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ELLIPTIC SURFACES AND SOME SIMPLE
EXOTIC R 4 'S

ZARKO BIZACA & ROBERT E. GOMPF

0. Introduction and main results

One of the most surprising developments of 4-dimensional topol-
ogy has been the discovery of exotic R4 's - smooth manifolds that
are homeomorphic to K4 but not diffeomorphic to it. These mani-
folds represent a uniquely 4-dimensional phenomenon, in that Rn can-
not admit exotic smooth structures when n φ 4. The phenomenon
is intimately connected with both of the major advances that have
occurred in 4-manifold theory. Exotic R4's result from the fact that
high-dimensional techniques can be applied to topological 4-manifolds
(as shown by Freedman [11]) whereas such techniques cannot be ap-
plied to smooth 4-manifolds (as shown by Donaldson, for example [9]).
Two distinct classes of exotic M4 's have been discovered, corresponding
to the two fundamental techniques of high-dimensional topology, and
ultimately arising from prescient work of Casson [5]. The first type to
be discovered arose from the smooth failure and topological success of
the surgery theorem. These exotic IR4^ cannot be smoothly embed-
ded in R4 (with its usual smooth structure). Subsequently the other
class arose from the smooth failure and topological success of the h-
cobordism theorem. The fundamentally different nature of these latter
examples is evidenced by the fact that these exotic IR4 's all embed in
the standard IR4. It is now known that both classes contain uncount-
ably many diffeomorphism types. A more detailed exposition of exotic
IR4's can be found in [17].

Naturally, it seems important to have simple, explicit descriptions of
such intriguing manifolds. Unfortunately, the existence proofs referred
to above are rather abstract, involving complicated infinite construc-
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tions. While it is possible, at least in principle, to write exotic R4's
as unions of increasing sequences {Ck} of compact 4-manifolds, these
compact manifolds Ck tend to be quite complicated and hard to specify
explicitly. For exotic R4 's of the first type, the manifolds Ck will be
complements of tubular neighborhoods of 2-complexes which are em-
bedded in horrendously complicated ways. For examples of the other
type, the manifolds Ck have a simpler general description, but the first
Betti numbers typically increase superexponentially with k. For ei-
ther type of exotic R4 's, the Betti numbers of the 3-manifolds dCk will
typically increase superexponentially.

The main purpose of the present paper is to exhibit some exotic
R4's which admit simple, explicit descriptions. Such descriptions are
necessarily infinite, since no known exotic R4 admits a finite handle
decomposition. In fact, a finite decomposition of an exotic R4 would
provide a counterexample to the smooth Poincare conjecture in either
dimension 3 or 4. Our simplest example of an exotic R4 is given as
the interior of the infinite handlebody shown in Figure 1. Note that
the infinite construction is just a single chain of 1- and 2-handles that
repeats in a simple way. Below, we will give a different description
of this manifold that does not use Kirby calculus. To measure the
simplicity of this exotic R4, note that it can be written as the union
of a nested, increasing sequence {Ck} where each Ck is a compact 4-
manifold homotopy equivalent to a circle, so bι(Ck) = bι(dCk) = 1.
(To verify this, let Ck be the manifold obtained by truncating Figure 1
after the fc-th Whitehead link, so that C6 is the handlebody actually
pictured. Without changing the homotopy type of C ,̂ we may undo
the clasp in the rightmost 2-handle. Then all handles cancel except the
rightmost 1-handle, and we are left with S1 x5 3 . ) We will discuss this
phenomenon further in §5, which can be read independently of the rest
of the paper. We will show that there is more than one diffeomorphism
type of exotic R4 for which the Betti numbers stabilize in this manner,
and we will prove some related results. It is hoped that these simple
exotic R4 's are within the range of explicit computability by geometers
or physicists. Elsewhere in the paper, we discuss applications of this
work to other phenomena: obstructions to knot slicing (§4), Casson
handles, elliptic surfaces, and a homotopy K3 surface of Akbulut.
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EXOTIC

FIGURE 1

Our primary goal is to find simple descriptions of exotic R4 's. Those
which arise from surgery theory are complements of infinite intersec-
tions of nested Casson towers. Although such examples can be de-
scribed explicitly [2], it seems hopeless to attempt to find descriptions
simple enough to result in explicit handle presentations. Thus, we fo-
cus on those examples which arise from the /ι-cobordism theorem. Such
examples have been studied by DeMichelis and Freedman [7] (see also
[19]), who call them ribbon M4's, since they can be described as follows.
Begin with a disjoint collection of ribbon discs in the 4-ball ϋ?4, i.e.,
2-discs Δ smoothly embedded with Δ Π dB4 = <9Δ such that the
height function (radius) in B4 is a Morse function on Δ with no local
maxima on intΔ. (The latter condition can be dropped with no diffi-
culty.) Remove tubular neighborhoods of these discs from B4 to obtain
a compact 4-manifold called a ribbon complement. If we glue 2-handles
to the ribbon complement along meridians of the discs, we will recover
B4. If we instead glue Casson handles to these meridians, the resulting
interior will be a ribbon R4. It will be homeomorphic to IR4 since Cas-
son handles are homeomorphic to open 2-handles [11], but it may not
be diffeomorphic to R4. Since any Casson handle embeds in a standard
2-handle, we may also describe this ribbon R4 as int£?4 minus certain
compact subsets of the tubular neighborhoods of the ribbon discs; see
below.
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The main problem with describing an exotic ribbon K.4 explicitly is
in knowing how much complexity is required in the ribbon discs and
the Casson handles in order to guarantee exoticness. DeMichelis and
Freedman construct exotic ribbon R4's using a simply connected h-
cobordism between two nondiffeomorphic 4-manifolds. Such examples
exist by Donaldson's work [8], [9], and they are topologically products
by Freedman [11]. The /ι-cobordism admits a handle decomposition,
built on a collar of one boundary component, with only 2-handles and
3-handles. A priori, there is no control over the number of these han-
dles, or of the number of times each 3-handle geometrically runs over
each 2-handle. In the resulting exotic M4 construction, these numbers
determine both the number of ribbon discs and the complexity of their
linking. In addition, the Casson handles attached to the ribbon com-
plement must embed in a prescribed way in the middle level of the
h-cobordism, and the general theory gives no upper bound on the com-
plexity of the Casson handles that may be necessary to accomplish
this. Fortunately, Akbulut [1] has produced a nontrivial /ι-cobordism
with a unique 2-handle and 3-handle (which are "πi-negligible"), and
the 3-handle runs only 2 extra times over the 2-handle, the simplest
possible situation. It follows that an exotic R4 can be constructed from
just 2 ribbon discs, as described by Figure 2; these are the simplest
ribbon discs for the (—3,3, —3,3) pretzel link. The first author [3]
explicitly determined an upper bound on the complexity of the Cas-
son handles necessary to guarantee exoticness - however, the number of
kinky handles of the A -th stage grew according to a superexponential re-
cursive function of k. In the present article, we generalize Akbulut's h-
cobordism to obtain a sequence of such simple nontrivial /ι-cobordisms.
By augmenting the proof used by DeMichelis and Freedman with a sim-
ple compactness argument, we show that the simplest Casson handle
CH+, with one kink at each stage and all kinks positive, can be used to
obtain an exotic M4, by attaching one copy of CH+ to each of the two
meridians in Figure 2. This is the simplest possible ribbon M4 of the
sort described by DeMichelis and Freedman, and it has the handlebody
description shown in Figure 3. However, an additional trick allows us
to find an even simpler description of an exotic M4, namely Figure 1,
by eliminating one of the two Casson handles. (The difference of the
two Casson handles can be replaced by a standard 2-handle.) Figure 1
represents a ribbon ]R4 constructed from the simplest ribbon disc for
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the (—3, —3,3) pretzel knot (Figure 4) by attaching the Casson handle
CH+ to a O-framed meridian.

FIGURE 2

EXOTIC

FIGURE 3

To provide an alternate description of these exotic E4 's that does not
explicitly use Casson handles or Kirby calculus, we make a definition.
Let φ be a smooth embedding from (D2 x D2,Sλ x D2) into itself
that maps D2 x 0 onto a disc formed from two oppositely oriented discs
D2 xp and D2 x q by connecting them with a twisted band that runs just
beneath S1 x D2 as shown in Figure 5, where the band should have a full
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left-handed twist.) Any knot K (or link component) in S3 is represented
by an orientation-preserving embedding n : S1 x D2 -» S3. We use the
0-framing to determine K, i.e., require that ^(S1 xp) and ^(S1 x q) have
linking number 0 in S3. The composite map κo(φ\S1 x D2) determines
a new knot DK, called the (untwisted, positive) Whitehead double of
K. If K is the boundary of a disc Δ embedded in i?4, then φ composed
with the corresponding embedding ί ^ x ΰ ^ ^ x ΰ 2 ) ^ (£ 4 , dB4)
(with δ(D2 x 0) = Δ) determines a new disc DA, called the (positive)
double of Δ. Note that d(DA) = DK. Clearly we may iterate this
construction using φ o o φ to define DkK = D(Dk~λK) and DkA —
D(Dk~1A) for k > 1. (For example, φ o φ is shown in Figure 6. Note
the twisting in the 0-framing of the original Whitehead curve. This
twisting occurs because the final circle should be unknotted in S3.)
Note that removing a tubular neighborhood of JDΔ from B4 is the
same as removing a tubular neighborhood of Δ, and then gluing in the
closure of D2 x D2 — Imφ. This latter manifold can be shown to be a
closed tubular neighborhood of a disc with one transverse, positive self-
intersection [5]. Thus, removing a neighborhood of DkA corresponds
to replacing a neighborhood of Δ by the simplest k-stage Casson tower.

