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FLOER HOMOLOGY FOR CONNECTED SUMS
OF HOMOLOGY 3-SPHERES
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1. Introduction

FΊoer homology is a mod 8-graded homology theory for integral ho-
mology 3-spheres Y [8]. "The FΊoer" chain groups C^(Y) are generated
by irreducible SU(2)-representations of the fundamental group πχ(Y).
The boundary operator d, however, depends on the nonlinear analysis;
namely, the 1-dimensional moduli spaces on Y x R. FΊoer proved that
d2 = 0, the homology of the chain complex HF^(Y) = H^C^Y), d)
is independent of metrics and perturbations, and the Euler characteristic
of FΊoer homology is twice Casson's invariant [8], [14]. Floer homology
also provides a natural setting for relative Donaldson invariants of smooth
4-manifolds with boundary (see [1]). For a number of related recent de-
velopments in geometry and topology, see, for example, [7].

The first calculations of FΊoer homology were carried out by Fintushel
and Stern, who computed the FΊoer homology for Brieskorn spheres. Their
calculations are based on the evenness of the spectral flow for the Brieskorn
spheres, where the trivial boundary map states that the FΊoer homology is
the same as the FΊoer chain complex. Our goal is to understand how to
calculate the Floer homology for the connected sum of two homology 3-
spheres.

This paper is based on understanding the boundary map for the FΊoer
homology of YO#YX, i.e., the 1-dimensional moduli spaces on the con-
nected sum (YQ#Y{) x R where Y. is a homology 3-sphere for / = 0, 1.
This relies on the (Taubes) glueing procedure on a noncompact 4-manifold
with almost harmonic 2-forms in the glueing region. Given anti-self-
dual connections A. on Y.χR9 we deform them slightly and then glue
them together to form an "almost anti-self-dual" connection A0#Aχ on
(YQ x Y{) x R. The problem is then to deform A0#Aχ into an anti-self-
dual connection. The "almost harmonic" 2-forms arise from the pullback
of the volume form on the central S2 multiplied by cutoff functions. The

Received October 9, 1992 and, in revised form, August 16, 1993.



130 WEIPINGLI

difficulty in this type of glueing procedure is that the grafting techniques on
compact 4-manifolds cannot be applied directly, even for a careful choice
of a weighted Sobolev space.

Our approach to overcome this difficulty is similar to that of Donaldson
and Sullivan in [5]. It is based on a construction of the bounded right
inverse of dA = ^ψdA on the product of a tiny annulus with R in a
weighted Sobolev space with respect to the "merged" metric on (Y0#Y{) x R
(see §3.3 for details). A careful choice of this annulus is necessary in order
to compare the anti-self-duality operators with respect to different metrics
in the overlap region. We have a uniformly bounded right inverse of dA

on Yj x R. In order to get a uniformly bounded right inverse for the anti-
self-duality operator with the twist AQ#A{, we first obtain the uniformly
bounded right inverse for the almost anti-self-dual connection on Yj.xR,
and then patch them together by using the fact that the original metric and
the merged metric on the annulus region are very close. In this way we
can estimate the difference of the two operators with different metrics and
get the uniformly bounded inverse for dA #A . Because of the operator

dA , unlike d*A, involves no derivative of the metric, C°-close metrics
are sufficient for the estimates. Finally we prove the glueing theorem and
the splitting theorem for anti-self-dual connections on (Y0#Y{) x R by
constructing a parametrized bounded right inverse on (Y^Y^ x R, and
the inverse function theorem.

Using the grafing theorem and the spectral flow calculations, we will
show that the glueing parameter spaces form a filtration for the Floer chain
groups of YO#YX. Hence we have a spectral sequence for the Floer homol-
ogy of Y0#Y{, and the spectral sequence and its differentials are given in
[10].

This paper is organized as follows. In §2 we give a review of Floer
homology and study the spectral flow. We present the main analytic part
for the boundary map of Floer homology of YO#YX in §3.

2. Floer homology of homology 3-spheres

2.1. Floer homology.

In this subsection, we will give a brief description of gauge theory on
3-manifolds and review the definition of Floer homology. For details see
[3], [6], and [8].

Let Y be a homology 3-sphere, i.e., an oriented closed 3-dimensional
smooth manifold with Hl(Y9Z) = 0, and let P -• Y be a smooth prin-
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cipal SU(2)-bundle. (Since c2(P) = 0, this bundle is trivial.) Fix a trivi-
alization Y x SU(2) of P and let θ be the associated trivial connection.
Denote the Sobolev Lp

k-space of connections on P by sf(P). This space
has a natural affine structure with underlying vector space Ωι(Y, adP),
where adP is the adjoint bundle. sf(P) is acted upon by the gauge group
9 of L£+Γautomorphisms of P, and the orbit space 3S{P) = s/{P)f&
is well-defined when k + 1 > 3/p . The irreducible connections form an
open dense subspace &*{P) of 3&{P) which is a Banach manifold with

Tβ!\P) = {a e Lp

k(al(Y, BdP))\d*a = 0},

where d* is the zΛadjoint of da (covariant derivative on sections of
ad P) with respect to some metric on Y.

The Chern-Simons functional cs: s/(P) -+ R is defined as

cs(a) = x / tr(α Λ da + -α Λ a A a),
2 JY 3

and satisfies cs(g α) = cs(α)+2πdeg(g) for gauge transformations g: 7 —•
SU(2). Thus cs is well-defined on &(P)=j/(P)/{g e 9\ deg(g) = 0},
and it descends to a function cs: 3S(P) —• R/2πZ which plays the role of
a Morse function in defining Floer homology. Furthermore the differential
of cs is

dcs(a)(a) = J tτ(FaΛa),

hence its critical set consists of the flat connections 3ί(β(P)) — {a e
3S{P)\Fa = 0} . (Here Fa is the curvature 2-form on Y.) It is well-known
that elements of 3ί{β{P)) are in 1-1 correspondence with those of

, SU(2))/adSU(2),

the SU(2)-representations of πx(Y) modulo conjugacy. Given any metric
on Y, the Hodge star operator applied to the curvature Fa gives a vector
field

Comparing with Ta&* (P), we note the different Sobolev norm and denote
the latter by S?a. Hence / is a section of the bundle with fiber Jz? .
A representation a e έ%(Y) is said to be nondegenerate if the twisted
cohomology Hι (Y adα) vanishes. Note that this is the same as requiring
that keτdf(a) = ker*da = 0, where *da is the Hessian of the Chern-
Simons functional.

A 1-parameter family {a{t)\t e R} of connections on P gives rise to
a connection A with vanishing ^-component on the trivial SU(2) bundle
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over Y x R. FΊoer's crucial observation is that trajectories of the vector
field / , i.e., the flow lines of

§7 + r(«(0) = 0 or
can be identified with instantons A on 7 x R , and A\γ><^ = a(t). A
trajectory flow "connects" two flat connections on Y if and only if the
Yang-Mills energy of the trajectory (as a connection on Y x R with trivial
component in the R direction) is finite. One needs to show that all zeros of
/ are nondegenerate and that their stable and unstable manifolds intersect
transversally in smooth finite dimensional manifolds. Floer has shown that
one can perturb the Chern-Simons functional to achieve this (see [8]). For
the rest of this paper, we assume that the Chern-Simons functional has
been so perturbed, so that all irreducible representations are isolated and
nondegenerate. Since &(Y) is compact, they are also finite.

