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1. Introduction

In this paper we study non-zero degree maps / : M —)> N between
3-dimensional compact orientable irreducible d-irreducible manifolds.

An important question in topology is to decide whether there exists
a map of non-zero degree between given manifolds of the same dimen-
sion. One can think of the existence of such a map as defining a par-
tial ordering on the set of homeomorphic classes of compact connected
manifolds of a given dimension. As suggested by M.Gromov, this par-
tial order can be defined as follows: say that M dominates JV, denoted
by M > JV, if there is a non-zero degree allowable map from M to TV.
Prom H.C.Wang's theorem and Gromov's work [18, Chap 6], it follows
that each closed hyperbolic orientable n-manifolds with n φ 3 domi-
nates only finitely many closed orientable hyperbolic n-manifolds. We
show that this result fails in dimension 3. This was first established by
the second author.

In the case of surface bundles over Sι we show that if a bundle over
Sι dominates an irreducible d-irreducible 3-manifold N, then either the
first Betti number decreases or TV is a bundle over S1. Moreover using
Thurston's norm on H1 (.,/?), we give a necessary and sufficient condi-
tion for such maps to be homotopic to a covering or a homeomorphism.

We apply those facts to study W.Thurston's conjecture which claims
that any complete finite volume hyperbolic 3-manifold is finitely covered
by a surface bundle over S1. We prove that for any integer n > 0, there
are infinitely many closed hyperbolic orientable 3-manifolds with first
Betti number n such that no tower of abelian coverings over M contains
a surface fiber bundle over S1. So if Thurston's conjecture is true,
the coverings involved must be much more complicated than towers of
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abelian coverings. There are few examples known of manifolds covered
by surface bundles which are not bundles (cf. [7], [14]).

The content of this paper is as follows :

In Section 2, we consider non-zero degree maps from surface bun-
dles to compact irreducible <9-irreducible 3-manifolds. Using Thurston's
norm on //"*(., i?), we give a necessary and sufficient condition for such
maps to be homotopic to a covering or a homeomorphism (Theorem 2.1
and Corollary 2.3). This improves Gabai's result [7] about 3-manifolds
covered by a bundle over S1 with the same first Betti number to the case
of non-zero degree maps (Corollary 2.2). As an application we general-
ize a result of Edmonds and Levingston [5, Theorem 5.2], about finite
group action on a surface bundle over S1 with first betti number 1 to
the case of arbitrary first Betti number, but assuming that the quotient
manifold is irreducible (Proposition 2.4). Some sufficient conditions for
degree-one map to be homotopic to a homeomorphism are also given
in term of the homological monodromy. We obtain some applications
to degree-one maps between fibered link complements (Proposition 2.6
and Corollary 2.7).

In Section 3 we introduce methods to construct non-zero degree maps
between 3-manifolds. Based on those methods, we show that there is a
closed orientable hyperbolic 3-manifold which maps onto infinitely many
non-homeomorphic hyperbolic 3-manifolds, moreover all these maps are
surjective on fundamental groups (Theorem 3.4). A direct corollary is
that there is a map of degree-two between two hyperbolic 3-manifolds
admiting infinitely many factorizations up to homotopy. We also show
(Proposition 3.3) that any closed 3-manifold N is the image by a degree
one map of a hyperbolic 3-manifold M, which is a surface bundle over
S\withβ1(M)=βι{N) + l.

In Section 4, we construct the examples related to Thurston's conjec-
ture mentioned above. We prove that for any integer n > 0, there are
infinitely many closed hyperbolic orientable 3-manifolds with first Betti
number n such that no tower of abelian coverings over M contains a sur-
face bundle over S1. Moreover we show that any immersed surface in
this tower which is either embedded or homologically non-trivial is not
a virtual fiber. We also give an example of non-trivial regular coverings
between hyperbolic integer homology 3-spheres, answering a question
of Luft and Sjerve [11, p.468]. Actually there is an infinite tower of
regular covering between hyperbolic homology 3-spheres (dicussed with
M.Baker).

We end this section by some basic definitions and notation that we
will use in the paper. We also state some well-known facts about non-
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zero degree maps.
Let / : M —> N be a map between orientable compact connected

n-manifolds. We say that / is proper if f~λ(dN) — dM. We say that
/ is allowable if / is proper and the degrees of all possible restrictions
f\:F-*S have the same sign, where F is a component of dM and
S is a component of dN. If M is closed or dM contains only one
component, or if / is a branched covering, then / is always allowable.
In dimension 2 the notion of "allowable map" here coincides with the
notion of A. Edmonds [4] up to deformation of (M,dM). Suppose
/ is proper. Then / induces homomorphisms /* : πι(M) —> πi(7V),
fφ : H*(M,dM) -> H*{N,dN), f* : H*{N,R) -> H*{M,R). The
degree of /, deg(/), is given by the equation /#([M]) = deg(/)[iV],
where [M] G H3(M,dM;Z) and [N] E H3(N,dN;Z) are the chosen
fundamental classes of M and N.

Lemma 1.0. Suppose f : M —>• N is a proper non-zero degree map
between compact irreducible orientable 3-manifolds. Then the following
holds:

i) / * ( π i ( ^ 0 ) i>s a finite index subgroup ofπι(N).
ii) fφ : H*(M,dM,R) -> H*(N,dN,R) is surjectiυe7 in particular

iii) If f : M -» N is a degree-one allowable map, then dM and dN
have the same number of components.

