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1. Introduction

Let T be a holomorphic foliation with singularities on a complex
manifold W, and V an analytic subvariety (possibly with singularities)
of W invariant by T. Here "invariant", or equivalently "saturated"
means that if a point of V belongs to the regular part of T, then the
whole leaf through this point is included in V. We shall assume fur-
thermore that the normal bundle to the regular part of V in W has a
natural extension v to the whole V, and even a smooth extension v to
a germ of neighborhood of V in W, making us able to use connections
on v and to integrate associated differential forms on compact pieces
of V. For instance, such a natural extension v always exists for com-
plex hypersurfaces, or complete intersections in the projective space,
or "strong" local complete intersections (SLCI: see definition below).

Denote the complex dimensions of V, W and the leaves of T by p,
p + q and s respectively. The bundle v admits a "special" connection
away from the singular set Σ = ( Sing (T) Π V) U Sing (V) so that
the associated characterictic forms of degree > 2(p — s) vanish. If
V is non-singular, we may represent the characteristic classes of v by
characteristic forms on V and see that those classes in dimension >
2(p — s) will "localize" near Σ. In the case of singular V, we work
on the characteristic forms of v on the ambient space instead, and the
characteristic classes of v in these dimensions will still localize near
Σ and give rise to residues for each connected component Σ α of Σ.
In fact, once we know u to exist, the definition and the proof of the
existence of these residues work similarly as in the case of non-singular

Received May 23, 1994, and, in revised form, September 20, 1994.

165



166 DANIEL LEHMANN & TATSUO SUWA

V (see Theoreme 3, p.227, in [8]), and thus we shall omit the theory
for 5 > 1. We will concentrate ourselves to the computation of the
residues for Chern numbers at an isolated point of Σ in the case 5 = 1.
We get then formulas generalizing the ones in [9] and [12] and also, in
the spirit of Baum-Bott [1] and [2], the Grothendieck residues already-
known when V is non-singular ([8]) (see Theorem 1 below, and its
third particular case with Theorem 2). Note that the residues of Baum
and Bott are localised characteristic classes of the normal sheaf of the
foliation T (or an equivalent virtual bundle), while ours are those of
the (extended) normal bundle of V in W.

This residue has first been defined by C. Camacho and P. Sad in
[5] when p = <j = s = l,Vr non-singular and ΣQ an isolated point.
When the invariant curve V may have singularities, the theory has
then been generalized by A. Lins Neto [9] for W = <7P2, by M. Soares
[11] when the surface W is a complete intersection in C P n , and in
[12] for arbitrary complex surfaces. It has also been studied in higher
dimensions when V is non-singular, first in the case s = p, q = 1 by
B. Gmira [6], J.-P. Brasselet (unpublished) and A. Lins Neto [10], and
then in [8] for the general case with more precise formulas when 5 = 1.

All these results extend by taking, instead of z>, any C°° vector bundle
on a germ of neighborhood of V in W, the restriction of which to the
regular part of V being holomorphic and equipped with an action of a
holomorphic vector field Xo tangent to this regular part (see Theorem
1' below). In particular, if we take T(W), with the action [Xo> ] on
T(W)|v, we get a formula for computing the index defined in Theorem
8 of [8]. (We were wrong when claiming that the index defined there
was the same as the index of [9] for p = q = 5 = 1: there was a mistake
in the proof of part (iv) of this theorem, the three first parts remaining
correct.)

We would like to thank F. Hidaka, Y. Miyaoka, P. Molino, A. Ray-
man, R. Silhol and M. Soares for helpful conversations.

2. Background on local complete intersections
(LCI and SLCI)

Let W be a complex manifold of complex dimension n = p + q, and
V an analytic irreducible subvariety of pure complex dimension p. We
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shall call "reduced local defining function" for V every holomorphic
map f :U -> Cq defined on an open set U of W, such that:

(i) vnu = f~1(o),
(ii) the q components of / generate the ideal I(VΓ)U) of holomorphic

functions which vanish on V Π U\ for instance, if q = 1, this
condition implies that / may not have factors which are powers.

The subvariety V is said to be a "local complete intersection" (briefly:
LCI) if the following condition holds: there exists a family
{fh - Uh ->• Cq}h of reduced local defining functions for V, such that
UΛ Uh D V. Such a family will be called a "system of reduced equa-
tions" for V. Recall the following proposition, well known to the spe-
cialists:

Proposition 1. (i) Let fλ : U -* Cq and f2 : U -¥ Cq be two
reduced local defining functions for V defined on the same open set U.
Then, there exists an holomorphic map g : U —> gl(q, C) taking values
in the setgl{q,C) ofqxq matrices with complex coefficients, satisfying
/i = < gr, f*ι >, such that the restriction g of g to V ΠU is uniquely
defined and takes values in the group GL(q, C) of invertible matrices.

(ii) If V is an LCI, and if {fh : Uh —>• Cq}h denotes a system of
reduced equations for V, let ghk : Uh ΓΊ £4 -» gl(q,C) such that fh =
< 9hk,fk > on Uh ΓlUkj and denote by ghk the restriction of ghk to
V Γ\UhΓ\Uk. The family {ghk} is then a system of transition functions
for a holomorphic q vector bundle v —> V. This vector bundle is well
defined (it does not depend on the choice of the given system of reduced
equations for V).

(Hi) The bundle v is an extension to V of the (holomorphic) normal
bundle to V — Sing (V) in W; more precisely, there exists a natural
bundle map π : Tc(W^)|v -> v which, over the regular part of V, has
rank q and the complex tangent bundle to this regular part for kernel
(we may therefore identify the restriction of v to this regular part with
the usual normal bundle).

Proof. Let fλ and f2 be such as in (i). Since the components /i> λ

(1 < λ < q) of /i and /2,λ of f2 generate the ideal I(V Π {/), there
exist q x q matrices g and h with holomorphic coefficients such that
/i = < (jf,/2 > and f2 = < h,fι >. Furthermore, since /i and f2 vanish
on U Π V, we get also on U Π V, dfx =< g, df2 > and df2 = < h, dfλ >,
where g and h denote the restrictions of g and h to U Π V. Since
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dfλ =<goh,df1 > on V Π [/, g o h = Id on the regular part of V Π U.
By continuity, since this regular part is everywhere dense in V Π t/, one
still has g o h = Id on the whole F Π ί7; # takes values in GL(q, C).
The uniqueness of g is obvious since g = h~ι. This proves part (i) of
the proposition.

Prom the uniqueness of g in part (i), we deduce immediately that the
{ghk} given in part (ii) satisfy the cocycle condition, and form therefore
a system of transition functions for a holomorphic vector bundle v ->
V. Let {g'hk} denotes the system of transition functions arising from
another system {f'h} of reduced equations for V (with the same open
covering {Uh} for the moment). Prom part (i), there exists a family
{gh} such that fh =< g^Γh > Denoting by {gh} the induced family
on V, the uniqueness in part (i) implies that the two cocycles {ghk} &nd
{g'hk} differ by the coboundary of {gh}, and therefore define isomorphic
bundles. If the coverings are different, we can use a common refinement
to both coverings, for coming back to the case of the identical coverings.