For the analysis of ASD connections, it is convenient to work with
the weighted Sobolev space Lp

k δ that we will introduce in §3. For each
connection A the anti-self-duality operator induces a Fredholm operator

d>dl: LUι,*(Ql(y x R> a d p ) ) - Lls((Ω° Θ Ω ' ) ( y x R ' a d p ) )
We say that A is regular if d^ Θ d\ is surjective. In terms of the complex
we have

L * + M ( Ω ° ( y x R, adP)) dΛ LP

kδ(Ωl(Y x R, adP))

The regularity of A means that 7/^ = 0 (irreducible) and H2

A — 0
(generic). For a nondegenerate critical point a of cs, the spectral flow is
SF(a, θ) = Index(rf* Θ d+)(a, θ), the Atiyah-Patodi-Singer index of the
anti-self-duality operator over Y x R. So

μ(a) = Index(rf* Θ d+)(a, θ) (mod 8),

where A is any family of connections {a(ή} e 3S[P) over Y with
Λ(+OO) = θ, a(-oo) = aa (see [8]). FΊoer's chain group Cj(Y) is de-
fined to be the free module generated by the irreducible flat connections
a with μ(α) = j (mod 8).

Note. Changing the orientation of Y switches the sign of cs and hence
the spectrum of the Hessian reverses, so

-μ_γ(a) = 3 - (-μγ(a)) (mod 8),

i.e., μ_γ(a) = 5 - μγ(a) (mod 8).
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Define ^ y x R to be the moduli space of finite-energy ASD connec-
tions on Y x R, and let Jt(a9 β) be the subspace of those A such that
lim/_>_oo A = a, l i m ^ + o o A — β for fixed flat connections a and β.
/ ( α , β) is a smooth, canonically oriented manifold which has dimen-
sion congruent to μ(α) - μ(β) (mod 8). The moduli space Jί{a, β)
has finitely many connected components each of which admits a proper,
free R-action arising from the translations in Y x R. If μ(α) - μ(β) = 1
(mod 8), let Jίx(a, β) be the union of 1-dimensional components of
J?(a,β). Further perturbations make all the ^ ( α , β) regular. Then
Jΐx{μ, β)/ΈL will be a compact oriented 0-manifold, i.e., it is a finite set
of signed points. The differential d: C -> C._χ of Floer's chain complex
is defined by

(1) da= Σ Ά

where Jί{μ, β) = ^(a, j?)/R, #M(a, β) is the algebraic number of
points, and the sign is given by the spectral flow. Floer has shown that d2 =
0, hence {Cj, d)jeZ is a chain complex graded by Z 8 . The homology
of this complex is called the Floer homology, denoted by HF.. Floer
has shown that it is independent of the choice of metric on Y and of
perturbations (see [3], [8]).

2.2. The spectral flow on connected sums.
The connected sum Y = Y0#Y{ of two homology 3-spheres is again a

homology 3-sphere, whose fundamental group π1(Y0#71) is the free prod-
uct of nx(YQ) and πx{Yχ). There are four types of SU(2) representations
of nx{Y^Yx):

(1) θ = θo#θχ,
(2) θo#aχ,
(3) ao#θχ ,
(4) ao#aχ ,

where the α. are irreducible representations of π^Y,), and θt is the triv-
ial representation of πχ (Y.), / = 0, 1. These four types of representations
correspond to equivalence classes of flat connections glued together by the
standard glueing construction [4]. In each case we have a family ao#aχ of
flat connections parametrized by a copy of SU(2), which can be identified
with the automorphisms of a fiber over a point in the gluing region. Two
elements of this family corresponding to automorphisms p0, pχ are gauge
equivalent if and only if p^p~x extends to an element of the isotropy group
Γfl or Ya . Thus the corresponding family of gauge equivalence classes is
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SU(2)/ΓflQ x Γ . Since Γθ = SU(2) and Γa = Z 2 for a irreducible, the
first three types of representations give rise to a unique gauge equivalence
class, whereas the last type of representation gives a copy of SO(3) for
each pair of irreducible representations. In §3 we show that all trajectories
between these representations are obtained by grafting together existing
trajectories from both sides. Thus one needs to compute the spectral flow
along such trajectories.

The spectral flow SF(a, θ) is (modulo 8) the index of the Fredholm
operator DA = dA

δ θ dA on the weighted Sobolev space with sufficiently
small weight δ. Then the Floer grading is given by

(2) μ(a) = indexDA(a, θ) (mod8).

One can consider the calculation of the index of the anti-self-duality
operator as a boundary value problem with Atiyah-Patodi-Singer global
boundary conditions [2]. We have

(3) lnde*«f e O , β) = -2 / pM) - ψ

where pλ(A) is the Pontryagin form, the term hβ is the sum of the di-

mensions of Hι(Y, ad/?), i = 0, 1, and pβ is the ^-invariant of the
signature operator *rf - d * over Y restricted to even forms (cf. [6]).

β β

An application of the signature formula to Y x / shows that pa = pa(0)
is independent of the Riemannian metric on Y and is an orientation-
preserving diffeomorphism invariant of Y and a.

Lemma 2.2.1. For a( £ R(Y() irreducible, we have
/ > β i ( θ ) ,
3' \«, = K' V, = K \»,= 3

il bProof. (1) Consider the cobordism X built by attaching a 1-handle to
(*o II *i) * {1} in (Yo U Yχ) x / The boundary of X is Y0#Y{ Jj -YQ JJ
—Yχ (note that πx(X) = WJ(1Q#YJ)). Then there are natural inclusions
^(Yt) —> ^ ( Γ Q * ^ ) such that the pair (α 0 , αj) can be extended to a uni-
tary representation of π 1 (y o #7 1 ) . (In fact, if the at are both irreducible,
then there is an SO(3)-family of such extensions.) By Theorem 2.4 in [2],
we have

where H2(X) = 0 and H2(X;ada) = 0. So we get the signatures
satisfying sign(^) = 0 and signα # Q (X) = 0. Thus />Q # α (7 0 #r,) =

^ ) ( y )
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(2) Since α 0 , aχ are irreducible, the Betti numbers /£ , h°a , and h^ # α

vanish. The Mayer-Vietoris sequence

0 -> //°(52, adSU(2)) -> 7 / ^ ( 7 / ^ , adSU(2))

-> Hl

ao(Yo, adSU(2)) θH^{Y χ, adSU(2)) - 0

then shows that Λ * = λ + λ + 3 .
α o f f α i α o α i

Clearly hθ #θ = 3, so we consider the case of θ0 and α t , where ax

is irreducible. We have h% # α = 0 and /^ = 0. Again applying the

Mayer-Vietoris sequence

0 -+ flj (7 0 , adSU(2)) θ flj ( ^ , adSU(2)) -^ i/°(5 2, adSU(2))

- « ί o t e l ( W ' adSU(2)) - Hι

Θo{Yo, adSU(2)) φ ^ ( ^ , adSU(2))

and using h\ = 0, we have

Lemma 2.2.2. For irreducible representations ai e&iYj), we have the
following addition properties for the Floer grading μ :

μ(θo#a{) = μ(aχ) / l ί α / β ^ = /ι(α0).