In this paper all the 3-manifolds considered are compact, irreducible,
and orientable, and all maps are allowable and of non-zero degree.

We would like to thank G.Mess for pointing to us a mistake in the
early version of this paper, and the referee for very helpful suggestions.
The second author is partially supported by AvH of Germany and NSFC
of China.

2. Nonzero degree maps from the surface bundles over S1

Theorem 2.1. Let M and N be two compact irreducible d-irreducible
orientable 3-manifolds. Suppose M is a bundle over S1 and denote
by a E Hι(M,R) the integer cohomology class corresponding to the
fibration of M. Let f : M —» N be an allowable non-zero degree map. If
there is a rational cohomology class β G i?x(iV, R) such that f*(β) = α.
Then the following hold:

i) N is also a bundle over S1 and f is properly homotopic to a fiber
preserving map.

ii) Moreover if x(a) = | deg(f)\x(β), then f is properly homotopic
to a fiber preserving covering, where x denotes the Thurston
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norm on Hι(.,R).

In Theorem 2.1, if M and N have the same first Betti numbers
βι(M) = βι(N), then f* is an isomorphism. In [6], D. Gabai has
proved that if / : M —> N is a covering between two compact orientable
irreducible d-irreducible 3-manifolds, and M fibers over S1 but N does
not, then ranki/ 1 (M, R) >ranki/ 1 {N,R). So we have the following im-
provement of Gabai's result, which replace covering by "non-zero degree
map".

Corollary 2.2. Let M and N be two compact irreducible d-irreducible
orientable 3-manifolds. Suppose M is a surface bundle over S1 and
βi(M) = βι(N). If there is an allowable map f : M -> N of non-
zero degree, then N is also a surface bundle over S1, and f is properly
homotopic to a fiber preserving map.

Proof of Theorem 2.1. In the following we use (F, φ) to denote
the surface bundle over S1 with connected fiber F and monodromy
φ : F -> F.

Suppose that M = {F,φ). Since M is irreducible and d-irreducible,
F is not S2 or D2. Let a G Hι(M,R) be the integer cohomology class
associated to the fibration. Then a defines a surjective homomorphism
ha : τr1(M) —>- Z -» 0 whose kernel ker/ια is ττι(F).

Since a G imf#, the image of / # , and f* is injective, there is a
unique rational cohomology class β G Hλ(N,R) such that f^{β) — OL.
Let β' = dβ be a primitive integer class in iϊ1(7V, iϊ), where d is an
integer. Then /#(/3 ;) = da. Since β' is a primitive integer cohomology
class, it defines a surjective homomorphism hp> : 7Γχ (N) -> Z -> 0.

We have the following commutative diagram:

0 > kerha

0 > kerhβi

This comes from the fact that f^(βf) = cία and ha(j) = < [7],α >,
where 7 G 7rx(M) and < .,. > is the Kroneker product, or equivalently,
ha (7) is the algebraic intersection number of the loop 7 and the fiber
F. Thus using the same notation for TV, one obtains that

MΛ(7)) =< \J°Ί\,P >=< M,/*(/?') >=< [Ί],da >= dha{Ί).

Since the induced homomorphism Z —»• Z is injective, it follows that

n/.(π1(M)) = Λ(A;er/lα);
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therefore the injective homomorphism ker hβ> —> πx (N) induces an injec-
tion of the quotient set kerhp>/f(keτha) into the finite set
πi(iV)/7*(τri(M)). So f*{kerha) is of finite index in kerhβ'. Since
kerha = πx (F) is finitely generated, kerhβ' is also finitely generated.

By Stalling's fibration theorem [17], kerhβ' = πι(S), where S is a
connected surface properly embedded in N , and the homomorphism
hβ> corresponds to a fibration of N over S1 with fiber S therefore

Moreover the diagram (*) of homomorphisms between K(π, 1) spaces
can be realized by a unique, up to homotopy, fiber preserving map g.
Thus / is homotopic to g. Moreover, if dM is not empty it is a non-
empty union of tori, then dN is also a non-empty union of tori. Since /
is allowable, we may assume that / has been first deformed so that the
restriction f\dM is a covering. In this case all the deformations above
can be made relatively to 9M, and / is properly homotopic to a fiber
preserving map g.

To prove part ii) of Theorem 2.1, by Waudhausen's Theorem [9] it
is sufficient to prove that /* : τri(M) -» πx(N) is injective. Since the
induced homomorphism Z —> Z is injective in the diagram (*), the
injectivity of /* is equivalent to that of /* : π^F) -» π1(S).

From part i) of Theorem 2.1 we may assume that / is a fiber preserv-
ing map whose restriction on F induces the map f : F -ϊ S. Moreover
deg f = ddeg /. Since F is a fiber of the fibration over Sι associated to
a and F is not S2 or Z>2, we have the Thurston norm x(a) = —χ(F).
In the same way x(βf) — —χ{S) (see [19]).

