in the congruence class [P]. We may identify T|p](MΓ) with
the orthogonal complement

of the tangent space to the orbit of SO(3) passing through ~£. The
subspace Tϊfr(Mr) consists of vectors δ = (5i,..., 5̂ ) G (R3)n which
satisfy the following equations:

(i) δj ej = 0;

i 1 7 ( i i )
The first equation corresponds to the fixed side lengths of our poly-

gon; the second is the infinitesimal "closing condition" for the polygon
P. The last equation is the "horizontality" condition due to the follow-
ing

Remark 3.4- The equation (in) is equivalent to the condition
(w) Σi=i rjλ(υ x eά) δ j = 0 for all veR3.
We note that the vectors ( n e i , . . . , υ x e n ) , ί ) G R 3 are the tangents

to the 50(3) orbit through ~t in Mr.
We obtain formulas for the pull-back Riemannian metric ( , •), sym-

plectic form ω and almost complex structure J on T^r(Mr) by restrict-
ing formulas (a), (b), (c) above. Note that formula (iii) above may be
rewritten as

indicating that T^fr(Mr) is J-invariant.
We now study certain Hamiltonian flows on Mr. We will identify an

5O(3)-invariant function on (5 2)n or ΠΓ=i*^2(ri) w ^ h *^e function it
induces on Mr without further comment. We define functions f λ , . . . , /n_3

on Sr by

Λ(ei,...,en) = —||ex + ... + ek+1\\2, k = l , . . . , n - 3

Thus fk corresponds to the length squared of the fe-th diagonal of P
(drawn from vλ to 1̂ +2)- Our goal is to find an interpretation of the
Hamiltonian flow corresponding to fk in terms of the geometry of P.

Lemma 3.5. The Hamiltonian field Hfk associated to fk is given by

Hfh(eu...,en) = (μk x eu...,μk x
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where μk = eλ + ... + ek+x is the k-th diagonal of P.
Proof. Let e = (ei,...,en). Since fk does not depend on the last

n — k — 1 components it suffices to prove the lemma for the map

given by

fn_ι{-t)=l-\\e1+... + enf=
l-\\μf

where μ is the momentum map for the diagonal action of SO(3) on
ΠΓ=i S2(rΐ) By the equivariance of μ (see the proof of Lemma 3.1 in
[13]) the Hamiltonian field Hfn_1 at e satisfies

where ϋ is the vector field on ΠΓ=i ^ 2 ( r i ) corresponding to υ E so(3).
But ϋ(Ί?) = υ xl? and the lemma follows.

Proposition 3.6.
{/*,/<} = o

/or α// A;,Z.
Proo/. We may assume k < I. Then

{fkJι}=ω(Hfk,Hfι) = Σ~^((μk x e<) x (μι x e<)) =

Λ+l

μ& (μ* x μι) = o

We now study the Hamiltonian flow φ\ associated to fk. Thus we
must solve the system (*) of ordinary differential equations

(*) < iι k *' — —
yη*- =0,k + 2 <ι <n

We will use the following notation. Recall that we have identified (E 3, x)
with the Lie algebra of 50(3) and if u, υ G E3 then we have

&du(v) = u x υ

Accordingly we define an element exp(adu) G 50(3) as the sum of the
power series

, . , ^ (ad t t)
n

exp(adu) = }2 ~—Γ"
n=0 n *

The following lemma is elementary and is left to the reader.
Lemma 3.7. Let Π be the oriented plane in E3 which is orthogonal to

u. Then exp(adu) is the rotation in Π through an angle of \\u\\ radians.
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In particular the curve exp(ί adw) has period 2π/||u|| and angular velocity

Nl
We can now solve the system (*).
Proposition 3.8. Suppose P G Mr has edges βi,..., en. Then P(t) =

φl{P) has edges e^t), ..,en(ί) given by

Ci{t) = exp(tadμfc)ei, 1 < i < k + 1

e»(t) = ei5 k + 2 < i < n

Proof. We will ignore the last n — k — 1 edges since they are constants
of motion. We make the change of unknown functions

ei = βi + ... + βfc+i = μk, βi = βi, 2 < i < k + 1

It is immediate that e l 5 ...,efc+i satisfy the new system of equations:

= 0
dt

de
τ

L = e i X e i , 2 < i < A: + 1
at

Since ex = μk we find that μk is invariant under the flow and

^i(ί) = exp(tad/ifc)ei, 2 <i <n

It remains to find eλ(t). Note that exp(ίadμfc)/ifc = μk, thus

i=2 i=2

exp(ίadμfc)βi

Corollary 3.9. TΛe curve φt

k(P) is periodic with period 2π/ίk where

ίk = \\ei + ... + ek+1\\

is the length of the k-th diagonal μk of P.
Remark 3.10. If the A -th diagonal has zero length (thus v\ = vk+χ)

then P is a fixed point of ψ\. In this case the flow has infinite period.
We see that φ{{P) is the bending flow described in the introduction.