FIGURE 4 FIGURE 5

FIGURE 6 FIGURE 7

Now we can describe ribbon R4 's as open subsets of B4. Figure 4 de-
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scribes a ribbon disc Δ in B4, with dA given by the (-3, -3,3) pretzel
knot. We can see this disc explicitly by considering the intersections of
Δ with successively deeper 3-spheres in B4. Near dB4, each intersec-
tion is equivalent to the pretzel knot. Deeper, we pass a saddle point
as indicated by the dotted band. The result of this is to cut one of the
—3-twisted bands. We are left with a pair of unknotted circles which
are unlinked from each other. These circles disappear at local minima,
completing the description of Δ. By forming iterated doubles of Δ,
we obtain an infinite, nested (decreasing) sequence of embedded copies
Im(ί o φk) of (D2 x D2,Sι x D2) in (B4,dB4). (To draw these using
the correct framings, note the punctured torus visible in Figure 4 as 2
discs connected by 3 twisted bands. The boundary curves should all lie
on this torus, except at clasps, where they twist as in Figure 6.) Re-
moving the intersection of these subsets Im(5 o φk) from B4, and then
removing <9J34, we obtain the exotic M4 of Figure 1 as an open subset
of int£?4. (Kirby calculus aficionados can verify that the 3-component
link obtained from Figure 1 by deleting all Whitehead links is a han-
dle presentation of the ribbon complement of Figure 4, and that each
Whitehead link corresponds to one doubling.) Similarly, Figure 3 is the
exotic ribbon R4 obtained from Figure 2 by iterated doubling of both
of the indicated ribbon discs.

In general, for any disjoint collection of ribbon discs in B4, we can
obtain a ribbon R4 by the above doubling procedure. We can also
allow discs with local maxima if desired. The procedure corresponds
to adding copies of the simplest Casson handle CH+ to the ribbon
complement. For more general Casson handles, we must precede each
doubling by replacing each disc by many parallel copies of itself, and
allow doubling using the mirror image of Figure 5. It is worth noting
that if the boundaries of the discs form an unlink in dB4, the resulting
ribbon E4 will be diffeomorphic to the standard IR4. (The hypothesis
allows us to untwist all of the bands arising from Figure 5 by rotating
S1 x p parallel to itself through 360°, so that after the first doubling we
are working with a trivial collection of ribbon discs. Thus, we obtain the
interior of a single Casson handle. But an easy engulfing argument [11]
shows that this is standard.) We are left with some open questions:
Which collections of discs in B4 and Casson handles result in exotic
ribbon R4 's? For example, what if we use CH+ and the obvious ribbon
disc for the square knot? What about CH+ and the mirror image of
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Figure 4? Are two such exotic R4 's ever diffeomorphic? In particular,
what about Figures 1 and 3?

We continue by summarizing our main results. We use a generaliza-
tion of Akbulut's construction [1] to obtain a sequence of non-product
/ι-cobordisms. The 4-manifolds involved in these constructions are min-
imal elliptic surfaces, E(ή), and their logarithmic O-transforms, E(n; 0);
see §1 for their descriptions. Akbulut's /ι-cobordism from [1] is between
XftkCP2 and E(2;0)%kCP2, where X is a homotopy K3 surface and
k is an arbitrary positive integer. In the present paper we show that
the homotopy K3 surface used by Akbulut is the standard K3 surface,
that is X = E(2). Furthermore, Akbulut had described the surgery
induced by his /i-cobordism as the result of deleting a Mazur mani-
fold from X$CP and then gluing it back by an identification of the
boundaries that differs from the initial one by an involution; the Mazur
manifold is the contractible manifold described by Figure 7. We gener-
alize Akbulut's construction to obtain an explicit /ι-cobordism between
E(n)%2CP2 and £(n;0)(|2CP2, for any integer n > 2. Each of these
cobordisms can also be described as a regluing of the above Mazur
manifold by the same involution given in [1],

Lemma 0.1. For any integer n > 2 there is an explicitly described
(smoothly) non-product h-cobordism (Z^doZn^dιZn)j such that

d0Zn^ E{n;0)

and Zn is obtained from d0Zn x I by attaching a single 2-handle and
3-handle. For n = 2, this is the cobordism described by Akbulut [1].

Given this explicit description and a procedure for embedding Casson
towers [3], a simple compactness argument yields the above-mentioned
descriptions of exotic ribbon M4 's.

Theorem 0.2. The open handlebody obtained by adding infinitely
many open 1- and 2-handles to the open J^-ball as prescribed by Figure 1
or by Figure 3 is an exotic IR4.

A byproduct of the proof of this theorem is that the involved Casson
handle, CH+, is exotic. We call a Casson handle exotic if its attaching
circle does not bound a smooth 2-disc in the Casson handle. For an
exposition of Casson handles and towers see for example [5] or [19].
Each Casson handle can be described by an infinite based signed tree
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([11] or [2]) and when a tree corresponding to a Casson handle is a
subtree of another such tree, then the Casson handle with the bigger
tree embeds (relative to the attaching areas) in the one with the smaller
tree. Consequently, any Casson handle embeds in one with only one
kink per level. Note that any Casson handle embedded into an exotic
Casson handle has to be exotic itself and so:

Corollary 0.3. ( [4]) Any Casson handle described by a signed tree
that contains an infinite positive branch is exotic.

In [4] it is shown that this result is an easy consequence of L.
Rudolph's theorem that no iterated untwisted positive double of a
"strongly quasipositive" knot is smoothly slice [21]. The example of
a strongly quasipositive knot used in [4] is the positive trefoil T. In
this work we generalize Rudolph's result from T to a class of knots
that are "greater than or equal to" T. This relation is a generalization
of knot concordance from annuli in S3 x I to annuli in definite man-
ifolds, and it is due to Cochran and the second author [6]. Here we
use a more restrictive condition on the manifold containing the annu-
lus (simple connectedness) and also give the definition in the "negative
definite" form.

Definition 0.4. (Compare with Definition 2.1 in [6].) Let K\ and
K2 be knots in S3. Then we say that K2 is greater than or equal to K\,
denoted K2 > Ku (or Kλ is smaller than or equal to K2) if there is an
embedding A of S1 x I into W such that:

(1) W is a simply-connected, negative definite, smooth,
compact 4-manifold,

(2) dW = d+W U d~W = S3 U -S3 and A restricted to
S1 x {0,1} gives the knots Kλ and — K2 respectively,

(3) [A{Sι x I), A(Sι x {0,1})] is zero in H2(W, dW).
For example, if K2 can be obtained from a regular projection of Kλ

by replacing finitely many negative crossings with positive crossings,
then K2 > Kι (Proposition 2.2 in [6]).

Theorem 0.5. (Compare with [21].) Let K be a knot that is greater
than or equal to an iterated, untwisted positive double of the positive
trefoil knot, DkT (k > 0). Then no iterated, positive untwisted double
of K is smoothly slice.

Rudolph's approach [21] to dealing with iterated doubles is to use
Kronheimer and Mrowka [20] to show that a nontrivial "strongly quasi-
positive" knot such as the positive trefoil cannot be a slice knot, and
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that the untwisted, positive double of any strongly quasipositive knot
is strongly quasipositive. The relation between strongly quasipositive
knots and those greater than or equal to the trefoil is not clear, but we
can produce a result combining these notions by inserting our technique
for the previous theorem into Rudolph's proof. We obtain:

Theorem 0.6. Suppose that K and Q are knots with Q nontriυial
and strongly quasipositive. If K >Q, then DkK is not a slice knot for
any k > 0. Furthermore, the slice genus of K cannot be less than that
ofQ.

