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FIELDS RELATIVE TO SINGULAR
INVARIANT SUBVARIETIES
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1. Introduction

Let F be a holomorphic foliation with singularities on a complex
manifold W, and V an analytic subvariety (possibly with singularities)
of W invariant by . Here “invariant”, or equivalently “saturated”
means that if a point of V belongs to the regular part of F, then the
whole leaf through this point is included in V. We shall assume fur-
thermore that the normal bundle to the regular part of V in W has a
natural extension v to the whole V, and even a smooth extension 7 to
a germ of neighborhood of V' in W, making us able to use connections
on 7 and to integrate associated differential forms on compact pieces
of V. For instance, such a natural extension 7 always exists for com-
plex hypersurfaces, or complete intersections in the projective space,
or “strong” local complete intersections (SLCI: see definition below).

Denote the complex dimensions of V, W and the leaves of F by p,
p + q and s respectively. The bundle v admits a “special” connection
away from the singular set ¥ = ( Sing (F) N V) U Sing (V) so that
the associated characterictic forms of degree > 2(p — s) vanish. If
V' is non-singular, we may represent the characteristic classes of v by
characteristic forms on V and see that those classes in dimension >
2(p — s) will “localize” near ¥. In the case of singular V, we work
on the characteristic forms of 7 on the ambient space instead, and the
characteristic classes of v in these dimensions will still localize near
3 and give rise to residues for each connected component ¥, of X.
In fact, once we know 7 to exist, the definition and the proof of the
existence of these residues work similarly as in the case of non-singular
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V (see Théoréme 3, p.227, in [8]), and thus we shall omit the theory
for s > 1. We will concentrate ourselves to the computation of the
residues for Chern numbers at an isolated point of ¥ in the case s = 1.
We get then formulas generalizing the ones in [9] and [12] and also, in
the spirit of Baum-Bott [1] and [2], the Grothendieck residues already
known when V is non-singular ([8]) (see Theorem 1 below, and its
third particular case with Theorem 2). Note that the residues of Baum
and Bott are localised characteristic classes of the normal sheaf of the
foliation F (or an equivalent virtual bundle), while ours are those of
the (extended) normal bundle of V' in W.

This residue has first been defined by C. Camacho and P. Sad in
[5] when p = ¢ = s = 1, V non-singular and £, an isolated point.
When the invariant curve V may have singularities, the theory has
then been generalized by A. Lins Neto [9] for W = CP?, by M. Soares
[11] when the surface W is a complete intersection in CP", and in
[12] for arbitrary complex surfaces. It has also been studied in higher
dimensions when V' is non-singular, first in the case s = p, ¢ = 1 by
B. Gmira [6], J.-P. Brasselet (unpublished) and A. Lins Neto [10], and
then in [8] for the general case with 1nore precise formulas when s = 1.

All these results extend by taking, instead of #, any C*° vector bundle
on a germ of neighborhood of V' in W, the restriction of which to the
regular part of V being holomorphic and equipped with an action of a
holomorphic vector field X, tangent to this regular part (see Theorem
1’ below). In particular, if we take T(W), with the action [X,,.] on
T(W)|v, we get a formula for computing the index defined in Theorem
8 of [8]. (We were wrong when claiming that the index defined there
was the same as the index of [9] for p = ¢ = s = 1: there was a mistake
in the proof of part (iv) of this theorem, the three first parts remaining
correct.)

We would like to thank F. Hidaka, Y. Miyaoka, P. Molino, A. Ray-
man, R. Silhol and M. Soares for helpful conversations.

2. Background on local complete intersections
(LCI and SLCI)

Let W be a complex manifold of complex dimension n = p + ¢, and
V an analytic irreducible subvariety of pure complex dimension p. We
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shall call “reduced local defining function” for V every holomorphic

map f : U — C? defined on an open set U of W, such that:

@) vnU=f0),

(ii) the g components of f generate the ideal I(V NU) of holomorphic
functions which vanish on V N U; for instance, if ¢ = 1, this
condition implies that f may not have factors which are powers.

The subvariety V is said to be a “local complete intersection” (briefly:
LCI) if the following condition holds: there exists a family
{fn : Up = C}4 of reduced local defining functions for V, such that
UrUr D V. Such a family will be called a “system of reduced equa-
tions” for V. Recall the following proposition, well known to the spe-
cialists:

Proposition 1. (i) Let f; : U = C? and f, : U = C? be two
reduced local defining functions for V defined on the same open set U.
Then, there ezists an holomorphic map § : U — gl(q,C) taking values
in the set gl(q, C) of q X q matrices with complez coefficients, satisfying
fi =< g, fz >, such that the restriction g of g to V N U is uniquely
defined and takes values in the group GL(q,C) of invertible matrices.

(i1) If V is an LCI, and if {fs : Uy — C?}; denotes a system of
reduced equations for V, let gn, : Uy N Uy — gl(q,C) such that fr, =
< Gnk, fx > on U, N Uy, and denote by gnr the restriction of gni to
VNU,NUy. The family {gn} is then a system of transition functions
for a holomorphic q vector bundle v — V. This vector bundle is well
defined (it does not depend on the choice of the given system of reduced
equations for V).

(111) The bundle v is an extension to V of the (holomorphic) normal
bundle to V — Sing (V) in W; more precisely, there ezists a natural
bundle map © : Tc(W)|, — v which, over the regular part of V, has
rank q and the complex tangent bundle to this regular part for kernel
(we may therefore identify the restriction of v to this reqular part with
the usual normal bundle).

Proof. Let f, and f, be such as in (i). Since the components f; x
(1 £ X< q)of fi and fa, of f, generate the ideal I(V NU), there
exist ¢ x ¢ matrices § and & with holomorphic coefficients such that
fi =< §,f» > and f, =< h, f; >. Furthermore, since f; and f, vanish
on UNV, we get also on U NV, df; =< g,df; > and df, =< h,df; >,
where g and h denote the restrictions of § and h to U N V. Since



168 DANIEL LEHMANN & TATSUO SUWA

dfy =< goh,dfy >on VNU, goh=1Id on the regular part of VNU.
By continuity, since this regular part is everywhere dense in V' NU, one
still has g o h = Id on the whole V N U; g takes values in GL(q,C).
The uniqueness of g is obvious since g = h~!. This proves part (i) of
the proposition.

From the uniqueness of g in part (i), we deduce immediately that the
{gnx} given in part (ii) satisfy the cocycle condition, and form therefore
a system of transition functions for a holomorphic vector bundle v —
V. Let {g},} denotes the system of transition functions arising from
another system {f;} of reduced equations for V' (with the same open
covering {U,} for the moment). From part (i), there exists a family
{gn} such that f, =< g, fi >. Denoting by {gs} the induced family
on V, the uniqueness in part (i) implies that the two cocycles {gx:} and
{91} differ by the coboundary of {g,}, and therefore define isomorphic
bundles. If the coverings are different, we can use a common refinement
to both coverings, for coming back to the case of the identical coverings.