TO compute μ{at) we can use any connections Ai over Y(xR
which interpolate between 0̂  and at. We choose A to be flat in the
regions δ 3 x R used to make the connected sum (Y0#Yχ)x R. So the A{ 's
match to give a connection A{#A2 over (Y0#Y{) x R which interpolates
from θo#θχ to α o # α j . By (2) and (3) we have

(mod8),

where Y = 1Q*^I F r o m 0 U Γ choice of i4y,

pι(Aι#A2)=pι{Aι)+pι(A2).

Since /?β # β = 0 and pθ = 0, our result follows from Lemma 2.2.1. Sim-

ilarly one checks that μ(θo#a{) = μ(a{) and μ{a{fiθχ) = μ(α 0 ) . q.e.d.

In a similar manner one shows
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Proposition 2.2.3. // α. e ^{Yt) and at least one βt e ^ * ( ^ ) , then

(4) Index/) i 4(α0#α1, βo#β{) = IndexDA(aQ, βo) + lnάexDA{aχ, βx) + 3,

and therefore

(5) dim^f (α o #α 1 , βo#βx) = dim^(a0, β0) + dim^f (c^, ^ ) + 3.

The '3 ' in this formula arises from the glueing parameters: αo#αj is
a family of connections parametrized by pQ e SO(3), βo#β{ is in turn
parametrized by px e SO(3), and the pairs (ao#a{, βo#βx) are gauge
equivalent when p0 = pχ. Thus the glueing parameters give three extra
dimensions on the left-hand side of equation (5). In [10] we will show
that perturbing the Chern-Simons functional breaks the SO(3) symmetry,
splitting J?(aQ#aχ, βo#β{) into a finite union of moduli spaces with di-
mension three less than that of ^ # ( α o # α 1 , βo#β{). Once this perturbation
is done, we can apply FΊoer theory as described at the beginning of this
section.

We can now see which trajectory flows contribute to the FΊoer bound-
ary (1) on the connected sum Y0#Y{ of homology spheres. By definition,
the only relevant trajectories are those that lie in a 1-dimensional compo-
nent Jf. of ^(ao#a{, βo#β{) (after perturbation). By (5) and the above
remarks there is a possibility of having

I =dimJfi = dim J?(ao#a{, βo#β{) - 3

= άimJt(aQ,βQ) + dimjr(aι,βι),

so the moduli spaces Jt(a., β.) have dimension 0 or 1. Thus the bound-
ary operator can be computed once we understand the moduli spaces ob-
tained by glueing a 1-dimensional moduli space on one side of Y0#Y{ to a
0-dimensional moduli space (i.e., a constant flat connection) on the other.

3. Grafting

The essential step in the calculation of the Floer homology of a con-
nected sum of homology 3-spheres Yo, Y{ is to understand the structure
of the 1-dimensional moduli space of ASD connections on (YQ#Y{) x R.
The structure relies on grafting together ASD connections on noncompact
4-manifolds. The major problem is the existence of harmonic 2-forms in
the glueing region. It is difficult to obtain estimates in the overlap region
relating the "merged" metric with the original metrics gt on Yt. For the
merged metric g we will take a weighted average. The usual Rayleigh
quotient for the first eigenvalue involves the operator d*g , and in order to
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get a uniform bound on the first eigenvalue on the connected sum from the
first eigenvalues on both sides, we have to compare d*8 and d*8i. These
operators involve the derivative term of the weighted average metric with
no control of the glueing parameter ε (the "neck-length"). Thus we adopt
Donaldson and Sullivan's technique for building a right inverse directly
(cf. [5]).

We begin by looking at a special feature of the R-action on the equiv-
alence classes of connections which will help us solve the anti-self-duality
equation

F + + (d+ + d*A

δ)a + a Λ a = 0

uniquely on the subspace of Ω a d (y x R), which is perpendicular to HA .
Then we show that for all balanced 1-dimensional ASD connections on
Yt x R, there is a uniform lower eigenvalue. Using the parametric method
to construct the right inverse on the connected sum and applying the in-
verse function theorem, we are able to prove a glueing and splitting the-
orem for 1-dimensional ASD connections over (Y0#Y{) x R (Theorem
3.3.10).

Throughout this section we assume that the anti-self-duality operator
is regular. (As we have mentioned above, this can always be achieved by
a compact perturbation of the anti-self-duality operator. For the sake of
simplicity we shall ignore the perturbation.)

3.1. Properties of balanced connections.

Let Y be a closed, connected, oriented, smooth homology 3-sphere.
For δ > 0 (to be determined), let eδ: Y x R —• R be a smooth positive
function with eδ(y, t) = e m for \t\ > 1. Let E be an SU(2)-vector
bundle over Y x R with a translationally invariant metric and a metric-
preserving connection. To define Banach manifolds 3S(a, b) of paths
connecting two flat connections a and b in 38γ, choose any smooth
representatives a, b es/γ and a smooth connection C o n 7 x R which
coincides with a for t < - 1 and with b for t > 1. Define the Lp

k ^-norm
on sections u of E by

(7) \\u\\L,ki = \\eδ u\\L,k.

Then

^ , ί ) = cuϊX(yχR))
is an affine space and is independent of the choice of C. The correspond-
ing gauge group is the group &% δ obtained by completing the compactly

supported gauge transformations in the Lp

2 j(Ω^d(y x R)). We need p > 2

to construct the orbit space &YxR = srfδ

Λ}l&δ'
p .



138 WEIPINGLI

P r o p o s i t i o n 3 . 1 . 1 . (I) L e t

Da: Lp

ιδ(Ωι θ Ω ° ) ( 7 , adSU(2)) -> LP

0J(Ωι θ Ω ° ) ( 7 5 adSU(2))

be the operator Da(a, β) = {*daa - daβ, -d*a). Then there exists a
positive λ0 such that for all a e <9ί*(Y) the eigenvalues of Da satisfy

(2) If F(A) is in Lp for p > 2, then there is a constant CA such that

where γ = γ(λ0) > 0, and CA is continuous in A.
Proof The first statement is from [8], and the second is in [3] (see

4.1). q.e.d.
Fix a positive δ < min{Λ0, γ/2}. We will henceforth use the norm

(7) with this δ. Let us denote \\u\\LP ^A) = l|V^w||^ + | |M| | L P (and

/
J—

Definition 3.1.2. The balancing function b: &YxR —> R is given by the
equation

fb{Λ) 7 Γ°° 2
\\F(A)\\2

L2{Y) = / \\F(A)\\2

L2{γy

Jb(A)

(So the value b(A) is the time which splits the action of A in half.)
Lemma 3.1.3. (1) Shifting the connection A in the t-direction, A(t) —>

A(t±s), one has

b(A(t + s)) = b(A(ή) - s, b(A(t - s)) = b(A(ή) + s.