It rotates one part of P around the fc-th diagonal with angular velocity
equal to the length of the A -th diagonal and leaves the other part fixed.

We next let M'r C Mr be the subset of Mr consisting of those P for
which no diagonal μι has zero length. Then M'r is Zariski open in Mr.
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The functions l u ..., ίn_3 are smooth on M[ and they Poisson commute.
Since fk = ί\/2 we have

and consequently

Htk=Hh/ek

Since ίk is an invariant of motion the solution procedure in Proposi-
tion 3.8 works for Hik as well. Let Φ£ be the flow of Hίk. We obtain
the following

Proposition 3.11. Suppose P G M'r has edges eu...,en. Then
P(t) = Φ{{P) has edges ei(ί), ...,en(£) given by

ei(t) = exp(ίadμfc /4)βi, 1 < i < k

Thus Φjj. rotates a part of P around the fc-th diagonal with constant
angular velocity 1. Hence ^l

k{P) has period 2π and we have proved the
following

Theorem 3.12. The space M'r ofn-gons such that no diagonal drawn
from the 1-st vertex has zero length, admits a free Hamiltonian action
by a torus T of dimension n — 3 = \ dimM^.

Remark 3.13. If n = 4,5,6 then Mr is a toric variety for generic r by
[2]. For n = 4,5 it suffices to use the above choice of diagonals. For n = 6
we have to make different choice of diagonals: [^1,^3], [^3,^5], [^5,^1].
Then if r, φ r{ for all i φ j we conclude that M'r = Mr. Unfortunately,
for heptagons any choice of "nonintersecting" diagonals leads to M'r φ
Mr even for generic values of r.

Remark 3.14- In what follows we will also denote by Φ^ the normal-
ized bending in the diagonal d of the polygon P.

4. Action-angle coordinates

In this section we use the geometry of P to introduce global action-
angle coordinates on the space M° (which was defined in the Introduc-
tion).

In §4, 5 we will use the embedding in Mr of the moduli space Nr

of planar polygons with fixed side lengths modulo the full group of
isometries of E 2. This embedding is constructed as follows. Let Π be
a fixed Euclidean plane in E3 and σ be the involution of E3 with Π as
fixed-point set. Then σ acts on Mr. We claim that the fixed-point set of
σ on Mr consists of the polygons that lie in Π (up to isometry). Indeed,
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let P be a n-gon in E3 which is fixed by σ up to a proper isometry.
Hence there exists a proper Euclidean motion g such that σP = gP.
But if the vertices of P span E3 we have σ = 3, a contradiction. Hence
P lies in a plane and can be moved into Π by an isometry. The claim
follows.

Let P be a n-gon in Mr and P° be a convex n-gon in R2. The
diagonals d = \vi,Vj\,d! = [vk,vs] of P are called "disjoint" (or "nonin-
tersecting") if the corresponding diagonals of P° do not intersect in the
interior of P°.

Fix a maximal collection of "disjoint diagonals" di, ..,dn_3 of P.
L e m m a 4.1. There exists a bending b of P in diagonals di,..,dn_ 3

such that bP is a planar polygon.
Proof. The assertion is obvious for quadrilaterals. The general case

follows by induction.
Corollary 4.2. The space Mr is connected.
Proof. The space Nr is connected by [10].
Pick a polygon P e M°. The diagonals μ f c , l < A ; < n - 3 divide P

into n —2 nondegerate triangles Δi,..., Δ n _ 2 such that μk+ι is a common
side of Δ fc and Δ f c + 1 . We orient μk in the direction υk — V\. Let 0fc be
the element of IR/2πZ given by the dihedral angle measured from Ak to
Δjfe+i, 1 < k < n — 3 (see Introduction). So exp(i^) rotates the plane
of Δfc in the positive direction around μk into the plane of Δ f c + i . Recall
that θk = π-θk.

Lemma 4.3.

Proof. From our description of the bending flows we have

0i(Φ<(P)) ΞΞ θi(P) + tδij( mod 2πZ)

We obtain the lemma by differentiating.
Corollary 4.4.

In order to prove that

are action-angle coordinates it suffices to prove the following
L e m m a 4.5.
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Proof. Recall that Nr is the subspace of planar polygons with fixed
side lengths modulo the full group of planar Euclidean motions. We
have seen that Nr is the fixed submanifold of Mr under the involution
σ. We note that

σ*θi = -θu 1 < i < n - 3

Hence σ*dθi = — dθi and since σ*ω — —ω we have

σ*Hθi =Hθi, l < i < n - 3

Hence if P is a planar polygon we have

Hθi{P) eTP{Nr), 1 < i < n - 3

Since iVr is Lagrangian we have for P G Nr

ωP(Hθi(P),Hθj(P))=0, l < ί , i < n - 3

Now let P be a general element of M°. There exists b E T such that 6P G
iVr (see Lemma 4.1). Since the Hb. and HQ. commute by Corollary 4.4,
the Hamiltonian fields He{, 1 < i < n — 3 are invariant under bending
and consequently

Hθi{bP) = dbHθi{P), 1 < i < n - 3

Since ω is invarant under 6 we have

ωP(Hθi(P),HΘj(P)) = ωbP(db(Hθi(P)),db(Hθj(P)) = 0

The lemma follows.