By assumption x(a)_= \degf\x(β) where β = {l/d)β' in ^(N.R)-
therefore x(a) = | deg/|x(/3/) and χ(F) = \ deg f\χ(S). Prom the Hure-
witz formula and Edmond's work [4] it follows that / is homotopic to a
covering map, so that /* : ττι(F) —ϊ πι(S) is injective.

As a corollary of Theorem 2.1 when M is not a torus bundle over
the circle we obtain the following charaterization of non-zero degree
allowable map from M to N as above which are properly homotopic to
a homeomorphism.

Corollary 2.3. Let M and N be two compact irreducible d-irreducible
orientable 3-manifolds. Suppose M is a bundle over the S1 with a
fiber of negative Euler characteristic. Then a non-zero degree allow-
able map f : M —> N is properly homotopic to a homeomorphism if and
only if / # : H1 (JV, R) —> H1 (M, R) is an isometry with respect to the
Thurston's norm.

Proof. Prom part i) of Theorem 2.1, it follows that M = (F,φ),
N = (g, Ψ) and / may be assumed to be fiber preserving. Therefore,
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if a e H1 (M, R) and β G H1 (iV, R) are associated rational cohomology
classes such that f*(β) = o ; / 0 , then x(a) > | degf\x(β). Since / # is
an isometry with respect to Thurston's norm, it follows that x{ά) = x(β)
and thus deg/=±l, because x(a) > 0. So we can apply part ii) of
Theorem 2.1 to conclude the proof

The next result has been proved in [5, Theorem 5.2 and Corollary 5.3]
under the additional condition βι(M) = 1.

Proposition 2.4. Suppose M is an orientable 3-manifold which is
a surface bundle over S1, and G is a orientation preserving finite group
action on M. If βi(M) = βλ(M/G) and M/G is irreducible, then G
can be conjugated to preserve the fiber structure of M.

Proof. If βι(M) — βι(N) = 1, the proposition has been proved (see
[5], Theorem 5.2, Remarks after Theorem 5.2, Corollary 5.3). So below
we may assume that β\(M) = β\(N) > 1.

Suppose M = (F,φ). Then F is neither S2 nor Z}2, and M is ir-
reducible 9-irreducible. Now the quotient map q : M —> M/G, as a
branched covering, is an allowable map of non-zero degree. Since M/G
is irreducible and β\{M) = β1(M/G)1 by Theorem 2.1 M/G is a surface
bundle (S,φ), and q : M —>> M/G is homotopic to a fiber preserving
map / : (F, φ) —> (S,ψ). By Theorem 2.1 of [5], we may assume that S
has been deformed so that q~x(S) in M is 2-sided incompressible. Let
d = deg(g) = deg(/). Then

Since g # ,/ # : H2(M,dM;R) -> H2(M/G,dM/G;R) are the same iso-
morphisms, q~λ(S) and f~1(S) are in the same homology class. Since
q~1(S) is 2-sided incompressible and f~λ(S) is a union of parallel copies
of the fiber F, by the well-known argument of Stallings q~λ(S) is iso-
topic to the union of parallel copies of F. The remaining argument is
the same as that of Theorem 5.2 of [5].

A direct corollary of Proposition 2.4 is
Corollary 2.5. Suppose L is α fibered link in α homology sphere

Σ 3, and G is an orientation preserving finite group action on M —
Σ3 — N(L). If each boundary component is invariant under G, and
M/G is irreducible, then G can be conjugated to preserve the fiber struc-
ture of M.

In the remaining of this section we restrict ourselves to the case of
degree-one allowable maps from surface bundles to 3-manifolds.

Let F be a connected orientable surface. Then the algebraic inter-
section pair is a symplectic form on H1(F, Q), and any homeomorphism
φ : F —>• F induces a homomorphism φ# : H1(F, Q) -ϊ ίίi(F, Q). More-
over any proper compact subsurface Fo C F, such that neither Fo nor
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F — Fo = F1 is a disc or an annulus, corresponds to a proper symplectic
subspace V = Hλ(F0,Q) in Hλ(F, Q).

Proposition 2.6. Let M and N be two compact irreducible d-
irreducible orientable 3-manifolds with the same first Betti number. Sup-
pose M is a bundle (F,φ) over S1 such that the homological mon-
odromy φ# : Hι(F,Q) -» Hι(F,Q) has the following property : any
symplectic proper subspace V C Hι(F,Q) with φ#{V) C V satisfies
VΓ\ker(φ#—Id) φ {0}. Then any degree-one allowable map f : M —> N
is properly homotopic to a homeomorphism. This is in particular true
if the homological monodromy φ# is irreducible {i.e., has no proper in-
variant subspace) or is the identity.

Proof. Let M = (F,φ). Then from Theorem 2.1 it follows that
N = (5, ψ) is a bundle over S1. We can assume that / is fiber preserving.
Moreover, since deg/—1, the preimage of each fibers S of N under /
is a fiber F of M and the restriction map / | : F —> S is a degree-one
allowable map. Therefore, by [4, Theorem 4.1], we can assume that
/ | : F —> S is either a homeomorphism or a 2-dimensional pinch map.
If / | is a homeomorphism, the suspension of this homeomorphism gives
a homeomorphism between M and N. If f\ is a pinch map, there is an
essential separating simple closed curve c on F such that:

i) F — Fo U F ' , where neither Fo nor F' is a disc or an annulus
(otherwise S will be a disk or a sphere);

ii) f(F') = x0 is a point in 5;
iii) / | : intF0 —> S — x0 is a homeomorphism.

