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TWO APPLICATIONS OF JACOBI FIELDS
TO THE BILLIARD BALL PROBLEM

MACIEJ P. WOJTKOWSKI

Abstract

We present new proofs of two results on the billiard ball problem by
Rychlik [R] and Bialy [B].

0. Introduction

We will give new proofs of two results on the billiard ball problem by
Rychlik [7] and Bialy [1]. The original proofs were based on variational
considerations. In our approach the variational context is absent, the dy-
namical system takes the center stage. We hope the simplifications pro-
vided by our method will make possible some progress on the conjectures
for which these results lend partial support.

1. The dynamical system

Let us consider a convex domain Q in the plane. The billiard ball
system is the flow ® on Q x S' defined by the free motion of a point
particle in Q, with elastic reflections at the boundary dQ (the angle of
reflection is equal to the angle of incidence). The circle s! represents
unit velocities. Strictly speaking, we need to identify the velocities at
the boundary according to the collision law. The flow @&’ preserves the
Liouville measure v equal to the product of the Lebesgue measures in Q
and S'.

Birkhoff [2] thought that this dynamical system is a very good model
for Hamiltonian dynamics. In the last 30 years his belief proved to be
strikingly accurate. We understand as much about the low dimensional
Hamiltonian dynamics as we know about the billiard system.

The flow ®' has a natural section map T : . # — .# , where # = dQ x
[0, =]. The map T describes the dynamics “from collision to collision”.
The space .# is the set of unit tangent vectors attached at the boundary
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and pointing inwards. It can be coordinatized by (s, ¢), where s is the
arclength parameter taken modulo p, the perimeter of 8Q, and ¢ €
[0, m] is the angle that the unit velocity vector makes with the tangent
vector to the boundary.

The map T, the billiard ball map, preserves the measure y=sin pdsdg .
This measure is obtained from v by the contraction (internal product)
with the velocity vector field of the flow ®°. It follows that

(1) /, 2(x) du(x) = v(Q x §") = Area(Q)27,

where 7(x) for x € .# is the time to the next collision. This formula is
also well known in integral geometry (cf. [8, formula (3.6)]).

2. Jacobi fields

Let us consider a family of billiard orbits (or straight lines parametrized

by the arc length)
p(e)=p(e, t)=y(e) +v(e)t, l€] <€y, —00 <t < +oo.
The Jacobi field J(¢) is defined as
op
a_€|6=0'
The Jacobi field is the infinitesimal description of the family of billiard
orbits (lines) around the orbit € =0:
J(1) =9'(0) + v (0)z.

The Jacobi fields satisfy the following differential equation (the curvature
of the plane is equal to zero):

(2) J(t) =

2
2,
dt
At any point in the phase space the Jacobi fields form the tangent

subspace, and can be identified with pairs of vectors (J(0), J'(0)) =
(¥'(0), v'(0)). Note that the prime denotes differentiation with respect to
t or €, whichever applies. It is natural to consider only the Jacobi fields for
which J(0) = y'(0) is orthogonal to the velocity vector v(0). Note that
J' =v'(0) is automatically orthogonal to v(0). We will call such Jacobi
fields transversal. One can also think about the (two-dimensional) space of
transversal Jacobi fields as the factor space by the (one-dimensional) sub-
space of Jacobi fields corresponding to the variations of the initial point
along the orbit (time variations).
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Transversal Jacobi fields can be considered as the tangent vectors to the
section .# . The connection is given by the formulas

(3) J=sinpds, J =-kds—dp,

where (J, J') € R? are now linear coordinates after the appropriate
choice of a unit vector orthogonal to v(0) was made, and k = k(s) is
the curvature of the boundary 6Q.