The rest of the figures are reproduced at the end of this work and
they are drawn using Kirby's link calculus [19]. Beside the (by now)
standard conventions used to describe 4-dimensional handlebodies and
their boundaries, we also use the following convention: if a framed link
contains components whose framings are in parentheses, then it repre-
sents a 4-dimensional manifold, say M, with two boundary components,
denoted by d~M and d+M. The first boundary component, <9~M, is
obtained from S3 by surgering only the link components with fram-
ings in parentheses. The resulting 3-manifold is crossed with a closed
interval, i.e., its closed collar is formed. To finish the construction
of M, the remaining framed link components are used as instructions
for adding 1- and 2-handles to the "upper" side of the boundary of
the collar. In the usual setting 1-handles are replaced by 2-handles
scooped out from the 0-handle (dotted components of a framed link),
but since there is no 0-handle in the case of presence of components
with framings in parentheses, the dotted 2-handles are scooped out
from the collar. Since d~M is "below" the collar, to obtain its link
picture with the orientation induced by M, one has to view the link
with framings in parentheses from below or, equivalently, to form its
mirror image. (Note that the mirror image of a framing is its nega-
tive.) In short, such a framed link represents a cobordism M between
—<9~M, the 3-dimensional manifold obtained from S3 by surgering the
sublink consisting of the components with framings in parentheses, and
the 3-manifold d+M, obtained by surgering all components.
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1. Handlebody decomposition of elliptic surfaces

Here for each n > 1 we construct a closed, smooth 4-dimensional
manifold Mn and prove that Mn is diίfeomorphic to the elliptic surface
E(n). An elliptic surface is a compact, complex surface that admits a
holomorphic projection onto a compact, connected complex curve such
that the generic fibers are elliptic curves; see [18] for more details. For
each n > 1, there is a simply connected minimal elliptic surface, E(n),
fibered over the Riemann sphere, with no multiple fibers and with the
Euler characteristic 12n. Minimal here means that it is not a blow-up
of some other elliptic surface. Friedman and Morgan [12], [13] have
showed that for each n there are infinitely many non-diffeomorphic
4-manifolds that are all homeomorphic to E(n). Due to their large
Euler characteristics, elliptic surfaces are hard to deal with directly in
terms of handlebodies, although a method for obtaining a handlebody
description of an elliptic surface is presented in [18]. A significant
simplification in the study of smooth structures on elliptic surfaces is
the second author's discovery [15] of the "nucleus" of an elliptic surface.
Following the notation from [15], we denote the nucleus of E(n) by Nn

and the closure of its complement by Φn.
It was shown in [15] that the boundary Σ n of the nucleus Nn is the

Brieskorn sphere — Σ(2,3,6n — 1), and the complement Φn of Nn is the
corresponding Milnor fiber. Families of non-diffeomorphic 4-manifolds
homeomorphic to E(n) may be constructed by changing the nucleus,
for example, by "logarithmic transformations". Since all "logarithmic
transforms" of E(n) retain the same complement of their nuclei, Φn,
any differences among them can be traced to their nuclei. In this work
we use only "O-transforms" of £"(n), which are known to decompose
into connected sums of CP2 's and CP 's [15]. The O-transform of E(n)
is denoted by E(n; 0).

Proposition 1.1. (See [15].) For n > 1, the manifolds E(n) and
E(n; 0) are not dίffeomorphic. Furthermore, if W is any closed, simply
connected, smooth ̂ -manifold with negative definite intersection form,
then the manifolds E(n)$W and E(n\ϋ)$W are not diffeomorphic.

Proof It is known ([15, Theorem 6.1]) that the manifold £(n;0)
decomposes into a connected sum of ± copies of CP 2 . Donaldson's
theorem B from [9] implies that all Donaldson's polynomial invariants,
qk(E(n; 0)), are trivial. Theorem C in [9] implies that E(n) has at least
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some nontrivial Donaldson invariants, so E(n) and E(n; 0) cannot be

diffeomorphic. Proposition (9.3.14) from [10] implies that these Don-

aldson invariants are stable under forming the connected sum with

a negative definite manifold W, so there is an integer k such that

qk{E{n)W) φ 0 and qk(E(n;0)$W) = 0. q.e.d.

The simplest elliptic surface E(l) is the complex projective plane

blown up 9 times, and it is diffeomorphic to CP2(J9CP . For n > 1,

E(n) may be constructed as a fiber sum of E(n — 1) and E(l); see

for example [16]. The decomposition E(n) = Nn UΣn Φn gives a

decomposition of the intersection form on H2(E(n)) as

(*) ( j M θ (ϋ?8 θ (n - 1)(£?8 θ 2£Γ)),

where

H 2 ( N n ) = ( 0

Λ

 1 ) , H =

and E 8 denotes the negative definite symmetric 8 by 8 matrix of the
E8 plumbing.

We start our construction by describing several homeomorphisms
between boundaries of 4-dimensional handlebodies. Each of the han-
dlebodies contains a single 0-handle and one or more 2-handles and it is
drawn by use of Kirby's link calculus. Each consecutive picture differs
from the previous one by a transformation that preserves the boundary.
Besides the 2-handles, visible in the figures as framed links, there are
some additional link components and framed arcs, drawn with dashed
lines and denoted by letters. We will follow their changes under the
homeomorphisms.

The first homeomorphism of boundaries that we use is described by
Figures 8-12 and we denote it by fn. The next one is denoted by gn

and it is described by Figures 12 - 15. The boundary of the handlebody
in Figure 8 is — Σ n , the mirror image of the boundary of the nucleus
Nn. Figure 9 is obtained from Figure 8 by a —1 blow-up. Figures
10 - 12 are the results of ambient isotopies: First, the outer strand
of the doubled unknot in Figure 9 is bent upwards and the result is
Figure 10. Then the twist on the 0-framed component is pushed onto
the — 1-framed component and the arc 7 follows the twist, Figure 11.
Next, the —1-framed component in Figure 11 is turned into a double of



470 ZARKO BIZACA & ROBERT E. GOMPF

the unknot by bending forward (towards the reader) the twist and the
piece above it. The bent piece forms the the clasp and the inner strand
of the —1-framed component in Figure 12. Figure 13 is obtained by
introducing a +1 blow-up. The new, +l-framed circle is slid over the 0-
framed circle and the result is Figure 14. Blowing down the + 1-framed
circle produces Figure 15, the final result of gn o fn.

The next homeomorphism of 3-manifolds we will denote by hk (Fig-
ures 16 - 22) and when k = —1 it is a well known homeomorphism
between the Poincare sphere (—Σi in our notation) and the boundary
of the Es plumbing. This homeomorphism is described in many exposi-
tions on Kirby's link calculus (see for example [19]). Here we also follow
the changes under the homeomorphism hk of the four curves denoted
by A, B, C and D, and drawn with dashed lines in Figure 16. Figures
17 and 18 are results of the obvious isotopies, Figure 19 is obtained
from Figure 18 by a +1 blow-up, and two more +1 blow-ups produce
Figure 20. The next figure is the result of a handle slide, as the arrow
in Figure 20 indicates; the (+l)-framed circle on the left in Figure 20
is slid over the (+l)-framed circle on the right and the arrow indicates
the position of the band used in the handle slide. The result is Fig-
ure 21. We continue by introducing —1 blow-ups until the framings (3),
(2) and (k + 6) become (+1), (-f 1) and (A;+ 2), respectively, then blow
down the first (+1) to complete /&&, Figure 22. We add an additional
step to this construction and denote the new homeomorphism by h'n,
(Figures 16 - 23). In Figure 23 there are two Hopf links, each with
framings 0 and —2. To compensate for the addition of the Hopf links
we twist the curve 'i?' four times. The twists are indicated in Figure 23
by rectangular boxes, that is, each box should be replaced by two 360°
positive twists.

Let n be a positive integer greater than one. Figure 24 is a picture
of the nucleus Nn with the boundary Σ n (see [15], Fig. 1). Taking
the mirror image of the framed link in Figure 24 defines an orientation
reversing homeomorphism of Σ n onto —Σn, Figure 25. (Note that the
mirror image of a framing is its negative.) Figure 25 represents the same
handlebody as Figure 8, so we may apply the homeomorphism gnofn to
its boundary, obtaining Figure 26. We apply the homeomorphism h'_λ

to Figure 26, with the 0-framed 2-handle corresponding to the circle ' 5 '
in Figure 16, and then blow down the two (+l)-framed components to
obtain the framed link in Figure 27. We denote this homeomorphism
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by φ'n and the 4-dimensional manifold in Figure 27 by Wn. That is,
φ'n is a homeomorphism between - Σ n (Figure 25) and d+Wn, the top
boundary component of Wn. Note that d~Wn, the bottom component
of the boundary of Wn is Σ n _i, the boundary of the nucleus iVn_i (cf.
Figure 25).

If n = 1, we define Wx to be the E$ plumbing. We start the con-
struction of φ\ as before using gλ o fλ. Since the framing n — 1 in
Figure 26 is now the 0-framing, we have a 0-framed Hopf link which
we can remove. Now we are left only with a — 1-framed negative trefoil
and we complete the construction of φ[ by using the above mentioned
standard homeomorphism between the trefoil and the boundary of the
E8 plumbing, i.e., Figures 16 - 22, together with blow downs of the two
(-hl)-framed components.

