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ALGEBRAIC SOLUTIONS OF ONE-DIMENSIONAL
FOLIATIONS

A. LINS NETO k M.G. SOARES

Abstract
In this article we consider the problem of extending the result of
J.P.Jouanolou on the density of singular holomorphic foliations on CP(2)
without algebraic solutions to the case of foliations by curves of CP(n).

1. Introduction and statement of results

A one-dimensional (singular) holomorphic foliation T on CP(n) is
given by a morphism

T : O(-d) —> TCP(n)

with singular set sing^) — {p : Ύ(p) = 0}. We will consider foliations
with singular set in codimension greater than 1. Such a foliation T
is represented in affine coordinates (a; l 5... ,xn) by a vector field of the
form

£=0

where R is the radial vector field R = Σ"=1

 χi^-> 9 *s a homogeneous
polynomial of degree d and Xt is a vector field whose components are
homogeneous polynomials of degree £, 0 < ί < d. Since sing^) has
codimension greater than 1 we have either g ψ 0 or g = 0 and Xd cannot
be written as hR where h is homogeneous of degree d — 1. In this case
X has a pole of order d — 1 at infinity (see [6]). We call d the degree of
the foliation.

If T is a holomorphic foliation of dimension 1 on CP(n) with singular
set sing{T) and Γ C CP(ή) is an irreducible algebraic curve, we say
that Γ is an algebraic solution of T provided Γ \ sing(T) is a leaf of the
foliation. We prove the following :
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Theorem I. Consider the vector fields

yd _

ft* a^
and

Xd

μ=μR + X* μβC

and let T^, T^ be the foliations on CP(n), n > 2, represented by X$
and X£ respectively. Then, for d > 2 and n even, T$ has no algebraic
solution and, for d>2 and n odd, T^ has no algebraic solution provided
0<\μ | « 1.

Theorem II. Let Nd denote the space of one-dimensional holomor-
phic foliations of degree d on CP(n), n > 2. For each d > 2, there is
an open and dense subset Q^ C N̂  such that if T G Q^ then T has no
algebraic solution.

In fact we show that Tfi has no algebraic solution of geometric genus
greater than 0, whether n is even or odd. The necessity to consider
the one-parameter family of vector fields Xd arises from the fact that,

when n is odd, T* has precisely d n + < Γ

 d4

f

1""f"d+1 invariant projective lines.
Also, it's shown that T^ has no algebraic solution, for any n > 2 and
d > 2, provided 0 <| μ | « 1.

To obtain the results we proceed as follows. The set 9 d consists
of foliations of "generic type" with simple linear singularities at iso-
lated points and Theorem I shows that this set is not empty ( the
vector field given in this theorem is just a n-dimensional version of
the example given by Jouanolou in [8]). That's actually the most in-
volved part of the article. By a foliation T of "generic type" and
degree d > 2 we mean a foliation represented by a vector field as
above and such that (i) at each p E sing(X) we have deίDX(p) φ 0,
(ii) if {λi,..., λ£} are the eigenvalues of ΌX(p) then they satisfy ^

is not a positive real number for i φ j (iii) a finite number of sums of
"residues" (which are rational functions of the λ£'s), associated to the
foliation at singular points, are not certain positive integers and (iv)
no d + 1 points in sing(X) lie on a projective line. These are sufficient
conditions for the foliation to have no algebraic solutions. A brief expla-
nation of this fact is the following: first recall that if a smooth algebraic
curve is invariant by a foliation on CP(n) then the curve must contain
a singular point of the foliation, for otherwise we get a holomorphic
foliation with a compact leaf, which is impossible. Now suppose we
have an invariant algebraic curve; then (ii) says that this curve can-
not have singular analytic nor smooth tangent branches at each of its



6 5 4 A. LINS NETO & M.G. SOARES

singularities and also that the number of branches at a singular point
is bounded by n ( Proposition 2.5 ), so we are reduced to considera-
tion of invariant algebraic curves whose singularities, if any, have only
smooth analytic branches no two of which are tangent. In this case we
bring in the Theorem of Baum and Bott [1] and a similar result due to
D.Lehmann [9]. The idea is that certain characteristic classes of bun-
dles associated to the ambient complex manifold and to the foliation,
as well as to invariant submanifolds," localize" near the singular set of
the foliation, giving rise to residues computable through local data for
the foliation and whose sum give characteristic numbers of these bun-
dles. Condition (iii) means precisely that the sum of residues cannot be
a characteristic number associated to a convenient bundle, thus rulling
out the existence of certain algebraic solutions. Condition (iv) is typical
of the odd dimensional situation and aimed at avoiding the existence of
any invariant linearly embedded CP(1).