(2) Let &0 = ^"^0) be the space of equivalence classes of connections

whose actions are balanced at 0. Then there is a one-to-one map from ^ 0

to 3§s = b~\s) for any seR.
(3) If A is not a constant flat connection, the derivative of b is

DΛb(a) =

Proof (1) is proved by a change of variable. (2) follows from (1). For
(3) we note that

rb{A+sa) Λ+OO

/ \\F(A + sa)fl}(Y)= / \\F(A+sa)\\2

L2{Y).

Taking the derivative with respect to s at s = 0 and combining the terms,
one has

\\P(A)\\2^Yx1t)DAb(a) = Γ V X , a) - f\d'AFA , a).
K } Jb{A) J o o
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Now \\F(A)\\2

L2(YxR) = 0 if and only if -{da/dήdt + Fa = 0, i.e., if and
only iϊ A is a constant flat connection, contrary to our hypothesis. Thus
(3) follows.

Definition 3.1.4. Set the balanced moduli space ^YxR = {A e J?γ R c
}

Lemma 3.1.5. For A e ^YxR, y € Y, and each p > 2, there exist
constants Mo, Cl9 C2 independent of A such that the following hold:

(i) If d i m ^ y χ R < 1, then ^YxR is compact, and

(9) f
JYxR

(ii) // d i m ^ r r x R < 8, then | | i ^ | | L oc ( y x R ) < Mo.

Proof (i) No sequence of connections in JίγxR can converge weakly
to a limit plus an instanton bubble, since bubbling needs dim^f y x R > 8.

There is only one other way for a sequence in Jf*χR to fail to have a con-
vergent subsequence; it may have a subsequence {An} converging weakly
to a disjoint union of connections A_oo e <^YxR(a, b), AQe ^YxR(b, c),
^+oo e

 -^YXR^I d) where α, b, c, d denote the limits and at least one
of A_oo, A+oo is not constant flat (otherwise {An} actually converges to
Ao). If, say, A+oo is not constant flat, then d im^# F x R (c , d) > 1. Since
each An is balanced, the limit A_OQ U^ 0 LI^ + oo i s a l s o balanced, and it
follows that dinie/# r χ R(0, b) + dim^YxR(b, c) > 1. This is impossible
since the dimension of the moduli space <^YxR(a, d) which contains the
An is equal to 1. Thus ^YxR is compact.

The constant CA in (8) is continuous in A, so by compactness it can

be chosen uniform for A in . # b a l , and the bounds (9) follow.
(ii) Suppose not. Then there exists a sequence {An} e -^YeR with

\\FAWL»(YXR) > n' T h u S W e h a V e Un'tn) S U C h t h a t \ F A \ ( y t ) = H'
Λ ( ) Λ ( y Λ , Λ )

Let A'n = An(t - tn) (rescaling). Then \FA>\(y 0)
 = n τ h e application

of Uhlenbeck's compactness theorem to the compact space Y x [-1, 1]
shows that there exists a subsequence {At} with a bubble point, and this
requires dim^f y χ R > 8, contradicting our assumption.

Proposition 3.1.6. The space ^ £ x R = {A e &YxR\b(A) = 0} of bal-
anced connections is a smooth manifold with codimension 1, and the mod-
uli space ^YxR is transversal to &Yx

l

R.

Proof Since an arbitrary Af e ^YxR is not a constant flat connection,

it has a translate A under the R-action which lies in &YxR. Note that
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2\\FJ2φ0. Let A = a(t). If 0 = d\FA = -(da*(da/
da*Fa, then we get *F f l = 0. Since A is anti-self-dual, da/dt = *F f l = 0

and A is constant flat connection. But this is not true, so the iΛnormal
vector

to T<%Yχ

x

R at A is nontrivial. By the implicit function theorem,

b~ι(0) is a smooth codimension 1 Banach submanifold, and DAb: TAN —>
T0R is an isomorphism where TAN is the subspace of TA3BYxΈL spanned

by v . Notice that the derivative of b along &Yχ

l

R is zero. We have the
identification

b a l
 AT

Since BYxR = &Yχ

l

R x R and Dtb(A) = ±Id in the time direction, we
may identify TAN ^ TQR ^ (TA&YxR)t, the last being the tangent space
to &YxR at A in the time direction.

For A e ^ R , the cohomology HA is a 1-dimensional space. We
claim that it contains {A(t + s): s eR} . We have

Hι

A = {A{t)+sa(t):seR, dA a = 0, dAa = 0}.

Define /($, w) = ^(ί) + sa(t) - A{t - u). Then /(0, 0) = 0, and
9/(0, 0)/<?w = Af(t) Φ 0, since 1̂ is not a constant connection. Hence
the implicit function theorem gives a local coordinate u = u(s) in a neigh-
borhood of (0, 0) such that f(s, u{s)) = 0, i.e., A(t)+sa(t) = A{t-u(s))
in time-translation form. Let S be the subset of R defined by

S = {s G R: there exists u(s) such that /(s , u(s)) = 0}.

Then S is nonempty (since it contains 0), open (by the implicit function
theorem) and closed (since f(s, u(s)) is continuous in s). Therefore
S = R, and HA = {Λ(ί + 5): 5 G R}. Hence ifj intersects TA^γ

Ά

χ

ι

R

transversely at the point {[A]} . The Kuranishi technique then implies that
locally, solutions of the anti-self-duality equation live in a 1-dimensional
moduli space parametrized by HA , i.e., by time-translation.

3.2. Smallest eigenvalue on 7 x R .

(i) Some analytical facts. Let dA denote the covariant derivative cor-

responding to the connection A, and d*A - e^ld*Aeδ be the adjoint of dA

with respect to the L% ^-norm. Floer has proved the following in [8].

Proposition 3.2.1 (Floer). (i) For positive δ, &δ is a Banach Lie group

with Lie algebra {which can be identified with) Lp

2 s(^ά(Y x R))
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(ii) The quotient space 3§δ[a, b) = sfδ*(a, b)/3?δ is a smooth Banach
manifold with tangent spaces

TlAJ£ό(a, b) = {ae LP

uδ{ςi[ά{Y x R))\d?a = 0}.

(iii) The 2-form F~ representing the anti-self-dual part of the curvature
of A is smooth and &δ-equivarίant.

(iv) If δ > 0 is smaller than the smallest nonzero absolute value of
an eigenvalue of Da or Db, then for any anti-self-dual connection A e
&δ(a, b) the anti-selfduality operator

D*Λ = dA © d+Λ • LϊA(Y x R) - LP

oδ(Ωld φ Ω a

2

d + )(y x R)

is Fredholm. Furthermore, Dδ

A = d/dt + Dδ , where

) •

Dδ

a is self-adjoint on Ω^d(7) <8>Ω°aά(Y), and * is the Hodge operator on the
3-manifold Y. If a and b are irreducible nondegenerate flat connectionsf

then one can take δ = 0.