Since / : M —> N is fiber preserving, the commutativity of the
diagram below implies that the restriction maps / | : F —> S and
φf\φ~ι : F -+ S are homotopic. In particular / | # = (ψ o / | x o ψ~λ)φ

Since / | : F ->• 5 is a pinch, kerf\# = V is isomorphic to Jffi(F0, Q)
and is a proper sympletic subspace of Hι(F,Q) such that φ#(V) C V
because of the commutativity of the square diagram.

Prom the fact that Hλ{M,Q) = Q Θ Hι(F,Q)/Im{φφ - Id) and
i2i(iV, Q) = Q®Hi(S, Q)/Im(ψ#-Id), an easy calculation shows that
fcer/# = V/{φφ - Id)(V). Since / # : Hλ{M,Q) -> Hλ{N,Q) is an
isomorphism, &er/# = 0 and the restriction of (0# — Jd) has to be
invertible on V. This would contradict the hypothesis on the homology
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monodromy.

By considering a fibered link in a homology sphere Σ 3 we obtain:

Corollary 2.7. Let E be the exterior of a fibered link L in a homology
3-sphere Σ with an irreducible Alexander polynomial ΔL(t) in Z(t,t~ι).
Then any degree-one allowable map f : E -> N is properly homotopic
to a homeomorphism, where N is a compact irreducible, d-irreducible
orientable 3-manifold.

Proof. Since ΔL(£), up to a power of t, is the characteristic poly-
nomial of the monodromy of L, it follows that the monodromy is ho-
mologically irreducible over Q. To apply Proposition 2.6, it remains to
show that E and N have the same first Betti number.

Let m be the number of boundary components of E. Then β1 (E) =
m. Since / is of non-zero degree, we have βι(E) > βι(N). Since / is of
degree one and allowable, so m is also the number of components of <9iV,
and we have βι{N) > m. Hence βι(E) = βι(N), the corollary follows
from Proposition 2.6.

Remarks about Section 2. (1) If / is only a proper map of non-zero
degree, then Theorem 2.1 is still true but the homotopy between / and
a fiber preserving map in i) or a covering in ii) is no longer a proper
homotopy. Moreover, the condition "<9-irreducible" can be removed for
all results in this section which do not involve the Thurston's norm.

(2) With respect to Corollary 2.3, if M is a torus bundle over the
circle and N is irreducible, it was known that any non-zero degree map
/ : M -» N is homotopic to a covering; in particular, if / is degree one,
then / is homotopic to a homeomorphism [22, Theorem 4], and there
are no conditions on the first Betti numbers. If we put the condition on
the first Betti numbers, then the result about torus bundles over S1 can
be generalized to 1-punctured torus bundles over S1 by Theorem 2.1.

3. Partial order of 3-manifolds and construction
of non-zero degree one maps

As suggested by M.Gromov, one can define a partial order on the set
of homeomorphic classes of connected compact orientable 3-manifolds
as follows: say that M dominates TV, denoted by M > N, if there is a
non-zero degree allowable map from M to N, and that M d-dominates
TV, denoted by M >d TV, if there is a degree-d allowable map from M to
N. (For a general study of this partial ordering see the second author
work [22]).

From H.C.Wang's theorem and Gromov's work, it follows that each
closed hyperbolic orientable n-manifolds with n φ 3 dominates only
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finitely many closed orientable hyperbolic n-manifolds. In this section
we show that there is a closed orientable hyperbolic 3-manifold which 2-
dominates infinitely many hyperbolic 3-manifolds, and also that each 3-
manifold is 1-dominated by a hyperbolic surface bundle, which improves
the early result of Brooks that each 3-manifold is 2-dominated by a
hyperbolic surface bundle.

Definition 3.1. Suppose M is a compact 3-manifold, A; is a knot
in M and a is a simple closed curve on dM — N(k). We use M(k,a)
to denote the manifold obtained from M by Dehn surgery on k with
surgery slope a, that is, M(k,a) — M ~ N(k) Uh D2 x Sι, where the
gluing map h identifies dD2 x y with a for a point y G S1.

We call a knot k in M null-homotopic, if k is homotopic to a point.
The following fact is useful to construct degree-1 maps between 3-

manifolds.
Proposition 3.2. Suppose M is a closed irreducible, orientable 3-

manifold, and k is a null homotopic knot in M. Then there is a degree-
one map f : M(k,a) —> M.

Proof. Since k is null-homotopic in M, k can be obtained from a
trivial knot k' by finitely many self-crossing-changes of k'. Let D' be
an embedded disk in M bounded by k'. If we let D' move following the
self-crossing-changes from A;' to A;, then each self-crossing-change of k'
corresponds to an identification of a pair of arcs in D'. Thus it is easy
to see that the singular disk D obtained in M with dD = k has the
homotopy type of a graph.