Notice that the sections o of ¥ may be identified with the families
{on : Uy, = C%};, of maps such that o, =< gpx,0r > on V N U, N Uy.
On the other hand, there we get also df, =< g, dfx >. Therefore the
family {dfs : To(W)l,ny, — C?} defines a bundle map 7 : To(W)|, —
v. Furthermore, the kernel of df;, on the regular part of V N U, is
exactly the tangent space to this regular part. This achieves the proof
of part (iii).

By continuity and reducing the open sets U, to smaller ones if nec-
essary, we may assume that the functions g, themselves take values in
GL(q,C). However it is not clear that the cocycle condition remains
true off V. This justifies the following definition: an LCI subvariety
V of W will be called a “strong” local complete intersection (shortly
SLCI), if there exists a C* vector bundle # — U, defined over some
neighborhood U of V' in W, whose restriction to V carries a holomor-
phic bundle structure compatible with the ambient C*® structure and
is equal to v. The last condition implies that in a neighborhood of
every point of V, ¥ admits a C™ trivialization whose restriction to V
is holomorphic.

If V is an LCI, the holomorphic bundle v is trivial on V N U,, and
there is a trivialization which, on the regular part of VNUy, is given by
7'(01,, =), - ,1r(8 ) taking the components f; » (1 <A <g)of fyasa
part of a local chart on W. We call it the “trivialization associated” to
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fn. If, moreover, V is an SLCI with a C* extension ¥ of v, choosing a
smaller U}, if necessary, there is a C* trivialization of 7 on U}, extending
the trivialization associated to f.

Remarks. 1) Notice that the singular foliations df, = 0 on U, and
dfyx, = 0 on U}, do not coincide in general on U, N Uj.

2) Let Oy denote the sheaf of germs of holomorphic functions on
W, and T the sheaf of ideals defining the subvariety V in W. Thus
Oy = Ow /T is the sheaf of holomorphic functions on V. Denoting by
Qw = Ow (TE(W)) the cotangent sheaf of W, we define, as usual, the
cotangent sheaf Qy of V to be the quotient of 2y ®¢,, Oy by the image
of the morphism Z/Z? = Qw ®o,, Oy given by assigning df ® 1 to the
class of f. Setting O = Ow (Tc(W)) and ©y = Home,, (v, Oy), we
have the exact sequence

00— 6y — Oy Row Oy = ’Homo‘,(I/Iz,Ov).

If V is an LCI, then the sheaf Z/Z? is locally free, and the sheaf of
germs of holomorphic sections of the bundle v — V is identified with
Home, (Z/Z?,0y). Furthermore, the bundle map 7 : T¢g(W)|, = v
corresponds to the third morphism in the above sequence. If f is a
reduced local defining function for V', the classes of the components
fiy---, fq of f in Z/T? form a basis (over Oy ), and the trivialization of
v associated to f corresponds to its dual basis.

3) We do not know if LCI implies automatically SLCI. In fact, taking
a regular neighborhood U of V' and using the fact that the classification
of continuous vector bundles and that of C*° vector bundles coincide
on (paracompact) C* manifolds, we see that there exists a C* vec-
tor bundle # on U such that |y is isomorphic to v as a continuous
bundle. However, it is not clear if |, carries a holomorphic bundle
structure which is isomorphic to v and compatible with the ambient
C* structure. Note that there are many examples of SLCI.

Example 1. If V is a non-singular subvariety (submanifold) of
W, then clearly it is an LCI and moreover an SLCI. In fact let U be
a tubular neighborhood of V' with C* projection p : U — V. Then
U = p*v is an extension of v with the desired properties.

Example 2. Any hypersurface V of W (subvariety of pure complex
codimension 1) is an SLCI. In fact, if we set gnr, = fn/fx, where {fr}
denotes a family of reduced local defining functions, then the system
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{gnr} satisfies the cocycle condition and defines a holomorphic exten-
sion ¥ of v on the union of the domains U}, of f, which may be assumed
to be W. Note that the collection {f,} defines a global section of
non-vanishing away from V.

Example 3. Any algebraic set V in W = CP" which is globally a
complete intersection is also an SLCI. In fact, denote by [X,, X, ..., X,,]
homogeneous coordinates in CP™ and by Fi, F,, ..., F, homogeneous
polynomials in the variables (X,,X},...,X,) of respective degrees
di,d,, ...,d, such that V has pure complex codimension g, and is de-
fined by the ¢ equations F, =0 (1 < A < g). In the affine open subset
U; of CP™ defined by X; # 0, V N U; has for equation with respect to
the affine coordinates (%‘-) iitit gy = 0,(1 < A < g). Therefore,
on U; NU; the change of equations g;; is equal to the diagonal q x ¢

d dq
matrix (;—(g-) e (%—) . (In fact, in this case, it is not necessary to
assume that the components (x_;ly‘TF/\ (1 < X < q) generate the ideal

I(V NU;)") Denoting by L - CP™ the hyperplane bundle (dual of the
tautological bundle), ¥ is defined on the whole CP" by the formula

U= ®:{=l (L)®d)‘ .

Hence: 1+ ¢, () + -+ + ¢,(#) = i, (1 + dxc), with ¢ = ¢;(L).

Example 4. In general, let © be a holomorphic vector bundle of rank
g over W, and V the subvariety of W defined by a holomorphic section
o of . Suppose o is a regular section, i.e., a section such that, at each
point of V, the germs of its components (fy,..., f,) with respect to
a local (holomorphic) trivialization of 7 near the point form a regular
sequence; in fact, this is the case if and only if the codimension of V is
g- Then V is an LCI, locally defined by f; = --- = f, = 0. Moreover
it is an SLCI with & itself a holomorphic extension of v. (We assume
that V is reduced and irreducible, to be consistent with the definition
in the beginning of this section.)

3. Statement of Theorems 1, 1’ and 2

Assume from now on that the subvariety V is invariant by a holo-
morphic vector field with singularities X, on U, a neighborhood of V
in W. Note that, by Proposition 1 (iii), any C*™ section o of v over
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the regular part of V' may be written as 0 = m(Y’) for some section Y
of To(W)|,. Let 6, be the C-linear operator defined for any section
n(Y) of v over the regular part of V by 6, (7(Y)) = ([ X0, Y]lv), Y
denoting some local extension of Y near V.

In case V is an LCI, let f;, = 0 be a local reduced equation of V on
Us. Since V is invariant by Xo, each component (df(Xo)), (1 <A< gq)
of the derivative dfy,(X,) has to vanish on VNU}, and must be therefore
a linear combination with holomorphic coefficients of the components
(fn)r of fn. Thus there exists a ¢ X ¢ matrix C; with holomorphic
entries such that dfy(Xo) =< Ch, fa >. Denote by C; = (CL,) the
restriction of C',, to VNU,.

Lemma 1.

(i) 0, (n(Y)) depends only on n(Y), neither on'Y nor on Y.