In [8] Jouanolou proved both theorems for CP(2) (except that ζsd

is open). Later the first author reproved both theorems ( adding the
fact that Qd is open ) [10], and the arguments of the proofs were based
on residues associated to foliations. More recently the second author
extended both results to foliations on CP(3) and also showed that any
T G ζ$d has no invariant algebraic surface, although in this case 3^ is
just proven to be dense [11].

2. Auxiliary results

We start by recalling the theorem of Baum-Bott as written by Chern
in [2]. Let W be a compact complex manifold of dimension n and C be
a holomorphic line bundle on W.

A holomorphic section X G Γ(TW ® C) is given locally by

where xλ,... ,xn form a local coordinate system in >V and Xi G Γ(£)
are holomorphic sections of £. Suppose the vector field X has only
non-degenerated singularities, that is, if X(p) = 0 then the matrix Jp =
(§f?"(p)) i s s u c h *^ iat detjp ^ 0. Consider the Chern classes of the
virtual bundle TW - C~ι

ck(TW - C~ι) = ck(W) + cn(W) C l (£) + • • + (ex(£))*, 1 < * < n
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and let

ca{TW - C'1) = c?1(TW - C-1) ...<%*(TW - C~ι)

where

a = (au . . . , an) aλ + 2α2 H h nan = n

Then we have the

Theorem 2.1 [2].

w p

where the summation extends over all singularities of X.
Let W be a n-dimensional complex manifold, T a one-dimensional

singular holomorphic foliation on W with sing^) a discrete set of points
and V C W a complex submanifold invariant by T with dirricV = m.
For each point p G sing(T) take a coordinate domain U around p with
UΠsingi^T) = {p} and such that U = FΠW is given by yt = = yq — 0
where (x l 5 . . . , xm, j/x,..., yg) are coordinates in W, p = (0,. . . , 0) in
these coordinates and m + q = n. Let the foliation T be represented in
U by the vector field

where J5j(α;, 0) = 0 for 1 < j < q. If φ E R[cχ,..., cq] is a characteristic

class of dimension 2m, J{x) is the matrix (f^-(#, 0)),l < i, j < q, and

if we define

\ Λ - Λdxm]

where [... ] 0 denotes the Grothendieck residue symbol at 0 then we have,
provided V is compact, the following

Theorem 2.2 [9].

X ResAφ >v,p)
p€sing{T)Γ(V

where the integral is over the fundamental class of V and Vy/w is ^ e

normal bundle of V in W.
Remark 2.3 If a vector field X has non-degenerated linear part at a

singular point p, λ i , . . . , λn are the eigenvalues of the linear part of X
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at this point and if V is one-dimensional, invariant by X and tangent
at p to the direction associated to Xi then, by taking φ = cλ we have

(see [1] or [5, p. 658] ).
We will also need the following Propositions ( Propositions 2.4 and

2.7 appeared in [11] and a two-dimensional version of Proposition 2.8
appeared in [3], but the proof we give here is more general ):

Proposition 2.4 [11]. Let Γ C CP(n) be an irreducible algebraic
curve whose singularities, in case they exist, are such that Γ has only
smooth analytic branches, no two of which are tangent, through each
of them. Suppose sing(T) C {pi,... ,pm} and consider the sequence of
blow-ups

CP(n) := Mo^M^Mi... ^-Mm := M

where Mi is obtained by blowing-up M<_i at π~_\ o ••• o πϊ1(pi). Let
Γ* C M be the proper transform ofY. Then

m

CM*/M) = (n + l)d°(Γ) - χ(Γ*) - (n -
*/

Γ*where d°(Γ) is the degree ofT, χ(Γ*) = 2 — 2g is the Euler characteristic
ofT* and ί(pi) is the number of analytic branches ofY through pi.