The evolution of (J, J') between collisions is given by the matrix

(4) (6 1):

The Jacobi fields can be naturally extended beyond reflections in the
boundary: with every family of lines including a segment of a billiard orbit
we can associate the family of reflected lines which include the segment of
the reflected orbit. The reflected Jacobi field is now calculated by (2). A
transversal Jacobi field (J, J') is transformed at a reflection by the linear
map

-1 0 __sing
(5) <% _1>, where d_k—(sT

3. The theorem of Bialy

In the recent paper [1] Bialy proved the following theorem.

Theorem 1 [B]. Ifthe phase space # of the billiard ball map is foliated
by continuous closed invariant curves not null-homotopic in # , then Q is
a disk.

It is well known ([2]) that the billiard ball map in an ellipse is integrable.
No other examples of convex domains with integrable billiard ball maps are
known. It makes the following conjecture, attributed to Birkhoff, plausible.

Conjecture. If a neighborhood of the boundary of .# is foliated by
continuous closed invariant curves not null-homotopic in .# , then Q is
an ellipse.

We will first present the proof of a weaker result than Bialy’s Theorem,
to make the line of thought perfectly clear, and then show that the same
argument does apply in the general case.

Definition. A smooth closed curve contained in the domain Q is called
a smooth caustic if every billiard orbit with one segment tangent to the
curve has all its segments tangent to the curve.
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FIGURE 1. BILLIARD TABLE AND CAUSTIC.

The interior of a disk with the center removed is foliated by smooth
caustics, the concentric circles.

Theorem 2. If the domain Q is foliated by smooth caustics in such a
way that almost every orbit is tangent to a caustic, then Q is a disk.

Proof. Let us fix x € M and the corresponding billiard orbit tangent
to a smooth caustic. We denote by /(x) the distance from the boundary
to the nearest point of tangency in the past with the smooth caustic. The
nearest point of tangency in the future is then equal to 7(x) —/(Tx) (see
Figure 1).

The transversal Jacobi field defined by the nearby orbits tangent to the
same smooth caustic vanishes at the points of tangency. We get from (3)
and (4),

GG )6 -0

where the * indicates that the respective component is not restricted. We
obtain immediately

21(x)(e(x) - [(Tx))
© ) = 1+ oy~ 1T

which is the classical “mirror equation” of the geometric optics.
Since the harmonic mean of two positive numbers does not exceed the
arithmetic mean we conclude that

7 2d(x) < 1(x) + I(x) — I(Tx).

Let us stress that to get (7) from (6), it is necessary to have /(x) >
0 and /(Tx) < t(x) (note that d(x) > 0). We will now obtain the de-
sired conclusion by integrating (7) and comparing with the Isoperimetric
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Inequality, just as it was done in [1]. Integrating the right-hand side of the
inequality we obtain from (1)

/ (%) + 1(x) — I(Tx) dp(x) = / " 2(x) du(x) = 27 Area(0Q).
VA4 VA4

We have used the fact that /(x) is bounded and defined almost everywhere
in .# . The integration of the left-hand side yields

/2d(x du(x) = //2sm ¢dsd —n/opﬁds

By the Buniakovski-Cauchy-Schwartz inequality we have

/4 1 D 2
/Omds/o k(s)ds > p°,

with the equality only for the constant curvature, i.e., for the disk. Since

(8) /0 " k(s)ds = 2n

we conclude that
2n Area(Q) > p*/2,

which violates the Isoperimetric Inequality except when it is the equality,
i.e., when Q isadisk. q.e.d.

Let us consider a measurable one-dimensional subbundle L of the
tangent bundle of .#, i.e., for almost every x € .# we have a one-
dimensional subspace (a line) L(x) C J .# which depends measurably
on x. We assume that for almost every x € .# the subspace L(x) is
not vertical, i.e., it is not tangent to the curve {s = const}. We choose
an orientation of nonvertical lines by the condition ds > 0. Let us call
such an oriented subbundle a monotone subbundle of the tangent bundle
of .# . We say that a monotone subbundle is invariant if it is preserved,
including the orientation, under the action of the derivative of T .