We have proved the following
Theorem 4.6.

{ 0 1 > •• j 0 n - 3 j ^ l j •••j^n-3}

are action-angle coordinates on M°.

5. The connection with gauge theory and the results
of Goldman and Jeffrey-Weitsman

In this section we first review the description of Mr given in [11] in
terms of (relative) deformations of flat principal ϋ7(3)-bundles over the n
times punctured 2- sphere Σ (here £7(3) denotes the group of orientation-
preserving isometries of IR3). We then show that the Lie algebra e(3)
of E(3) admits an invariant, non- degenerate symmetric bilinear form b
(not the Killing form of course). This form is closely related to the scalar
triple product in M3. We use the form b together with wedge product
to give a gauge-theoretic description of the symplectic structure on Mr.
This description is the analogue of the usual one in the semisimple case-
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the form b replaces the Killing form. It is then clear how our results on
bending are analogues for E(3) (and relative deformations) of those of
[7], [9] and [22].

We begin by briefly reviewing our paper [11] on relative deformation
theory. It is more convenient to use relative deformations of representa-
tions here - for the details of the correspondence with flat connections
see [11],

Let Γ be a finitely-generated group, R — {Γχ,...,Γr} a collection of
subgroups of Γ, G be the set of real points of an algebraic group defined
over E and p0 : Γ —> G a representation. In [11] we introduce the
relative representation variety Hom(Γ, R; G). Real points of this variety
consist of representations p : Γ —> G such that p\γά is a representation
in the closure of the conjugacy class of po|iy For any linkage Λ with n
vertices in the Euclidean space E m we constructed an isomorphism of
affine algebraic varieties

Φ : C(Λ) -> Hom(Φn, R\E{m))

Here C(Λ) is the configuration space of the linkage Λ (we do not divide
out by the action of E(m)). The group Φ n is the free product of n
copies of Z/2, R is a collection of "dihedral" subgroups Z/2 * Z/2 of Φ n

determined by the edges of the linkage and E(m). is the full group of
isometries of the Euclidean space.

We assume henceforth that the linkage Λ is an n-gon in E3 with side-
lengths r — (ri, . . .,r n ) and (as above) Mr denotes the moduli space
M(Λ) = C(A)/E(3). We have an induced isomorphism

Φ : Hom(Φn, R; E(m))/E(m) -> M(Λ)

for any linkage Λ.

Let Σ = S2 — {p1? ...,pn} denote the 2-sphere punctured at {p1? ...,pn},
let t/i,...,C/n denote disjoint disc neighborhoods of Pi,. . . ,p n and U =
U\ U ... U Un. The subgroup Γ n C Φ n consisting of words of even length
in the generators τ l 7 . . . , τn is isomorphic to 7Γχ(Σ) (see [11], Lemma 4.1).
Indeed, put 7* = TiTi+ι^ 1 < i < n. Then 7χ ... j n = 1. Let p G
Hom(Φn, R] E(m)). Then p induces a representation p : Γ n —> E(3) and
a flat principal E(3)-bundle P over Σ. We let a d P be the associated
flat Lie algebra bundle. In our case we can use the restriction map to
replace the above relative representation variety with one that makes
the connection with Mr transparent. Let Γ be the set of conjugacy
classes in Γ n given by
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Here C(j) denotes the conjugacy class of 7. Then it is immediate that
we have an induced isomorphism

Φ : Hom(Γn,T;£(3))/£;(3) -+ Mr

Indeed, each n-gon corresponds to the n translations in the directions
of its edges ei,...,en. The relation 71 ... 7n = 1 corresponds to the
closing condition

βi + . . .+ en = 0

Note that r{ is the translational length of po(7ί) We will henceforth
abbreviate Hom(Γn,T; #(3))/JE7(3) to Xn,r.

Remark 5.1. If a is an automorphism of Γn that preserves each class

then a acts trivially on Hom(Γn,T; E(3)). Indeed, since p(Γn) is con-
tained in the translation subgroup of -E*(3), fixing the conjugacy class
of ^(7) amounts to fixing pij). Thus quantizing Mr will produce only
trivial representations of the pure braid group.

Let p G Xn,r- We define the parabolic cohomology

to be the subspace of the de Rham cohomology classes in .BΓ^Σjad JP)
whose restrictions to each U{ are trivial. By [11], we may calculate
the relative deformations of p and consequently i?^α r(Σ,adP) by using
the differential graded Lie algebra #*(Σ, C/ adP). This algebra is the
subalgebra of the de Rham algebra consisting of sections of ad P which
are constant on U in degree zero and ad P- valued forms which vanish
on U in degrees 1 and 2.