Let X be a holomorphic vector field defined in a neighborhood U of
0 G C n and such that X(0) = 0. Let {λ l5..., λn} be the spectrum of
DX(0). An invariant branch for X at 0 is, by definition, a germ of
a irreducible non-constant curve Γ through 0 G U such that for each
p e Γ \ {0} we have X(p) e TPΓ. Then we have the following

Proposition 2.5. Let X, λλ,... ,\nbe as above. Suppose \ u . . . , λn

Φ 0 and that, for i φ j , ^ 0 R + . Then X has exactly n invariant
branches through 0, say β 1 ? . . . , Bn such that:

(i) B 1 ? . . . , Bn are smooth at 0.
(it) For each eigendirection ofΌX(0), say eό, there is exactly one

1 E {1,... ,n}, such that B{ is tangent to βj at 0.
(m) If B is a invariant branch for X at 0, then B = Bj for some j

(as germs at 0).
Proof. Set 5 = {λi,...,λn}. The hypothesis imply that ΌX(0) is

diagonalizable and that for each Xj there is a unique eigendirection C.e^,
where βj G C n \ {0}. If / C {1,..., n} , I φ 0, we will use the notation
Eι for the subspace generated by the set {e* | i £ /}. If / = 0 we set
Eι = {0}. We need a lemma:
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Lemma. Let ί be a straight line through 0 G C such that έΠ S = 0
and the components of C — ί are Aλ and A2. Set Ik = {j \ λj G Ak} for
k = 1,2. Then there are germs of holomorphic submanifolds Wk,k =
1,2, through 0 G C n , sucΛ that:

(l)T0(Wk)=Eik,k = l,2
(2) WΛ is invariant for X,

(3) // Xk = X|vrfc ίΛen 0 G W* w α singularity of Xk of Poincare
type, k — 1,2. Moreover the spectrum ofΌXk(0) is Sk = {λj | j G /*}.

(4) If B is a invariant branch for X at 0, then either B C W± or
BCW2.

Proof. Let a G C* be such that α.^ is the imaginary axis and Y =
a.X. Then the imaginary axis divides the spectrum of Y into two parts,
namely Ss = {aλj \ Re(aλj) < 0} and Su = {aλj \ Re(aλj) > 0}. One
of these parts, say 5β, corresponds to Iλ and the other to J2. Let Yt

be the local real flow generated by Y. It is not difficult to see that
for each t > 0, the local diffeomorphism Yt : (Cn,0) —> (Cn,0) is
holomorphic and has a hyperbolic fixed point at 0 G C n . Moreover,
the stable subspace of ΌYt(0) is EIλ and the unstable is Ej2. Let W\
and W2 be the stable and unstable manifolds of Yu respectively. Then
To(Wk) = EIk, for k — 1,2. On the other hand, since Ft is a holomorphic
local diffeomorphism, the proof of the existence of the local unstable
manifold of [7] ( by the graph transformation ), implies that WΊ and
W2 are in fact holomorphic submanifolds. Let us prove that W\ and W2

are invariant for X. Let i' be another straight line through 0 G C, such
that the components of C — £', say A\ and A2 , satisfy Ak Π S = Ak Π S
, k = 1,2 (for instance, a small perturbation of ί ). Let /? G C* be such
that βi' is the imaginary axis and βAλ' = {2 | βe(z) < 0}. If Z = βX
and Zs is its local real flow then we have:

(i) Zs and Yt commute ( because Yt = Xat
 a n ( l Zs = X/?s, where XT

is the local complex flow of X).
(ii) If Wι and W2'

 a r e the stable and unstable manifolds of Zs ,
(5 > 0) respectively, then T0(WV) = Eh = T0{Wk), k = 1,2.

Now, (i) and (ii) imply that WV = Wfc , & = 1,2. Moreover, since
Yt and Z s generate the orbits of the complex flow Xγ (considered as a
local R2 action), it follows that the orbits of Xτ through points of Wk

are contained in Wk, k = 1,2. This implies assertion (2) of the lemma.
Assertion (3) follows from the fact that the spectrum of ΌX(0)\EIk is
Ak Π S , k = 1,2. It remains to prove assertion (4). Let B be a
invariant branch for X at 0. Let 7 : (C, 0) —> (Cn, 0) be a Puiseux's
parametrization of B. Then it is possible to define a holomorphic vector
field X* on a neighborhood of 0 G C, such that Όj.X* = X o 7. This
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vector field X* is of the form X* = zku{z)£, where u(0) ψ 0 and k > 1
(see [4]). Let aeC*,Y = aX and Yt be as before. If Y* = aX* and
Yt* is the local real flow associated to Y*, then we must have

Let us suppose, by contradiction, that B <jL Wλ U W2. Since W\ and W2

are the stable and unstable manifolds, respectively, of Yu it follows that
if δ is an orbit of Yt* through a point z0 φ 0, then:

(a) δ is not a closed orbit.
(b) δ cannot accumulate at 0.
On the other hand δ is a solution of the real differential equation

d z k / \

-=az u(z)
and it's not difficult to see that:

(c) If k > 2 or k — 1 and Re(au(0)) φ 0 then δ accumulates at 0.
(d) If k — 1 and Re(au(0)) = 0 then δ is closed (if z0 is near 0).
This contradiction implies that B C W\ U W2. Since B is irreducible

we must have either B C\Vλ or B C W2. This proves the Lemma.
Let us prove the existence of the branches JB1? . . . , Bn. Let λ̂  =

p i e
v C Γ Ϊ ^, 0 < θj < 2π. Hypothesis (b) implies that 0* φ θj for i φ j ,

so we may assume, without loss of generality, that θj < θj+λ, for 1 <
j < n — 1. For the existence of Bj, we take a straight line ί through
0 G C such that ίΓ\S = 0 and λ̂  , λ J + i belong to different components
of C — ,̂ say Xj E A± and λJ +i G ̂ 42, where C — ί = AXU A2 (if j = n
we take λ J + i = λi). In this case, if Iλ and I2 are as in the Lemma,
then j G h and j + 1 G /2. Let VFi and X1 be as in the Lemma.
Observe that W\ is biholomorphically equivalent to an open set in C*,
k < n, 0 is a singularity of X1 of Poincare type, and λ̂  G 5Ί , the
spectrum of DX !(0). Moreover, it follows from the construction of I
that it is possible to find a straight line ί1 through 0 G C such that
ί' Π Si = 0, and if A[ and A'2 are the connected components of C — i\
then SΊ Π A[ = {A }̂. Applying once again the Lemma for X1 we get
the existence of Bj, of dimension 1 and tangent to the eigendirection of
λj. Now let B be any invariant branch for X at 0. Fix a straight line ί
as in the Lemma, in such a way that Aλ Π S φ 0 and A2 Π S φ 0, so that
dimWi < n and dΐmW^ < ft- It follows from the Lemma that either
B cW1oτ B CW2. Suppose for instance that B CW1. If dimW1 = 1,
it's clear that B is an open set in VFi, so we can suppose that in fact
B — Wι. If dimW1 > 1 we can apply the same argument to show that
B C Wl, where Wl is invariant for X, smooth , and dimWl < dimWi.
It is clear that after repeating this argument a finite number of times
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we will get B C W*, where W* is invariant for X and dimW* = 1. On
the other hand, it follows from the construction of £? l 5 . . . , i?n and from
the above argument that W* — Bj for some j . Therefore B C Bά for
some j , which implies that, as germs of curves, we must have B — Bj.

In particular we have the
Corollary 2.6. If X and \ u . . . , λn are as in Proposition 2.5, then

X has no invariant singular branch at 0 € Cn .
Let us consider now a one-dimensional singular holomorphic foliation

T on CP(n) with singtf) a finite set of points and such that if Xp is
a vector field representing T in a neighborhood of p G sing{T} then
p is a non-degenerated singularity of Xp and further, the eigenvalues
λi, . . . , λn of ΌXp(p) satisfy

Let Γ C CP(n) be as is Proposition 2.4 and suppose Γ is invariant by
T. For each p G sing^) Π Γ let Bp denote the set of analytic branches
of Γ through p and note that since Γ is invariant by T, if p G sing(Γ)
then p G sing^). We have the

Proposition 2.7 [11]. The following equality holds :

Let Γ C CP(n) and J* be as in Propositions 2.4 and 2.7, let T have
degree cf and for each p G sing(T) ΠΓ let £(p) be the number of analytic
branches of Γ through p. Then

Proposition 2.8.

X(Γ*)=( Σ
\Pesing(F)nΓ

Proof. Choose a hyperplane H^ such that sing(!F) Π Γ C C n =
CP(n) \ #00, Hoo intersects Γ transversely and the foliation T is repre-
sented in C n by a vector field X which has a pole of order d — 1 at H^.
Blow-up CP(n) at each point p G sing^) Π Γ and obtain a manifold
M as in Proposition 2.4. Let X* be a lifting of X to ΛΊ. Then X*
induces a meromorphic vector field on the strict transform Γ* of Γ, say
V, with the following properties:

(i) V has ΣPesing(Γ)nr ' ( P ) z e r o s

(ii) V has d°(Γ) poles of order d — 1, corresponding to the d°(Γ)
intersections of H^ with Γ.



660 A. LINS NETO & M.G. SOARES

Let C denote the pull-back to Γ* of the bundle [H^] by the blow-up
mapping

π : M —> CP(n). Applying Theorem 2.1 to the section V G Γ(TΓ*®
)) w e have

and

/ V)= Σ ^T= Σ/ (
/Γ*

and the result follows.