Let us recall that vectors tangent to .# can be naturally identified with
transversal Jacobi fields. If we have an invariant monotone subbundle L,
then the Jacobi fields which correspond to the nonzero tangent vectors
in the subbundle must vanish inside the billiard table, almost everywhere
in # . Indeed let (J(x), J'(x)), x € .#, be a measurable family of
nonzero Jacobi fields spanning the oriented subbundle L(x), x € 4 .
Then we have J(x) > 0 almost everywhere in .# and there is a positive
measurable function a:.# — R* such that

(a—%i) —Ol) ((1> T )> ()I’((g) = a(x) (j’(éfc))) '
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It follows that J(x) + 7(x)J'(x) = —a(x)J(Tx) is almost everywhere
negative, and hence almost everywhere the Jacobi field vanishes inside the
billiard table, i.e., there is a measurable function f(x), 0 < f(x) < 7(x),
such that

J(x) + f(x)J'(x) = 0.

Let us now consider the measurable function
I(x) = t(T 'x) - £(T 'x).

We have 0 < /(x) < t(T_lx) almost everywhere. Moreover, as a conse-
quence of the invariance of the subbundle, the function /(x) satisfies (6).
Hence we can repeat the proof of Theorem 2. We obtain the following

Theorem 3. If the billiard ball map T has an invariant monotone sub-
bundle of the tangent bundle of # , then the billiard table Q must be a
disk.

Let us show how Bialy’s Theorem 1 follows from Theorem 3. The
mapping T :.# — .# is a measure-preserving twist map. By the Birkhoff
Theorem [4], any closed invariant curve not null-homotopic in .# is the
graph of a Lipschitz function ¢ = ¢(s). Although a general Lipschitz
function may be nondifferentiable at some points, it must have finite upper
and lower derivatives

d+¢ (0(52)—(0(5‘1) d_¢ (82)—¢(S1)

= limsup ———~ | —— = liminf L4
ds 5,508 Sy =8 ds )

The upper and lower derivatives define respectively the upper and lower
tangent lines to the graph. The bundle of upper (or lower) tangent lines
to the invariant curves is defined everywhere and is clearly measurable
and monotone (never vertical). The Jacobi field which spans this oriented
tangent line can be chosen as (cf. (3)) J =sing(s), J = —k(s)-d ¢/ds.
In turn, the positive function /(x) (“the distance to the caustic”) is given
by the formula ‘

sin ¢
k(s)—d*p/ds
It follows from the invariance of the curves that this monotone subbundle
is invariant. Indeed, the positive orientation of the curves is preserved
under T .

To summarize, the tangents to the invariant curves of the family, such
as described in the Bialy’s Theorem 1, give us an invariant monotone
subbundle. Thus, Theorem 3 implies Theorem 1.

Remark. Theorem 3 has an interesting connection to billiard tables
with hyperbolic billiard ball map. The stable and unstable subbundles are

I(s, 9)=
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invariant, but by Theorem 3 they cannot be invariant as monotone subbun-
dles. Indeed, in the case of Bunimovich’s stadium and its generalizations
by Donnay [3], the positive orientation of the (un)stable subbundle is re-
versed at some of the segments of the orbit between the two flat pieces of
the boundary (connecting the strictly convex pieces).

In the case of billiard tables bounded by closed convex scattering curves,
introduced in [10], the situation is different. These are closed curves given
by the natural equation k = k(s), where k(s) > 0 is a smooth function in
the interval [0, p] such that (dz/dsz)(l/k(S)) < 0 with strict inequality
holding almost everywhere in s. Hence the closed curve is smooth ex-
cept at one point. The examples include perturbations of the circle and
the cardioid. For such billiard tables we have hyperbolicity in all of the
phase space .# , and the positive orientation of the (un)stable subbundle
is preserved (cf. [10]), so we do have two invariant monotone subbundles.
The apparent contradiction with Theorem 3 is resolved by the failure of
formula (8). Because of the singularity, we have fé’ k(s)ds >2n.