Notice that the sections σ of v may be identified with the families
{&h '• Uh -» Cq}h of maps such that σh =< ghk, &k > on V ΠUhΓ\Uk.
On the other hand, there we get also dfh =< ghk,dfk >• Therefore the
family {dfh : Tc(W)\vnUh -> Cq} defines a bundle map π : TC(W)\V ->
v. Furthermore, the kernel of dfh on the regular part of V Π Uh is
exactly the tangent space to this regular part. This achieves the proof
of part (iii).

By continuity and reducing the open sets Uh to smaller ones if nec-
essary, we may assume that the functions ghk themselves take values in
GL(q,C). However it is not clear that the cocycle condition remains
true off V. This justifies the following definition: an LCI subvariety
V of W will be called a "strong" local complete intersection (shortly
SLCI), if there exists a C°° vector bundle v —» [/, defined over some
neighborhood U of V in W, whose restriction to V carries a holomor-
phic bundle structure compatible with the ambient C°° structure and
is equal to v. The last condition implies that in a neighborhood of
every point of F, v admits a C°° trivialization whose restriction to V
is holomorphic.

If V is an LCI, the holomorphic bundle v is trivial on V ΠUh, and
there is a trivialization which, on the regular part of VΠUh, is given by
π ( a/fĉ )> ' π ( a/h") t a k i n 8 t t χe components / M (1 < λ < q) of fh as a
part of a local chart on W. We call it the "trivialization associated" to
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fh. If, moreover, V is an SLCI with a C°° extension v of v, choosing a
smaller Uh if necessary, there is a C°° trivialization of v on Uh extending
the trivialization associated to fh.

Remarks. 1) Notice that the singular foliations dfh = 0 on Uh and
dfk = 0 on Uk do not coincide in general on {7/j Π ί/*.

2) Let Ow denote the sheaf of germs of holomorphic functions on
W, and X the sheaf of ideals defining the subvariety V in W. Thus
Oy = Ow/Z is the sheaf of holomorphic functions on V. Denoting by
Ωw = Ow{T£(W)) the cotangent sheaf of W, we define, as usual, the
cotangent sheaf Ωy of V to be the quotient of Ωw ®Ow ®v by the image
of the morphism X/X2 -> Ωw ®Ow ®v given by assigning df ® 1 to the
class of/. Setting Θ^ = OW{TC(W)) and Θv = HomOv(Ωv,Ov), we
have the exact sequence

0 -> Θ v -> ΘVΓ ® O l v CV -^ Homoyil/ί1,Ov).

If V is an LCI, then the sheaf X/X2 is locally free, and the sheaf of
germs of holomorphic sections of the bundle v —> V is identified with
Ήomov(X/X2,C?v). Furthermore, the bundle map π : TC(W)\V -¥ v
corresponds to the third morphism in the above sequence. If / is a
reduced local defining function for V, the classes of the components
/ l 5 . . . , fq of / in X/X2 form a basis (over Oy), and the trivialization of
v associated to / corresponds to its dual basis.

3) We do not know if LCI implies automatically SLCI. In fact, taking
a regular neighborhood U of V and using the fact that the classification
of continuous vector bundles and that of C°° vector bundles coincide
on (paracompact) C°° manifolds, we see that there exists a C°° vec-
tor bundle v on U such that v\v is isomorphic to v as a continuous
bundle. However, it is not clear if £>|v carries a holomorphic bundle
structure which is isomorphic to v and compatible with the ambient
C°° structure. Note that there are many examples of SLCI.

Example 1. If V is a non-singular subvariety (submanifold) of
W, then clearly it is an LCI and moreover an SLCI. In fact let U be
a tubular neighborhood of V with C°° projection p : U -> V. Then
v = p*v is an extension of v with the desired properties.

Example 2. Any hypersurface V of W (subvariety of pure complex
codimension 1) is an SLCI. In fact, if we set g^ = fh/fki where {fh}
denotes a family of reduced local defining functions, then the system
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{§hk} satisfies the cocycle condition and defines a holomorphic exten-
sion v of v on the union of the domains Uh of /&, which may be assumed
to be W. Note that the collection {fh} defines a global section of v
non-vanishing away from V.

Example 3. Any algebraic set V in W = CPn which is globally a
complete intersection is also an SLCI. In fact, denote by [Xo> -Xi> •••? Xn]
homogeneous coordinates in CPn and by Fi,F2,...,F f f homogeneous
polynomials in the variables (X0^Xi^-^Xn) of respective degrees
dι,d2,.. ,dq such that V has pure complex codimension q, and is de-
fined by the q equations F\ = 0 (1 < λ < q). In the affine open subset
Ui of CPn defined by X{ φ 0, V Π U{ has for equation with respect to
the affine coordinates {ψ:)jjφim

 ( Λ A F\ = 0, (1 < λ < q). Therefore,
on Ui Π Uj the change of equations (jij is equal to the diagonal q x q

matrix ί ^ J ,..., ( ^f ) (In fact, in this case, it is not necessary to

assume that the components ,X\ΛX F\ (1 ^ λ < q) generate the ideal
I{V Π Ui)\) Denoting by L -+ CPn the hyperplane bundle (dual of the
tautological bundle), v is defined on the whole CPn by the formula

Hence: 1 + Ci(£) H h cq{ΐ>) = Π*= 1(l + dxc), with c = <
Example 4. In general, let v be a holomorphic vector bundle of rank

q over W, and V the subvariety of W defined by a holomorphic section
σ of v. Suppose σ is a regular section, i.e., a section such that, at each
point of V, the germs of its components (/ l 5..., fq) with respect to
a local (holomorphic) trivialization of v near the point form a regular
sequence; in fact, this is the case if and only if the codimension of V is
q. Then V is an LCI, locally defined by /i = = fq = 0. Moreover
it is an SLCI with v itself a holomorphic extension of v. (We assume
that V is reduced and irreducible, to be consistent with the definition
in the beginning of this section.)

3. Statement of Theorems 1,1' and 2

Assume from now on that the subvariety V is invariant by a holo-
morphic vector field with singularities Xo on t/, a neighborhood of V
in W. Note that, by Proposition 1 (iii), any C°° section σ of v over
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the regular part of V may be written as σ = π(Y) for some section Y
of Tc(W)| v. Let ΘXQ be the C-linear operator defined for any section
π(Y) of v over the regular part of V by θXo(π(Y)) = π([XOjΫ]\v), Ϋ
denoting some local extension of Y near V.

In case V is an LCI, let fh = 0 be a local reduced equation of V on
Uh- Since V is invariant by XOj each component (dfh(X0))χ (1 < λ < q)
of the derivative dfh(Xo) has to vanish on VΠUh, and must be therefore
a linear combination with holomorphic coefficients of the components
(fh)x of fh- Thus there exists a q x q matrix Ch with holomorphic
entries such that dfh(X0) =< C/ι,Λ >• Denote by Ch = (C£λ) the
restriction of Ch to V Π Uh-

Lemma 1.

(i) θXQ(π(Y)) depends only on π(Y), neither on Y nor on Ϋ.

(ii) θXo(uσ) = uθχo(&) + (Xo>u)σ, for any C°° function u on
y°- Sing(V).