Now we have all the ingredients for our construction of the manifold
Λ̂ n (^ > 1). We compose the mirror image homeomorphism from
Σ n onto — ΣΓn with φ'n, and denote the resulting homeomorphism by
φn. We use the homeomorphism φn to glue together Nn and Wn over
the common boundary, Σ n . Then we use the homeomorphism φn-\ of
Σ n _i to glue Wn-ι onto d~Wn. The new boundary is Σ n _ 2 and we
repeat the process until we add W\. The resulting closed 4-manifold,
Nn Uφn Wn U0 n_1 Wn-i U0 n_2 '"UφlWu will be denoted by Mn. The
complement of Nn in Mn will be denoted by Φ n , so Φ n = Wn Uφn_1

Wn-ι U0n_2 U01 W\. This is consistent with our previous definition
of Φ n , as the next lemma shows.

L e m m a 1.2. For n > 0, the above constructed manifold Mn is dif-
feomorphic to the elliptic surface E(n). Furthermore, the complement
of Nn in Mn, Φn = Wn U0n_! Wn-ι * • U^ Wl7 is diffeomorphic to the
Milnor fiber of the Brieskorn sphere Σ(2,3,6n — 1).

Proof. We begin by assembling the necessary facts about elliptic
surfaces. We construct elliptic surfaces inductively by fiber summing.
(See, for example, [16].) That is, for n > 1, E{n) = E(l)$fE(n - 1)
is formed from the manifolds E(l) and E(n — 1) by removing an open
tubular neighborhood of a regular fiber from each, and gluing the
complements together along the boundary 3-tori. The gluing diffeo-
morphism is required to reverse orientation and preserve the struc-
ture of the boundaries as S1 x T 2 determined by the elliptic fibra-
tions. (The identification of each fiber with T 2 may be chosen arbi-
trarily.) The nucleus Nn of E(n) [15] is obtained from a cusp fiber
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union a section by taking a closed regular neighborhood. Throughout
this proof, we will denote the closed complement of Nn by Φ'n. It is
shown in [15, Proposition 7.1 and Lemma 3.7] that Φ^ is diffeomorphic
to the Milnor fiber of the (2,3,6n — 1) singularity, and that any self-
diffeomorphism of dΦ'n extends over Φ^. If we use a regular fiber of
Nn_ι in E(n — 1) to form the fiber sum with E(l), we obtain a decom-
position of E(n) as (^(l^/JV^i) UΣ n_1 Φ'n_!. It is easy to see from
§7 of [15] that the standard embedding Nn C E{ή) can be assumed
to lie in E(l)$fNn_ι. In fact, it is formed from a cusp fiber in ϋ?(l),
together with a section obtained by gluing together sections from E(l)
and iVn_χ. We will denote the closed complement of Nn in E(l)$fNn_ι
by W'n, so that Φ^ = W'n UΣ n_1 Φ ' ^ . Note that the diffeomorphism
type of this union is independent of the choice of the gluing map, since
any diffeomorphism of <9Φ _̂χ extends over Φ'n_1

It is now sufficient to show that W'n is diffeomorphic to Wn for each
n > 1. The lemma will follow immediately: We have a decomposition
Φn = Wn U0n_1 Φn_i for each n > 1. Since Φ2 = Φi (they are both
the E8 plumbing), we will obtain by induction that Φ n = Φ^ for all
n, and so Mn — Nn UΣU Φ^ = E(n). Note that the n = 1 case, where
Mi = E(l), is already finished.

To begin our proof that W'n « Wn, we describe fiber summing in
terms of handlebodies. We begin with the nucleus iVn_i, which can be
obtained from Figure 24 by replacing "—n" by "1—n". It is easier to see
a regular fiber in an equivalent picture, Figure 28. Figure 28 is obtained
by replacing each twist in the previous picture (i.e., Figure 24 with 1 — n
instead of — n) by a pair consisting of a 1-handle and a — 1-framed 2-
handle. (Equivalently, canceling the two pairs of complementary 1-and
2-handles in Figure 28 yields Figure 24.) A regular neighborhood of
the regular fiber is built from the 0-handle, l-handles and 0-framed
2-handle. A regular fiber would be visible in Figure 28 as a punctured
torus bounded by the 0-framed 2-handle, intersecting (once) the (1 —
n)-framed circle (which represents a neighborhood of a section) and
having the 0-framed meridians to the dotted circles for a symplectic
basis of its first homology group (see Figure 31 for the case n — 2). A
neighborhood of the cusp fiber is obtained by adding the —1-framed
2-handles over the meridians of the dotted circles. Figure 29 represents
the dual handlebody of Nn_λ - v(F), that is, the nucleus with an open
tubular neighborhood of a regular fiber removed. The open tubular
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neighborhood of the regular fiber that we remove consists of a 0-handle,
two 1-handles and a (0-framed) 2-handle (a subhandlebody of Figure 28
minus a collar of its boundary), and after they are removed from the
nucleus, we are left with (O)-framed Borromean rings in Figure 28,
together with three 2-handles, one with framing 1 — n and two — 1-
framed. The dual handlebody is obtained by inverting the boundary
(i.e., taking its mirror image) and by adding 0-framed 2-handles to the
meridians of the inverted 2-handles [19]; Figure 29 is obtained in this
fashion. Figure 30 shows N1$fNn_1, the result of a fiber sum of the
nuclei Nn_λ and Nλ. To Nn_1-v{F) (Figure 29) we attach N1-v{F)
(Figure 28 with n = 2 and with (O)-framings on the Borromean rings)
along the common boundary 3-torus. Clearly, this gluing map preserves
the 5 1 x T2 product structures, as required.

Next, we draw a link picture of 2£(l)||/JVn_i. We describe 25(1) by
identifying it with M1 = Nλ Uφl Wγ and drawing Mλ so that a regular
fiber is easily visible. To ensure that we use the correct gluing map
to construct 2?(l)tf/iVn_i, we must keep track of the canonical normal
framing of the fiber. This will be easy, however, since the fiber will lie in
an obvious 3-manifold in each of our pictures, and a normal vector field
in the 3-manifold will determine the correct framing. Figure 31 shows
the nucleus N\. The shaded punctured torus together with a core of
the 0-framed 2-handle is a regular fiber. Its normal vector field in the
boundary of the cusp neighborhood represents the canonical framing.
We follow this framed fiber through the homeomorphism φλ that glues
Nι to the Es plumbing, Wγ. Figure 32, together with a 4-handle, shows
the dual decomposition of the nucleus. Note that the fiber contains
the core of a dual 2-handle, corresponding to its intersection with the
section. The result of gx o fλ is Figure 33. We slide the — 1-framed
curve over the 0-framed curve, so that it becomes a meridian. There
is also a Hopf link with (O)-framings in the figure, which we remove
to obtain Figure 34. (The torus slides off of the central (O)-framed
circle when we slide the 0-framed 2-handle over it.) Now /ι_χ turns
the (—l)-framed trefoil into the E$ plumbing and the result is E(l),
Figure 35. Replacing the twists in Figure 35 by Hopf links with a dot
and a — 1-framing yields Figure 36. In the latter figure, the 0-handle,
1-handles and 0-framed 2-handle comprise a copy of T 2 x D2 in E(l)
such that the core T2 x 0 with its obvious framing is isotopic to our
original framed fiber. Now we perform the fiber sum with ΛΓn_i, in
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the same way we obtained Figure 30: First, we remove the interior of
T2 x D 2, Figure 37. Then, to the new ^"-boundary component we
glue Nn-λ - v(F), Figure 29, and the result is E(l)$fNn_u Figure 38.
Blowing down the two (+l)-framed circles changes the framings of two
circles linked with them from (0) to (—1). Then blowing down the
latter two circles produces a pair of 0-framed Hopf links. Figure 39 is
now obtained by sliding a —2-framed circle off of each Hopf link and
then within each Hopf link sliding one circle over the other.

Finally, we show that the nucleus Nn C 25(l)[|/iVn_i is visible in Fig-
ure 39 as the two 2-handles attached to meridians (with framings 0 and
— 1) together with the 4-handle. Thus, its complement W'n is obtained
from Figure 39 by erasing the two 2-handles, and it is clearly diffeo-
morphic to Wn, Figure 27, completing the proof. (It is easy to check
directly that Figure 39 represents NnUφn Wnj but we must be sure that
we have found the correct embedding of iVn, since nonstandard embed-
dings Nn <->> E(n) are known to exist.) Recall that Nn is given by a
cusp neighborhood v(C) in E(l) together with a section formed by join-
ing sections of E(l) and JVn_1. The removal of the cusp neighborhood
from E(\) is visible in Figure 32 as the removal of the 4-handle and
the 0-framed 2-handle linked with the trefoil. Following this 2-handle
through Figures 32 - 35, we see that in Figure 35 it corresponds to the

— 1-framed 2-handle, and, after the fiber connected sum with iVn_i is
formed, it corresponds to the —1-framed 2-handle in Figure 39. After
we erase this 2-handle, W'n will be obtained from Figure 39 by remov-
ing a disc corresponding to the section of Nn. This disc is the union of
a disc in Nn_x - u(F) with an annulus in £7(1) - (ι/(F) U v(C)). The
annulus comes from a disc in E(l) — u(C) that is visible in Figure 32
minus the 2-handle linking the trefoil as the cocore of the remaining
2-handle. This becomes the cocore of the 0-framed 2-handle in Fig-
ure 36 (minus the —1-framed meridian). When we remove the regular
fiber (Figure 37) this becomes an annulus which is "vertical" - it has
the form μ x / in T 3 x /, where the latter is given by the (O)-framed
circles and μ is the obvious meridian. Since the annulus is vertical, we
may locate the required disc in E(l)$fNn_ι — v(C) simply by tracing
the disc from iVn_i — ι/(F) through our pictures. The latter disc ap-
pears in Figure 29 as the cocore of the 0-framed 2-handle linking the
(n — l)-framed circle. This corresponds to the cocore of the 0-framed
meridian in Figure 39. Thus, W'n is obtained from Figure 39 minus the
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— 1-framed meridian by deleting the cocore of the 0-framed meridian,
i.e., erasing the meridian. We obtain Figure 27, as required. q.e.d.