We now give our gauge-theoretic description of the symplectic form
on Mr. Since the Lie algebra e(3) of E(3) is not semi-simple, the Killing
form of e(3) is degenerate and we can not give the usual (i.e., for G semi-
simple) description of the symplectic form. However it is a remarkable
fact that there is another 22(3)-invariant symmetric form b on e(3) which
we now describe. We recall that we may identify Λ2R3 with so(3) by
associating to u Λ v the element of End(M?) (also denoted by u Λ υ)
given by

(u Λ υ)(w) = (w, w)υ — (v, w)u

We define a bilinear form

a : 5θ(3) x R 3 4 R

by
a(u Λ v, w) = (u x v) w
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We split e(3) according to e(3) = so(3) +M3 and define the (split) form
b : e(3) x e(3) -* K by

Λ vi,wx), (u2 /\v2,w2)) = a(uι Aυuw2) + a(u2 Λ ^

The following proposition is immediate
Proposition 5.2. The form b is symmetric, nondegenerate and in-

variant under E(3).
We combine the form b on e(3) with the wedge-product to obtain a

skew-symmetric bilinear form

B : ̂ α r ( Σ , a d P ) x ^ α r ( Σ , a d P ) -* H2(Σ,U;R)

we then evaluate on the relative fundamental class of M to obtain a
skew symmetric form

A : ί^ α r (Σ,adP) x ^ α r ( Σ , a d P ) -> R

It follows from Poincare duality that A is nondegenerate and we obtain
a symplectic structure on Xn,r. In order to relate A to the symplectic
form ω of Section we need to make explicit the induced isomorphism

dΨp:Tp(Xn,r)-+Tp(Mr)

To do this we need to pass through the group cohomology description of
ifpαr(Σ, ad P). In the following discusssion we let G be any Lie group.
We denote by Q the Lie algebra of G. Recall that we may identify
the universal cover Σ of Σ with the hyperbolic plane H2- we will make
this explicit later. Let p : Σ —> Σ be the covering projection. We will
identify *A*(Σ,p*adP) with the (/-valued differential forms on Σ (via
parallel translation from a point vx). Given [77] G i ί 1 (Σ,adP) choose a
representing closed 1-form η G *4*(Σ, adP). Let ή = p*η and / : Σ —>• Q
be the unique function satisfying:

• df = 77.

We define a 1-cochain (̂77) G Z 1 (Γ,^) with coefficients in Q by

h(η)(Ί)=f(x)-Adp(Ί)f(j-1x)

We note that the right-hand side does not depend on x. We define τ([τ7])
to be the class of h(η) in ϋf^Γ, Q). It is easily checked (see [8], §4) that
r is an isomorphism. We note that [η] G Hpar(M, adP) if and only if
the restriction of (̂77) to the cyclic groups generated by 7$ are exact
for all i. We denote the set of all 1-cocycles in Zι(T, Q) satisfying this
property by ^ a r ( r , a ) .
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We now return to the case G = E(3). Let p G Hom(Γn,T;.E(3)).
Since Po(7) is a translation for all 7 G Γn it follows that if

cGTp(Hom(Γn,Γ;£(3))

then c(η) is an infinitesimal translation for all 7 G Γ and consequently
we may identify c with an element of Hom(Γn, E

3). The condition that
c is a parabolic cocycle is equivalent to c(ji) e{ — 0 where p(7i) is a
translation by e{. We leave the proof of the next lemma to the reader.

Lemma 5.3.

d*p(c) = ~ΐ = (δu...,δn) eτ^(Mr)

where δ{ = 0(7^), 1 < i < n.
Remark 5.4- Here we think of T-?(Mr) as the quotient of T-γ(Mr)

by SΌ(3), see §3 for the definitions.
We can now state the main result of the next section. Recall that the

symplectic structure ω on Mr was described in §3.
Theorem 5.5. With the above identification we have A = ω.
Proof. We will work in the more general framework where E(3) is

replaced by a Lie group G admitting an invariant symmetric bilinear
form on its Lie algebra Q. We have in mind an eventual application to
n-gon linkages in S3.

We construct a fundamental domain D for Γn operating in B2 as
follows. Choose a point xQ on Σ and make cuts along geodesies from
x0 to the cusps. The resulting fundamental domain D is a geodesic
2n-gon with n interior vertices vu ...,vn and n cusps v£°,..., v£°. These
occur alternately so that proceeding counterclockwise around dD we see
vu v™, v2, v%°,..., vn, υ™. The generator 7* fixes υf° and satisfies 7i(^i) =
υ ί +i. We take υλ as our base point x0 in HP.

Remark 5.4- We have changed our original generators of Γn to their
inverses.