(Hi) IfV is an LCI, and fh = 0 a local reduced equation, denoting by
(σi,... ,σg) the trivialization of v associated to fh we have:

In particular, over the regular part ofVh = VΠUhjCh depends
only on fh, not on the choice of Ch

Parts (i) and (ii) of the lemma are proved in [8 (Lemma 2-1, p.220)].
For proving part (iii), take a partition {ii,-.. ,ip} U {ji,... ,jg} of
{!,... ,n} such that X .̂'1>'">ffc'\* Φ 0 n e a r some point of the regular
part of Vh- Then, near this point, (ziχ,... , zip, fhtU . . . , fh,q) is a new
system of local coordinates denoted by (xλ,... , xp, yλ,... , yq), the local
trivialization of v associated to fh becoming τr(jp-), (1 < λ < q). Hence
if locally Xo = Σ f = i ^ ^ : + Σ U ^ a f c , then X0.fh,μ = X0.yμ =
Qμ = Σλ=iVλ<%λl and hence, C^)λ = fgH,_0. On the other hand,

τ([^o-.^]|v) = - Σ * = i ( ^ U ) ' ( ^ r ) , which proves part (iii) of
the lemma.

We denote by Σ the set ( Sing (Xo) ΠV)U Sing (V) and by (Σ α ) α

its connected components. Recall that a singular point of Xo is either
a point where Xo is not defined, or a point where it vanishes. Now
assume Σ α to be compact, and denote by Ua an open neighborhood
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of Σa in W. We set Va = V Π Ua- We shall assume furthermore
that Ua ΠUβ = 0, for a φ β. Thus, in particular, Va - Σ α is in
the regular part of V. Denote by Ta a compact real manifold with
boundary, of real dimension 2n, included in Uai such that Σ α is in the
interior of Ta and that its boundary dTa is transverse to V — Σ. Put

ra = ran v, dτa = dfa n(v- Σ).
Assume the following:

(i) Ua is included in the domain of a local holomorphic chart (zx,... , zn)
oϊW,

(ii) Ua is one of the Uh's above, the index a being one of the indices
h. (Write fa and Ca for the corresponding terms).

Let
n o

Xθ\ua = J 2 Λ ^ )
Denote by V̂  (1 < i < n) the open set of points m in dTa such that
Ai(m) φ 0. These open sets V* constitute an open covering V of dTa

Let U be any subcovering of V. (Such a ZY always exists: take for
instance V itself; see also the particular cases 2 and 3 below). We will
denote by (iί^), (1 < i < n) any system of "honey-cells" adapted to
this covering U (see the definition in [8 (section 1)], under the name
of "systeme d'alveoles"). For instance, if the real hypersurfaces \Aι\ =
I A? I (z Φ 5) i n Ua are in general position, we may take for Ri the cell
defined by \A{\ > \Aά\ for all j,j φ i, V, 6 U.

Denote by Λ4 the set of multiindices u = (UI,IA2, ... ,up) such that
1 < Uι < u2 < ... < up < n, and by M(U) the subset of those such that
VUj G U and Π^=1VUj be not empty (that is the set of p simplices in the
"nerve" of U). For any u 6 M(U), define Ru = RUlU2...Up = Γip

j=1RUj,

oriented as in section 1 of [8].
Let ψ E (Z[cι,... , cq])2p be a Chern polynomial having integral coef-

ficients with respect to the Chern classes, and defining a characteristic
class of dimension 2p.

Theorem 1. Assume V to be LCI. Define

Ia(J7, V, φ, v) does not depend on the various choices of (zx,... , zn),
MiTaifaiCaiRi, and depends only on the foliation T defined by
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Xo, but not on Xo itself.

(ii) Assume furthermore V to be compact. Σa /α(•?"", V,φ,v) is then
an integer.

(in) This integer depends only on V and φ , but not on T; it is equal
to the evaluation < φ{y),V > of φ(v) on the fundamental class
[V)ofV.

Remark. The index above depends obviously only on T and not
on XQ. If we take uX0 instead of Xo u denoting some holomorphic non
vanishing function on [/, then each Ai is multiplied by u\y, the matrix
Ca also, and the term under integration does not change. In fact, we
could write the theorem for a foliation T with singularities, defined
only locally by a holomorphic vector field but not necessarily globally.

Particular cases. 1) For p = q = 1, Ia(^^V^ι^u) coincides with
the index defined in [9] by A. Lins Neto, if Va is a locally irreducible
curve. For a possibly (locally) reducible Va, it coincides with the one in
[12] (notice that the sum of the indices of Lins Neto over the irreducible
components is different from the above index: see [12] (1.3) Remark 1°
and (1.4) Proposition). In fact, in this case, the 1-forms ^ and ^
coincide over Vi Π V2 and glue therefore together, defining a 1-form
ηa on dTQ, while Xo fa may be written gafa for some holomorphic
function ga. The formula of Theorem 1 becomes now:

Ia(Γ,V,Cuv) = WT-\ (-9a)Va + / (-9a)Va\ =7^ 9aVa-
ϊiπ yRl JR2 J Ziπ Jdra

On the other hand, when / is irreducible, if kω = h.df + fa accord-
ing to the notation of [9 ( p. 198)] (up to the bars for avoiding con-
fusions with our notations), his index is then equal to ^ Jdr ^. But
~ and gaVa &re equal on dTai because they both take the same value
ga when applied to the restriction of XQ, Q.E.D. See (1.1) Lemma
and (1.2) in [12], when / is possibly reducible. This coincidence is
also obvious from Theorem 2 and the remark below. Thus the above
Theorem 1 may be seen as a generalization of Theorems A and C
of [9] and Theorem (2.1) of [12]. In particular, since the sum of
our indices is the self-intersection number of the curve F, the integer
3dg(S) -χ(S) + ΣB μ(B)> tyingin Theorem A of [9], is equal to dg(S)2,
if the curve S is locally irreducible at each of its singular points. In gen-
eral, the integer is different from dg(S)2 (see Theorems (2.1) and (2.5) in
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[12], in fact, dg(S)2 is equal to 3dg(S) - χ(S) + ΣP Cp(S) by the adjunc-
tion formula, where, denoting by Bu..., Br the local branches of S at
asingularpointp, cp(S) =μp(S) + r-l = Σ[=i/*(#*) + Σ ^ ( # * • £ ; ) ) •

More generally, for p = 1 and any qr, there exists a 1-form ηa on
dTa, the restriction of which to each V» being equal to ^ . Then,
still defining ga by the same formula Xo /α = 0α/α> the formula of
Theorem 1 becomes:

2tπ Jd
9aVa-

2) When Σ α is in the regular part of V, we may take a local chart
(zu . . . , zn) = (xu . . . , xp, 2/1,... , yq) such that / λ = yx for any λ =
1,... ,g. Then Ap+X vanishes on Va, in such a way that all open sets
Vp+λ axe empty, and that we may take U = Vi,...,Vp: Thus, u =
{1,... ,p} is the unique element of M(U). On the other hand, C£ λ and
d^r+μ are equal on Va. We recover therefore the formula of Theorem 1
in [8], writing Ia(F, V, φ, v) as a Grothendieck residue. Note that there
are some sign errors in [8]. On the third line of p.237, the factor
(—l)L2j should be omitted, in Theoreme 1 of p.217, the integral giving
the residue should be multiplied by (—l)ί>"hL5J = (—1)1̂ 2—J instead of
(—l)p, and in Theoreme Γ of p.233, the integral should be multiplied
by (-1)[5J.