2. A family of non-product /ι-cobordisms

We start by introducing a different handlebody description of the
elliptic surface E(n). More precisely, we will use a handlebody descrip-
tion of Nn Uφn Wn = JE;(1)U/Λ/Γ

n_1 implicitly described in [1]. This
handlebody is obtained by gluing together two manifolds via the three-
dimensional homeomorphism described by Figures 40 - 43 and denoted
by φn- We will determine the images under ψn of the 0-framed merid-
ians to the components of the link, denoted in Figure 40 by β and δ
and drawn with dashed lines. In Figure 40 we see a Mazur link whose
components have framings —1 and 0. We slide the 0-framed component
over the — l-framed component, as indicated by the arrow in Figure 40.
As the result we obtain Figure 41. (Note the symmetry that moves δ
from one strand of the + 1-framed component to the other.) Next, we
apply hi (Figures 16 - 22) with 'I?' from Figure 16 being the —1-framed
circle, ' C being the 0-framed circle δ and LD' (capped off) being β. The
result is visible in Figure 42. Then, we blow down the long —1-framed
circle in Figure 42, perform four - 1 blow-ups and introduce two Hopf
links and, after several obvious handle slides, the result is the framed
link in Figure 43. This finishes the description of ψn.

For n > 1, the cobordism Zn is constructed from three pieces that are
/ι-cobordisms relative to the boundary. The first one was described by
S. Akbulut, Figures 45 - 48 in [1]; see also Figures 19 - 37 in [3]. This
relative /i-cobordism contains a pair of algebraically complementary
2- and 3-handles. The bottom boundary component is denoted by Λo,
Figures 44 and 45; Figure 44 is obtained from Figure 45 by canceling the
two circles with dots on the right side of the figure. The 2-handle of the
/ι-cobordism is attached to the meridian of the dotted circle on the left
of Figure 45. The resulting surgery changes the dot to the 0-framing,
and the result "the middle level of the cobordism" Aλ/2 is visible in
Figure 46. Attaching the 3-handle to the "middle level" changes the
0-framing of another component into a dot; the result is denoted by Aι,
Figure 47. The total result of these two surgeries is that a dot and Ό'
have exchanged their places. Obviously these surgeries did not disturb
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the boundaries, so we have produced an /ι-cobordism with a product

structure over dA0. Note that dA0 = dAx is homeomorphic to the

manifold obtained from the mirror image of the link in Figure 40. The

manifold in Figure 48 is diffeomorphic to A\ and Figure 49 is the result

of a handle slide. The — 1-framed unknotted component unlinked from
2

the other components in Figure 49 represents a copy of CP added by a
2

connected sum. So Aγ = Q$CP , where Q is the handlebody resulting

from the removal of the —1-framed 2-handle from Figure 49. The dual

handlebody decomposition of Q is visible in Figure 50, but a 3- and a 4-

handle have to be added to the top. Next, we use the homeomorphism

of the boundaries φn to glue Aι, i — 0,1, to the manifold from Figure 51

that we denote by C/n, that is, φn : dA{ = d+Un. By taking the product

cobordism over (7n, (that is, Un x /) we have a relative /i-cobordism

over A0Uψn Un. We have AλUφn Un = QUψn UJCP2, and the manifold

Q Uψn Un is visible in Figure 52.

Lemma 2.1. The manifold from Figure 52, together with an invisible

3-handle and a ^-handle, QUψn Un, is diffeomorphic to E(l)$fNn-ι.

Proof. Introduce a —1 blow-up to undo a clasp in Figure 52.

The result is visible in Figure 53. Doing some obvious handle slides

results in Figure 54. Comparing this figure with Figure 30 (in which

one has to blow down the two (l)-framed circles) reveals an embedded

7Vit)/iVn-i in the manifold from Figure 54. The complement of this

embedding is visible in Figure 55. (Blow down the five —1-framed 2-

handles that are pieces of the glued nuclei. The (O)-framed unknot

from Figure 54 becomes a (-hl)-framed unknot. Blowing down this

new (-fl)-framed circle produces a left hand twist.) We claim that

the manifold in Figure 55, together with the invisible 3-handle and

the 4-handle, is the E8 plumbing, which completes the proof. The

first step is an application of the "constrained decomposition of E8"

from [3], which we outline next. We start in Figure 55 by sliding

the rightmost —2-framed 2-handle over the — l-framed 2-handle. As

the result, the handle which we slid is now unlinked from the — 1-

framed handle, but it changes its framing to —1 and is linked once

with the vertically elongated (+l)-framed circle (since it contains a

parallel copy of the original -1-framed circle linked with this (+1)-

framed circle). Now we repeat the process by sliding the next — 2-

framed circle off the chain, and again it obtains —1 framing and links
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the same (+l)-framed circle. We slide the last -2-framed circle 3 times
and the result is Figure 56. (Compare with Figures 7 - 18 in [3].) We
temporarily disregard the invisible 3- and 4-handle and form a dual
handle decomposition of the rest, Figure 57. Then we blow down a
small (-l)-framed circle in Figure 57 to obtain Figure 58 and, finally,
we blow down all (+l)-framed circles and the (—l)-framed circle linked
with a 0-framed unknot. The only remaining component with framing
in parentheses is now a (O)-framed unknot, so the ^"-component of the
boundary is S1 x S2. Finally, we add duals of the 3- and the 4-handle,
that is, a 0-handle and 1-handle (= S1 x D 3 ) , and the result, Figure 59,
is the E$ plumbing. We can obtain this picture of E8 from the usual one
by introducing a canceling pair of 1- and 2-handles, where the 2-handle
is a — 1-framed meridian to the 2-handle at the end of the longest arm
of the Eg plumbing, and repeating the above procedure to unlink the
2-handles from each other. q.e.d.

We can now construct the /ι-cobordisms Zn described in Lemma 0.1.

We have constructed a relative /ι-cobordism between Ao Uψn Un and

Aλ Όφn Un = (JS(l)|t/iVn_i)ttCF2. We connect together this cobordism
2

with (Φn_1(|CP ) x / by gluing them over the common boundary

component, Σn_χ x /. (The reason for this additional blow-up will be

apparent later.) The way we are gluing Φn_it)CP to Un is via a

homeomorphism from d~Un onto 5Φn_i = 9+Wn_i that we denote

by pn_i and that differs from φn^λ by starting with gn_x rather than

9n-ι ° /n-i I n other words, φn-\ — pn-\ ° /n-i It is easy to see that

Q \Jψn Un UPn_1 Φ n -i — E(ή), so the resulting /ι-cobordism, Z n , has

its upper boundary component, dχZn := Ax Uψn Un UPn_ί (Φn_!JjCP ),
diίfeomorphic to E(n)$2(CP2).

We claim that the other boundary component of Z n , dQZn := A0Uψn

Un UPn_j (Φn_i)JCP ), decomposes as a connected sum of copies of CP2

2

and CP . The lower boundary component of the relative /i-cobordism
is Ao Ui/,n C/n, Figure 60. Note that there is a 4-handle missing from
the picture (a dual to the 0-handle in Figure 44), but this time there
is no 3-handle involved (the 1-handle in Figure 44 is canceled by the
-1-framed 2-handle). To verify that d0Zn decomposes, we use the 0-
framed 2-handle on the left of Figure 60 to slide all of the 2-handles
linked with the (-l)-framed circle off of it. Now the E7 plumbing linked
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with a — 1-framed unknot is unlinked from the (—l)-framed circle. It

is easy to see that it decomposes into 7 — l-framed 2-handles and a

+1-framed 2-handle. The remaining piece is Figure 61, which we will

glue to Φn_i via ρn-\. We cancel the (n — 1) and (O)-framed circles

in Figure 61 and use the 0-framed 2-handle again to slide the other

2-handles off of the (—l)-framed circle. The result is a connected sum

where the first summand comes from a Hopf link with framings n — 2

and 0 (that is, S2 x S2 for n even and CP2f)CP2 for n odd) and the

other summand is precisely ΛΓn_1(0) blown down once (dual to [15],

Fig 1). Now the remaining handlebody is the sum of CP 's and CP 2 ' s

together with JVn_i(O) UPn_1 Φn_i = E(n — l O). As it was shown

in [15, Theorem 6.1], E(n — l O) decomposes as a connected sum of

C P 2 ' s a n d C P 2 ' s .