Now let p G Hom(Γn, T;G)/G and c,c' G ^ α r (Γ n ,ζ?) be tangent
vectors at p. Let a and a' be the corresponding elements of the de Rham
cohomology group i?ΐα r(Σ,adP). By assumption there exist vectors
Wi, w\ G G, 1 < i < n, such that

We let B.(Γ) be the bar resolution of Γ, [15]. Thus Bk(T) is the free
Z[Γ]-module on the symbols [7i|72| |7*] with

72|».|7fc] =7i[72|».|7ft]+
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Σ > i l l7i7i+i|-l7*] + (-I)*[7il72|.. |7*-i]
i = l

We let Ck(Γ) = Bk(Γ) ® Z [ Γ ] Z, where Z[Γ] acts on Z via the homomor-
phism e defined by

Thus C<; (Γ) is the free abelian group on the symbols

(7il l7fc) = [7i|72| l7fc] ® 1 and

Σ(7i | . l7»7i+1|-l7*) + (-I)*(7il72|. .|7*-i)
i = l

We define a relative fundamental class F G C2(Γ) by the property:

dF =

Let [Γ,9Γ] G C2(Γ) be the chain

z=2

The reader will easily verify the following lemma which was pointed out
to us by Valentino Zocca.

Lemma 5.7. [Γ,<9Γ] is a relative fundamental class.
We abuse notation and use £?(•, •) to denote the above wedge product

of the de Rham cohomology classes and the cup-product of Eilenberg-
MacLane cochains using the form b on the coefficients.

Proposition 5.8.

B{a,a') = (B(c,c!)i\Γ,dΓ])-

Proof. The reader will verify that the right-hand side of this formula
does not depend on the choices of w^ 1 < i < n and of a relative
fundamental class [Γ,9Γ]. In the following we let βj be the oriented
edge of dD joining Vi to vf° and ê  be the oriented edge joining v?° to
Vi+i Then 7 ^ = —e». We remind the reader that the 1-forms a and
a1 vanish in neighborhoods of the cusps v?°, 1 < i < n. Proposition 5.8
will be a consequence of the following three lemmas.
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Lemma 5.9.

£(/,«') + / B(f,a') = b(c(Ίi)J'(vi+1)) - b(c(Ίi),v?)

Proof,

ί B(f,a')+ ί B(f,a')

= [ B(f,a')- [ B(f,a')
J J 1

= / B(f- Adp(7i)(7Γ1)V,«') = / B{c{Ίi),a )

We obtain

B(a,a') =

To evaluate the second sum we need
Lemma 5.10.

were δ is the Eilenberg-MacLane coboundary.
Proof. By definition for any x G HI2 we have:

c'(Ίi) = f'(x)-Ad(p(Ίi)f'(Ί-
1x)

Since /' is a covariant constant near the cusps we may allow x to tend
to vf° in the above formula. Since ^lv?° = υf° we obtain

We now evaluate the sum over the interior vertices.
Lemma 5.11.

= {B(c,c'),[T,dT})
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Proof. By definition, for any x G HP, 7 G Γ, we have

c'(Ί) = f'(x)-Adp(Ί)f'(Ί-
1x)

Substituting x = ̂ +1,7 = 7* and using 7~1^+i = v< we obtain

Using f'(vι) = 0 w e conclude that

Hence
n

2 = 1

i = 2

We substitute c;(7i) = /'(ί;,00) - Adρ(ji)f'{vf°) and use the formula

to obtain the lemma.
We have proved Proposition 5.8 and now specialize to the case at

hand, namely G = E(3). In this case c and d take values in the Lie
subalgebra of infinitesimal translations. Since this is a totally-isotropic
subspace for b we obtain

It remains to evaluate the sum over the cusps.
Lemma 5.12.

i &

'i

where c(ji) = ί i ; c'(pd) = δ[, 1 < i < n.
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Proof. We first note that

The last equality holds because p(7») is a translation and c{ji) is an
infinitesimal translation. A direct computation in the Lie algebra e(3)
shows that

Hence we may choose w^ = ^ A δ[, 1 < i < n, and the lemma follows
from the definition of b.

We have accordingly

A(a,a') = ί B(a,a') = - £ > • {% x δ\)
t = l

Comparing with our formula for the symplectic structure in §3 we obtain
Theorem 5.5.

We can now relate our results on the bending of n-gon linkages with
the work of Goldman, Jeffrey-Weitsman and Weitsman. There are two
independent class functions on 25(3): translation length ί and the trace
of the rotation part t. We replace ί by / = £2/2 to get a polynomial
invariant. Given 7 G Γn we define

fΊ : Hom(Γn,T;£(3))/£(3) -> R

by fΊ = /(p(7)) I n the case 7 = μ< = 7i72 7i+i> 1 < i < n - 3
it is easily seen that the Hamiltonian flow of fΊ corresponds to the
(unnormalized) bending flow in the i-th diagonal. The decomposition
of the polygon P by diagonals drawn from a common vertex corresponds
to a decomposition of Σ into pairs of pants using the curves μi,..., μn-3
Thus our real polarization of Mr (i.e., singular Lagrangian foliation)
obtained by bending in the above diagonals corresponds to that of [9]
and [22] obtained from "twists" with respect to μ!,...,μn_3.