(i) 0y (uo) = ub, (o) + (Xo.u)o, for any C* function u on

V — Sing (V).
(i) IfV is an LCI, and f, = 0 a local reduced equation, denoting by
(01,... ,0,) the trivialization of v associated to f, we have:

In particular, over the regular part of V, = V NU,, C, depends

only on f,, not on the choice of C.
Parts (i) and (ii) of the lemma are proved in [8 (Lemma 2-1, p.220)].
For proving part (iii), take a partition {i,...,%} U {j1,...,74} of

{1,... ,n} such that %{—;-:—z‘lﬂ)l # 0 near some point of the regular
N

part of Vj,. Then, near this point, (zi,,... ,2i,, fa,1,-- , fn,q) iS @ new
system of local coordinates denoted by (z1,... ,Zp,¥1,.-. ,Yq), the local
trivialization of v associated to fr becoming w(%), (1 <X <gq). Hence

if locally Xo = Y0, Pz + iy Qnaz , then Xo.fr, = Xo.y, =
Q. = X5 y,\Ch,A, and hence, Cf , = On the other hand,

3yx Iv—o

7([Xo, %;]IV) = -7 (%Hv:o) '”(aT,,,’)’ which proves part (iii) of

the lemma.

We denote by ¥ the set ( Sing (X,) N V) U Sing (V) and by (Z4)a
its connected components. Recall that a singular point of X is either
a point where X, is not defined, or a point where it vanishes. Now
assume X, to be compact, and denote by U, an open neighborhood
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of ¥, in W. We set V, = VNU, We shall assume furthermore
that U, N Uz = 0, for @ # B. Thus, in particular, V, — %, is in
the regular part of V. Denote by 7. a compact real manifold with
boundary, of real dimension 2n, included in U,, such that ¥, is in the
interior of 7, and that its boundary 9T, is transverse to V — £. Put
Ta=TaNV, 8T, =0T, N (V - %).
Assume the following:
(i) U, isincluded in the domain of a local holomorphic chart (z;,. .. ,25)
of W,

(ii) U, is one of the U,’s above, the index a being one of the indices
h. (Write f, and C, for the corresponding terms).

Let N 5
XOIU., = ZA,‘(ZI,... ,Zn)gz—..

Denote by V; (1 < i < n) the open set of points m in 97, such that
A;(m) # 0. These open sets V; constitute an open covering V of 97,.
Let U be any subcovering of V. (Such a U always exists: take for
instance V itself; see also the particular cases 2 and 3 below). We will
denote by (R;), (1 < i < n) any system of “honey-cells” adapted to
this covering U (see the definition in [8 (section 1)], under the name
of “systéme d’alvéoles”). For instance, if the real hypersurfaces |4;| =
|A;| (i # j) in U, are in general position, we may take for R; the cell
defined by |A4;| > |A4;| for all ,7 #4,V; € U.

Denote by M the set of multiindices u = (u;, us,... ,u,) such that
1<u; <uy <...<wup, <n,and by M(U) the subset of those such that
V.; € U and NZ_,V,; be not empty (that is the set of p simplices in the
“nerve” of U). For any u € M(U), define R, = Ry,u;..u, = N1 Ry,
oriented as in section 1 of [8].

Let ¢ € (Z[cy, ... ,¢4])*® be a Chern polynomial having integral coef-
ficients with respect to the Chern classes, and defining a characteristic
class of dimension 2p.

Theorem 1. Assume V to be LCI. Define

I.(F,V,o,v) = (-1)l8] ) / e(= dzmij\dz;iz N dz,
uEM(U) j=141u;

(i) I.(F,V,p,v) does not depend on the various choices of (z1,. .. , 2,),
U, Ta, fa, Ca, Ri, and depends only on the foliation F defined by
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Xo, but not on X, itself.

(1)) Assume furthermore V to be compact. Y, I,(F,V,p,v) is then
an integer.

(iii) This integer depends only on V and ¢ , but not on F; it is equal
to the evaluation < p(v),V > of p(v) on the fundamental class
[V] of V.

Remark. The index above depends obviously only on F and not
on X,. If we take uX, instead of X, u denoting some holomorphic non
vanishing function on U, then each A; is multiplied by u|y, the matrix
C, also, and the term under integration does not change. In fact, we
could write the theorem for a foliation F with singularities, defined
only locally by a holomorphic vector field but not necessarily globally.

Particular cases. 1) For p = q = 1, I,(F,V,c;,v) coincides with
the index defined in [9] by A. Lins Neto, if V, is a locally irreducible
curve. For a possibly (locally) reducible V,, it coincides with the one in
[12] (notice that the sum of the indices of Lins Neto over the irreducible
components is different from the above index: see [12] (1.3) Remark 1°
and (1.4) Proposition). In fact, in this case, the 1-forms % and dff
coincide over V; NV, and glue therefore together, defining a 1-form
7o on 07,, while X,.f, may be written g,f, for some holomorphic
function g,. The formula of Theorem 1 becomes now:

-1 1
Ia(f,V,cl,V) = Z;T[/}; (_ga)na +/R (_ga)na] = 51;/37_ 9aTla-

On the other hand, when f is irreducible, if kw = h.df + f& accord-
ing to the notation of [9 ( p.198)] (up to the bars for avoiding con-
fusions with our notations), his index is then equal to =1 [, ¢. But
2 and go7, are equal on 97, because they both take the same value
9o when applied to the restriction of Xy, Q.E.D. See (1.1) Lemma
and (1.2) in [12], when f is possibly reducible. This coincidence is
also obvious from Theorem 2 and the remark below. Thus the above
Theorem 1 may be seen as a generalization of Theorems A and C
of [9] and Theorem (2.1) of [12]. In particular, since the sum of
our indices is the self-intersection number of the curve V, the integer
3dg(S) —x(S)+ > g u(B), lying in Theorem A of [9], is equal to dg(S)?,
if the curve S is locally irreducible at each of its singular points. In gen-
eral, the integer is different from dg(S)? (see Theorems (2.1) and (2.5) in
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[12], in fact, dg(S)? is equal to 3dg(S) — x(S) +3, cp(S) by the adjunc-
tion formula, where, denoting by B, ..., B, the local branches of S at
a singular point p, ¢,(5) = p,(S) +r—1 = X1_; u(Bi) + Lix;(Bi- B;))-

More generally, for p = 1 and any g, there exists a 1-form 7, on
3T, the restriction of which to each V; being equal to 9%. Then,
still defining g, by the same formula X,.f, = gofa, the formula of
Theorem 1 becomes:

1
Ia(}-,‘/’clay) = M/S-T 9alle-

2) When X, is in the regular part of V, we may take a local chart
(21y-++ y2n) = (z1,-++ ,Zp,Y1,-.. ,Yg) such that fy = y, for any A =
1,...,q. Then A,,, vanishes on V,, in such a way that all open sets
Vp+a are empty, and that we may take Y = V,...,V,: Thus, u =
{1,... ,p} is the unique element of M(U). On the other hand, Cf , and
%m are equal on V,. We recover therefore the formula of Theorem 1
in TS] writing I,(F,V, ¢, v) as a Grothendieck residue. Note that there

are some sign errors in [8]. On the third line of p.237, the factor
-—1)[5'] should be omitted, in Théoréme 1 of p.217, the integral giving

the residue should be multiplied by (-—1)"‘*[5] = (—1)[#] instead of
(—1)?, and in Théoréme 1’ of p.233, the integral should be multiplied
by (-1)[8l.