To complete the proof of Lemma 0.1 we have to show that our con-

struction for n = 2 is identical to Akbulut's [1]. That is, our cobordism
2

Z'2 obtained from Z2 by removing the last CP summand is diffeomor-
phic to Akbulut's /ι-cobordism ZA First, we show that our U2 UPl Φi is
diίfeomorphic to Akbulut's Mx. The constructions are easily compared
using [1, Figure 23] and our Figure 51. The subsequent part of both
constructions is gluing of an E8 plumbing. In our construction we first
use the homeomorphism gx (Figures 12 - 15). This homeomorphism
changes the framings of the components linked with the (O)-framed
circle in Figure 51: the (l)-framed circle obtains (O)-framing and the
— 1-framed circle becomes a —2-framed circle. Now we have a Hopf
link with (O)-framings that we can remove from the picture. The new
picture differs from [1, Figure 23] in the trefoil having (—l)-framing in-
stead of the +l-framing and in having two more —1-framed meridians.
We continue with the standard homeomorphism that turns the trefoil
into the boundary of the E8 plumbing. Continuing the construction
in [1] we notice that the + 1-framed trefoil in [1, Figure 23] becomes
an Es plumbing with two extra —2-framed components. It is easy to
see that the resulting handlebody does not depend on the precise stage
of the construction where the component visible in [1, Figure 23] as
a trefoil was blown-up twice. Therefore, both constructions produce
the same manifold, Mx = U2 UPl Φi Now d0ZA is obtained by attach-
ing a 2-handle along the 0-framed curve a in [1, Figure 23] which is
the same as our /?, so the diffeomorphism U2 UPl Φi = Mλ extends to



ELLIPTIC SURFACES 479

d0Z2 = d0ZΛ. Similarly, Akbulut attaches the contractible manifold
which we call Q by gluing a 2-handle along the +l-framed ellipse in
[1, Figure 37] (which we will call σ), together with a 3- and 4-handle.
The latter figure can be transformed into our Figure 41 by blowing up
once to remove a twist from the twisted band and reduce the framing
on σ by one. Then σ corresponds to our curve δ. Thus, Akbulut's
homotopy K3 surface, X = Q Uo Mi, is diίfeomorphic to £7(2), and

2

dιZΛ = XjjiCP is diίfeomorphic to dιZ'2. Since the diίfeomorphisms
diZA = diZ'2 commute with the obvious homotopy equivalences, it fol-
lows by high-dimensional surgery that ZA = Z2.

3. Ribbon M4's

The non-product part of the /ι-cobordism Zn contains the same rel
d /ι-cobordism between Ao and Aλ that was described in [1] and that
was used in [3] to embed a ribbon M4. In Figures 45 - 47 we can see
embeddings of the handlebodies from Figures 62 - 64, each embedding
into one of the levels of the cobordism Zn. Note that if the standard
0-framed 2-handles were attached onto the dashed circles, then the
resulting manifolds in Figures 62 and 64 would be 4-balls, and the one
in Figure 63 would turn into a punctured S2 x S2. If one could add
these 2-handles ambiently, in an appropriate level of the cobordism,
then by use of the Whitney trick Zn will obtain a product structure
(compare with [7] or [3]). As shown in [3], the dashed circles in Figures
62 - 64 are capped by twice-punctured discs, smoothly embedded in
dA0, dAι/2 or dAu respectively. These punctured discs are described in
[3, Figures 38 - 44] which are the mirror images of the actual manifolds.
(We use the 2-handles on the right of Figure 47 to cancel two 1-handles.
The dashed circles will then be parallel, but with a — 1-twist between
them and — 1-framings. Each one obviously bounds a disc that is twice-
punctured by the circle with a dot.) Since Q was glued to Un by a
homeomorphism that includes taking a mirror image (Figures 49 and
50), the punctures are isotopic to the meridian β in Figure 40; two of
the punctures are unlinked with 0-framing and two come linked and
with -hl-framings, exactly as in Figure 44 from [3]. The meridian β in
d+Un can be connected by an embedded annulus in Un to d~Un. As
explained in [3], the two +l-framed meridians bound an embedded pair
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of discs, namely copies of the core of one of the — 1-framed 2-handles
from Figure 51 see Figure 60 in [3]. The remaining two meridians are
0-framed isotopes of β in Figure 51 see Figure 43. We show that each
copy of the 0-framed meridian β bounds a Casson tower embedded into

_____o

Φn_ijjCP . It suffices to assume that n is large.
Now Φn_i = Wn_i Uφn_2 Wn-2 U0n_3 U01 Wu and we start our

description with Wn_ι on the top, Figure 65. Before we glue Wn_2 to
d~~Wn-ii we will change the handlebody representing Wn-ι. Figure 66
is the result of two handle slides in Figure 65. In Figure 67 we introduce
a pair of complementary 1- and 2-handles (the 2-handle comes with a
— 1-framing). Next, "the constrained decomposition of E8" from [3] is
used to obtain Figure 68 cf. the proof of Lemma 2.1. We want to
follow the curve denoted by β in Figures 40 - 43 in Φn_i Since Φn_i
was glued to d~Un via pn-\>> we see β as '£)' in Figures 16 - 23, but,
of course, as a closed unknotted curve, and so it is a meridian to the
(k + 2)-framed unknot in Figure 23. Therefore, β is the meridian to
the 1-handle in Figure 68. Figures 69 - 74 are results of handle slides.
Next, we apply φn-2 to d~Wn-ι, that is we transform the (0)- and
(n — 2)-framed components according to Figures 8 - 23 , and the result
is Figure 75.

We will embed a compact handlebody, by discarding certain 2-handles
from Φn-i: in Figure 75 we will discard the +l-framed 2-handle and
also the two — l-framed 2-handles that are linked with both the dotted
circle on the left and the long 0-framed 2-handle. The result is visible
in Figure 76. Note that the nine —1-framed 2-handles linked with the
dotted circle can be slid over the 0-framed 2-handle, so that now they
are linked with the longer (+l)-framed circle on the right. Next, we
cancel the 1-handle (dotted circle) and the 0-framed 2-handle. The re-
maining handlebody is Wn_2 with nine additional 2-handles attached to
— 1-framed meridians. We iterate our construction with this new han-
dlebody in place of Wn_i, in order to attach the next level, Wn_3. This
time, Figure 65 has nine additional -2-framed circles (and n replaced
by n — 1). Following the circles through Figures 65 - 75 we obtain
nine extra —1-framed meridians to the dotted circle in Figure 75. We
again discard a +1 and two —1-framed 2-handles. Continuing in this
fashion, until Wu we obtain a subhandlebody of Φn_i that is visible in
Figure 77. (Note that on the bottom level we do not have pairs of Hopf
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links and that we have retained the connecting -fl-framed 2-handle.
Also, we perform the "constrained decomposition of £78", so instead of
eight -2-framed 2-handles we now have a 1-handle, eight — 1-framed
2-handles and a + 1-framed 2-handle.) After removing one more han-
dle and a handle slide we have the manifold in Figure 78. Note that
there are 9(n — 1) — 1 many —1-framed meridians to the dotted circle in
this picture, and we obtain Figure 79 by removing one of these meridi-
ans. An ambient isotopy together with a blow-up produces Figure 80.
Note that the role of the blow-up was to change the +l-framing into a
0-framing.