3) Assume that Σ α consists of a point ma isolated in V, and that Xo

is meromorphic near ma (thus XQ has a zero, a pole or both at raα).
Then, we have the following.

Theorem 2. There exists a local holomorphic chart (^l5 ...,2n) near
ma in W, such that Vi, V2,..., Vp cover dTa (p = dimcV).

For this covering ZV, M(U) has a unique element u0 = {l,...,p}.
Writing R instead of RUo, the formula of Theorem 1 becomes now:

Λ dz2 Λ ... Λ dzp

Π p A.

Proof. Let us write Xo = YJi^iA^, A{ = ^ with Pi and Qi
holomorphic near ma. We think of Pf and Qi as being in the ring On

of germs of holomorphic functions at the origin O in C n, and assume
that they are relatively prime for each i. Let Q be the least common
multiple of the Q^s. Then QX0 is a holomorphic vector field leaving
V invariant.
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Lemma 2. The holomorphic vector field QXQ has an isolated zero
at ma on V.

In fact suppose QX0 had a non-isolated zero at ma on V, and let V1

be a positive dimensional irreducible subvariety of V containing ma and
be contained in the zero set of QX0> For each i, we write Q = QiQ1^
where Q[,..., Q^ have no common factors. Since QX0 = ΣΓ=i PiQ^^i
the functions PiQ[ are all in the defining ideal I(V) of V. Hence, since
I(V) is prime and Xo is non-zero away from mα, there exists i0 such
that Q'io e J(F'). Thus there is a prime factor P of Q'iQ such that
P e I(V). Now, since QiQ\ = Q = QioQ'io, P is a factor of QiQ\ for
any i. On the other hand, since the pole of Xo is the union of the zero
sets of the Qj's, we have Qi £ /(V), by the assumption that the pole
of Xo is at most isolated on V. Therefore, P must be a factor of Q\ for
all i. This contradicts the fact that the Q"s have no common factors,
and the lemma is proved.

In the above situation, since the zero set of PχQ\ is not smaller than
that of Pi, it suffices to prove the proposition for vector fields holomor-
phic near raα. Note that the index of Xo at ma is equal to that of
QXo, and also that if Xo has an isolated pole on V, then V is in fact
1-dimensional, since the pole of Xo has codimension 1 in the ambiant
space and in V.

In what follows, for an ideal / in the ring (9Λ, we denote by ht / its
height and by V(I) the (germ of) the analytic set defined by /. Thus
ht / = codim V(I). Also, for germs αi, . . . ,α r in C?n, we denote the
ideal generated by them by ( α i 5 . . . , α r).

Lemma 3. Let Ax,..., An, f u . . . , fq be germs in On, n = p + q,
with ht(f1,...,fq) = q and ht (Au . . . , An, fu . . . , fq) = n. Then there
exist germs A[,..., A'p in On such that:
(i) A[,..., A'p are linear combinations of Ax,... ,An with C coeffi-

cients,

(ii) h t(A ' 1 , . . . ,A; ,/ 1 , . . . ,/ , )=n.
Since ht (fu... ,/ρ) = g, it suffices to show the following for r =

l, . . . ,p:
(*) if A[,..., At

r_1 are linear combinations of Ai,..., An with C coef-
ficients with ht (A[,..., J4J.-I> /i> > Λ) = r — 1 + Q> t h e n there exists
A'r which is a linear combination of Aλ,..., An with C coefficients and
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To show this, let V(A[,..., A'r_λ,fu . . . , fq) = VίU UVS be the irre-

ducible decomposition of V(A[,..., A'r_ι, / i , . . . , / g ) . Since

(j4i,. . . , j l n , Λ , . . . , Λ ) = n, for any point a? in

F(Ai , . . . ,A;_ l 5 / i , . . . , /ff) near O but different from O,

ht(Aχ,..., An, / i , . . . , fq) = n, we see that there exists A{ with ^ ( x ) 7̂

0. Hence there exists A'r which is a linear combination of Ax,..., An

with Vk <£ V(A'r) for k = 1,. . . , 5, and thus we have

Since each Vk is irreducible and Vk (jL V(A'r), ώm(Vk Π V(A'r)) <
dim T4. Therefore, we get ht (A[,..., A'rl / 1 , . . . , fq) = r + q, hence
the lemma.

Note that the condition ht (/1 , . . . , fq) = q means that the variety
V defined by fx = = fq = 0 is a complete intersection, and the
condition ht (A 1 ? . . . , An, fu . . . , fq) — n means that the singularity of
the holomorphic vector field X = Y™=1 Mj^. is isolated in V.

In the above situation, if we choose a suitable coordinate system
(zι,..., zn) in C n , then we may suppose that ht (Aι,..., Ap, / 1 , . . . , fq)
= n. Hence Theorem 2 follows.

Remarks. 1) Let Va be defined by / λ = 0, λ = 1,. . . , q. Suppose
that Va is invariant by a holomorphic vector field Xo (defined every-
where on Ua) and that Σ α is an isolated point ma in Va. Then as is
shown above, there exists a holomorphic chart (z i , . . . , zn) near ma such
that when we write Xo = Σ7=i AiJΓ^ h t (Au , Ap, fu . . . , fq) = n,
i.e., Ai, . . . , Ap, /x,..., fq form a regular sequence. We may set

fa = {Z = (ZU ...,Zn)\ \Ai(*)\ < *, l/λ(^)| < ε,

i = l , . . . , p , λ = l , . . . , g } .

Thus we have Ta = {z \ \Ai(z)\ < ε, fx(z) =0} and we may also set

Ri = {zedTa\ μ . ( z ) | > μ j ( z ) | f o r j φ i y

Then

which is a smooth closed submanifold of real dimensiom p in 57^, the
link of the singularity Va. If we set θ{ = arg Aι{z), R is oriented so
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that the forίδ (i-l)\.^dθ1 A- Adθpis positive. Let R' = (-1)[*]JR so
that dθi A • Λ dθp is positive on R'. Then

φ(—Ca)dzι A dz2 A . . . Λ dzp

2) Theoreiώs 1, 2 and Theorem Γ below could be extended to the
case where we, take the set Sing(X0) ΠV as Έ.

Now Theόrtem 1 is a special case of the following Theorem Γ. In
general, let V be a subvariety of W, and E —t V a continuous complex
vector bundlfc of rank r such that the restriction of E to the regular
part of V is ίtolomorphic and that there exists a C°° extension E -> U
of E to somίέfciίeighborhood U of V in W. We shall also assume that
there exists § fiolomorphic action of Xo on E\v-γ, in the sense of Bott
[4]; a (7-linefi^bperator ΘXQ from the space of C°° sections of E\V-χ
into itself is given, such that

θXQ(σY is holomorphic whenever σ is holomorphic,

θXQ(ίίi) = (X0.u)σ + uθXo(σ) for any C°° function u

and any section σ.