Let N(D) be a regular neighborhood of D in M. Then N(D) is an
irreducible handlebody. We assume that N(D) is reasonable large so
that N(k) C N(D). Since a C dN(k) is homotopic to a multiple of k
in iV(A ), a is homotopic to zero in N(D). We are going to construct a
degree-one map

/ : M(fc,α) =M-N(k)UD2 x S1 -> M - N{k) U N{k) = M

by three steps.
Step 1. Define / : M - N(k) -> M - N{k) to be the identity.
Step 2. Since a is homotopic to zero in N(D), we extend / in Step

1 to M - N(k) U (D2 x *) by sending {D2 x *) to N(D), where * G S1

and dD2 x * is a.
Step 3. Now D2 x S1 - D2 x * is a 3-ball D3. Since N(D) is irre-

ducible and f\(dD3) C N(D), we can extend the map to whole M(k, a)
by sending D3 into N(D).

Since M is a closed 3-manifold, N(D) is a proper subset of M. From
Step 1, we know that the degree of / is one.
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Proposition 3.3. Suppose M is a closed orientable irreducible 3-
manifold. Then there is a closed orientable hyperbolic 3-manifold Mx

such that:

i) β1(M1)=β1(M) + l;
ii) Mi is a surface bundle over S1, with pseudo-Anosov monodromy

(i.e., Mi is a hyperbolic 3-manifold)
iii) there is a degree-one map f : Mx —> M.

Proof. By a theorem of Soma [15, Theorem 2], there is a fibered
hyperbolic knot k in M such that any 3-manifold obtained by a non-
trivial surgery on M along k is hyperbolic. Furthermore, from Soma's
construction the knot k can be chosen to be null-homotopic in M, since
it can be obtained from a null-homotopic fibered knot in M first by
taking a 2-Strands cable and then by doing a finite number of Murasugi
sums (cf. also [6, Theorem 7.7]).

Let Mi be obtained from M by a longitudinal surgery along k. Then
Mi is a hyperbolic surface bundle A standard calculation shows that
βι(Mι) = βι(M) + 1. By Proposition 3.2, there is a degree-one map
f -.Mi-^M.

Theorem 3.4. There is a closed orientable hyperbolic 3-manifold M
which maps by a degree-2 map onto infinitely many non-homeomorphic
orientable closed hyperbolic 3-manifolds. Moreover the induced homo-
morphisms are surjectiυe on the fundamental groups.

Proof. Suppose X is a compact irreducible, partial-ΊiτeducΊble
orientable 3-manifold with dX a torus. We will denote by X{oί) the
closed orientable 3-manifold obtained from X by Dehn filling: X(a) =
X UφS1 xfl 2, where φ : dX -> OS1 x D2 sends the simple closed curve
a C dX to * x dD2. If X is hyperbolic, X(a) will be hyperbolic for
all but finitely many slopes a by Thurston's hyperbolic surgery Theo-
rem [18, Chap.4.]. Then with Proposition 3.3, to prove Theorem 3.4, it
is sufficient to find an orientable, connected irreducible 3-manifold M
which maps by a degree-2 map onto X(oί) for any simple closed curve
a on dX. This follows from the following:

Proposition 3.5. Let X be an orientable, hyperbolic 3-manifold
with dX a torus. Let D(X) be the double of X. Then D(X) maps
by a degree-2 map onto any manifolds X(a). Moreover the induced
homomorphisms are surjective on the fundamental groups.

Proof. Let a be an oriented simple closed curve on dX. We identify
Γ2 x I with S1 x A, where A is an annulus. Let dA = c+Uc_, c+ C T2 x 0,
c_ C T2 x 1. Let ̂ b e a dual curve to α on dX, a Π β = 1. Define
Y — X+ Uψ1 S

1 x A Uφ2 X~, where X + and X~ are two copies of X,
φι : <9X+ -+ Sι x c+ is given by φλ{μ) = c+, φλ(β) = S1 x * and
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φ2 : S1 x c~ -» dX~ is given by <£2(c~) = - α , 0 2(5 f l x * ) = / ? . Since
02 ° <̂ i 9 X + -> <9X~ is given by the matrix ( ~o

λ °), it follows that Y is
homeomorphic to the double DX of X.

Let pa : S1 x A -+ S1 x B be the double orientable covering, where B
is the Mόbius band. Let τ be the covering involution. Then r can be ex-
tended to an orientation reversing involution τ on F , by just exchanging
X+ and X~. In fact Y/r = X Uφa (S1 x B), where φa : dX -> S1 x &B
is given by ^ α (α) = * x 95, Vα(/?) = S1 x *.

Now we can construct a degree-2 map /Q : F —> X(α) by composition
of pa : y -» y/r = X U ̂ ( S 1 x B) and Λα : X U ^ ^ x B - ) X(a)
which is defined as follows:

ha I : X —>• X is the identity.
/ια| : * x β -> * x i ) 2 is a proper degree-one map.
Λαj : S1 x B - * x B -* 5 1 x D 2 - * x D2 = D 3, is then a proper

degree-one map.
Since the π1(X(a)) is carried by X and a component of f~ι(X) maps

onto X homeomorphically under fa, fa is πi-surjective.
Remark on Theorem 3.4 and Proposition 3.5. (1) One cannot expect

that there is an orientable 3-manifold M which maps with degree one
onto such family of 3-manifolds as in Proposition 3.5. The obstruction
lies in the torsion part of the first homology group of M. For details,
see [2] or [10].