3. Proof of Theorem I

Recall the vector field

The foliation ^ defined by X[f in CP(n) has no singularities at infinity,
as is easily verified and the singular set sing^T*) consists of

points Pi = (x\}ii... ,£n,i)5 I < i < D. In fact, the singularities are
given by the roots of

x
d n + d n " 1 + - + d + l _
l —

with
T — ~>—d3+1—d3—d π < ή < r? — 9

So that, if ξ is a primitive root of unity of order D then

Remark 3.1. Let [αi,. . . , αn+i] G PGL(n + 1, C) denote the class of
the matrix diag(aι,..., c*n+i) and H C PGL(n +1, C) be the subgroup
consisting of the elements [α 1 ? . . . , αn+i] which satisfy
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Then, it's easy to see that the group H is cyclic of order D and generated
by the class of

where ξ is a primitive root of unity of order D and moreover, Ή, acts
freely and transitively on sing^^).

If pi(X) denotes the characteristic polynomial of ΌXd(pi) where p{ E
), then a calculation shows that

Pi(X) = {\ + xUn + dxίi{\ + xίf-1 +
3=2

Since xλ^ — ξι put t = λ + ζtd to get

p.(t - ξid) =tn + d(t - λ ) ^ - 1 + d2(t - λ) V~ 2 + + dn(t - λ)n

Set ζ = d(t[_x) and this polynomial becomes (up to a multiplicative
constant):

Cn + C" 1 + + C + 1
Hence, if ω is a primitive root of unity of order n + 1, then the

spectrum of T§ at pi is

spec{Td,Pi) = {λ} = (-1 + dωi)ξid : 1 < j < n}

Lemma 3.2. Ifd>2, then all singularities of FQ satisfy the hypoth-
esis of Proposition 2.5.

Proof. To see this note that ifp^ G single) and λj, Xι

k E
φ k h

λξ ~ -

k we have

and that the numbers — 1 + dω^ lie on a circle of radius d > 2 centered
at —1. Hence, if

-1 + rfω* c Ώ= a e R

then α < 0.
Proposition 3.3. Suppose Γ C CP(n) is an irreducible algebraic

curve of genus g > 0 whose singularities, in case they exist, are such
that Γ has only smooth analytic branches, no two of which are tangent,
through each of them. Then Γ cannot be an algebraic solution of Td.

Proof. If p E sing(T) then p E sing^^ΠT and note that sing(T$) Π
Γ φ 0 for a holomorphic foliation on CP(n) has no compact leaf ( see
[8]). So let

sing{Fd) Π Γ = {9l,... ,gN}, 1 < JV < D
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and

denote the set of analytic branches of Γ through qim By Proposition
2.5 and Lemma 3.1 we have that such a branch is necessarily smooth
and tangent to the direction associated to an eigenvalue of ΌXfi (<&) and
r(i) < n. Let us say that Bl

m is tangent to the direction associated to
Xjl = (-1 + dωjm)ξSid. By Remark 2.3 we have

and

N o w

—1 -f- dίύ ) — — ( n — 1) -f- d I / CJ I — —(τι + d — 1) —

v ^^ 1
= -(n + d) + l-dωjm

so that

and
, Γ, qi) =

hence

m = l x 7 m = l

By Proposition 2.7

L^^O^ί^ + lKίΠ-xίΓ*)

where the summation extends over all points <ft G sing^^) Π Γ and by
Proposition 2.8

/ \
(2)
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which gives

(3) Σ J

qi

Combining (1) and (3) we get

so that

(4)

r(i) n + d

qi m=l

r(i)

qi m=l

and from (2) we deduce

(5) d°(Γ)
Σ«r(t)-χ(Γ*)

I -1

-d)d°(Γ)-Σr(i)

1

l-dωi-

1 Λ

where g is the genus of Γ*. Now observe that

I l-dωjm \>d-l

because 1 < j m < n and then ωjm φ 1. Hence

1 1

I 1 - dωi™ I d - 1

and from (4) we get

(6) d°(Γ) < ^*_ι

Now, if g > 0 (5) and (6) imply

(7) d°(Γ) = qi

 Ί ~
2 + 2g > ?T: > rf°(Γ)

α — 1 α — 1
a contradiction which proves the Proposition when g > 0.