In order to sϊfttfe Theorem Γ, we further assume that Uα is included in
the domain όfWlocal chart and that E\uα is trivial with a trivialization
(σi,... ,σr) Whose restriction to Vα — Έα is holomorphic. We denote
by Mα the r 9Pr matrix with holomorphic entries Mh

α α : Vα — Σα —>- C
such that θxfo\) = Σb

 Mί,ασb Let φ G (Z[cu... , crj)
2p as before.

Theoremeln; Define

Then the foll^ing hold:
(i) Iα(θXo,faφ,E) does not depend on the various choices of

(zi,... ,zn),U,Ta,(
σii' ,σr),Ri

(it) Assume V to be compact : Σa Ia(θχo,V, Ψ-, E) is then an integer.

(Hi) This integer depends only on V, ψ and E, but not on Xo and θχ0.
It is in fact equal to the evaluation < φ(E),V > of φ(E) on the
fundanϊέTΐial class [V] of V.
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Remarks. 1) For Theorem 1', V does not need be SLCI even LCI;
this assumption was only useful for being sure that v and v exist in
the example 1 below. This is still true, even for Theorem 1, if we have
some other reason to know that v and v exist.

2) If V is non-singular, we recover Theorem Γ of [8], some particular
cases of which being also in Baum-Bott [1] when E = TC{V), and in
Bott [4] when XQ is nondegenerate along Σ α .

3) Let Va be defined by / λ = 0, λ = 1,... ,q and invariant by a
holomorphic vector field Xo (defined everywhere on Ua). Suppose that
Σa is an isolated point ma in Va. Then, as in the previous remark
1), there exists a holomorphic chart (^i,..-,^n) near ma such that
Λi,..., Ap, / i , . . . , fq form a regular sequence. In this case, we have

JR' lli=l^i

where

R' = {z\\Ai(z)\=ε, Λ ( * ) = 0 , * = 1,.--,P, λ = l , . . . , < ? } ,

which is oriented so that the form dθi A - Λ dθp is positive, where

θi = arg Ai{z).
Example 1. Assume V to be SLCI. Take E = v, and ΘXQ defined

as in section 3 above, with MQ = — Ca. Then we get Theorem 1
from Theorem Γ. We shall write in this case la{T,V,φ,v) instead of

Example 2. Take E = TC{W)\V, and define ΘXQ{Y) = [X0,Ϋ]\v,
depending only on the vector field Y tangent to W along V, and
not on its extension Ϋ to some neighbourhood of V. Then we have

t ^ ^ e *n c* e x n o w is the one defined in section 8 of
[8], Theorem Γ (and the above remark 3)) giving a formula for com-
puting it. In this case, we shall write Ia(Xo,V,φ,Tc{W)) instead of
Ia(θχo,V,φ,Tc(W)\v). (Notice that if we replace here Xo by uX0 as
in Theorem 1, the index is now changing!)

4. Proof of Theorem 1'

We use the notation Δ^ for the Chern-Weil homomorphism defined
by a connection ω, and Δωoωι...ωk for the Bott's operator for iterated
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differences [3] so that d o Δ ω o W l . . ^ = ΣjL0(—1)J'Δ^.-ώj -ωk In particu-
lar, doAωω, = Δω, -Aω. Thus for φ G (Z[cu . . . ,c r ]) 2 p , Aωoωi...ωh{φ) is
a differential form of degree 2p — k on the common domain of definition
of the connections ω0, ω\,..., α;*.

We shall say that a connection ω on E\V-Σ is special relative to ΘXQ

if it is defined by a derivation law V satisfying:

Vχoσ = 0X oσ for every section σ of ϋ?|y_Σ,

V^ σ = 0 for every section Z of the anti-holomorphic tangent

bundle T(V — Σ) of V — Σ and every holomorphic

section σ of E\V_Σ.

For special connections, we have the "vanishing theorem" (see Lemma
4 below for more general statement): If ω is special relative to ΘXQ,
thenΔ^O/?) = 0 .

Let Uo be a sufficiently small tubular neighborhood of V — Σ in W
with (C°°) projection p : Uo -)• V - Σ. Then the C°° vector bundles
E\Uo and p*(2£|v_Σ) are isomorphic, since their restrictions to V — Σ
are both equal to E\V-Σ We denote by ω the connection on i?|t/05

which is equivalent to the pull-back of a special connection on E\V-χ
by p. We give also an arbitrary connection ωa on E\Ua.

Proposition 2. Let

Ja(θXQ,V,φ,E) = I Aωa(φ) + ί Aωaω(φ).
Jra Jdra

Then the following hold:

(i) Ja{T,V,φ,E) does not depend on the choices ofTa , ω, ωα.

(it) Assume V to be compact ΣaJa{θXQ,V,φ,E) is then an integer.

(in) This integer depends only on V and φ , but not on T. It is in

fact nothing else but the evaluation < φ(E),V > of φ(E) on the

fundamental class [V] of V.

Notice that, in Proposition 2, we do not have to assume either that

Ua is included in the domain of a local chart, or that E\Ua is trivial.

The proof is similar to that for the first three parts in Theorem 8 of

[8], if we replace VXQY = [X0,Y] by VX oσ = ΘXQG.

Theorem 1' (hence Theorem 1) will follow immediately from Propo-

sition 2 above and
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Proposition 3. Suppose that Ua is included in the domain of a local

chart and that E\uQ is trivial with a trivialization whose restriction to

Va — Σa is holomorphic. Then we have

In what follows, we fix a trivialization (σi, . . . ,σ r) of E\ua &s in
Proposition 3 and compute the matrix Ma in terms of this trivializa-
tion. We also choose ωa equal to a trivial connection ω0 whose connec-
tion form with respect to this trivialization is the matrix 0. Hence, in
the formula of Proposition 2, we have

Ja(θXo,Vtφ,E) = J Aωoω(φ).

Remarks 1) Notice that the integration of the siifie expression
over only one of the connected components of dTa Π V would give the
partial index corresponding to the corresponding "shedf^or "branch"
through Σ α .

2) If V is not LCI, we still can define Jα(.F, V, φ, v) and-Ja(F, V, φ, v)
under the condition that the bundle Hvς_Σβ

 ιs trivialiίSble, and con-
clusion of Proposition 3 will still remain true. But thisMϊίdex will now
depend on the choice of the homotopy class of the trivίSization. Fur-
thermore, even if this is possible at any point of Σ, ttfe §um of these
indices has now no reason to be either an integer or independent of T.

There are three steps in the proof of Proposition 3: 1) We first
study the properties of the holomorphic connections tP^on ϋ7|v<5 the
connection form of which with respect to the given trivSflfzation being
j£Ma. 2) Then we prove that Aωoω(φ), which is a cδδycle on dTa->
is cohomologous, when imbedded in the total Cech-de fίham complex
CDR*(U), to the element μ in CDR2^-ι{U) defined

(μu = Δωo ωui ωu2...ωup (ψ) for u e M(lt),

μi = 0 for any simplex / of dimension Φ p — 1 in ffife nerve of U.