When we perturb the circle to a closed convex scattering curve, the
monotone invariant subbundle of the billiard ball map in the disk splits
into two subbundles (the stable and unstable ones). The proof of Theorem
2 shows that it is only the singularity of the boundary that provides room
for such a splitting.

4. The theorem of Rychlik

The problem of the measure of periodic orbits for the billiard ball map
arises in the spectral geometry [6]. A version of the Kupka-Smale Theorem
for billiard ball maps in convex domains was proven by Lazutkin [5]. It
follows that for generic convex domains the periodic orbits of bounded
period are isolated, and hence there are only countably many periodic
orbits.

It is fairly clear that for convex domains with real analytic boundary
the measure of periodic orbits must be zero. At the same time it seems
plausible that by modifying the boundary in the C™ category one could
produce a whole neighborhood filled with periodic orbits. Rychlik proved
in [7] that it is not possible for orbits of period 3.

Theorem [7]. The set of periodic orbits of period 3 of the billiard ball
map is nowhere dense.

Rychlik shows that actually the set must have measure zero. His proof
is based on the study of the length functional, and it required computer
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X0

FIGURE 2. PERIODIC ORBIT WITH PERIOD 3.

assistance. Recently Stojanov [9] simplified the calculations, so that there
is no need for the use of symbolic computation systems. We propose a
more dynamical proof.

Proof. Let {x,, x,, X,} be a periodic orbit of period 3 with a neigh-
borhood filled by periodic orbits of period 3.

We have that T° and its derivative DT is equal to the identity in the
neighborhood of x,. The last property can be formulated in the language
of Jacobi fields. In particular we get from (4) and (5) (see Figure 2)

(0 ) )6 )0)
“( )6 ) 2)0)

The equality of the first components of the two vectors yields
9) 7(xy) + () — T(x;) = 27(x5)T(x,)/d (xp).

The total length of the periodic orbits in our neighborhood must be con-
stant. Let us denote it by L. Then

L = 7(xy) + t(x,) + 7(x,).

From the Cosine Formula it follows that

(10) T(xy) + T(x,) — T(x,) = (47(xy)T(x;) sin’ ®,)/L,
where x, = (s,, ¢,). Combining (9) and (10) we obtain
(11) k(sy) = (2sin’ g,)/L.

Such a relation has to hold also for all nearby orbits. In particular for
all nearby orbits starting at the same point of the boundary with different
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velocity vectors, i.e., at x(¢) = (s,, ¢) with ¢ close to ¢,. But this
is impossible because the function on the right-hand side of (11) is not
constant in any interval. q.e.d.

In the same fashion as it was done in [7], one can now argue that the
set of periodic orbits of period 3 must have measure zero. Indeed, let us
assume that the set of periodic points of period 3 has positive measure.
If x, is the Lebesgue density point of the set of periodic points with
period 3, then although T may be different from the identity in the
neighborhood of x,, DT? must be equal to the identity at x,. Hence
formulas (9) and (11) must hold for such a point. We obtain that for any
Lebesgue density point x = (s, @)

(12) L(s, 9)k(s)—2sin’ ¢ =0,

where L(s, ¢) is defined as the perimeter of the triangle with the vertices
at the foot points of T 'x , X,and Tx. Every periodic point with period
3 is the critical point of the function L(s, ¢) defined in this way.

It follows from (12) that at every Lebesgue density point of the set of
periodic points of period 3 we must also have

(13) (,% (L(s, 0)k(s) — 2sin’ ¢) =0.

In view of the criticality of L at the periodic points, the partial derivative
(13) is zero only if ¢ assumes values 0, n/2, = . But this is impossible for
an orbit of period 3. Hence the set of density points is empty, contrary
to our assumption.
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