Next, we utilize a configuration introduced in [3], that turns — 1-
framed circles to levels of a Casson tower. The process is illustrated
in Figure 81. The union of the core of the 0-framed 2-handle and the
surface visible in Figure 81 produces a punctured torus, T2. Taking
parallel copies of the core of the 0-framed 2-handle and then adding
obvious punctured tori to its boundary produces arbitrary many dis-
joint copies of T2, each having a single puncture 7 that is a meridian
to the dotted circle. As the figure indicates, there is a symplectic ba-
sis of Hι(T2) consisting of two O-framed circles, denoted by μ and λ.
Note that both μ and λ are ambiently isotopic to β. We surger each of
the tori by two copies of a core of a —1-framed 2-handle that is linked
with the dotted circle. More precisely, we delete from T2 a regular
neighborhood of the circle μ. The resulting new boundary components
are two unlinked meridians to the dotted circle. The boundaries of
the two copies of the core of a —1-framed handle are linked once and,
since we are using opposite orientations for the copies of the core, their
linking number is +1. To connect an unlink with a Hopf link by a
pair of pipes, we obviously have to introduce an intersection between
the pipes. The result of this construction is an immersed disc with
boundary 7 equal to a 0-framed meridian to the dotted circle and with
a single self-intersection point with a positive sign. A regular neigh-
borhood of the resulting disc is a kinky handle whose attaching circle
is the 0-framed meridian 7 to the dotted circle. In order to produce
two Casson towers from these kinky handles, we also have to identify
a standard loop for each self-intersection, namely, a framed loop that
passes through the self-intersection point and on which we can attach
the next level. In Figure 81 the standard loop is isotopic to the curve
λ: the self-intersection is an intersection between the two pipes that
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we may as well assume to be between the two copies of the curve μ.
The rest of the loop has to be in the complement of μ and the defining
property of a standard loop is that a surgery on it by an embedded
disc will result in an embedded 2-disc whose regular neighborhood is
a 2-handle with the same framing on the boundary. The loop λ has
the required properties. In Figure 81, λ has the 0-framing as deter-
mined by the torus, and it is linked once with the dotted circle. As it
was explained in [3], the regular neighborhoods of immersed discs that
were obtained by using a different — 1-framed 2-handle for each, can be
"piped together" to form a Casson tower that has only one kink per
level and whose kinks are all positive. (This is because λ and 7 are
isotopic framed curves.) The number of levels of such a Casson tower
we can construct is bounded by the number of available —1-framed
2-handles that are linked with the dotted circle. The "tower factory"
can produce a total of 9n — 11 kinky handles. These can be connected
by pipes to form two Casson towers with [9n~n] levels on each. Thus
we have extended the embedding of the handlebody in Figure 62 to
the one in Figure 3, where only the first 6 levels of the Casson tow-
ers are visible. Note that decomposing the manifold Un in Figure 51
would allow us obtain a few more levels of kinky handles, but we are
interested only in the fact that the number of levels of the embedded
Casson towers tends to infinity when n is increased.

Proof of Theorem 0.2. Let us denote by R the open 4-manifold
obtained by attaching a copy of the Casson handle CH+ to each dashed
circle in Figure 62 and then removing the boundary. The resulting
(infinite) framed link picture is indicated in Figure 3 where two chains
of Whitehead links have to be infinite. Since each Casson handle is
homeomorphic to the standard open 2-handle [11], our manifold R is
clearly homeomorphic to R4. Let us suppose that R is diffeomorphic to
R4. There is an increasing sequence of embedded compact manifolds
with boundary in i?, namely for each k > 0 we attach two k level
Casson towers to the handlebody from Figure 62. We denote this
compact manifold by Ck and arrange that Ck C intCfc+i Since we
have assumed that R is standard, Co can be engulfed by B^, a smooth
4-ball whose boundary is a smoothly embedded 3-sphere, S%. Since
R = Ufc Ck and BQ is compact, there is an integer k > 1 such that B£ is
contained in Ck. For n large enough Ck is embedded in both dλZn =
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E{n)pCP2 and d0Zn Ξ E{n\ 0)$2CP2. As argued in [7] and [19] the h-
cobordism above the complement of Co in d0Zn has a product structure.
This product structure lifts S$ from d0Zn into S*, a 3-sphere in diZn.
Then, an argument from [19] shows that Sf has to bound a standard
4-ball in dxZn. Therefore, the product structure over d0Zn — ΊntB4

2

can be smoothly extended over the 4-ball. Since E(n)$2CP is not
2

diffeomorphic to E(n;0)$2CP , we have a contradiction. Therefore,
R is an exotic M4.

The same argument can be used to show that the open infinite han-
dlebody in Figure 1 is an exotic M4: note that the embeddings of the
handlebody in Figure 62 into d0Zn and dλZn can be expanded to em-
beddings of the handlebody in Figure 82; see Figures 45 and 47. By
canceling a pair of 1- and 2-handles we obtain Figure 83. Increasing n
and adding Casson towers with increasing numbers of levels again pro-
duces an increasing family of of compact manifolds that do not contain
an embedded smooth 4-ball. Their union, our ribbon K4 from Figure 1,
is therefore exotic. q.e.d.

4. Non-sliceness of untwisted, positive doubles
2

We have embedded a k level Casson tower into Φn_!((CP , for any
fixed k > 0 and sufficiently large n, and the "standard framed loop"
on each level is visible in Figure 81 as the 0-framed curve λ. On the
top level of the Casson tower we may slide λ over one of — 1-framed
meridians of the dotted circle, i.e., we cap λ by the core of a — 1-
framed 2-handle. Although the standard framed loop λ now bounds
an embedded 2-handle, the attaching was performed with an incorrect
framing, —1 instead of 0 (with respect to the orientation in Figure 81).

Recall that a link calculus picture of the k level Casson tower with
only one positive kink per level, is a Hopf link with one component
doubled k times. One of the components is a dotted circle and the
other is the 0-framed attaching circle, doubled k times; see [5] or [11].
In this picture, "the standard framed loop" is a 0-framed meridian to
the dotted circle. In other words, adding a 0-framed 2-handle over this
loop would produce a 2-handle as the resulting total manifold and with
unchanged framing of the attaching area (the dotted circle disappears
from the picture). We attach a 2-handle over this "standard framed
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loop", but with — 1 framing. The result is still a 4-ball (the dotted
unknot disappears), but the k times doubled attaching circle obtains a
— 1 twist and becomes a k — 1 times doubled positive trefoil, Dk~ιT.

We can now prove Theorem 0.5. We have obtained an embedding of
2

an annulus into Φn_i()CP with the interior of the 0-handle removed
such that one end of the embedded annulus is the 0-framed circle de-
noted by β in Figure 75, and the other end is Dh~1T in the boundary
of the 0-handle. Suppose that a knot K is greater than or equal to
Dk~ιT, in the sense of Definition 0.4. That means that an annulus A,
embedded in a negative definite manifold W, connects these two knots.
Glue a 4-ball over the component of the boundary of W that contains
JFC, and identify the other component with the boundary of the removed
0-handle in Φn_ifjCP — intl?4. If the knot K were slice, we could use
the union of a slicing disc (in the 4-ball added to W), an annulus in W
(from Definition 0.4) with Dk~ιT on the other end and then with an
annulus with the circle '/?' on the other end. The resulting disc would
be a slicing disc for β inside Φ J C P 2 ^ , where W = W UdW 2(£4),
and the disc would induce the 0-framing on β. Since β is a puncture
on each of the embedded punctured Whitney discs, its sliceness would
imply the existence of smoothly embedded Whitney discs and a smooth
product structure on the /i-cobordism Zn. That would result in a dif-
feomorphism between E{n)$2CP2$W and E(n;0)$2CP2$W, which is
impossible by Proposition 1.1.

To complete the proof of Theorem 0.5, it suffices to prove the non-
sliceness of iterated doubles of knots greater or equal to an iterated
double D£T of the positive trefoil. This statement follows from Propo-
sition 2.7 in [6], that is, forming satellites preserves the "<" or ">"
relation. Specifically, suppose that a knot K is greater than or equal
to DfT. Then for any fe, DkK is greater than Dk+ίT. We have already
shown that such a knot cannot be slice. q.e.d

Proof of Theorem 0.6. We are given knots K and Q with Q non-
trivial and strongly quasipositive and K > Q. We will show that the
slice genus of K can not be less than that of Q. (The slice genus of
K is the minimal genus of an orientable surface in B4 with boundary
K. Note that this is zero if and only if K is slice.) Since DkK > DkQ
and the latter is also strongly quasipositive and not slice [21], it will
immediately follow that DkK is not slice for any k > 0. Rudolph shows
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that there is a 4-ball B embedded in C2 C CP2 and a smooth complex
curve C C CP2 transversely intersecting dB, with C Π dB = Q, and
that C Π B realizes the slice genus of Q. Suppose that the slice genus
of K were smaller then this. As in our previous proof, we could replace
intl? by a negative definite manifold to obtain a closed manifold CP2 $W
containing a surface S representing the homology class determined by
C, but with the genus of S less than that of C. As in Kronheimer and
Mrowka [20], we take the double branched cover along a generic sextic
curve near the line at infinity in CP 2 . The curve C lifts to a smooth
holomorphic curve C in K3. Similarly, S would lift to a surface S in
K3(jtyt)ΐy. It is easily checked that S would represent the homology
class determined by (7, but its genus would be smaller, contradicting
Theorem 1.1 of [20]. (The curve C minimizes genus in K3 since it is
holomorphic and Ci(K3) = 0. The negative definite summands cause
no complications.)

In this section, we define an invariant that measures the complexity
of the end of an exotic R4. We show that, as measured by this invariant,
the examples constructed in this paper are particularly simple. We
prove that there is more than one diffeomorphism type of such simple
exotic ribbon IR4's. Then we show how to fit these examples into a
family of R4 's that is naturally indexed by a 2-dimensional set such that
each uncountable subset represents uncountably many diffeomorphism
types.