6. Transitivity of bending deformations

Definition 6.1. An embedded polygon P G Mr is called a "pseu-
dotriangle" if the union of edges of P is a triangle in R3. The vertices
of this triangle are called the "pseudovertices" of the pseudotriangle P.

It is easy to see that Mr contains only a finite number of "pseudo-
triangles" Ti, ...T/v, where N < n3. The main result of this paragraph
is the following:
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Theorem 6.2. (a) For each nonsingular moduli space Mr there exists
a number ί — ί(r) such that each polygon P E Mr can be deformed to a
pseudotriangle via not more than ί bendings.

(b) The function ί(r) is bounded on compacts in Vn — Σ.
(c) The subset of polygons P E Mr which can be deformed to a pseu-

dotriangle T by at most ί bendings is closed in Mr.
(d) Each pair of polygons P,Q E Mr can be deformed to each other

by a sequence of not more than nzί bendings.
6.1. Bending of quadrilaterals
We first consider a special case of bending assuming that:
(a) P is a planar quadrilateral with a nonsingular moduli space M r ;
(b) we allow sequences of bendings in both diagonals of P;
(c) bending angles are always π (so the bending of a planar polygon

is again a planar polygon). Such a bending will be called a π-bending.
We have an action of the group Z 2 * Z 2 on the moduli space Nr of

planar quadrilaterals given by π-bendings along the diagonals.
Denote the π-bending in the diagonal [vi, V3] by a and the π-bending

in the diagonal [̂ 2,̂ 4] by β. We assume that a fixes the vertex v2 and
β fixes the vertex vλ. We shall normalize 4-gons P so that ex =
ti! = 1 E C

Then

/ x / -1 r i + r2u2 _χ ri + r2u2 λ

a : ( u u u u ) ι > { u u u ^ )

β : (uι,u2,u3,U4) ι-> {uuu2

r2u2 ri + r2u2

-1 n +r2u2
z j , 3 = 7 , 4 )

r2u2 ri + r2u2

Both maps are birational transformations of C 4 . The moduli space
Nr = S1 is the quotient of the curve

4

E = {(1x1,1x2,^3,1x4) E C 4 : ixi = 1,1^1 = l , j = 2 , 3 , 4 ; ^ ^ ^ = 0 }

by action of the involution r : (1x1,^2,^3,1/4) ^ (^1 ̂ 2^35^4)
L e m m a 6.3. The complexification Ec of the curve E is a nonsingu-

lar connected elliptic curve. The composition β o a = θ extends to an
automorphism θc of Ec which is fixed-point free.

Proof. The first statement of the lemma was proven in [5], [6]. The
biholomorphic extension θc exists since E is Zariski dense in Ec. The
transformation θ : E —ϊ E has no fixed points. It follows from the
classification of automorphisms of elliptic curves that θc is also fixed-
point free.



THE SYMPLECTIC GEOMETRY OF POLYGONS 507

In particular the self-map θ of E preserves the metric on E given by
the restriction of a flat metric on Ec. Therefore if we identify E/(τ)
with the unit circle then θ : S1 -> S1 is a rotation. Denote by α s, bt the
1-parameter families of bendings in the diagonals [v1? υ3], [υ2, υ4] so that
απ = α, 6π = /?.

Lemma 6.4. An arc [x,βoa(x)] between x,θ(x) on S1 is contained
in the orbit bt(8) o a8(x), where s,t G E/2πZ.

Proof. For each point as(x) we take 6t(β) to be one of two bendings
which makes as(x) planar. We choose bt(a) so that it depends continu-
ously on 5 and 6t(0) = 6 0 = id, 6t(π) = K = β It is clear that for s = π
the polygon bt(s) ° αs{%) is equal to θ(x). This proves the Lemma.

Corollary 6.5. Suppose that r does not belong to a face of the
polyhedron X>4 — Σ. Let 7 be the rotation angle of the element θ =
β o a, m = [2π/7J + 1. Then for each two points x,y in the space of
quadrilaterals Mr there exists a composition of at most 2m + 2 bendings
which transforms x to y.

Proof. Our assumptions imply that the moduli space Mr is not a
single point. Thus the angle 7 is different from zero. We first apply a
single bending to each rr,y to make them planar polygons x\y'. There
exists a composition of at most 2m — 2 π-bendings which sends x' to a
point x" on the arc [j/, aoβ(y')]. Then we apply Lemma 6.4 to transform
x" to y'.

See Figure 1 for the deformation of a square to a parallelogramm via
two bendings.