(v) Let Jί be the moduli space of all equivalence classes ofnonflat anti-
self-dual connections A on YxR with finite action \\dA/dt\\\. Then there
is a first category set of metrics on Y such that the anti-self-duality operator
Dδ

A is surjective for all A^JK' ς\&&6.

The following definitions are combined from [3], [4], [8] and [16].
Definition 3.2.2. An ideal anti-self-dual connection {trajectory) over

Ύ x R, of Chern number k , is a pair

where A is a point in ^γ~R(a, b)Γ\&s , and (xχ, , x^ is an unordered
/-tuple of points of Y x R.

Let {An}, n e N , be a sequence of connections of charge k on
the SU(2) bundle P over Y x R. We say that the gauge equivalence
classes {An} converge weakly to a limiting ideal anti-self-dual connection
(A\ (xχ, •" , x7)) if the following hold:

(i) The action densities converge as measures, i.e., for any continuous
function on 7 x R ,

r r
/ f\F{An)\2dμ-+ /

JYXR JYXR
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(ii) There are bundle maps

Pn: p\γχR\{xlf . ,*,} ~~> ^

such that p*n(An) converges to A in C°° on compact subsets of the punc-
tured manifold.

Definition 3.2.3. Let a and b be flat SU(2) connections over Y. A
chain of connections (Bχ, , Bn) from a to b is a finite set of connec-
tions over Γ x R which converge to flat connections c _x, cz as t -> φoo
such that 0 = c0, cn = b, and 2?f connects c ^ , ς for 0 < / < n.

We say that the sequence {Aa} e -^γxR(a > b) is (wαλ /y) convergent to
the chain of connections (2?j, , Bn) if there is a sequence of n-tuples
of real numbers {ta x < < ta n}a, such that ta . - ta ._χ —• oo as
α —• oo, and if, for each i, the translates ί* f.i4α = ^ α (o - ία f.) converge
weakly to Bt.

We need to combine the notion of a chain connection with that of an
ideal connection.

Definition 3.2.4. An ideal chain connection joining flat connections a

and b over Y is a set (A.\xn,- - >Xji)λ<j<j where (^ 7)i< ;<j is a

chain connection and for each j , {A. xjχ, , x 7 ) is an ideal connec-

tion.
In this setup, a version of the Uhlenbeck compactness theorem holds.

We state it in a form proved by Floer in [8] (see also [3]).
Theorem 3.2.5 (Uhlenbeck compactness on 7 x R ) . Let Aa e ^ y x R Π

&δ(aa,ba) be a sequence of anti-self-dual connections with uniformly
bounded action. Then there exists a subsequence converging to an ideal
chain connection (A xj{, , xjl)ι<j<J Moreover, one has

j

y^(fc. + /.) = k, c2(Aj) = k. (not necessarily an integer).

7=1

(ii) Smallest eigenvalue estimates.
(a) We will next prove the existence of a uniform bound for the eigen-

values of Δ^'+ for all A lying in 1-dimensional components of the moduli
space.

Theorem 3.2.6. Suppose d i m ^ # 7 χ R = 1. Then for each p > 2 there

exists a positive constant Cp such that for all A e ^γ*R, and u e

(10) C ί e"S'%f < ί
P JYXR JYXR
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Proof. Proposition 3.2.1 (v) implies that {Dδ

A)* has trivial kernel. From
the ellipticity of the anti-self-duality operator we have

CAp\\v®u\\L, <\\{D*Λ)\v®u)\\L,
9ir l,o 0,0

for v θ u e (Ω°d θ Ω^d +)(Γ x R). Thus, for any such A e ^γxR Π&δ , by

taking p > 2, υ = 0, there is a positive real number Cp(A) such that (10)

holds for all u e Ω^d + ( 7 x R ) . Since the constant Cp(A) is continuous
in A, the theorem follows by Lemma 3.1.5.

Remark. The above estimate (10) also holds when A is the trivial
connection. On Y x R, where Y is a fixed homology 3-sphere (with
a fixed Riemannian metric), the standard Laplacian on the self-dual 2-
forms has a strictly positive first eigenvalue by the Hodge Theorem, and
the spectrum of such an operator consists of all the values which are greater
than or equal to the first eigenvalue (see [9]). We can use this fact to get the
bounded right inverse for d+ , and therefore we can glue a 1-dimensional
trajectory on one side to a trivial connection on the other side.

(b) The flattening construction. We first describe a special gauge suited
to our constructions. Fix A e J ^ ^ , and choose a trivialization of the
fiber at a base pint y e Y. Parallel transport first along the R-direction,
and then outward in normal coordinates in Y at each fixed time slice.
This defines a gauge for A e j ί ^ R which we call the cylindrical gauge.
In this gauge At — 0 on {y} x R, and Ar = 0 where r is the radius on
Y centered at y.

Lemma 3.2.7. In the cylindrical gauge in By(ε)xR, wehave \A(x, t)\ <

Proof. Let (x{, x2, x3, t) be coordinates in By(ε x R. For 1 < i < 3,
we have \At{x, t)\ < (r/2)max)(jc t^<r\F(x, t)\ (c.f. [15]). Since Ar =

ΣΪ-\ χ\,Au = 0, we get ]Ct-i xir(dA,/dt) = 0 thus

d A ^Λ dA, d Λ

k=\ A:=l

Also /o

r dAJdr = At{x, t) - At{y, t) = At(x, t). Hence

cr 3 v

t(χ, oi <
= 1

<r max \F(x,t)\. q.e.d.

We next need to describe how to flatten a connection A e ^YxR along
By(rQ) x R. Let χ = χ(rQ, ε) be a smooth cutoff function satisfying

χ = 0 on By(r0), χ = \ on Y\By(r0 +ε), and \dχ\ < CJε

for some constant C o .
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Definition 3.2.8. For A e ^γ^R, define A e &YxR to be the connec-

tion on E which is equal to A outside By(r0 + e) and A = χ A on

By(rQ + e) as the connection matrix in the local trivialization of E given

by the cylindrical gauge.

Lemma 3.2.9. There exist ε0 and C {independent of A) such that for

0 < ε < e0, any A e ^ R with d im«^ y χ R < 1, and any p, q > 2,

\\F+\\ < ΓP3/P

Proof Take χ = χ(ε, ε) and A = χ A. Then we have F^ =

(dχ Λ A)+ H- (/2 - /)(i4 Λ ̂ 4)+ since 4̂ is anti-self-dual. A has support

on B3(2ε) x R, and by Lemma 3.2.7 and Proposition 3.1.1, we have the

pointwise bound

\Ft\ < Coε-l\A\ + \A\2 < C0ε'ι2ε\FA\ + 4ε2\FA\
2 < c'0\FA\ < C^Ce^ ,

where C'0C is independent of A by Lemma 3.1.5. Hence

The bound on A - A is similar, namely,

\A-A\ < \A\ <2ε\FA\ <Cεe~m.