First, we recall the operation of end-summing. Given two exotic R4 's,
Rι and i?2, we glue them together "at infinity" as follows. Choose
proper embeddings η{ : [0, oo) -ϊ H*, i = 1,2, and then glue both
i?x and R2 to [-1,1] x M3, by identifying (0,1] x R3 with a tubular
neighborhood of 71, and [—1,0) x R3 with a tubular neighborhood of
72 (preserving orientations). It can be shown that this is a well defined
operation on diffeomorphism types and extends to a commutative and
associative operation on countable collections of diffeomorphism types.
The end-sum of i?x and R2 is denoted by i?it)i?2, and the end-sum of
k copies of R (allowing k = 00) is denoted by \\kR. See [14] for further
details.
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Now we define an invariant. Let R be a possibly exotic R4. For any
compact subset C of i?, there is a smooth compact 3-manifold in R — C
that separates C from infinity, for example, pull back a sufficiently
large regular value of a proper map of R into [0, oo). Let bc denote the
minimum over all such 3-manifolds of the first Betti number. Clearly,
for C CC CR we have bc < fee-

Definition 5.1. The engulfing index e(R) is the supremum of
{bc\CcR}.

This is either infinite or a nonnegative integer. Note that e(R) only
depends on the end of R] in fact, it can be just as easily defined for any
isolated end of a smooth manifold. For end-sums, e(\\Ri) < Σe(Ri).

Some of the known exotic M4 's are constructed so that sequences
of 3-manifolds Mi C R are explicitly produced (up to ramification)
for which any compact C C R is separated from infinity by some M*.
However, in all previously known cases, the first Betti numbers increase
rapidly as i increases, due to the presence of increasingly complicated
Casson tower boundaries in the 3-manifolds. It seems reasonable to
conjecture that all exotic R4 's arising from surgery theory have infinite
e, as do those arising from the /ι-cobordism theorem without careful
attention to ramification of the towers. However, a brief look at Figures
1 and 3 shows that these exotic R4's have finite e.

Proposition 5.2. For R as in Figure 1, e(R) < 1. For R as in
Figure 3, e(R) < 2.

Note, however, that even though the obvious 3-manifolds have con-
stant &!, there is still a sense in which the 3-manifolds become increas-
ingly complex towards infinity. Namely, the number of incompressible
tori increases without bound. (The torus decompositions contain an
increasing number of Whitehead link complements.) It seems reason-
able to conjecture that for R as in Figure 1, e^^R) — oo. It would
follow that e(R) = 1, and that the manifolds t|fciϊ, k — 0,1,2,... , oo
realize all possible values of e (since any compact subset of \ooR lies in
some t]fci?, with k finite), so they must all be distinct. (If \\^R — tU2^
for kι φ fc2? then {!}*#} represents only finitely many diίfeomorphism
types.) On the other hand, it seems difficult to rule out the possibility
that each \kR (k > 1) could be diffeomorphic to R. Thus, to prove
that there is more than one exotic M4 with finite e, we need a different
approach.

To proceed further, we define some equivalence relations.
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Definition 5.3. Let X be a compact 4-manifold. Two manifolds

Rι and R2 homeomorphic to IR4 will be called X-stably diffeomorphic

if -Rittoo-X" a n d i?2tίoo^ are diffeomorphic.

Here we take connected sums with infinitely many copies of X along

any properly embedded, infinite collection of 4-balls in R{. The sum is

easily seen to be independent of the choice of the collection of 4-balls.

Since i?χ and R2 must be properly /i-cobordant, they are necessarily

S2 x 52-stably diffeomorphic. Similarly, they are C P 2 (|CP2-stably dif-

feomorphic. For any fixed X, if Rλ and R2 are X-stably diffeomorphic

and so are R3 and i?4, then R\\\R3 and R2\\R^ will be X-stably diffeo-

morphic (and similarly for infinite end-sums).

Proposition 5.4. Let R be as in Figure 1 or Figure 3. Then R

is CP2 -stably diffeomorphic to R4, but not CP -stably diffeomorphic to

E 4 . In fact, for any simply connected negative definite X, R will not

be X-stably diffeomorphic to R4.

Corollary 5.5. The manifolds M4, R, R (= R with reversed orien-

tation) and R\\R all represent distinct oriented diffeomorphism types of

ribbon R4 's with finite engulfing index e.

Proof of Proposition 5.4- We work with Figure 1; a similar proof

applies to Figure 3. To prove that R is CP2-stably standard, we let Ck

denote the ribbon complement union the first k stages of the Casson

handle, i.e., Figure 1 cut off after k Whitehead links. Using collars of

the boundaries, we may arrange that Ck C intCfc+i for each fc, and that

R is the union of the compact manifolds Ck> Let Ck — C^ttikCP2, so

that Ck C intCjfe+i and UCk = R^CP2. For any fixed fc, we may use

the CP2-summand of Ck+ι — Ck to remove the positive self-intersection

of the core of the top stage kinky handle of Ck+ι without changing its

framing. We obtain a submanifold Bk = CkU 2-handle in intC^+i. But

Bk is diffeomorphic to .B4(UCP2. Since Bk C inti?fc+i for each fc, it is

easy to construct a diffeomorphism from R^CP2 w UBk to IR4t)ooCP2.

To prove the rest of the proposition, we repeat our proof that R

is exotic, summing with copies of X whenever necessary. We assume

that -RJtoo-X" is diffeomorphic to M4ttooX. Then the diffeomorphism maps

the subset Co of R into M4()OOX, where it lies in a compact subset TVo

diffeomorphic to B4^X for some L After pulling No back to R^X,

we see that it lies in a compact subset of i?UfcX for some finite k > I.

This subset embeds in the required way in an /ι-cobordism Z between
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E(n)$2CP2$kX and E(n;0)%2CP2%kX for some n. As before, there
is a product structure over the complement M of int7V0 in d0Z. We
lift the 3-sphere dM — dN0 to obtain a 3-sphere in dλZ that encloses
a compact manifold 7Vχ lying over JV0 We now have connected sum
decompositions diZ = M$Nι (i = 0,1), where the hats indicate the
addition of a 4-handle. Since the manifolds X and N{ are negative
definite, this contradicts the stability of Donaldson's invariants under
summing with negative definite manifolds. q.e.d.

For R any ribbon R4 DeMichelis and Freedman [7] show how to
construct a naturally nested family {Rt\0 < t < 1} of manifolds home-
omorphic to M4, such that Rλ = i?, for each t in the standard Cantor
set Σ, Rt is a ribbon M4 with the same ribbon complement C as i?,
and the remaining manifolds Rt will also be built from C by adding
exotic open 2-handles. They show that for suitably constructed i?, each
diffeomorphism type will have only countably many representatives in
the family {Rt}, so that we obtain uncountably many diffeomorphism
types of ribbon M4 's (with the cardinality of the continuum in ZFC set
theory). In fact, their arguments can be adapted to our sequence of
nontrivial /i-cobordisms, so we obtain a family {Rt} as above with i?χ
as in Figure 1 (or Figure 3) with each diffeomorphism type represented
at most countably many times. (For each t < 1, Rt has compact closure
in i?χ, so embeds as required in some /i-cobordism.) Presumably, for
each Rt with t φ 1, the engulfing index should be infinite. However, it
is possible to use [2] to completely specify each Rt with t in Σ. Each Rt

will be built on the ribbon complement of Figure 4 (or Figure 2), and
the Casson handle(s) can be assumed to have only one kinky handle at
each of the first k stages (for any preassigned A;), but at some point the
numbers of kinky handles will begin to increase superexponentially.

Relating this to the previous proposition, we obtain a similar family
with 2 indices, by setting Rst = Rs\\Rt. For each s,t G Σ, Rst will be
an exotic ribbon M4 with ribbon complement given by the boundary
sum of Figure 4 with its mirror image.

Propos i t ion 5.6. For any s,t E I — [0,1], there are at most

countably many pairs (s\t') G / x / for which RS',t' is diffeomorphic to

Rst. In fact, there are at most countably many pairs for which Rs>j' is

both CP2- and CP -stably diffeomorphic to Rst.

Proof. We generalize the argument of [7] as in [17]. Let K C Ro
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denote the ribbon complement minus a collar of its boundary. For
s, ί, s', t1 £ / with s < s1, Rs is canonically embedded with compact clo-

2

sure in Rs'^^CP . Suppose the latter admits a diffeomorphism onto
2

Rs^ooCP that restricts to the identity on K C Rs. Using the obvious

embedding Rt C R4 and the compact closure of Rs C Rs'fVlooCP , we
2

obtain an embedding d : Rs °-> i?st)jfcCP for finite A;, where d|ϋΓ = id#
and Imd has compact closure. As in [17, Lemma 1.2], this allows us
to construct negative definite periodic ends and derive a contradic-
tion as in [7]. Thus, no such diffeomorphism exists, and there are

_ _ _ _ 2

at most countably many values s' with some Rs>jt> CP -stably diίfeo-
morphic to Rst (corresponding to different embedding types of K in

2

Rs^oo^P )• The same argument with reversed orientation completes
the proof. q.e.d.
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