Remark 6.6. The rotation angle 7 depends continuously on the pa-
rameter r. The angle 7 can be arbitrary close to zero as r approaches
the walls Σ or the boundary of the polyhedron V4. This corresponds to
a degeneration of the elliptic curve. In the limit the birational trans-
formation θ will have isolated fixed points: singular points of the curve
E.

6.2. Deformations of n-gons
L e m m a 6.7. Suppose that Q G Mr is a nondegenerate n-gon. Then

there exists a diagonal d of Q such that the bending in d changes the
distance between at least two vertices A,B.

Proof. Suppose that Q G Mr is a n-gon and Mr is a nonsingular
moduli space. Our problem is to deform Q via bending so that the
distance between two distinct vertices A = Vι, B = vs of the polygon Q
is changing (assuming that \s - 1| Φ 0,1). If the distance \AB\ does not
change under bending in a diagonal [vk, vs+i] then either A or B belong
to the line (vk,vs+i).

Suppose that the distance \AB\ does not change for any choice of
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5, A; above. Then either A or 5 belong to the line (vk,vs+i) for all
1 < k < s^O < i < n — s. This means that either all the vertices of
Q except A belong to a single line (υ2,B) through B or all the vertices
of Q except of B belong to a single line (v2, A). (The polygon Q must
be a pseudo-triangle.) Suppose that the former case takes place. Then
instead of vertices A, B we choose say u2, vn and applying bending along
the diagonal [AB] we can change the distance \υ2vn|.

Suppose that / : S1 —>• E is a continuous function. Then we define

varteSι{f) = \maxt(f) - mint(f)\

to be the variation of the function / on the circle S1.
We recall that Φ^ denotes the normalized bending in the diagonal d

of a polygon P G Mr; \d\ denotes the length of this diagonal.
Definition 6.8. Suppose that P G Vn and π(P) £ Σ. We define

the following function

δ(P) = mαa;{|d|τ;αrt€5i(|Φ^(i4),Φ^(S)|) : A,B are vertices of P,

d is a diagonal of P }

A pair of diagonals ([A,2?],d) providing this maximum will be called a
maximal pair.

It is clear that the function δ is continuous. Thus by Lemma 6.7 for
any compact K C Dn — Σ there is a number e# > 0 such that δ(P) > €κ
for each P eπ~ι{K).
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Proof of Theorem 6.2
We have already proved Theorem for quadrilaterals, thus we can as-

sume that the number n of vertices is at least 5. Arguing by induction
we can assume that Theorem is valid for all spaces of fc-gons, where
4 < k < n.

Step 1. Take a n-gon P G Mr. The space Mr is nonsingular, thus
δ(P) > € > 0 where e depends only on r. Choose a pair of vertices A, B
and diagonal d of P which maximize the function δ(P). The maximal
variation vαrtesi(|Φ^(A),Φίj(jB)|) is at least e since the length of the
diagonal d is at most 1. Split P along the diagonal [A, B] in two polygons
P', P" treating [A, B] as a new side with fixed length. There is at most
n!/2 of "bad" values of \AB\ such that the moduli spaces Mr/, Mrn of
P',P" are singular. (We also include zero in the list of "bad" values.)
Denote the number of vertices of P1 by n' and the number of vertices of
P" be n".

Then we use a bending in the diagonal d to deform P to a polygon P*
so that the distance from |Φ^(i4),Φ^(JB)| to each of these "bad" values
is maximal (which is at least e/n\).

The proof of the following proposition is obvious and is left to the
reader

Proposition 6.9. Let C C T>n — Σ be a compact. Then there are two
compacts C" C Vn, - Σ,C" C Vnn - Σ such that for any P G π"
we have

Thus the polygons P^P" satisfy the property that the function δ on
their moduli spaces Mr> — π~1(π(P/)), Mr» = π~1(π(P')) is bounded
from below by some positive number eλ.

Define a relation R in [Vn - π-χ(Σ)] x ({1, ...,n}2)2 x [Pn - π-χ(Σ)]
as the set of tuples (P, (i, j), (fc,s),P*) where the diagonals ([-A,J5] =
[ϋj, Vj], d = [vk, vs]) form a maximal pair and the polygon P* is obtained
from P via bending in the diagonal d as above.

Proposition 6.10. The relation R is closed.
Proof. It is enough to prove that if lim^oo Ps = P in the space

Vn - ττ-ι(Σ) then for any (Ps, [A8,Ba], ds,P*) e R and sufficiently large
5, the pairs ([As, Bs], ds) are maximal for the limiting polygon P as well.