3) Finally, we prove that

dzUl Λ dzU2 Λ . . . Λ dzUp

ΓF A '
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Using integration on CDR*(U) as recalled in Lemma 6 below, this will
achieve the proof of Proposition 3.

First step. Let Ω be an open set in Va — Σ α , Y a holomorphic
non-vanishing vector field tangent to Ω, and Γ a holomorphic map from
Ω into the space of r x r matrices with complex entries. A connection
ώ on E\Q will be said to be "adapted" to (Y, Γ) if its connection form
relative to the trivialization (σi, . . . ,σ r) of E\Q, still denoted by α>,
satisfies:

\ ώ(Z) = 0 for every section Z of T(Va - Σa).

Hence the restriction to Ω of a "special" connection, such as defined for
Proposition 2, is adapted to (Xθ5 Ma), while the restriction to Ω of the
trivial connection ω0 is adapted to any (Y, matrix 0) for Y holomorphic
tangent to Ω. Prom the usual vanishing theorem (Bott [3], Kamber-
Tondeur [7]), we deduce the

Lemma 4. Let dim<£ = 2p. Then the following hold:

{ If ώ is adapted to some (Y, Γ), Δώ(φ) = 0.

/ / α>i,... ,ϋ)jfe are adapted to the same (Y,Γ), Δylt..ωk(ψ) — 0.

For any q multiindex / = (1 < ii,^? ,iq ^ ^ ) ? the ij's being all
distinct, define

Dr= det
J P ( / i , • • - , / , )

For any w E M , define the q multiindex u = ( u i , u 2 , . . . ,uq) so that
1 < ΰι < ΰ2 < . . . < ΰq < n, and {1,2,... ,n} = {uuu2l^. ,up} U
{ΰi,τ/2,... ,w9}, and by Ω^ the open set of points in Va where Du φ
0: Ωδ is a union of open sets where the restrictions of the functions
zUl 5 j zUp constitute a system of local coordinates. For any q + 1
multiindex / = (1 < i 0 ) H, , iq < ^ ) , 1/ will denote the holomorphic
vector field:

k=0

Lemma 5.
i) Y/ is tangent to V.
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(ii) For m E Vi (1 < i < n), there exists u G M containing i such
that Dΰ φ 0 at the point m.

(Hi) For any i (1 < i < n), the connection Ui = j£-Ma on E\y.
satisfies the following condition: for any u G M containing i, the
restriction ofωi to Ωδ is simultaneously adapted to (X0,Ma) and
any (F^.+ΰjmαίrix 0) such that Uj φ i.

In fact let I be some q + 1 multi index such that Dj-ik φ 0 at some
point m in V for some i* G /, so that the restrictions zι to V of the
functions Zi constitute, for i belonging to {1,2,... ,n} — {/ — ik} (in
particular for i = i*), a system of local coordinates on V near m. But
then, the restriction of Yj to the domain of such a local chart is equal
to (—l)*-Dj-»fcg-f- and is therefore tangent to F, hence part (i) of the
lemma.

The condition for Xo to be tangent to V may be written:

=0 on Va forall λ =

Hence, if m G Vi, the g dimensional vector [{f\)'zλ is, on V ,̂
^ *^λ=l,...,g

a linear combination of the others \{fχ)'z.) , (j 7̂  i); Dj must

be zero at m for any q multiindex J containing ΐ. But, since V* is in
the regular part of V, one at least of the Dj must be φ 0; the only
possibility is therefore that %i £ J for such an J, hence part (ii) of the
lemma.

On Ωδ, Xo = ΣU ΛUj at: = jjz Σ*=i AUYU.+U and, on V, Π Ωδ,

the p holomorphic vector fields Xo and [Yu + s ) are linearly inde-

pendant. The part (iii) of the lemma becomes now obvious to check,
since V* is covered by the Ωδ such that i eu.

Second step. For any k simplex J = (i0 ik) in the nerve of U,
write Δ w o ω ωi{ψ) = Aωo ω ωiQ...ωik(φ), Δ ω ωi{φ) = Aω ωiQ...ωik(φ), and

Δωo ωi(φ) = Aωo ωiQ...ωik(φ).

Define 7 G CDR2*-1^) as the family (7,), given by
7, = (—ljUHΔ^ ω ωi(<^), where A; denotes the dimension |/| of /.
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Then, the total differential Dη of 7 in CDR*(U) is given by:

ωi(φ) - Δ ^ ωt(φ)

„ ut{φ) - Δωo ωi(φ)), for |/| > 0,

Xψ) - Ko M + Δωo ΛΦ) for \I\ = 0.

But all terms Aω ωi (φ) vanish because the connections ω, ωio, , u;ifc

are all adapted to the same (X0,Ma), all terms Aωo ωi{φ) vanish for
|/| < p — 1 because the connections ω0, ω io, , ωik are all adapted to a

same (Y, matrix 0), and all terms of (^7) vanish for |/| > p because

Δΰ,0...ωr(ψ) is always 0 for any family of r + 1 connections when r > p.

Therefore, it remains only: (^7) = Aωo ω(φ) for / = {i} of dimension

0, (-D7) = — μu for u € M{U) of dimension p — 1, all others \Dl) 'S

being 0. This proves: Dj = 6ίΔωo ω{φ)) — μ, where t denotes the

natural imbedding of the de Rham complex Ω*DR(dTa) into CDR*(U).
Third step. The set Vu equal to fij=1VUj is included into Ωδ. In

fact, as already seen in Lemma 5, if m belongs to Vi, Dj must be zero
when i G /. So if m G Vu, u is the only possible element v in M{U)
such that Dv Φ 0.

For computing Δ ^ ωui...ωup, we introduce (Bott [3]) the connection
ώ on (E\Vu ) x Δ M V u x Δp, P(ΔP denoting the p-simplex 0 < Σ?=i t< <
1, 0 < U < 1, in Λp), defined by

P P P t

The curvature Ω of this connection is then equal to

Ω = (J^dtj Λ ——dzUjjMa + (terms without any dtk) .

Therefore, for every polynomial ψ in Chern2p [cλ... cn],

+(terms of degree < p in c
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By integration over Δp, and using the equality JAP dti Λ Λ dtp = ̂  ,
we get [3 (p.64)]:

φ{Ma) dzUl ΛdzU2Λ...Λ dzUp

^ωoωi ωp\ψ) γ-rp A

This achieves the proof of proposition 3, hence of Theorems 1' and 1,
once using:

Lemma 6. There exists a linear map L : CDR2p~ι{U) -> C with
the following properties:

(i) L vanishes on the total coboundaries D(CDR2P~2(U)J,

(ii) L extends simultaneously the integration fdT : Ωz^
1(97^) —> C,

and the map: (-1)[*1 ΣueM(u) IRU ' C*-\U, WDR) -+ C.
Proof. See section 6 of [8].
5. Examples. Let W be the 3-dimensional complex projective

space CP3, with homogeneous coordinates [X, Y, Z, T]. Take for V the
cone Vι of equation

