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A SURFACE WITH POSITIVE CURVATURE
AND POSITIVE TOPOLOGICAL ENTROPY

GERHARD KNIEPER & HOWARD WEISS

Abstract

We construct explicit examples of closed surfaces with positive curvature
whose geodesic flow has positive topological entropy. It follows that these
surfaces have infinitely many hyperbolic closed geodesies.

1. Introduction

We begin by posing the following general question:
Question. Let M be a C°° closed orientable surface and g a smooth

Riemannian metric with positive Gaussian curvature. Can the geodesic flow
for g have a complicated dynamical behavior!

The Gauss-Bonnet Theorem tells us that a positively curved surface
must be topologically a sphere. The most common examples are the round
sphere (and other surfaces of revolution) and the tri-axial ellipsoid. Both
of these examples possess simple dynamics (i.e., their geodesic flows are
not ergodic and they have zero entropies.) One might think that the simple
topology of the sphere could be an obstruction for the geodesic flow of g
to have complicated dynamics. This is not the case. Donnay [7] and Burns
and Gerber [3] have constructed smooth (and real analytic) metrics on the
sphere whose geodesic flows are Bernoulli. Katok [12] has shown that the
simple topology is not an obstruction for a map to possess complicated
dynamical behavior by constructing Bernoulli diffeomorphisms of the 2-
disk.

Donnay, Burns, and Gerber construct their metrics by starting with a
thrice punctured sphere and considering its complete hyperbolic metric.
They then alter the metric far off into the cusps by cutting off the remain-
der of the cusps and glueing in reflecting caps. The geodesies leave the
reflecting caps focused as they entered, and the cone family can be con-
trolled in the caps. It is clear that these examples have "mostly" negative
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curvature, and that the negative curvature is the mechanism that causes
the complicated dynamics. Although later examples by these authors re-
quire less negative curvature, some negative curvature is essential for their
constructions.

The outstanding open question in this subject is whether such an ex-
ample exists for a positively curved metric; i.e., does there exist a smooth
Riemannian metric on S2 with positive curvature whose geodesic flow is
ergodic or has positive Liouville entropy? At present, this problem seems
totally intractable. In this paper we consider the more modest question:
Does there exist a smooth Riemannian metric on the sphere with posi-
tive curvature whose geodesic flow has positive topological entropy? We
answer this question in the affirmative.

Theorem. There exist "many" smooth Riemannian metrics on S2 with
positive Gaussian curvature whose geodesic flows have positive topological
entropy.

We conjecture that the generic metric on S2 has positive topological
entropy.

We prove our theorem by finding a horseshoe in the dynamics of the
geodesic flow. A flow is said to possess an exponential growth rate of closed
orbits if the number of closed orbits with primitive period < T grows
exponentially in T. The existence of a horseshoe guarantees the existence
of infinitely many hyperbolic periodic orbits having an exponential growth
rate. This gives the following corollary.

Corollary. There exist "many" smooth Riemannian metrics on S2 with
positive Gaussian curvature having an exponential growth rate of hyperbolic
closed geodesies.

In particular, these metrics are the first known examples of positively
curved metrics on S2 having infinitely many hyperbolic closed geodesies.
Our examples are obtained from small local perturbations of an ellipsoid
E with distinct axes. The ellipsoid has the following remarkable property:
E possesses two hyperbolic closed geodesies c and -c (the same curve on
E but with different orientations) such that any geodesic that is forwards
asymptotic to c is backwards asymptotic to -c, and any geodesic that is
forwards asymptotic to -c is backwards asymptotic to c. By studying
a suitable Poincare section, this property implies that the Poincare map
for the flow possesses a double heteroclinic connection. The philosophy
is that a double heteroclinic connection should be highly unstable and
both connections can be broken and made transverse by a "generic" small
perturbation. The subtlety is that we must perturb the Poincare map (living
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in the unit tangent bundle of E) by perturbing the metric on E. This
severely constrains the set of allowable perturbations. Also, many metric
perturbations will affect both branches of the connection.

It is well known that a smooth map / that possesses transverse het-
eroclinic points contains a horseshoe, i.e., there exists a closed invariant
subset on which / is topologically conjugate to a subshift of finite type.
This implies that / has positive topological entropy [21]. We show that
one only needs a two-sided crossing of the stable and unstable manifolds to
obtain positive entropy. This is a new observation. Abramov's Theorem
then implies that the geodesic flow has positive topological entropy.

Jacobi showed that the geodesic flow on the ellipsoid is a completely
integrable, nondegenerate Hamiltonian system. Hence, the Kolmogorov-
Arnold-Moser (KAM) Theorem tells us that our examples are not ergodic;
the geodesic flows for our metrics exhibit complicated dynamics on a sub-
set of the phase space TM.