It remains to consider the case g = 0. If £ is a point in the unit circle
then its complex conjugate is ζ"1. From (4) we have

r(i)

ψ ( 2 - d((>
qi m=l
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Write ωjm = cjm +y/^ϊsjm so that ωjm +ω~jm = 2cjm and - 1 < cjm < 1.
Then

.... + rf2

Let us consider the function /:[—!, !] —> R given by

Its derivative is

and / attains its maximum at t = — 1 and /(—I) = ^ j . Hence

1 - dcjm J_ * = ^ ψ, 1 - dcjm Σqi r(Q
+<P-d+l l J ^ ^ 1 - 2 ^ + ί P - d+1

and since χ(Γ*) = 2 it follows from (2) that

(8) rf°(Γ) = qi ~ < 9i =

and this gives

Y^. r(i) - 2

so that we have CP(1) linearly embedded in CP(n) and a solution of
TQ . Recall that by Proposition 2.8 we have

(10) Σ r W =

so that sin^(Jo

d)ΠCP(l) consists of precisely d+1 points. In this case we
must consider the one-parameter family of vector fields X£ = μR + X$,
μ E C and the associated family T^ of foliations on CP(n). We have
the following

Lemma 3.4. A CP(1) linearly embedded in CP(n) meets sing^f})
in d + 1 points if and only if n is odd. Moreover, for 0 <| μ \« 1,

T^) does not have d+1 points aligned.
Proof. Suppose we have a CP(1) linearly embedded and such that

CP(1) Π sing(tf) = {qu . . . , qd+ι]
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Acting by Ή. (see Remark 3.1) we may assume qλ = ( 1 , . . . , 1) and write
qi = (zi,..., z~d) for 1 < i < d + 1 where z{ is a root of unity of order
D and z{ φ zό for i φ j . Then there are complex numbers t{ such that

Qi + U(Q2 ~ qi) = ft, 2 < i < d + 1

and this gives, looking at the first and at the last coordinates of these
points

1 + ti(z2 - 1) = Zi, 1 + U(z^d -1) = z~d

Eliminating t{ and taking conjugates we get

Consider the polynomial Q(T) = Td + + T - a where a = z2 +
zl + •-- + zd. From (*) we deduce Q(T) = (T - z2)... (T - zd+x) and
α = (—l)d~1z2 ... zd+ι so that | a \— 1 since Zi is a root of unity. By (*)

which is equivalent to

I zf-i |=| Zi -1 I, 2 <i <d+l

Now, for each i this implies that either zd = ^ or 2:f = z" 1 since ^ is a
point on the unit circle. If we had zd~ι = 1 for all i then from (*) we
would have z2 = - — = zd+ι = α, a contradiction. If for i φ j we had
zd~ι — 1 and zdΛ~x — 1 then from (*) we would have z{ — — 1 = α, so that
^ 2 = 1 and hence zf+1 = 1. It's enough to consider the case zf+1 = 1 for

all i. But then d+1 divides D = dn + d7""1 + \-d+l and this happens
if and only if n is odd. Note that this argument shows that sing^^)
cannot have i points aligned i f 2 < ^ < d + l o r i f d + l < ^ < . D .

Now let ρ be a primitive root of unity of order d + 1 and let n be an
odd integer. Then the points qi G sing^Q) do all lie on a projective
line in CP(n) where

9i = ( 2 \ l , 0 \ . , W ) 0 < t < d

Now, if ρ is as above and n is odd then it's easily seen that the
projective line parametrized by

L(ί) = ( l + ί ( ρ - l ) , l , l + t ( ρ - l ) , . . . , l , l + ί ( ρ - l ) ) teC

is invariant by X$ and therefore an algebraic solution of T$. As a matter
of fact, acting by the group Ή, ( Remark 3.1 ) it's immediate that there
are

d2k + d2k-2 + m . m + ( p + l =

a + 1
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invariant projective lines, where n = 2k + 1.
It's worth remarking that the direction of such a projective line at

a point p^ G sing^jj) is precisely the eigendirection associated to the
eigenvalue λj = (-1 + dωj)ξid with ωj = - 1 .

To show that these are not persistent we must bring in the perturbed
vector field

So let's consider some facts about the foliation T*, for 0 <| μ | « 1.
Its singular set sing(Td) consists of D = dn + dn~ι H h d + 1 points
Pi,μ — (aα.i.μj iχn,i,μ) and clearly these depend holomorphically on μ
for I μ I sufficiently small. The coordinates of piyμ are given by

xn-ίΛφ = « i > μ - μ)~{dί+'"+1) 0<£<n-l

in particular

Differentiating (*)x we get
(*)2

D

where ξD = 1, ξ primitive.
Let us now return to the invariant projective lines for Td. Again, by

considering the group Ή, it's enough to show that the line

where ρ is a primitive root of unity of order d + 1 and n is odd is not
persistent. This invariant line contains the points