Thus the result follows.
(c) A neighborhood of JίγχR. Assume throughout this subsection that

the dimension of a moduli space satisfies d i m ^ y χ R < 1. Fix p, q > 2.
We are going to show that the uniform lower eigenvalue estimate also holds
for nearby anti-self-dual connections.

Definition 3.2.10. Set

Uδ = {B e ^ y x R | t h e r e exists a A e V
such that \\A - B\\L<, < δχ, | | / £ | | L , <δx}.

0 , δ 0, δ

Note that Lemma 3.2.9 implies that if A € Λ ί ^ R , then for sufficiently

small ε the flattened connection A lies in C/̂  .

Lemma 3.2.11. There exists δ0 such that for 0 < δ{ < δ0 there is a
constant C5 independent of δχ such that

«llLϊi#(yχi, ^ ^WidlfuW^y^ for all BzUΛχ.
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Proof. We have

^ A ^ " - \U - *) V «lliζ,(yχD>

where A is an element in ^ r * R which is δx -close to B. Then

by Holder's inequality and the weighted Sobolev embedding theorem [11]
and [12].

Since A is anti-self-dual, the Weitzenbόck formula gives d^(d^)* =

V*J VA + R, which implies

IMIi*, < C4\\u\\LP M) < C4C(p)\\(d+fu\\LP + C\\u\\L,

<C\\{d+

Afu\\Llδ.

The first inequality follows from comparing Lp

{ ^-normand Uχ <5(^)-norm,

and the last from Theorem 3.2.6. Choosing δ0 such that CCδQ < j , we
have

(12)

Thus by (11) and (12), we obtain

Hull,, <C\\{d+

A)*δu\\rp < 2C||(ί/lt)*'5«|LP . q.e.d.
l,δ 0,δ 0,δ

By Lemma 3.2.11 and the weighted Sobolev embedding theorem [11],
we have

Lp

χδ^Llδ, for l/4+l/q> l/p,

and the bounded right inverse operator QB (= (dB)*δ(dB(dB)*δ)~ι) sat-
isfies

\\QBu\\L« <C\\QBu\\L, <C\\u\\LP for all B e Uδ .
0,δ 1,δ 0,o 1

Remark. If dim^YxR{b0, b2) = 2 and ^γ^R(b0,b2) is compact,
then Theorem 3.2.6 and Lemma 3.2.11 are also true.

If -^γ^R(b0,b2) is not compact with boundary ^γ^R{b0, bx) x

™R(b{, b2), then for compact K c ^f " R ( 6 0 Λ ) x
 ^ ? Ϊ R ( * I > ^2) a n d

large enough we get

with At(pK) e U^At), where Ao e J?™R(b0, bx), A{ e Jt™R{bx, b2),

and / is a smooth cutoff function on Y x R satisfying χ(y, t) = I and
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0 for t < pκ and > pκ + 1 respectively. Let A = AQ(pκ)#Aχ(pκ) on
Y x R. Then Floer's Proposition 2d and inequality (2d.2) in [8] yield that
Λ € Uδ for very large / ^ . Hence for A0#Aχ we obtain the bounded
right inverse by Lemma 3.2.11.

If dim^YχR(b0, b4) < 4, we get the bounded right inverse by using
Proposition lc.l in [8] and the above argument. The dimension restriction
comes from the trivial connection θ. If dim JίγχR{bQ, bΊ) < 7, then the
moduli space does not split through θ, and Lemma 3.2.11 is also true for
this case.

(d) Changing metrics. We want to show that there is also a bounded
right inverse for flattened connections with metric C° close to the original
metric. Pick a point y0 e Yo. For simplicity we assume that the metric on
YQ is flat in the 3-ball B3(r0 + ε) centered at y0 with radius r0 + ε. For
r{ < r o , let Nε> r r (g0) be the set of Riemannian metrics g on Y0\B3(r{)
which satisfy

(i) g = g 0 o n r o \ * 3 ( r o ) ;

(ii) \\g-go\\cO<e

f on B3(r0)\B3(r{).

The annulus B3(rQ)\B3(r{) will be used as the glueing region in forming
connected sums.

(1) Let π* be the projection onto self-dual 2-forms with respect to the
metric g. Note that π^ is a continuous map with respect to the metrics,

(2) For the metric g0 on YQ, there is a right inverse QQ for the operator

d r . Let S = d 7 On. Then
Ao Ao υ

<;°Qo"o = «0 . a n d
 WSU0\\LW < CpHWu^g,) '

where || \\Lp ( v indicates the Sobolev space with metric g0 for forms

with support in (Y0\B3(r{)) x R.
(3) For g e Nε, r r (^ 0), the LQ ^-norms are equivalent, i.e.,

w h e r e Cε> —> 1 as ε —> 0 .
Lemma 3.2.12. For self-dual 2-forms u0 with support in the (Y0\B3(r{))

xR and g e Nε, f r (g0) with sufficiently small ε , d^ has a right inverse

QQ with
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and also

WQluKδ(g) < CMLls(g) for 1/4 + l/q > l/p.

Proof. We will construct the right inverse by arranging that d^g Qo - Id

is a contraction mapping on L?Q s(g)(Ω^(Y0 x R)). We have

4;βo«o = <ίoGo«o + (4; - <:°)Qo«o.

and from (2) it follows that {d+/QQ - Id)u0 = {d+/ - ί/] i o)Qo"o B ? t h e

definition of g and the flattening construction for Ao with χi0 r j = 0,

one has

d** - d+/° = d+* - d+'° = (πf - π!°

Using (1), (2), and (3) we obtain

For ε so small that CCe

2/β;(l + Cp) < \ , the operator d^gQ0 is invertible,

and the right inverse for d+/ is β£ = QΛd+?gQΔ~X. q.e.d.

For B e Uδ and g e Nε> r r (g0), we also get a bounded right inverse

for the operator dB

g by combining the proofs of Lemmas 3,2.11 and
3.2.12.

3.3. Structure of the trajectory flow on the connected sum.

(i) Forming the connected sum.

(a) Let Y. be an oriented homology 3-sphere with Riemannian metrics
gι?, i = 0, 1. Choose basepoints yt e Y( and suppose for simplicity that
the metrics g. on Y( are flat in neighborhoods of the yt. Using these flat
metrics we identify neighborhoods of the points y. in Yt with neighbor-
hoods of zero in the tangent spaces Ty Y.. Precisely, for any real numbers

ε, T > 0, we set Ny{ε, T) = {(r, θ): T~ιε < r < Tε} c ^ . ^ { O } ,

where ε eventually will be made small and T (> 1) is another pa-

rameter (to be fixed later in the proof) with Tε less than half the ra-

dius of injectivity of y{. Then define fε τ : Ny (β, T) -• Ny (β, T) by

fεtT(r, θ) = (-r + Tε -h T'ιε, θ). Let £7. c 7Z be the annulus centered

at yt with inner radius rχ = T~ ε and outer radius ro = Tε. The "linear
inversion" map ^ τ taking the inner radius of UQ to the outer radius of
Uχ induces an orientation-reversing diffeomorphism from Uo to U{. Let
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Y[ c Y{ be the open set obtained by removing the T~ιε ball about y..
Then, in the usual sense, we define the connected sum Y = Y(ε, T) to be

where the annuli Ui are identified by fε τ .
(b) Let (Y.,9 g.), i = 0, 1, be oriented Riemannian 3-manifolds as in

(a). To construct a Riemannian metric on YO#YX, we fix a cutoff function,
φ € C°°([0, +oo)), which satisfies

( 7 + γ \
εj = - , and Φ\[Tε>+oo) = 1.