Our method was inspired by the Poincare method [ 19], [ 18, §403]. How-
ever, the Poincare method is not applicable to autonomous systems. To
extend this method to our construction, we must exploit the complete
integrability of the geodesic flow on E. In short, we replace the unper-
turbed Hamiltonian in the Poincare integral with the second integral for
the geodesic flow on E.

Katok [11] has also constructed small Finsler perturbations of the round
sphere with ergodic geodesic flows. The KAM Theorem does not apply in
this case because the geodesic flow on the round sphere is a "degenerate"
integrable system. However, these examples have zero topological entropy.

Donnay [8], using a simplified version of our methods, has constructed
families of small local perturbations of the elliptical billiard having positive
topological entropy.

Our examples are small perturbations of the ellipsoid by symmetric
2-forms having support in a small disk; hence they are clearly not real
analytic. However, we can approximate our metrics which have positive
entropy arbitrarily well in the C°° topology using real analytic metrics. If
one combines results of Katok, Newhouse, and Yomdin [13], [14], [16],
[26], one obtains that the topological entropy of C°° flows on closed three-
dimensional manifolds is continuous. Hence, we obtain real analytic ex-
amples.

Theorem. There exist "many" real analytic Riemannian metrics on S2

with positive Gaussian curvature whose geodesic flows have positive topolog-
ical entropy.
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2. Geometry of the ellipsoid

The geometry of the ellipsoid can be neatly described using the elliptic
coordinates of Jacobi. We quickly review the most germane geometric
facts. Our review is based on the exposition in [15]. Other references
include [2], [10], [20], [22], and [23].

We consider the two-dimensional ellipsoid E = {xQ/ao+x2/aχ+x2/a2

 =

1}, where we assume that 0 < aQ < aχ < a2 . The intersections of E with
the three coordinate planes yield simple closed geodesies which are called
the basic closed geodesies. E has four umbilic points

(x 0, xχ, x2) = (±y/a^y/al - ao/y/a2 - a0, 0, ±y/a2yja2 - ajy/a2 - a0),

which are located on the middle length basic closed geodesic. These points
play a crucial role in the study of the geometry of E.

For p £ {α0, aχ, a2}, consider the function Ap : R3 -> R defined by

xl x\ x2

Λ I Λ Λ , Λ | , X*y ) ^ "I I

PK ° ι 2J ao-p ax-p a2-p
It is an easy exercise in analytic geometry to show that through each point
p of E outside the coordinate planes, there passes exactly one one-sheeted
hyperboloid {Au = 1 } and one two-sheeted hyperboloid {Au = 1},
where (u{, u2) e (a0, ax) x (ax, a2). We may take u = (u{, u2) as local
coordinates and extend them to local coordinates on all of E. In these
coordinates, the metric tensor ds2 = (-ux + u2)(Uχdu2

χ -I- U2du\) with

Ut = t/ K ) = ( - l ) ' V M ) a n d M ) . = 4(βo - u^a, - Ui){a2 - ut).
Hence the Hamiltonian for the geodesic flow is given by

The Gaussian curvature of E is given by

K(ux, u2) = a0axa2/u2

χu
2

2,

where (uχ, u2) e [a0, ax] x [aχ, a2]. The geodesies on E (that do not
pass through the umbilics) are characterized by

,_u \yύx ± Jjr^yui = °' yG K ' α i ) 0 Γ K ' ^2)'

together with the condition H(u, U) = 1. From this characterization of
geodesies, we can determine the second integral for the geodesic flow:

F(u, u) = (-uχ + u2)(u2Uχύ
2

χ + uχU2U
2

2),
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or more geometrically,

F(v) = uι{πoυ) sin2μ(v) + u2(π o v)cos2μ(υ),

where v e SE (the unit tangent bundle to E), π: TM -> M is the
canonical projection, and μ(t ) denotes the angle between v and the ux-
parameter line through π o v . One can easily verify that H and F are
in involution, i.e., {//, F} = 0, and that dH and dF are everywhere
linearly independent.

Hamilton's equations imply that the projections to E of the Hamilto-
nian flows associated to F and H satisfy the differential equations:

du\
dt

d u F

7

dt

Λf

dF
ditχ

dF
~ dύ2~

dH

d

dH

It is clear that these projected flows are independent if uχ Φ u2 and ύχ Φ
0φύ2.