Pick a subsequence with constant (ASk, jBSfc, dSk). By continuity of the
function δ it is enough to check that the \dSk(P)\ Φ 0 for the limiting
polygon P. The nonvanishing of |dSfc(P)| follows from the inequalities
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Step 2.
L e m m a 6.11. Let r E Vk — Σ. Then for each i the moduli space

Mr contains a pseudo-triangle Tι = (v1?..., Vk) such that V{ is a pseudo-
vertex ofTi. Proof. Assume that the assertion is valid for all 3 < k' <
k. By remuneration of vertices it is enough to construct the pseudo-
triangle Qι. Since the perimeter of the polygon is normalized to be
equal to 2, there is a pair (r,, r,+i) (j G Zk) different from (rfc,ri) such
that rj + rj+1 < 1. Hence we can apply the same induction argument
as Lemma 1 in [10] to find a polygon in Mr where e, U e J + i forms an
edge. As the result of this procedure we construct the required pseudo-
triangle.

Remark 6.12. The case when Tλ = T2 happens exactly when there is
a number 2 < s < k such that ri + ... + r s > 1 and r5+i + ... + r*+r i > 1.

Recall that k < n and by the induction hypothesis we have a function
£ = i(r).

Define the relation ΘΔ on (Vk — Σ) 2 to be the set of pairs (P,T)
where: (i) the pseudo-triangle T belongs to the moduli space of P and
(ii) P can be deformed to T via at most ί(r) bendings.

Proposition 6.13. The relation Θτ is closed in (Vk — Σ)xVk and
its projection to the first factor is onto.

Proof. Since we consider only parameters r ^ Σ the equality rj +
Γj+i = 1 (in the proof of Lemma 6.11) is impossible. Thus the relation
on (Vk — Έ)xVk given by the condition (i) is closed. The statement of
the Proposition follows from the induction hypothesis in Theorem 6.2.

This lemma together with Lemma 6.11 implies that arguing by in-
duction we can deform via bending each of polygons PI, P" to pseudo-
triangles T',T" keeping the length \AB\ fixed so that A is a pseudo-
vertex of T", and B is a pseudo-vertex of T'. The number of bendings
which we have to use here is bounded from above by a function which
depends on r',r" only. In the case when both A, B are pseudo-vertices
of T" and T" these pseudo-triangles form a quadrilateral and we can go
directly to the Step 3 (see Figure 2). Assume that B is not a pseudo-
vertex of T" and A is a not a pseudo- vertex of T" (see Figure 2). The
triangles T',T" form a hexagon, split it along the diagonal d' = [X,Y*]
into two quadrilaterals 5', S", where d1 is a side of fixed length. Then the
triangle inequalities imply that both 5', S" can be deformed to pseudo-
triangles L',L" where X, Y* are pseudo-vert ices. This again gives us a
quadrilateral. Thus we can go to the Step 3.

In the remaining case when A is not a pseudo-vertex of T' and B is
a pseudo-vertex in both T',T" we split the polygon formed by T',T"
along the diagonal [-X", B] (see Figure 2) and deform the quadrilateral
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[X,B,X*,A] to a pseudo-triangle with the vertices X,J3,X* keeping
the triangle [X, Y, 2?] fixed. Then we again can go to the Step 3.

Step 3. As the result of Step 2 we deform the polygon P to a polygon
Q which is the union of two pseudo-triangles Δ', Δ" minus the diagonal
[A,B].

Remark 6.14- As before the relation Θ, which consists of the pairs
(P,Q) above, is closed in (Vn - Σ ) x P n .

The moduli space of the quadrilateral Q is nonsingular since r £ Σ.
We again apply the induction to deform Q so that it becomes a pseudo-
triangle T. It follows from the induction hypothesis that the relation Ξ,
which consists of pairs (Q,T) as above, is closed in (VA — Σ) X ? 4 .

Thus we have proved the assertion (a) of Theorem 6.2 for n-gons.
Namely, for each polygon P we have constructed a piecewise-smooth
bending curve j{P) C Mr which connects the polygon P with a pseudo-
triangle T. Each smooth arc of this curve is given by bending in one
of diagonals. (However the curve 7 is not necessarily unique.) The fact
that the function t{r) (the number of bendings) is bounded on compacts
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follows from the induction hypothesis via Proposition 6.9. This implies
the assertion (b) of Theorem 6.2.

For a pseudo-triangle T E Mr denote by Y(T) the subset in Mr

consisting of those polygons P such that at least one of the bending
curves y(P) terminates at Γ. Thus the relation {(P,T) : P E Y(T)}
is the composition of closed relations R, Θ, Ξ. This implies that each
Y(T) is closed and the assertion (c) follows.

It remains to prove the assertion (d). The closed subsets Y{T) can
intersect. We say that two pseudo- triangles TUT2 are equivalent if
Y{Tλ) Π Y{T2) φ 0. This generates an equivalence relation on the finite
set of pseudo-triangles in Mr. The space Mr is connected and all Y(T)
are closed sets; thus all pseudo-triangles are mutually equivalent. Hence
any polygon P can be deformed to a pseudo-triangle via at most ί{r)
bendings (by the assertion (a)) and any two pseudo-triangles can be
deformed to each other via at most n3ί(r) bendings. This finishes the
proof.
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