9 i | O = (ρ i,l,ρ<,...,l,ρ<) 0 < i < d

Let qiίβ G sing^^) denote the points arising from the qii0. If the pro-
jective line persisted then we would have

*2(9l,μ ~ 9θ,μ) = <?2,μ ~ Qθ,μ

which gives t2 as a holomorphic function of μ. Now, by considering
the first and the last coordinates of the above equation, eliminating t2,
differentiating with respect to μ and evaluating at μ = 0 ( using (*)2 )
we get

* - I ) 2 = (D-dn)(ρ4-l)(ρ-l) + (ρ2 -if

and this holds if and only if either n = 1 or d = 1.
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Hence, for n > 1, d > 2 and 0 <| μ | « 1, sing(F*) does not have
d+1 points aligned.

Proposition 3.5. If n > 2, d > 2 and 0 <| μ | « 1, ίΛen ^ has
no algebraic solution.

Proof. First note that since the eigenvalues of Tμ at a singular point
depend holomorphically on μ then, for | μ | sufficiently small, all singu-
larities of T£ satisfy the hypothesis of Proposition 2.5.

So assume that Γμ is an irreducible algebraic curve whose singular-
ities, in case they exist, are such that Γμ has only smooth analytic
branches, no two of which are tangent, through each of them. Suppose
Γμ is invariant by T*. Let us run through the proof of Proposition 3.3
again. By (1) and (3) of Proposition 3.3 we have

( r ( < ) + Σ T
Qi,μ Qi,μ \ rn=l L

Qi,μ

where Θ is a holomorphic function of μ. This gives

1 I π, x x-̂  v> n + d

There are two possibilities, namely
(i) Θ is not constant as a function of μ.
(ii) θ is constant as a function of μ (in this case Θ Ξ O ) .
In the first possibility, d°(Tμ) cannot be a positive integer for μ close

to 0 and μ Φ 0, a contradiction. In the second possibility we repeat
the arguments in the proof of Proposition 3.3 and the result follows for
g > 0. Now, if g — 0, then (9) and (10) imply that there are d-f 1 points
aligned in sing{T^), and this contradicts Lemma 3.4.

This finishes the proof of Theorem I.

4. Proof of Theorem II

Let #d denote the space of one-dimensional foliations on CP(n) of
degree d > 2 and let Ξd C Nd be the set of non-degenerated foliations of
degree d , i.e. , foliations with non-zero eigenvalues at each singularity.

Remark 4.1. Note that by Theorem 2.1 such a foliation has precisely
D = dn + dn~ι H h d + 1 singularities. In fact, by taking αi = =
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an-ι — 0; an = 1 and C the hyperplane bundle in CP(n) we have

j cn(CP(n) - (C-1)
JCP(n)

detjp

where the summation extends over all singularities of the foliation.
The proof of Theorem II runs as follows. First we show that Ξd is

open, dense and connected in Hd. Then we show that Ξd*, the subset of
Ξd consisting of those foliations whose singular set does not have d + 1
points aligned and whose linear part at each singularity has distinct
eigenvalues, is also open, dense and connected in Hd. Next we prove
that the eigenvalues of the linear part of a foliation in Ξd*, at a singular
point, can be defined locally as holomorphic functions of the foliation.
Then we consider the condition on the eigenvalues, namely ^ 0 R+,
and show that the subset of Ξd* consisting of the foliations which satisfy
it, is open, dense and connected. Finally we treat the conditions on the
residues and, by using the arguments in the proof of Proposition 3.3,
we define Qd in a neighborhood of T£. It's worth to point out that, in
order to define 9 d, it's enough to say what is ζsd in a neighborhood of
T^ for n > 2 and d > 2, and then use a simple argument of analytic
continuation.

The next lemma is a straightforward generalization of Lemma 5 [10],
so we omit the proof.

Lemma 4.2. Ξd is open, dense and connected in #d. Moreover,
given To G Ξd with sing(T0) = {pi,... ,PD} there are neighborhoods Uo

of To in ttd, Vj of pj in CP(n) and analytic functions ψj : Uo —• Vj,
j = 1,... ,D such that ViΠVj = 0, i Φ j , and for any T G UQ, ΨJ{F)
is the unique singularity of T in Vj.