(2) If X is a complete hyperbolic manifold with finite volume, then
X(a) is also so for almost all a. Moreover if \M\ denotes the simplicial
volume of a 3-manifold M, then \DX\ = 2\X\, and \X(a)\ tends to \X\
as the length of a tends to infinite. It follows that DX is of minimal
simplicial volume with respect to the property of having degree-two
maps onto all the manifolds X(a).

Corollary 3.7. There is a degree-two map between two hyperbolic 3-
manifolds with infinitely many different factorizations up to homotopy.

Proof. Let A; be a null-homotopic hyperbolic knot in a closed hyper-
bolic manifolds TV. Let X = N — intN(k), the exterior of k in N. Then
we have the following sequence of maps:

M —^ D(X) - ^ - > X U S1 x B -*=-> X(a) - ^ N.

The maps pa and ha have been constructed in the proof of Proposition
3.5, The hyperbolic 3-manifold M and the maps / are provided by
Proposition 3.3. For almost all α, X(a) is a hyperbolic manifold and
the map ga is given by Proposition 3.2. It is not hard to verify that all
these maps ga o ha : X U S1 x B -> TV = X U S1 x D2 are homotopic.
So all the composition ga o (ha o pa o /) : M -> N are homotopic to a
fixed map of degree 2.
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Definition 3.8. Suppose M is an orientable irreducible <9-irreducible
3-manifold. We say M is minimal, if for any orientable irreducible d-
irreducible 3-manifold N different from S3 and a solid torus, M >λ N
implies that M is homeomorphic to N.

By definition, the real projective 3-space is minimal, but to our knowl-
edge no closed orientable hyperbolic 3-manifold is known to be minimal.
In the case of non-empty boundary, according Corollary 2.7, the exte-
rior of all fiber knots in homology spheres with irreducible Alexander
polynomial are minimal manifolds. In particular the complements of
the figure eight knot is a minimal 3-manifold.

4. Totally null-homotopic hyperbolic knots and coverings

The following definition appears in [1].
Definition 4.1. Suppose M is a closed orientable 3-manifold.

A knot k is said to be totally null-homotopic, if k is the boundary
of a singular disk D such that a regular neighborhood N(D) of D is
null-homotopic in M, that is to say: i^(π1(N(D))) = {1}, where ή :
π1(N(D)) -> τri(M) is induced by the embedding of N(D) in M.

If k is null-homotopic, then there is a prefered meridian-longitude
system (μ, λ) such that λ is homological to zero in M — N(k). Therefore
any simple closed curve on dN(k) has a unique slope (n, m) under this
system, where n, m are coprime.

Proposition 4.2. Suppose M is a closed orientable 3-manifold.
Then M contains a totally null-homotopic hyperbolic knot k.

Proof. The proof is based on the following results of Myers [12],
[13] : if M is a compact orientable 3-manifold containing no 2-sphere
in 5M, and 7 is a proper arc or a simple closed curve in M, then in
the proper homotopy class of 7 there is a proper arc or a simple closed
curve 7' such that M — N(y) is simple, i.e., M — N(j') is irreducible,
d-irreducible and contains no non-boundary-parallel incompressible an-
nulus and torus.

Let 7χ be a null-homotopic knot in M. By Myers's result, there is a
proper arc 72 in M — N(^i), which can be properly deformed into the
boundary, such that M — N(jx) — N(j2) is simple. Let H = N(jλ) U
N(j2)- Then H is a handlebody of genus two, which is null-homotopic
in M. Let A; be a null-homotopic knot in H such that H — N(k) is
simple. Now A; is a knot in M. Since M — N(K) is obtained from
the simple 3-manifolds M — H and H — N(k) by identifying genus-two
closed surfaces in the boundaries, M — N(k) is simple. By Thurston's
hyperbolization theorem [20], [21], it is equivalent to say that A: is a
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hyperbolic knot. Since k bounds a singular disk in H and H is null-
homotopic in M, k is totally null-homotopic in M.

Suppose M is a closed orientable 3-manifold, A; is a knot in M and
α is a simple closed curve on dN(k). Let p : M -> M be a finite
covering. If each component of p~1(N(K)) maps homeomorphically on
N(k) under p, then for any surgery manifold M(A;, α), there is a unique
induced covering p{k,a) : M(p""1(fc),p"1(α)) —>• M(k,a), where the
surgery curve on dN(ki), ki a component of p~ι(k), is a component of
p~1(a)ΠdN(ki). In particular, if A; is a null-homotopic knot in M, then
this (unique) induced covering p(&, a) always exists. It is the pull-back
of the covering p : M —> M by the degree-one map / : M(k; a) -* M.
So there is a commutative diagramm:

M(p-ι{k),p~ι{a)) -Ϊ-+ M

p(*,α)| pj

b, α) ^ M

With the notation above, we have
Lemma 4.3. Suppose k is a totally null-homotopic knot in M. Then

for any slope a φ λ, βι(M(p~1(k)^p~ι(a)) = βχ(M); furthermore, if
α = (l,m), then H^Mip-'ik)^-1^))^) = H^M^Z).

Proof. Since k is totally null-homotopic, there is a singular disk D
bounded by k such that N(D) is null-homotopic in M. So each compo-
nent of p~1(N(D)) is homeomorphic to N(D) under p; this implies that
each component of p " 1 ^ ) bounds a singular disk, and all those singular
disks are mutually disjoint.