X1 + Yι + Zι = 0 (/being any integer > 1),

which has a single isolated singular point O = [0,0,0,1]. Denote by
Uτi Uz and Uy the affine spaces T ^ 0 , Z ^ 0 and Y Φ 0 with respective
coordinates (re = f,y = \,z = f),(x' = f,y' = | , ί # = f) and
(a?" = ψ,z" = f, ί" = ^ ) . The three open sets Uτ,Uz,Uγ cover
Vι since the point [1,0,0,0] does not belong to V/. The corresponding
equations of Vt may be written respectively: fτ = 0, fz = 0, fy =
0, with: fτ(x,y,z) = xι + yι + z\ fz{x'rfj) = ^ ' + / + 1, and
/y(x",2r",Γ) = x'5/ + ̂ "z + 1. The bundle ί> is defined by the cocycle

{9τz = zl = -f,

In general, for a hypersurface Vt of degree / in CPn (άιmcVι = p =
n — 1), we have (see Example 3 in section 2)

< (c iW), Vΐ > = Γ-1 f c""1 = Zn.
Jv,

Also, from Γ c (CP n ) φ 1 = (n + 1)L, we obtain

1 + c^Tc) + c2(Tc) + ••• = (! + c) n + 1 ,
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hence

Cl(Tc(CPn)) = (n + l)c, c2{Tc{CPn)) = ( n + 1 ) n

c 2 >

In particular, for p = 2, g = 1,

< (C l)
2(T c(CP 3)), Vί > = (3 + I) 2 /Vi c2 = 16/,

<c2(Tc(CP3)),Vι>=ψ fVlc* = 6l.

Example 1. Take for Xo the extension H to the whole CP3 of
the vector field of infinitesimal homotheties x ̂ - +y4- + z4- in UT- (In

ox oy oz

Uz and C/y, if is equal respectively to —£'̂ 7 and —<"g|r). This vector
field has for singular set the union of {0} and of the hyperplane T = 0,
and Σ has 2 connected components: Έι is the isolated point {O}, and
Σ 2 the curve (X1 + Yι + Zι = 0, T = 0). Notice however that Σ 2 does
not contain any singularity for the foliation T generated by H, so that
we can already assert

1) Computation of h{T, Vh (ci)V) and h{H,Vhψ,Tc{W)) (φ =
or c2):

For E = v, H.fτ = lfτ and Mo = — Co is the l x l constant matrix
(-/). For £ = Tc{W)\v, Mo = - § ^ f } is equal to the opposite of
the 3 x 3 identity matrix, in such a way that for E = v, (cι)2(M0)
is a constant equal to j ^ , while for E = Tc(W)\v, φ(M0) is also a
constant equal to =^ if φ = (ci)2, and =^ if φ = c2. (Recall that,
ck applied to some matrix is equal to {j^)k times the A th elementary
symmetric function of the eigenvalues).

We compute the indices in two ways; first directly by the definition
in Theorem 1 or 1' and then applying Theorem 2.

(i) Take for Tthe ball Sup (|x|, |y|, \z\) < ε for some positive constant
ε. Let Rz be the region in the boundary dT defined by \z\ > \x\,\z\ >
|y|, and define Rx and Ry similarly. The index Iι(θH,Vι,φ,E) at the
origin O is equal in both cases to

,*,\l( dx dy f dy dz f dx dz\
φ(M0)[ — Λ - £ + / —Λ — + / — Λ— .

\jRxy x y JRyz y z jRχz x z J
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On Rxy, we may write x = εeiθ, y = εeiσ, and ^ Λ ^ = -dθ A dσ,
which is positive on Rxy. In fact, remember ([8]) the convention about
the orientation of Rxy by the normal from Rx to Ry. Let us write
x = reiθ and y — seiσ on T; then dr Adθ Ads A dσ is positive on T
with r increasing when approaching dTΠRx, r = ε and dθAdsA dσ is
positive on ϋ^ with s increasing when approaching the boundary near
Rxy, in such a way that -dθAdσ is positive on Rxy. But there, we have
zι = -(χι+yι) = -2ε'cos ί ί^zϋe* 1 1 ^, So that Rxy is an /-fold covering
of the set of (0,σ) such that 2ει\cos(σ — 0)| < ει (because \z\ < ε on
jRxy). It is easy to check that the set of (0,σ) in the square [0,2π]2

where the previous condition holds is made of / strips, the area of each
one being ψ x 2π = —-. Then, because of the / sheets of the covering,
we get: JRχ ^ Λ ^ = ^ - . The computation is the same for the two
others integrals, so that

(ii) We observe that, in this case, x, y and fo form a regular sequence
(see Remark 1) after Theorem 2 and Remark 3) after Theorem Γ),
and we may take for T the ball Sup (|x|, |y|, |/τ|) < ε. The index
I\{ΘH > VhΨ >E) a^ the origin O is equal to

(Ίi* \ ί dx dyφ(M0) / — Λ —,

J R' x y

where R' is the 2-submanifold in the boundary dT given by

R' = { (x,y,z) I \χ\ = \y\ = ε, xι + yι + zι = 0}.

On Λ', we may write: x = εeiθ, y = εe*σ, and ^ Λ ^ = -rfβ Λ dσ,
which is negative on R'. But there, we have zι = — (xι + y1), so that iϊ'
is an /-fold covering of the set of (0, σ) in the square [0,2π]2. Thus

/ — Λ — = -4/π2.
JR> x y

In either way we get:

u) = Z3, and
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•i
2) Computation of I2{H, Vhφ,TC(W)).
Since Σ 2 is a smooth compact holomorphic manifold in the regular

part of V/, we may use the Bott's theorem ([4 ( p.314)]) for computing
the index, under the condition that the infinitesimal action of H on the
bundle N normal to Σ 2 in V\ be non degenerate. Since V\ is compact,
this action will be of constant type along Σ2, and the same thing is true
for the action ΘH |E 2 of H. So, it is enough to calculate them for instance
along Σ2ΠUZ. Since f̂  = lx'ι~ι, and f^ = ly'ι~ι, and because both
coordinates x1 and y1 may not vanish simultaneously over Σ 2 Π Uz, we
may assume for instance x1 ψ 0. Near such a point in Έ2ΠUZ, we may
replace the coordinates (x^y'.f) by (u = fz{x',y',t'),v = y\w = ί'),
so that Vι has now u = 0 for local equation, while Σ 2 is now locally
defined by u = 0, w = 0. The bundle N is generated by ^ , H = — w^,
and [if, gjj] = gjj. Therefore this action, represented by the constant
l x l matrix (+1), is effectively nondegenerate. On the other hand, v
is generated by ^ , so that [if, ^ ] = 0, while the third bracket [if, J^]
being also 0, the action ΘH\Έ2 on Tc(W) will be represented by the
constant matrix

o o o I .

Denote α, 6, c the formal classes such that the fcth Chern class of W is
equal to the fcth elementary symmetric function of o, 6, c. After Bott,
we have

hΨ,,cK*r ))

where ψ denotes (a + b + c+l)2 foτφ = (ci)2, and ab + (a + b)(c + 1)
for φ = c2. Hence

and < a + 6, Σ 2 > for c2.
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Notice that N coincides with the restriction to Σ 2 of the hyperplane
bundle L -> CP2 after identification of CP2 with the hyperplane T = 0
in CP 3 , while Tc(W) is stably equivalent to 4L, and (a + 6) |CP 2 =

Cι(CP2) = 3ci(L). We get therefore 7 < C l (L),Σ 2 > = 71 for (C l)
2, and

3 <ci(L),Σ 2 >=3Z for c2.
Finally, we recover

<(c1)
2(v),Vl>=l3 + 0 = l3,

<(c1)
2(Tc(W)),Vι>=9l + 7l = 16l,

< c2(Tc(W)), V, >= 31 + 3/ = 6/.