Given To G Ξ^ let Ho and ώ- : Uo —> V+ be as in Lemma 4.2 and
consider the maps

defined by

Ψ, (.F) = (

The components of Φj are the elementary symmetric functions of the
eigenvalues of the linear part of T at φjiJ7). If we let Δ denote the
discriminant variety of monic polynomials of degree n, then the linear
part of T at φj(T) has a repeated eigenvalue if and only if ^j(F) G Δ.
Since, by Theorem I, there exists T G Ξd whose linear part at each
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singularity has distinct eigenvalues and Έd is open and connected, we
have that ΦJ~

1(Δ) is an analytic subset of Uo of codimension > 1,
j = 1,..., D. Also, it's immediate that the foliations whose singular set
has d + 1 points aligned form an analytic subset of Uo of codimension
> 1. Hence, if Ξd* C Ξd is the subset consisting of foliations not having
d-hl points aligned and whose linear part at each singularity has distinct
eigenvalues, then Ξd* C N̂  is open, dense and connected.

Let
7 : C n —> C n

( λ x , . . . , λ n ) i—> ( σ i , . . . , σn)

where σ ,̂ i = l , . . . , n are the elementary symmetric functions of

λ i , . . . , λ n and

2? = { ( λ l ϊ . . . , λ n ) G C n : 3 l < t , j < n , iφj, K = Xj}

Then

is locally biholomorphic. Given To G Ξd* choose a neighborhood Wj C
C n of Φj(^o) in which a local inverse δj of 7 is defined and let Uo* C
Uo Π Ξd* be an open and connected set such that Φj(ZYo*) C Wj , for
3 = 1,...,D.

Define
φ. . W - > C" Φj = δj o φ J ( % .

Then

where \i{^j{T)) , 2 = 1,... ,n are the eigenvalues of the linear part of

First we consider the condition 71 ^ R+ .
Let

Pi,k Cn — > C l<iφk<n

be defined by

Pi,k(λli 5 λ n ) = —

and consider the composites

pitk o Φ, : Uo" —+ C 1 < i 7̂  Λ < n , 1 < j < D

Then

5 = {^GZYo*: Λe(p ί, j boΦ i(^))>0 , / m ( f t i f c o Φ i ( f ) ) = 0 , Vi,j,fc}

is such that
W = Wo* \ 5
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is open, dense and connected in Uo*. Observe that if T G W and T
admits an algebraic solution then such a curve has only smooth analytic
branches through each of its singularities, by Proposition 2.5.

Let us treat now the condition on the residues.
Put

Then

where Resj?(cι,i,ψj(!F)) denotes the residue of T at ψjiJ7) in the di-
rection associated to the eigenvalue KiΦji^7))- Let S& be a subset of
{1,..., D} and for j e SD let 1 < r(j) < n. Then

Now , given J7, if there exists a curve Γ C CP(n) invariant by T we
would have, by Proposition 2.8,

x(r*)=

and by Proposition 2.7

Combining these two equalities we get

jesD ί=i jesD

so that

jesD i=i

w h e r e

Let ^ d denote either JΓ̂  in case n is even or T^ where μ is chosen in
such a way that T^ has no algebraic solution.
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It was shown in Theorem I (propositions 3.3 and 3.5) that
ΣjesD YH=1 Λj(^d) is never a positive integer of the form (n + d)β,
where

d X jesD

and, by (8) (see the proof of Theorem I), this sum is n + d if, and only
if, g = 0, and this gives Σ j € s D

 r(i) = d+ 1 and there are precisely d+ 1
singularities aligned, which is not the case.

Define a configuration C to be a pair (SD,Γ), where 5 D ^ 0 is a
subset of {1,..., D} and r is a function r : SD —> {1,..., n}. To each
configuration C associate the set Z(C) C C defined by

where C = {SD,r).
Let W be the neighborhood of £7d obtained above. For each configu-

ration C, the holomorphic function

is such that

Therefore, the same holds for any T in a neighborhood λί(C,Gd) of Gd
in W. Since the number of configurations is finite we let

where the intersection is taken over all configurations. It remains to
consider the case of invariant projective lines. Given a configuration C,
look at

( θ C ) | W l : W - > C

It follows from (9) in the proof of Theorem I that

Re((Θc)ιm(Gd))<n + d

If (θc)ι w = n + d then (10) in the proof of Theorem I implies that
there are d + 1 singularities aligned, which does not hold in Ξd*. If this
function is not constant, then ( θ c ) ^ can never be an integer of the
form (n + d)β whith Z + 3 β > 2 in a neighborhood W2 of Qd and, those
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T in this neighborhood, if any, for which this function equals n + d do
not have d + 1 singularities aligned. We let

Now, using the fact that Ξd* is open, dense and connected, a simple
argument of analytic continuation shows that ζsd is open and dense.
Theorem II is proved.
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