Let p~x{k) = {&!,..., A;d}, where d is the degree of p. We denote the
component of p~1(N(D)) associated with ki by Ό^ and the component
of p~λ{μ) associated with k{ by c^. Finally, let λ̂  = p~ι{λ) Π dN(ki).
Let Mi = M(fci,άi). Then inductively define M<+i = Mi(fcj+i,αi+i).

Since άi Φ λi and λi is the longitude of k\ in M, we have H\ (Mi, R) =
Hλ{M,R)', furthermore Hλ{MuZ) = Hλ(M,Z) if α = (l,m). Sup-
pose H^Mi.R) = Hλ{M,R), and similarity Hλ{MuZ) = Hλ(M,Z)
if a = (l,m). Since the previous surgery are disjoint from N(Di^.1),

λi+i is still the longitude in M i + i — iV(fci+1). But ά i + i 7̂  λ i +i, so
fίi(M i +i,iϊ) = Hλ(Mi,R) = Hλ(M,R). Furthermore, if α = (l,m),
then α ί + i = (l,m) and Fi(M i + 1 ,Z) = HX{MUZ) = Hλ{M,Z). Thus
by induction we have

R) = HX{M,R).
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Similarily

if a = ( l ,m).
Proposition 4.4. Let M, TV δe too compact, connected irreducible,

d—irreducible, orientable 3-manifolds. Suppose that M is a surface bun-
dle over S1. Let f : M —> N be an allowable integer homology equiva-
lence such that for any finite regular covering p : N -> N the induced
map f : M -> N is still an integer homology equivalence, where M is
the covering of M corresponding to the subgroup f~ι(p+(πι(N))) and f
is a lift of f. Then f is homotopic to a homeomorphism.

Proof. Suppose / is an integer homology equivalence. Then / is a
degree-one map. Since M = (F, φ) is a bundle over S1, N = (5, φ) is also
so by Theorem 2.1. Moreover / can be assumed to be fiber preserving.
Then the proof of Proposition 4.4 follows from the following Lemma.

L e m m a 4.5. Let M = (F, φ) and N = (5, φ) be two surface bundles
over S1. Let Md = (F,φd) and Nd = (S,ψd) be the d-fold cyclic cov-
erings of M and N associated with the fibration over S1. Assume that
H\(Md,Z) and H1(Nd,Z) are isomorphίc for all d. Then any degree-
one allowable fiber preseving map f : M —> N is properly homotopic to
a homeomorphism.

Proof. Clearly the covering of M corresponding to the covering
Nd = {S,ψd) of N is Md = {F,φd), and the lifts fd:Md-> Nd are
degree-one maps which are surjective in first homology groups. Since
finitely generated abelian groups are hopfian, fd induces an isomorphism

Let Moo — F x R and TV̂  = S x R be the infinite cyclic coverings
of M and N associated with the fibrations over S1. Prom [3, Prop.2.4],
the natural homomorphisms i # : H1(MOO;Z) —> ]μndHι(Md;Z) and
JΦ : Hι(Noo] Z) -> ]μndHι(Nd; Z) are injective. By considering the lift
/oo : MQO ~> Λ̂ oo of /? which is a proper degree-one map, we obtain the
following commutative diagram:

0 »• H^N

Since i#ij#τ]μn.(fd)# are injective and f^ is surjective, it follows
that (/oo)# is an isomorphism, and hence Hχ(F,Z) is isomorphic to
H1(S, Z). Since / : M -> N is fiber preserving, the restriction / | : F -ϊ
S is a degree-one allowable map. By [4, Theorem 4.1], f\ is properly
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homotopic to a pinch. Since Hλ(F,Z) is isomorphic to Hλ(S,Z), f\
must be properly homotopic to a homeomorphism, and hence / is also
so.

Theorem 4.6. Let k be a totally null-homotopic hyperbolic knot in a
hyperbolic 3-manifold M, not contained in a 3-ball. Then for any finite
covering p : M -> M and any simple closed curves a = (1, m) on dN(k),
m ^ O , the induced covering space M(p~1(k)^p~1(a)) of M(k,a) is not
a surface bundle over S1.

Proof. Since k is null-homotopic, by Proposition 3.2 there is a degree-
one map / : M(A;, a) —> M, which induces an integer homology equiva-
lence because a — (1, ra), m φ 0. By Lemma 4.3, for any finite covering
p : M -> M, the induced map / : M(p~1(k),p~1(a)) -» M is still
an integer homology equivalence, because k is totally null-homotopic.
Therefore if for some finite covering p : M —>- M the induced covering
M(p~1(k),p~1(a)) is a bundle over 5 1 , from Proposition 4 it follows that
the induced degree-one map / : M(p~1(k)^p~1(a)) —> M is homotopic
to a homeomorphism.

Following the notation in the proof of Lemma 4.3, the degree-one
map / : M(p~1(k)^p~1(a)) —> M can be written as the composition
of degree-one maps fc : M.+i -> M», i = 0,1,...,d — 1. Since / is
homotopic to a homeomorphism, each map f{ induces isomorphism f^ :

ί
If M(p~1{k)1p~1(a)) is a bundle over 5 1 , by Waldhausen's Theorem

[23], each M is homeomorphic to M o = M. In particular M is a surface
bundle over the circle, and M{kι,a.ι) is a homeomorphic to M, where
kι is a lift of k in M, which is a totally null-homotopic knot in M not
contained in 3-ball. Then a contradiction follows from the following
Lemma , which is a particular case of a more general result about Dehn
surgery along null homotopic knots in irreducible 3-manifolds (cf [1]).