3) Assume that X, consists of a point m, isolated in V', and that X,
is meromorphic near m, (thus X, has a zero, a pole or both at m,).
Then, we have the following.

Theorem 2. There ezists a local holomorphic chart (2, ..., 2,) near
mq in W, such that V1, V,,...,V, cover 8T, (p = dimcV ).

For this covering U, M(U) has a unique element uy = {1,...,p}.
Writing R instead of R, , the formula of Theorem 1 becomes now:

= (— [E] (p(—Ca)dzl ANdza A... A dzp
LF Ve =) R A '
Proof.  Let us write Xo = Yi_; Aig, Ai = & with P, and Q;

holomorphic near m,. We think of P and Q; as being in the ring O,
of germs of holomorphic functions at the origin O in C™, and assume
that they are relatively prime for each i. Let Q be the least common
multiple of the Q,’s. Then QX is a holomorphic vector field leaving
V invariant.
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Lemma 2. The holomorphic vector field QX, has an isolated zero
at my, on V.

In fact suppose Q@ X, had a non-isolated zero at m, on V, and let V'
be a positive dimensional irreducible subvariety of V' containing m, and
be contained in the zero set of QX,. For each i, we write Q = Q;Q},
where Q1. .., @}, have no common factors. Since QXo = X1, P,Qi 7,
the functions P;@Q! are all in the defining ideal I(V') of V'. Hence, since
I(V') is prime and X, is non-zero away from m,, there exists i, such
that Q; € I(V'). Thus there is a prime factor P of Q; such that
P € I(V'). Now, since Q;Q; = Q = @;,Q;,, P is a factor of Q;Q; for
any i. On the other hand, since the pole of X, is the union of the zero
sets of the @;’s, we have Q; ¢ I(V'), by the assumption that the pole
of X, is at most isolated on V. Therefore, P must be a factor of Q; for
all 5. This contradicts the fact that the @Q:’s have no common factors,
and the lemma is proved.

In the above situation, since the zero set of P,Q} is not smaller than
that of P;, it suffices to prove the proposition for vector fields holomor-
phic near m,. Note that the index of X, at m, is equal to that of
@ Xy, and also that if X, has an isolated pole on V, then V is in fact
1-dimensional, since the pole of X, has codimension 1 in the ambiant
space and in V.

In what follows, for an ideal I in the ring O,,, we denote by ht I its
height and by V' (I) the (germ of) the analytic set defined by I. Thus
ht I = codim V(I). Also, for germs a,,...,a, in O,, we denote the
ideal generated by them by (a4,...,a,).

Lemma 3. Let A,,..., Ay, fi,...,f, be germs in O,, n = p+gq,
with ht (f1,...,f;) =q and ht (A,,..., A, f1,...,f;) =n. Then there

exist germs Aj, ..., A, in O, such that:
(i) Aj,...,A, are linear combinations of A;,..., A, with C coeffi-
cients,

(i) ht(A},..., A, f1,...,fg) =n.
Since ht (f1,...,f,) = g, it suffices to show the following for r =

1,...,p:

(*) if A},..., A._, are linear combinations of A;,..., A, with C coef-
ficients with ht (A4},...,A._,, f1,...,f;) =7 — 1 + g, then there exists
Al which is a linear combination of A,..., A, with C coefficients and

ht(A;a-..,A:.,fl,...,fq)=r+q.
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To show this, let V(A3,...,A._1, f1,-.., f) = V1U---UV, be the irre-
ducible decomposition of V(A!,..., Al i, f1,.---sfq)- Since
(A1, Ans fryeo o0 fo) = n, for any point z in
V(AY,..., AL, f1,---,fy) mear O Dbut different from O,
ht(A;,..., A, f1,. .-, f;) = n, we see that there exists A; with A;(x) #
0. Hence there exists A’ which is a linear combination of A4,,..., A4,
with V, ¢ V(A!) for k =1,...,s, and thus we have

V(AL AL f, 0 fg) =(MNV(AD)U--- U (V,NV(A4))).

Since each V, is irreducible and V;, ¢ V(4,), dim(V, N V(4))) <
dim Vi. Therefore, we get ht(A},..., A, fi,...,f,) = r + g, hence
the lemma.

Note that the condition ht (fi,..., f;) = ¢ means that the variety
V defined by f; = --- = f, = 0 is a complete intersection, and the
condition ht (A4y,...,An, f1,...,f,) = n means that the singularity of
the holomorphic vector field X = 31, A; 2 is isolated in V.

In the above situation, if we choose a suitakle coordinate system
(21,--.,2,) in C™, then we may suppose that ht (A1,...,4p, f1,..., f)
= n. Hence Theorem 2 follows.

Remarks. 1) Let V, be defined by f, =0, A =1,...,q. Suppose
that V,, is invariant by a holomorphic vector field X, (defined every-
where on U,) and that X, is an isolated point m, in V,. Then as is

shown above, there exists a holomorphic chart (z,,. .., z,) near m, such
that when we write Xy = >0, Aiz,%, ht (As,...,Ap, f1,---, fq) = n,
ie., Ay,...,Ap, f1,..., f, form a regular sequence. We may set

Ta={z=(z,--,2:) | [Ai(2)| <&, |x(2)| <5,
i=1,...,p, A=1,...,q}.

Thus we have T, = {z | |4;(2)| <, fr(z) =0} and we may also set
Ri= {2 € 0T, | |42 2 |4;(2)] for j #i}.

Then

R=Ry.p,={z]||Ai(z) =€, falz)=0,i=1,....,p, A=1,...,q},

which is a smooth closed submanifold of real dimensiom p in 07,, the
link of the singularity V,. If we set §; = arg A;(z), R is oriented so
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that the fortt ('—1)[%](101 A---Adb, is positive. Let R' = (—1)[§]R so
that df; A --- A df, is positive on R'. Then
; [ @(=Ca)dzy Adza A ... Ndz,
an@, V’ ¥, V) - R P Ai .

i=1

2) Theore 1, 2 and Theorem 1’ below could be extended to the
case where we, take the set Sing(X,) NV as X.

Now Theorem 1 is a special case of the following Theorem 1’. In
general, let V be a subvariety of W, and E — V a continuous complex
vector bundle of rank r such that the restriction of E to the regular
part of V is lidlomorphic and that there exists a C* extension £ — U
of E to somé&°neighborhood U of V in W. We shall also assume that
there exists & Bolomorphic action of X, on E|y_g in the sense of Bott
[4]; a C-linedP%perator 6, from the space of C™ sections of E|y_s
into itself is éiven such that

0, (Y is holomorphic whenever o is holomorphic,
O, gu&’) = (Xo-u)o +ub, (o) for any C* function u
) and any section o.