Definition 3.3.1. The Riemannian metric g on the connected sum

Y0#Yχ is defined as follows: On Y.\By(Tε), set g = g. for / = 0, 1. On

the overlap annulus JV^β, T) s Ny(ε, T), g = φg0 + (1 - 0)/fi* Γ ^ =

^#0 + ^7, r ( ^ i ) > because of the linearity of fε τ .
Lemma 3.3.2. L ^ ε' be the constant of Lemma 3.2.12. There exists

To > 1 ŵcΛ that for all I <T <TQf 3ε with Tε < \{injectivity radius},
and we have Nε, Tε Γ-iθ(g, ) ^ 0 . Furthermore, Nε, Tε τ-ιε(gQ) Π

/ We just use the metric from Definition 3.3.1 and calculate the
C° norm of g - g0 on the annular region:

Then VT <T0, we have

By choosing Γo close to 1 enough to make \\g - go\\co < ε , we thus prove
the lemma.

Remark. Lemma 3.3.2 tells us that we may glue the two manifolds by
an orientation-reversing isometry on the tiny overlap region. Therefore
for forms u supported on Y[, we have

^ HMlli«(*)(w) 2^L

(c) We next use the SU(2)-bundles P. over Y. to define a bundle P over
Y. Using the projection map πχ: Yt x R -> 7Z, we pull back the bundles
P to get bundles π*(/^ ) over ^ x R . Let y40 be a flat connection on
y0 x R, constant in the sense that A0(t) = a e ^ ( Y Q ) for all t e R,
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and let Aχ be an anti-self-dual trajectory from β to y (Le., an anti-self-
dual connection lying in a 1-dimensional moduli space) on F j X R . Set
A. = χAt, / = 0 , l by using the flattening procedure on each side as in
§3.2(ii)(b) with χ = χ(Tε,e).

Choose an SU(2)-isomoφhism of the fibers p: (PQ)y -> (P{)y . Using

the flat structures A., both of which are flat on the overlap, we can spread

out this isomorphism by parallel transport to give a bundle isomorphism

g between the P. over the identified part (an annulus or conformally

spherical tube) covering fε τ . We call such a bundle isomorphism g a

glueing map. Use this glueing map to construct a bundle PQ U Pχ over

Y = r o # ε τYχ and also the pullback bundle π*χ(P0 up Pχ) = E(p) over

7 x R . The glueing map g is referred to the connections Aέ, so we get

an induced connection A = Ao# Aχ on E(p). Thus A = A^# Aχ is

equal to At on (Yi\B3(T~ιε))xR. Note that A is trivial over the region

identified by the glueing map.

The connections Ap , for different p, are not in general gauge equiva-

lent, even though the bundles E(p) are obviously isomorphic. Let Γ^ be

the isotropy group of A. over Γ x R and let Γ = ΓA x Γ . The equiv-
I I -^0 1

alence classes of connections constructed in this way are in one-to-one
correspondence with

^ ) ^ ) = SU(2)/Γ,

the space of "glueing parameters". When the At are irreducible, Γ = { ± 1 }
so the space of glueing parameters is SO(3).

The following proposition can be found in the text of Donaldson and
Kronheimer [3, p. 286].

Proposition 3.3.3. The connections A , A are gauge equivalent if

and only if the parameters pχ, p2 are in the same orbit of the action of Γ

on SU(2).
The following proposition follows from Lemmas 3.3.2 and 3.2.12, by

recalling the constants ε0 of Lemma 3.2.9 and TQ of Lemma 3.3.2.
Proposition 3.3.4. For 0 < ε < ε0 and 1 <T <T0, there is a constant

C independent of ε such that the operator dA

g has a bounded right inverse

G with

and
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Proof. The right inverse for d/ is Qf. Then using the definition of
Ai

A p 9 w e d e f i n e G'u = X^Q^u^ χxQ
8

χuχ, w h e r e uo = (l-ηx)u, uχ = ηχu,
and ?/j is a smooth cutoff function on the annulus UQ Π C/j which obeys

tflllO.T-1*] = ° a n d ^ll{Γβ<r} = *> ^θl[O,Γ£] = *> ^θl{r>3Γfi/2} = ° a i l d

^ll[0,Γ-!β/2] = °> X\\{r>Te} = l ' S i n C e *i = l 0 Π t h e S U P P O r t o f fy >
G' is a right parametrix and d/G1 - Id has a C°°-kernel, it follows that

G = G'(d^8G'yι has the desired properties.

Remark. Proposition 3.3.4 also holds for dim^f y x R < 4 by the re-

mark after Lemma 3.2.11. It is also true for dim^f y χ R < 7 if JK χ R

does not split through the trivial connection.
(ii) Gluing and splitting. Our goal is to deform the "almost anti-self-

dual" connection A to a nearby anti-self-dual connection A +a . This
entails solving the nonlinear anti-self-duality equation

d

The upshot of Proposition 3.3.4 is that we are able to solve the linearized
anti-self-duality equation d^u = b over Y = Y0#ε τYχ, as long as A

is irreducible (i.e., H\ = 0) and regular (i.e., H\ = 0), and futhermore
there are estimates on the solution of the corresponding linearized equation
which are independent of ε. We shall use the inverse function theorem
to deform the almost anti-self-dual connection Ap .

Lemma 3.3.5 (cf. [8]). Let f:E-+F be a C 1 map between Banach
spaces. Assume that in the first order Taylor expansion f(ξ) = /(0) +
Df(0)ξ + N(ξ), Df(0) has a finite dimensional kernel and a right inverse
G such that for ξ, ζ eE

\\GN(ξ) - GN(ζ)\\E < C(\\ξ\\E + IICIU)llf - CM*

for some constant C. Let δx = (8C)" 1 . // \\Gf(0)\\E < δt/3, then there

exists a C1-function φ: Kδ -^ ImG with f(ξ + φ(ξ)) = 0 for all ξ e Kδ ,

and furthermore we have the estimate

where Kδ^ = Ker£>/(0) Π{ξeE: \\ξ\\E <δx}.