Lemma 4.7. Let N be a closed irreducible surface bundle over the
circle. Let k be a null homotopic knot in N, not contained in a 3-ball.
Then N can never be obtained by a non-trivial Dehn surgery on k.

Proof. Since N is a surface bundle over S 1, by [9, 14.21], τr1(N) is
hopfian. Suppose there is a non-trivial surgery manifold N(k, a) which
is homeomorphic to N. Since k is null homotopic in iV, it follows that
there is a degree-one map / : N(k,a) -* N. Then /* is an isomorphism
since the group is hopfian. In particular the core of the surgery solid
torus ka must be null homotopic in N(k, α), because it belongs to kerf*.

Since k is not in a ball in N and TV is a irreducible surface bundle
over S 1, the exterior E(k) of k in N is an irreducible, d-irreducible man-
ifold. Since k is null homotopic in N and H2{N: Q) ψ 0, it follows that
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H2(E(k)), Q) φ 0. Prom [8, Corollary 2.7], the core of the surgery ka is
of infinite order in πι(N(k, a)) except for at most one Dehn filling along
dE(k). Since the trivial Dehn filling, yielding JV, has a null homotopic
core A;, for any non-trivial Dehn filling, the core ka of the surgery solid
torus must be of infinite order in πχ(7V(A;,α)). So N(k,a) cannot be
homeomorphic to N.

L e m m a 4.8. Suppose M,k and a are as in Lemma 4-3. A finite
covering p' : M' -> M' = M(k,ά), corresponding to an epimorphism φ' :
π1M(k,a) -» G where G is the deck transformation group, is induced
by a covering p : M -> M if and only if the core of the surgery ka in
7ΓiM(fc,α) is in the kernel of φ'.

Proof Each component of pt~1(N(ka)) maps homeomorphically on
N(ka) under p1 if and only if ka lies in kerφ'. So the direction "only
if is clear. For the other direction, we recall that there is a degree
one map / : M(k,a) —> M. If ka is in Kerφ', then the epimorphism
φ' : πiM(A;,α) -» G factorizes through the epimorphism

/* : τriM(Λ;,α) -* π\M

to induce an epimorphism φ : φλM -> G. Therefore, the covering
p1 : M1 -> M(k, a) is the pull-back by / : M(Λ;, a) -> M of the covering
p : M —> M associated to the epimorphism φ : π x M —> G.

Theorem 4.9. For any integer n > 0, there are infinitely many
closed hyperbolic orientable 3-manifolds with first Betti number n such
that any tower of abelian covering contains no fiber bundle over the
circle.

Moreover suppose that F is an immersed surface in any 3-manifold
M' belonging to those towers of abelian coverings such that F is either
embedded or homologically non-trivial. Then F is not a virtual fiber
{therefore F is quasi-fucshian by Bonahon and Thurston, see [16]).

Proof. Let k be a totally null-homotopic hyperbolic knot k in M,
and let α be of slope (l,m) on ΘN(k). Then in the manifold M(k,a),
the longitude λ of M — N(k) meets the meridian disk of N(ka) exactly
once, that is to say, ka is null homologous in M(A;, a). Thus for any finite
abelian covering p' : M' -> M' = M(fc, α) with deck transformation
group G, ka is in the kernel of φ' : π 1 (M / ) —> G, so p' is a covering
induced by a covering p : M —> M by Lemma 4.8. Hence the first part
follows from Theorem 4.6 and its proof.

For the second part, if F is homologically non-trivial and is a virtual
fiber, then there is a finite covering p : M —> M1 such that M —
(F,φ) and /#2([^]) = d[F], where d is non-zero. By Theorem 2.1 (and
Poincare duality), M' itself is fibered.
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If F is a separating embedded surface and is a virtual fiber, then by

standard 3-manifold argument, M' is a union of two twisted /-bundle

over the surface. Therefore M' is doublely covered by a surface bundle

over the circle, which is an abelian cover. This contradicts to the first

part of the theorem.

The next result gives an affirmative answer to a question of Luft and

Sjerve [11, p.468].

Proposition 4.10. There is a regular covering between hyperbolic

integer homology 3-spheres.

Proof. Let p : S3 -> P be the regular covering from S3 to the

Poincare homology 3-sphere, where the degree of p is 120. By Proposi-

tion 4.2, there is a totally null-homotopic hyperbolic knot in P. Choose

a simple closed curve a in dN(k) of slope (l,ra) so that P(k,a) is

hyperbolic. Evidently, P(k,a) is an integer homology sphere.

Let p{k,ά) : S3(p~1(k),p~1(a)) -» P(k,a) be the uniquely induced

regular covering. Then ^ ( ^ ( p - 1 ^ ) , ^ 1 (<*)), Z) - Hλ{S*,Z) by Lem-

ma 4.3. So p(k,a) is a regular covering between integer homology

spheres.
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