In order to st@te Theorem 1’, we further assume that U, is included in

the domain 6f1® local chart and that E|y, is trivial with a trivialization

(o15---,04) ‘@hose restriction to V, — X, is holomorphic. We denote

by M, the r ¥ matrix with holomorphic entries M g’a V,—-X,->C

such that GXOIH,) =Y, M} ,05. Let ¢ € (Z[cy, ... ,c,])?” as before.
Theorem®1?. Define

o)dzy, A dzu2 ...Ndz,
OXO,Vwb% l)l] Z / QD A £,

uEM(U) J =1

Then the follgwing hold:
(i) I,(0x,, Y o, E) does not depend on the various choices of

(zl, - zn)s U, Toy (04, ... ,0,), Rs.
(ii) AssumeV to be compact : 3, I,(0x,,V, ¢, E) is then an integer.
(113) This integer depend.é only onV, ¢ and E, but not on X, and Ox,.
It is in fact equal to the evaluation < ¢(E),V > of p(E) on the
fundamertal class [V] of V.
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Remarks. 1) For Theorem 1’, V does not need be SLCI even LCI;
this assumption was only useful for being sure that v and ¥ exist in
the example 1 below. This is still true, even for Theorem 1, if we have
some other reason to know that v and © exist.

2) If V is non-singular, we recover Theorem 1’ of [8], some particular
cases of which being also in Baum-Bott [1] when E = T¢(V), and in
Bott [4] when X, is nondegenerate along X,.

3) Let V,, be defined by f\ = 0, A = 1,...,q and invariant by a
holomorphic vector field X, (defined everywhere on U, ). Suppose that
¥, is an isolated point m, in V,. Then, as in the previous remark
1), there exists a holomorphic chart (z,...,2,) near m, such that
Ay,..., Ay f1, ..., fq form a regular sequence. In this case, we have

Lo(6x,, V0. E) = | p(Ma)dz /\pdz«;l A...Ndz,
' i=1 4%

)

where
RI={ZHA1'(Z)'=€’ fA(z)=0a i=1,...,p, ’\=1a"°aQ},

which is oriented so that the form df; A --- A df, is positive, where
0; = arg A;(2).

Example 1. Assume V to be SLCI. Take E = v, and 6, defined
as in section 3 above, with M, = —C,. Then we get Theorem 1
from Theorem 1’. We shall write in this case I,(F,V, p,v) instead of
Ia(OXo’V,‘p’V)' .

Example 2. Take E = To(W)|y, and define 6, (Y) = [Xo,Y]|v,
depending only on the vector field Y tangent to W along V, and
not on its extension Y to some neighbourhood of V. Then we have
M, = B4 - The index now is the one defined in section 8 of

D(zl,...,z..)
(8], Theorem 1’ (and the above remark 3)) giving a formula for com-
puting it. In this case, we shall write I,(Xo,V,p, Tc(W)) instead of
I.(0x,,V,0,Tc(W)|v). (Notice that if we replace here X, by uX, as

in Theorem 1, the index is now changing!)

4. Proof of Theorem 1’

We use the notation A, for the Chern-Weil homomorphism defined
by a connection w, and A, ,,....,, for the Bott’s operator for iterated



RESIDUES OF HOLOMORPHIC VECTOR FIELDS 179

differences [3] so that do A g, .., = ZLO(—l)f Asy--0;-wy, - In particu-
lar, do A, = A, —A,. Thus for ¢ € (Z[cy,-.. ,¢:])?, Avgwrws (@) 18
a differential form of degree 2p — k on the common domain of definition
of the connections wg, ws,...,ws.

We shall say that a connection w on E|y_g is special relative to 6,
if it is defined by a derivation law V satisfying:

Vx,0 =0, 0 for every section 0 of El|y_g,

Vzo =0 for every section Z of the anti-holomorphic tangent
bundle T(V — X) of V — X and every holomorphic
section 0 of E|y_s.

For special connections, we have the “vanishing theorem” (see Lemma
4 below for more general statement): If w is special relative to 6, ,
then A, (p) =0.

Let Uy be a sufficiently small tubular neighborhood of V — X in W
with (C*) projection p : Uy = V — X. Then the C*® vector bundles
177|U0 and p*(E|y—g) are isomorphic, since their restrictions to V — X
are both equal to E|y_z. We denote by w the connection on E|y,,
which is equivalent to the pull-back of a special connection on E|y_s
by p. We give also an arbitrary connection w, on E|U.,-

Proposition 2. Let

Ja(6,,V, 0, E) = /T A.(9) + /8  Buole)

Then the following hold: :
(i) Ju(F,V,p, E) does not depend on the choices of Ty , w, wq.

(i) AssumeV to be compact 3°, Ju(0,,,V, ¥, E) is then an integer.

(11i) This integer depends only on V and ¢ , but not on F. It is in
fact nothing else but the evaluation < o(E),V > of p(E) on the
fundamental class [V] of V.

Notice that, in Proposition 2, we do not have to assume either that

U, is included in the domain of a local chart, or that E|y, is trivial.

The proof is similar to that for the first three parts in Theorem 8 of

8], if we replace V, Y = [X,,Y] by V, 0 =0, 0.

Theorem 1’ (hence Theorem 1) will follow immediately from Propo-
sition 2 above and
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Proposition 3. Suppose that U, is included in the domain of a local
chart and that E|y, is trivial with a trivialization whose restriction to
Vo — o 1s holomorphic. Then we have

Ia(e K‘PaE) :Ja(exov‘/ﬂp’E)'

Xp?

In what follows, we fix a trivialization (oy,...,0,) of E|y, as in
Proposition 3 and compute the matrix M, in terms of this trivializa-
tion. We also choose w,, equal to a trivial connection w, whose connec-
tion form with respect to this trivialization is the matrix 0. Hence, in
the formula of Proposition 2, we have

Ja(exo,Va‘P, E) = / Ayou ()
Ta

Remarks 1) Notice that the integration of the sdife expression
over only one of the connected components of 37, NV would give the
partial index corresponding to the corresponding “sheéPilor “branch”
through X,.

2) If V is not LCI, we still can define I,(F,V, ¢,v) and-J,(F,V, @, v)
under the condition that the bundle v|y, _x, is triviali#§ble, and con-
clusion of Proposition 3 will still remain true. But this'idex will now
depend on the choice of the homotopy class of the trividlization. Fur-
thermore, even if this is possible at any point of ¥, tHe um of these
indices has now no reason to be either an integer or indéendent of F.

There are three steps in the proof of Proposition 3: 1) We first
study the properties of the holomorphic connections & fon E)y,, the
connection form of which with respect to the given triv#lization being
%iM,. 2) Then we prove that A, (p), which is a c88ycle on 07,
is cohomologous, when imbedded in the total Cech-de Kham complex
CDR*(U), to the element y in CDR?*~!(U) defined byP°

Ky = Awo Wuy Wug...Wup (90) fOI' u € M(u)a
pr = 0 for any simplex I of dimension # p — 1 in f¥e nerve of i.

3) Finally, we prove that

0(M,) dzy, Ndzy, A ... Ndz,,
Pu = 7 A, '

=1




RESIDUES OF HOLOMORPHIC VECTOR FIELDS 181

Using integration on CDR*(U) as recalled in Lemma 6 below, this will
achieve the proof of Proposition 3.