Applying Lemma 3.3.5 to f(a) = F+(Ap) + d+ a + (a Λ α) + with

/(0) = F+(Ap), N{a) = (αΛfl) + , Df(0) = d+A '(with the bounded

right inverse G from the Proposition 3.3.4), E = Lp

χ δ Π Lq

0J(TA 3S)

and E = LQ ̂ (Ω^(7 X R, ad)), we have the following theorem.
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Theorem 3.3.6. Let Y{ (i = 0, 1) be homology ^-sphere and Ai e

•^yxR Assume dimJlr

YχR = 0 and d i m ^ # y χ R = 1. Let ε0 be the

constant of Lemma 3.2.9. If 0 < ε <εQ and 1 < T < To which is chosen

from Lemma 3.3.2, then we can deform A to a smooth anti-selfdual

connection over (Y0#ε Γ Γ j ) x R .
Proof Using Proposition 3.3.4 and Lemma 3.2.9, we obtain

\\GF+(Ap)\\Lls < C\\F+{Ap)\\Llι

< C(\\F+(A0)\\LP + | | f + ( i 1 ) | | L , ) < C//P

0,δ 0,0

and N(a) - N(b) = {(a - b) Λ a)+{b A (a- b))+ . On the other hand, the

weighted Holder inequality and Lemma 7.2 in [12]

||((α - b) Λ a)+\\Lls < \\a - fcll^llβll^^ < C,||α - b\\L% J|α||L,^,

where Cδ = c(Vol(70) + Vol(7,) + l)/δ . So

\\GN{a)-GN(b)\\L. <CCδ\\a-b\\L. βa\\L, +\\b\\L, ) ,
0 ,δ 0, δ 0,0 0,o

and by Lemma 3.3.5 with δ{ = ( 8 C Q ) " 1 , there exists φ: H\ -^ ImG

with f(ξ + φ(ξ)) = 0, where φ(Ap) = ap. Thus Ap -h ap is an ASD

connection over (YQ#ε TY{) x R with \\a \\Lq small, and is smooth by
* ^ 0,δ

standard elliptic regularity.
Remarks, (i) The restriction on dimensions of moduli spaces comes

form Lemma 3.2.9 and Proposition 3.3.4, in order to be able to get the
bounded right inverse. Also from the proof above it is easy to see that we
can glue two 1-dimensional anti-self-dual connections into a 2-dimensional
anti-self-dual connection.

(ii) Using the remark after Theorem 3.2.6 and the construction in Propo-
sition 3.3.4, we can also deform the A0#A{ into the anti-self-dual connec-
tion when one of At is trivial.

(iii) Combining the remarks after Proposition 3.3.4 and Theorem 3.3.6

we can deform the A0#A{ into anti-self-dual connection when A{ € ^γ^R

with dimension < 4. (For dimension < 7 we need A which do not split

through θ.)
To incorporate the glueing parameter SO(3), we apply the parametrized

version of Lemma 3.3.5 which states that the solution depends smoothly
on the parameters and is well-behaved under gauge transformations. That
gives the description of a model for an open subset in the moduli space

A
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Theorem 3.3.7. Given a constant flat anti-self-dual connection AQ and a
1-dimensional anti-self-dual connection A{ with each DA surjective in the
weighted Sobolev space, and for small enough ε and all glueing parameters
p, there is a smooth anti-self-dual connection (Ao# Aχ) + a At). If p{, p2

are in the same orbit under the Γ action on the space of glueing parameters
SU(2), the corresponding anti-self-dual connections are gauge equivalent.

The restrictions on ε and T imposed on Theorem 3.3.6 mean that the
"neck" region of the connected sum must be narrow with very small radius.
Conversely, when our metric satisfies these conditions, we can characterize
the anti-self-dual solutions found by our glueing construction. Define

G/ε: ^ x R x SO(3) x ^ ; χ R -> - » ( W ) X R

by Glε(A0,p,A{) = AQ#pA^ as in §3.3(i)(c), where iQ > 0, i{ > 0,
ι0 + z'j = 1. Now for δ2 > 0 in the proof of Theorem 3.3.6, let Uδ (ε) c

e the open set

Us(ε) = {A\ inf p - Λ | | 7 ί

°2 BelmGlε "Lo

The solutions to the anti-self-duality equation obtained from Theorem
3.3.6 lie in Uδ (ε), and any element in Uδ can be deformed to a unique
anti-self-dual connection by Lemma 3.3.5 (the uniqueness follows from
the contraction mapping principle on T&ya^R).

Theorem 3.3.8. For ε, T as in Theorem 3.3.6, any point in Uδ (ε)Π

• Λ i r x R ^ ) can be represented by a connection A of the form Ao# Aχ +

φ(A0#pA{), where Ai is a 0- or l-dimensional anti-self-dual connection

on ^ Y x R , and φ is the C 1 -diffeomorphism in the proof of Theorem 3.3.6

with | | ^ o V i ) i k , <δ2-

Proof Assume the contrary. Then there exists a sequence εn —• 0 with
εn < εo> ί K J } € ζ ( f i Λ ) n / j ! # y ι X R ( g β β ) where ί/£(βΛ) is complement

of Uδ , i.e., the An are not of this form.
By Uhlenbeck's compactness theorem applied to the balanced anti-self-

dual connections, we have a subsequence converging to Ao V Aλ, where
A{ is an anti-self-dual connection on (ί^UyJ) x R, since l-dimensional
moduli space is compact up to time-translation by Lemma 3.1.5. The
connection A. has a singularity along a line {yt} x R. Since the singularity
{y(} x R is codimension 3, it can be removed by Sibner's theorem [13].
Let the extended anti-self-dual connections still be denoted by Ar By the
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flattening construction, for small enough εn we obtain

Λ > n ) = χ(Tεn, εn)At with μ > Λ ) - Λ.||L, ί ( O ( y ( X R ) < V 8

Let Λ (επ) = Λo# ε Λ, as in §3.3(i)(c). Then
r r > ft

" 1 ~~ ^^ /I^I'Lj <5(^π)((10#e 7 } ; r i ) > < R )

< IIJ _ A (p \\\

~ I | Λ » Λ0^n^lLj fJ(^)((y0\Λ3(Γ-1e | i))xR)

1

/=0

For Az large enough we have \\An - A ^ δ{gn){{Yi\Bi{τ-^n))xR) < δ2β by

convergence. Thus

\\An~ A

PK)\\Llδ{gMY^τYχ)^) < V 2

Since A n e ^ ^ r y i ) x R ( ^ ) , of course F+(An) = 0,so Ane Uδ2/2(εn)

which contradicts An e Uc

δ {εn).

Thus for sufficiently small ε, a 1-dimensional moduli space can be rep-
resented by the one deformed from the glueing process.

Corollary 3.3.9. Under the assumption of Theorem 3.3.8, there is a

unique small solution to the anti-self-duality equation. So Uδ ( β ) Π ^ # y # r x R

is equal to the image of the glueing map.
This is the main analytic result of this paper. We summarize this sub-

section in the following theorem.
Theorem 3.3.10. Suppose A. is an anti-self dual connection on Γ^xR,

and consider the connected sums Z = (Y0#ε τ Yχ) x R for fixed 0 < ε < ε0,
1 < T < TQ. Then for sufficiently small ε and each g e SO(3) one has
the map

Conversely any ASD connections in ^{a^gγif, βm γ.i) can be obtained

in this way.

For dim^# y x R < 4 the glueing from Yt x R and the glueing from the

connected sum give all the anti-self-dual connections on (YQ#Y{) x R.
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