In particular, for I = 2,

< ( c i ) » , F 2 > = 8 , and

< (ci)2(Tc(W)),V2 >= 32, < C2(TC(W)),V2 >= 12.

Example 2. Take 1 = 2, with now for Xo the extension 72. to
the whole CP3 of the vector field of infinetisimal "complex rotations"
yj-χ-xj-ymUτ.

In Uz (resp. mUγ),TZ may be written as y'-^ —x'-^r (resp. (x"2 +
ι) -^ + x"z" & + x"*" dr)' N o w Σ i s m a d e o f 3 i s o l a t e d points: m1 =
[0,0,0,1],
m2 = [i, 1,0,0] and m3 = [—i, 1,0,0]. Notice that V2 is regular at
m2 and ra3. We have 7^./τ = 0, U.fz = 0, and 7£./y = 2x"/y, which
prove that H still preserves V, and that /i(7£, V, (cx)2,^) = 0 since
mi G C/τ

1) Computation of h{n, V2, φ,TC(W))
In this case, y, —a; and / τ form a regular sequence and we may take

for T the ball Sup (|rc|, |y|, | / τ | ) < ε for some positive constant ε. The
index Iχ (θXo, F, (/?, E) at the origin O is then equal to

-xy

where R! is the 2-submanifold in the boundary 8T given by

R' = {(x,y,z)\\y\ = \-x\=ε, x2 + y2 + z2 = 0}.
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If we write ϊ&'fc εeιθ, y = εeισ on R\ then dσ Λ dθ is positive on R'.
Hence we h<a&fRt *&& = -8π 2 . When E = TC{W)\V, Mλ is now the

/o-ίo\
matrix 1 0^0 , and φ(Mι) is still a constant, now equal to 0 for

V )V )
φ = (C l)

2, ancίto f± for ψ = c2. Then we have, IX(T, V2, {ci)2,v) =
h(Xo,V2, (Cl)*Tc(W)) = 0, and I0(X0,V2,c2,Tc(W)) = 2.

2) Computation of indices at points m2 and ra3.
Observe tnat | ^ - = 2x" Φ 0 near these points. Then we may use

[u = fγ,v ™sz",w = f ) instead of (x",^",ί") as local coordinates,

with 11 = x(2u-^ + v-^ + w-j^) The tangent space to V is generated
by J^ and ^PΉince the restriction x(v-^ +w^) is nondegenerate atby J^ and ^PΉince the restriction x(v^ +w^) is nondegenerate at
m2 and m3, w?ίh eigenvalues (εi,εi) with ε = 1 (resp. -1) at m2 (resp.
ra3), we may1 We the Bott's formula. The normal bundle v is generated
by gj, and tn^ action of R on z/ at points ra2 and m3 is given by the
1 x I matrix1 ^-2εi), and

T h e a c t i o n qf J ^ o n 7 c ( W ) is g i v e n b y t h e m a t r i x — ε i 0 1 0 , a n d

We may notice that we still have, as in example 1:

< ( C l ) 2 ( T c ( W 0 ) , V2 >= 0 + 16 + 16 = 3 2 ,
< c2(Tc(W)), V2 >= 2 + 5 + 5 = 12.

Example §.• Take still / = 2, with now for Xo the linear combi-

nation Xω =^&H + bTZ of Examples 1 and 2, where ω e [0, f [, α =

cosω, 6=sinα;,(α^0). InUτ, Xω = a[x£+y£+z£][
has only for singular point the origin m\. In Uz, Xω — ^

at'-§[ϊ, has no singular point on V2. In C/y, Xω = b(x"2 + l ) ^ r
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bx"z" 0-̂ r) + t"(bx" — α)^r has the same singular points ra2 and ra3 as
in Example 2.

1) Computation of indexes at point m^
Since Xω.fτ = 2α/τ, the l x l matrix CΊ is constant equal to ((—2α)),

so that (*)*(&) = : £ .
Write: A = αz + fcy, 5 = -bx + ay and C = α*. We have

α 6θ
-6 α 0 , and φ{-*$£*',)) is s t i 1 1 a constant equal to ^ if <p =
0 0 a)

In this case, A, B and fτ form a regular sequence, and we may take
for T the ball Sup (|A|, \B\, \fτ\) < ε for some positive constant ε.
Then the index I\{!F, V2,φ,E) at the origin O is equal to

) /
dx Ady

where R' is the 2-submanifold in the boundary dT given by

R' = { (x, y, z) I \A\ = \B\ = ε,x2 + y2+z2=0 }.

Since dx Ady = dAAdB, the integral is computed as in Example 1 to

6 e t : SR< dXAFtV = —8π2. Thus we have

ί
18α2 for E = ΓCW^ and φ =
2(3α2 + b2) for E = TCW and v = cj.

2) Computation of indices at points m2 and ra3.
We already observed that |£jf = 2rr" / 0 near these points, so that

we may use (u = fγ,υ = z",w = t") instead of (a;",;z",ί") as local
coordinates, with Xω = bx"(2u^ +v§^) + (bx" - a)w-§^. The tangent
space to V2 is generated by ^ and ^ . The restriction

bx"υ— + (bx" - a)w-r—
dυ dw

of Xω to V2 has for eigenvalues (bεi,bεi — a) with ε = 1 (resp. -1) at
m2 (resp. m3). It is therefore nondegenerate at these points, and we
may use the Bott's formula.
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The normal bundle v is generated by ^ , the action of Xω on v

at points m 2 and m 3 is given by the l x l matr ix ((—26εi)), and

12{T,V,{CX)
2,V) = —^z^ = 46(6 - a t ) , while h(T, V, (cx)

2,u) =
46(6 + ai). We recover:

< (cx)
2(i/), V2 > = 8a2 + 46(6 - ai) + 46(6 + ai) = 8.

The action of Xω on Tc(VF) has (—26εi, —6εi, —(6εi — a)) for eigen-
values.
h{Xω,V2M)2^Tc{W)) = ^ z ^ = (1662 + 7α2) - i ^ z £ U ? w h i i e

h(Xω, V2, (d)2,Tc(W)) = (1662 + 7α2) + i^ίS^zfίl. We recover:

72 >= 18α2 + 2(1662 + 7α2) = 32.

/3(-Yw, V2, c2, TC(PΓ)) = 562 + 3α2 + 2iα6. We recover:

< c2(Tc(W)), V2 >= 2(3α2 + 62) + 2(562 + 3α2) = 12.

We may notice, in accordance with the theory, that the indices them-
selves are not necessarily integers and depend on α, 6, contrary to their
sum, and also that we recover the values of Example 1 (/ = 2) for ω = 0,
and that of Example 2 for ω = | . However the calculation for this last
case had to be done separately, because we assumed explicitely C φ 0
near m 0 in the calculation of Example 3.
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