First step. Let €2 be an open set in V, — ¥,, Y a holomorphic
non-vanishing vector field tangent to (2, and I" a holomorphic map from
Q into the space of r x r matrices with complex entries. A connection
@ on E|q will be said to be “adapted” to (Y,T) if its connection form

relative to the trivialization (oy,...,0,) of E|q, still denoted by w,
satisfies:

@(Y) =T,

@(Z) =0 for every section Z of T(V, — Za)-

Hence the restriction to €2 of a “special” connection, such as defined for
Proposition 2, is adapted to (Xo, M, ), while the restriction to 2 of the
trivial connection wy is adapted to any (Y, matriz 0) for Y holomorphic
tangent to 2. From the usual vanishing theorem (Bott [3], Kamber-
Tondeur [7]), we deduce the

Lemma 4. Let dimy = 2p. Then the following hold:

If @ is adapted to some (Y,T'), Az(p) =0.
If @,,... @ are adapted to the same (Y,T'), Ag,. .(p) =0.

For any ¢ multiindex I = (1 < 4y,1,,... ,%, < n), the i;’s being all
distinct, define
D(fi,---,fq)
g € D(zi,,.-- ,z2,)
For any u € M, define the ¢ multiindex @ = (@, Us,... ,q,) so that
1<t <ty <...<18 <n,and {1,2,... ,n} = {ug,us,... ,u,} U

{@1,4s,...,G,}, and by Q5 the open set of points in V, where D; #
0: Qg is a union of open sets where the restrictions of the functions
Zuyy--- 52y, constitute a system of local coordinates. For any ¢q + 1
multiindex I = (1 < 4y, 4,... ,%, < n), Y; will denote the holomorphic

vector field: .
0
Yi =Y (~1)*Dyiy .
l;) k azik

Lemma 5.
(i) Yi is tangent to V.
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(ii)) For m € V; (1 < i < n), there ezxists u € M containing i such
that Dy # 0 at the point m.

(ii)) For any i (1 < i < n), the connection w; = %Ma on E|y,
satisfies the following condition: for any u € M containing i, the
restriction of w; to Qg is simultaneously adapted to (Xo, M,) and
any (Yy,+a, matriz 0) such that u; # i.

In fact let I be some ¢ + 1 multi index such that D;_;, # 0 at some
point m in V for some i, € I, so that the restrictions Z; to V of the
functions z; constitute, for ¢ belonging to {1,2,... ,n} — {I — 4} (in
particular for ¢ = 4;), a system of local coordinates on V near m. But
then, the restriction of Y; to the domain of such a local chart is equal
to (—1)*D;_;, 52— and is therefore tangent to V, hence part (i) of the
lemma. *

The condition for X, to be tangent to V may be written:

ZAj(fA)',j=0 on V, forall A=1,...,q.

=1
Hence, if m € V;, the ¢ dimensional vector (( f’\);"’),\ is, on V,,
=1,...,q
a linear combination of the others ((f,\)'z) , (7 #1); Dy must
7/ A=1,...,q

be zero at m for any q multiindex J containin.g‘,z'. But, since V; is in
the regular part of V, one at least of the D; must be # 0; the only
possibility is therefore that i ¢ J for such an J, hence part (ii) of the
lemma.

On Q3, Xo = Y5, A"i% = DL.; *1A4;Yy;4q and, on V; N Qg,
the p holomorphic vector fields Xy and (Yuﬁ,—,) » are linearly inde-
pendant. The part (iii) of the lemma becomes now obvious to check,
since V; is covered by the €2; such that i € u.

Second step. For any k simplex I = (49 - - -14;) in the nerve of U,
write Awo w wr (<P) = Awo W Wig Wiy, (‘p)a Aw wr (‘P) =A, Wig Wiy, (‘p)a and
Ay wi(p) = Ay, Wig Wiy, (p)-

Define v € CDR?*'(U) as the family (vy,), given by
v, = (-1)[*A,, » o, (), where k denotes the dimension |I| of I.
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Then, the total differential Dy of v in CDR*(U) is given by:

(D'Y)’ = (_1)[£1'—1]+k (Aw wr(P) = Doy wr ()
a—o( l)aAwo W Wr-ig ((P))
+ 20::0(_1)[ ]+a+1Awo W Wr—ig (¥)
= (=) (Ay 4, (9) = Dug i (9)), for (1] >0,
(D7), = B0 () = Bug wil9) + Bug () for 1] =
But all terms A,, ,,, (¢) vanish because the connections w, w;,, - - ,w;,

are all adapted to the same (X,, M,), all terms A, ,,(¢) vanish for
|I] < p—1 because the connections wy,w;,,- - ,w;, are all adapted to a

same (Y, matriz 0), and all terms of (ny) vanish for |I| > p because
Ag,...s, () is always 0 for any family of r -lf 1 connections when r > p.
Therefore, it remains only: (D’y)‘ = Ay, w(p) for I = {i} of dimension

0, (D'y)u = —pu, for u € M(U) of dimension p — 1, all others (D'y)t’s

being 0. This proves: Dy = L(Awo w((p)) — p, where ¢ denotes the

natural imbedding of the de Rham complex Q3},5(97,) into CDR*(U).

Third step. The set V, equal to N?_,V,,, is included into Q5. In
fact, as already seen in Lemma 5, if m belongs to V;, D; must be zero
when i € I. So if m € V,, u is the only possible element v in M(U)
such that D, # 0.

For computing A, ..., We introduce (Bott [3]) the connection
@on (Ely,) x A? = V, x AP, (AP denoting the p-simplex 0 < >°F_, ¢, <
1, 0<t; <1, in RP), defined by

[@= th, [1—(Zt ]“’0—(27"%)

j=1

The curvature  of this connection is then equal to
(Z dt; N —— dzu,)M + (terms without any dt;) .
Therefore, for every polynomial ¢ in Chern®[c; ... c,],

+(terms of degree <p in dt,-).

<p(M,,)::lz.,1 A-- /\dzup

J—l A
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By integration over AP, and using the equality [,, dt; A---Adt, = ‘% ,
we get [3 (p.64)]:

O(My) dzy, Ndzy, A ... Ndz,,
AWOWI"'WP (p) = P4 .

]:1 uj

This achieves the proof of proposition 3, hence of Theorems 1’ and 1,

once using:
Lemma 6. There erists a linear map L : CDR?**"Y(U) — C with
the following properties:

(i) L vanishes on the total coboundaries D(CDRz’"2 (U)) )

(i) L estends simultaneously the integration [y : Q2-10T,) — C,

and the map: (—1)[5] Ywerman Jr, 1 CP 71U, Qpg) = C.
Proof. See section 6 of [8].
5. Examples. Let W be the 3-dimensional complex projective
space CP®, with homogeneous coordinates [X,Y, Z, T]. Take for V the
cone V] of equation

X'+Y'+ 2" =0 (I being any integer > 1),

which has a single isolated singular point O = [0,0,0,1]. Denote by
Ur,Uz and Uy the affine spaces T' # 0, Z # 0 and Y # 0 with respective

coordinates (z = £,y = X2 = £), (2’ = £,/ = £,¢' = L) and
(z” = Xv,z” = ;Z,—,t” = %) The three open sets Ur,Uz,Uy cover

V, since the point [1,0,0,0] does not belong to V;. The corresponding
equations of V; may be written respectively: fr =0, fz =0, fy =
0, with: fr(z,y,2) = o' + ' + 2, fz(z',9,t') = z' +y" + 1, and
fr(z”,2”,t") = 2”' + 2”' + 1. The bundle 7 is defined by the cocycle

1 1 1
(gTz=Z'=t7, gTY=yl=t,7, gzy =y =7)-

In general, for a hypersurface V; of degree | in CP" (dimcV; = p =
n — 1), we have (see Example 3 in section 2)

< ()P (v), Vi >= I / 1=

Vi

Also, from To(CP™) @ 1 = (n + 1)L, we obtain
1+ a(Te) + e(Te) +--- = (1 + )™,
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hence

(n+1)n ,

¢ (Tc(CP™) = (n+1)e, ¢ (Tc(CPT™)) = 5 Che

In particular, for p =2, ¢ =1,

< (a1)*(To(CP%), Vi >= (3 +1)? [, ¢ = 161,
< c(To(CP?)), Vi >=43 [, & =6l

Example 1. Take for X, the extension H to the whole CP?® of
the vector field of infinitesimal homotheties 2.2 +yZ + 2 in Ur. (In
Uz and Uy, H is equal respectively to —t';2- and —¢” z;). This vector
field has for singular set the union of {O} and of the hyperplane T' = 0,
and ¥ has 2 connected components: ¥, is the isolated point {O}, and
¥, the curve (X' +Y! + Z' =0, T = 0). Notice however that ¥, does
not contain any singularity for the foliation F generated by H, so that
we can already assert

I2(fa‘/l7 (01)2”/) =0.

1) Computation of Il (‘7:, V;a (61)27 V) and Il (H7 V;) 12 TC(W)) (90 =
(€1)? or ¢y):

For E=v, H.fr =lfr and My = —Cj is the 1 X 1 constant matrix
(=1). For E = Tc(W)|v, My = -—g—((:—:%% is equal to the opposite of
the 3 x 3 identity matrix, in such a way that for E = v, (¢;)%(Mp)
is a constant equal to %, while for E = Tc(W)|v, ¢(Mp) is also a
constant equal to =% if ¢ = ()%, and ;5 if ¢ = c;. (Recall that,
cx applied to some matrix is equal to (5=)* times the kth elementary
symmetric function of the eigenvalues).

We compute the indices in two ways; first directly by the definition
in Theorem 1 or 1’ and then applying Theorem 2.

(i) Take for 7 the ball Sup (|z], |y], |2|) < € for some positive constant
€. Let R, be the region in the boundary 07 defined by |z| > |z|, |z| >
ly|, and define R, and R, similarly. The index I,(0x, Vi, , E) at the

origin O is equal in both cases to

d d d
_w(MO)(/ O N d_z,\_Z),
Rzy T y Ryz y 4 Tz z z
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On R,,, we may write z = ee”, y = €', and & A & L = —df A do,
which is positive on R,,. In fact, remember ([8]) the convention about
the orientation of R,, by the normal from R, to R,. Let us write
z = re and y = se’ on T; then dr Adf Ads A do is positive on 7
with r increasing when approaching 7T NR,, r = ¢ and dd Ads A do is
positive on R, with s increasing when approaching the boundary near
R.,, in such a way that —df@Ado is positive on R,,. But there, we have
2= —(z'+4y') = —2¢'cos 5”2;016‘5’2_“1, so that R,, is an [-fold covering
of the set of (0,0) such that 2¢!|cos(oc — 0)| < €' (because |z| < € on
R,,). It is easy to check that the set of (8,0) in the square [0,27]?
where the previous condition holds is made of [ strips, the area of each
one being & x 2w = 4. Then, because of the [ sheets of the covering,
we get: [ Ra, gz A —1 ‘”" . The computation is the same for the two

z

others integrals, so that
/ @ A Ey. d_y A iz. / d_x A gf = 4ln2.
Rzy z y Ryz y 4 zz z

(ii) We observe that, in this case, z, y and fr form a regular sequence
(see Remark 1) after Theorem 2 and Remark 3) after Theorem 1’),
and we may take for 7 the ball Sup (|z|,|y|,|fr|]) < e. The index
L6y, Vi, p, E) at the origin O is equal to

dz d
o(Mo) [ — A _y

R Z y’
where R' is the 2-submanifold in the boundary 97 given by
R ={(z,9,2) sl =lyl =¢, o' +4/ +2' =0}.

On R', we may write: z = ee®, y = €€, and & A Qy" = —df A do,
which is negative on R'. But there, we have 2! = —(z' +4'), so that R’
is an I-fold covering of the set of (6,0) in the square [0, 27]?. Thus

In either way we get:

L(F,Vi,(c1)%v) =13 and
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9 if p= (cl)2a

2) Computation of I,(H, V, ¢, Tc(W)).

Since ¥, is a smooth compact holomorphic manifold in the regular
part of V;, we may use the Bott’s theorem ([4 ( p.314)]) for computing
the index, under the condition that the infinitesimal action of H on the
bundle N normal to ¥, in V; be non degenerate. Since V] is compact,
this action will be of constant type along X, and the same thing is true
for the action 8|, of H. So, it is enough to calculate them for instance
along ¥, NU3. Since %ZL? = l:z:"’l, and %-yL? = ly"’l, and because both
coordinates z' and 3’ may not vanish simultaneously over ¥, N Uz, we
may assume for instance z' # 0. Near such a point in ¥, N Uz, we may
replace the coordinates (z',y',t') by (u = fz(z',y',t'),v = ¢, w = t'),
so that V; has now u = 0 for local equation, while ¥, is now locally
defined by u = 0,w = 0. The bundle N is generated by 2, H = —wz,
and [H, Z] = Z. Therefore this action, represented by the constant
1 x 1 matrix (+1), is effectively nondegenerate. On the other hand, v
is generated by Z, so that [H, 2] = 0, while the third bracket [H, 2]
being also 0, the action Oy|;, on Tc(W) will be represented by the

constant matrix
000

000
001

Denote a, b, c the formal classes such that the kth Chern class of W is
equal to the kth elementary symmetric function of a,b,c. After Bott,
we have

a0 O
®l0b O

00c+1
L(H,Vi,0,Tc(W)) =< ————2 5, >

where ¢ denotes (a + b+ c+ 1)? for ¢ = (¢;)?, and ab+ (a + b)(c + 1)
for ¢ = c,. Hence

< 2¢; (Tc(W)) —C (N)722 >, for (cl)z’

L(H,V,p, Tc(W)) =
2 % Tc(W)) { and <a+b,X, > for c,.
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Notice that N coincides with the restriction to X, of the hyperplane
bundle L — CP? after identification of C P? with the hyperplane T = 0
in CP®, while To(W) is stably equivalent to 4L, and (a + b)|cpz =
¢ (CP?) = 3¢, (L). We get therefore 7 < ¢, (L), Z; >= Tl for (c;)?, and
3 < ¢y (L), X, >= 3l for c,.

Finally, we recover

<(a)’(),Vi>=F+0="0,

< (1) (Tc(W)),V; >= 91 + 7l = 161,
< Cz(TC(W)), Vi >=3l+3l =6l

In particular, for | = 2,
<(a1)’(v),V; >=8, and

< (a)*(Tc(W)),V, >=32, < ca(Tc(W)), V, >=12.

Example 2. Take [ = 2, with now for X, the extension R to
the whole CP® of the vector field of infinetisimal “complex rotations”
y% — x;ay- in Ur.

In Uz (resp. in Uy), R may be written as y' 52 — ' a%, (resp. (2”2 +
)52 +2"2" 2 + 27t" ). Now T is made of 3 isolated points: m; =
[0,0,0,1],
my = [i,1,0,0] and m3; = [—1,1,0,0]. Notice that V; is regular at
my and mz. We have R.fr =0, R.fz =0, and R.fy = 22” fy, which
prove that R still preserves V, and that I;(R,V,(¢;)?,v) = 0 since
m; € UT.

1) Computation of I (R, Vz, ¢, Tc(W))

In this case, y, —z and fr form a regular sequence and we may take
for 7 the ball Sup (|z|, |y|, |fz|) < € for some positive constant e. The
index I,(0x,,V, ¢, E) at the origin O is then equal to

dz AN dy
M
[ e =2,

where R’ is the 2-submanifold in the boundary 87 given by

Rlz{(m’yaz)Hm:l—l‘l:E, :E2+y2+z2=0}_
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If we write £7%= ge?, y = €e’” on R/, then do A df is positive on R'.

Hence we hzdle ™ d”;‘; —8n%. When E = T¢(W)|y, M, is now the
0-10

matrix [1 090 |, and ¢(M;) is still a constant, now equal to 0 for
0 0%

@ = (¢1)?, aftd to 5 for ¢ = c;. Then we have, I,(F, V,(c1)?,v) =

II(XO7‘/2a (CI€ (W)) - O and IO(XO; ‘/2’627TC( )) =2

2) Compu ahon of indices at points m, and ms.

Observe t“ﬁat —fi = 2z” # 0 near these points. Then we may use
(u = fy,v = s ” w = t”) instead of (z”,2”,t”) as local coordinates,
w1th R = z( § 5 T Vs, 311 +w aw) The ta.ngent space to V is generated
by 3o and -22™Since the restriction :c(v +wg, ) is nondegenerate at
my and m3,%v?fh eigenvalues (1, €1) w1th € =1 (resp. -1) at m, (resp.
m ) we may*use the Bott’s formula. The normal bundle v is generated
by 2 35> and tfné‘ action of R on v at points m, and mj3 is given by the
1 x 1 matrix (tl2sz) and

Iz(]:,V,(Cl)z,V) =L(F,V,(a)’,v) =4

200
The action of & on T (W) is given by the matrix —ez [010 |, and
001

I2(Rll‘/:q’ (cl)zaTC(W)) = I3(R’ V2a (cl)zaTC(W)) = 16,

IZ(lga V2’C2aTC(W)) = I3(Ra %aCZaTC(W)) =5.

We may notice that we still have, as in example 1:

<(a)?(v),Va>=0+4+4=38,
< (c1)*(Tc(W)), Vo >=0+16 + 16 = 32,
< e(Te(W)),Va >=2+5+5=12.

Example 8. Take still [ = 2, with now for X, the linear combi-
nation X, =18 + bR of Examples 1 and 2, where w € [0,%[, a =
cosw, b=sinw, (a #0). InUr, X, = a[m%+y5‘9§+z ]+b[y——x 3]
has only for singular point the originm,. InUz, X, = b(y' 3% —= a?/' )—

at':, has no singular point on V. In Uy, X, = b(z”? +1)5% +
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bz” 2" 32=) + 1" (bz” — a) 3 has the same singular points m; and mg as
in Example 2.

1) Computation of indexes at point m;.

Since X,,.fr = 2a fT% the 1x 1 matrix C, is constant equal to ((—2a)),
so that (¢;)*(Cy) = =%-.

Write: A =az+by, B = —bz+ay and C = az. We have %é’jf; =

a bo

D(A,B,C

—ba0|, and (- Dley2)

00a
(c1)?, and :@#l if p = c,.

In this case, A, B and fr form a regular sequence, and we may take
for 7 the ball Sup (|A|,|B|,|fr|) < € for some positive constant ¢.
Then the index I; (F, Vz, ¢, E) at the origin O is equal to

—9a?
472

dz ANd
‘p(Ml)/ y)

where R’ is the 2-submanifold in the boundary 07 given by
R ={(z,y,2) | |A|=|B|=¢, 22 +y*+2°=0}.

Since dz A dy dA A dB, the integral is computed as in Example 1 to
get: [ L3 = —8n2. Thus we have
8a? for E =v and ¢ = (¢1)?,
I(F,V3,p,E) = 18a? for E = TcW and ¢ = (¢1)?,
2(3a? + b?) for E = TcW and ¢ = c;.

2) Computation of indices at points m, and m;.

We already observed that %:L‘"’ = 22” # 0 near these points, so that
we may use (u = fy,v = z”,w = t”) instead of (z”,2”,t") as local
coordinates, with X, = ba:”(2u 2 +vZ)+ (bz” —a)w. The tangent
space to V, is generated by = and a . The restriction

0 0

br”v— bz — .

S + (bz” — a)w 5

of X, to V, has for eigenvalues (bei,bei — a) with € = 1 (resp. -1) at

my (resp. mg). It is therefore nondegenerate at these points, and we
may use the Bott’s formula.
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The normal bundle v is generated by %, the action of X, on v
at points m, and mj; is given by the 1 x 1 matrix ((—2bei)), and
I2(}-av1(cl)2ay) = _ib(%a—) = 4b(b - ai)7 while I3(.7:,‘/,(Cl)2,1/) =
4b(b + ai). We recover:

< (¢1)?(v), Vo >= 8a® + 4b(b — ai) + 4b(b + ai) = 8.

The action of X, on T¢(W) has (—2bei, —bei, —(bei — a)) for eigen-
values. . 2 s
L(Xu, Va, (1), Te(W)) = $aay = (160° + 7a?) — i*E5=2), while

ib(ib—a)

I(X., Va, (€1)%, Te(W)) = (1662 + 7a?) + i2E¥=2) | We recover:
< (€)*(Te(W)), Vo >= 18a® + 2(16b* + 7a?) = 32.

I(Xy, Vs, 3, To(W)) = ML) — 537 4+ 302 — 2iab, while

Li(X,,Va,c3, Tc(W)) = 5b* + 3a® + 2iab. We recover:
< o(Te(W)), Vo >= 2(3a® + b%) + 2(56* + 3a?) = 12.

We may notice, in accordance with the theory, that the indices them-
selves are not necessarily integers and depend on a, b, contrary to their
sum, and also that we recover the values of Example 1 (I = 2) for w = 0,
and that of Example 2 for w = 7. However the calculation for this last
case had to be done separately, because we assumed explicitely C # 0
near my in the calculation of Example 3.
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