For γ e (a{, Λ2) , the (geodesic) flow invariant set {F = γ} is a union
of two two-dimensional tori T* whose flow lines project to geodesies that
monotonically wind around the x2-axis and oscillate between the two uχ-
parameter lines {u2 = γ}. Similarly, for γ e (a0, a{), the flow invariant
set {F — y] is a union of two two-dimensional tori T* whose flow
lines project to geodesies that monotonically wind around the xo-axis and
oscillate between the two w2-parameter lines {uχ = γ} . The coordinates
on T* that linearize the flow are the integral curves of the vector fields
generated by H and F-2γH. It follows from this analysis that the closed
geodesies are dense in SE and that the shortest and longest basic closed
geodesies are elliptic.

The behavior of the flow near the middle length basic closed geodesic c
is more interesting. The closed geodesic c is hyperbolic (see proof below).
The flow invariant set SEΠ{F = aχ) corresponds to geodesies on E that
pass through an umbilic point. The geodesies c and -c are the only
closed geodesies contained in this set (see Appendix).

Every other geodesic with tangent vectors in SE Π {F = aχ} passes
through one of the two pairs {q, q'} or {r, r} of diametrical umbilics
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FIGURE 1. GEODESICS SPIRALING INTO C .

time and again at fixed intervals. This interval T is the same for all flow
lines. It follows from this analysis that every geodesic that is forwards
asymptotic to c is backwards asymptotic to -c and passes through the
pair {q, q} of umbilics infinitely many times (see Figure 1). One can give
an easy dynamics proof of this proposition by considering the geodesic flow
for time 2T restricted to the unit tangent vectors having a footpoint on
an umbilic, say q. This induced map is a circle diffeomorphism having
rotation number 0 and two hyperbolic fixed points. The proposition then
follows from the standard results in the theory of circle diffeomorphisms
[6].

By this analysis, the weak stable manifold of c (the set of vectors whose
geodesics are forward asymptotic to c) coincides with the weak unstable
manifold for -c (the set of vectors whose geodesics are backward asymp-
totic to -c) and forms a double branched cover of E, branched over
c.

We now show that the middle length basic closed geodesic c on E is
hyperbolic (see [15]). This is a generalization of the classical fact that
any billiard path in an elliptic billiard that passes through a focus, is both
forwards and backwards asymptotic to the major axis [5].

We parametrize c such that c starts at c(0) = (y/a^, 0,0), c points
into the half-space {x2 > 0}, and c has length /. Let 0 < tχ < t2 < t3 <
t4< I be the parameter values where c passes through the four umbilics.

Theorem 2.1. The middle length basic closed geodesic c on E is hyper-
bolic.

Proof. We will show that Es = {orthogonal Jacobi fields / along
c I J(tχ) = 0 and f(tx) > 0} generates the stable eigenspace of the Poincare
map with eigenvalue 0 < a < 1. From the geometry of the ellipsoid we
know that J(t{) = 0 implies J(t3) = 0 = J{tx + /). This implies that
t •-• J(t + /) e Es, and since the dimension of Es = 1, there exists
a e R such that J(t + l) = a J{t). We will show that 0 < a < 1. Then
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c(tχ)

FIGURE 2. JACOBI FIELDS Jχ AND J2

0 < f(tx + /) = a /(*!) < /(ίj) and J(tχ + /) = /(^) = 0. This clearly
implies the theorem.

Lemma 2.2. If J e Es, then -f{t3) < J\tχ).
Consider the interval [tχ, ί 3 ] . By studying the simple expression for

the Gaussian curvature given above, one can easily show that K(tχ + s) >
K{t3 - s) for 0 < s < (t3 + tχ)/2. The idea is that the curvature formula
implies that K(t) has the property that if t2 is the time at which c passes
through the "intermediate" umbilic point, then K(tχ + s) = K(t2 - s) >
K{tx) for 0 < s < t2 - tχ and K(t2 + s) = K(t3 - s) < K(tx) for 0 < s <

Now consider two arbitrary Jacobi fields Jχ and J2 along c such that
Jχ(tx) = J2(t3) = 0 and fx{tx) < -J2{t3). Since there are no conju-
gate points between tχ and t3, the Sturm Comparison Theorem implies
that 0 < Jχ{(tχ + t3)/2) < J2((tχ + t3)/2). Now consider our original Ja-
cobi field / . Call it Jx when restricted to [tχ, (tχ 4-13)/2], and J2 on
[(tχ + t3)/2, t3]. The previous argument shows that -f(t3) < f{tx), for
otherwise, Jχ and J2 would not agree at the midpoint of the interval (see
Figure 2). q.e.d.

Since f(tχ) > 0, and the only zeros of / occur at tχ and t3 modulo

/, we have that f(tχ +1) > 0. If we apply the argument in the proof of the

Lemma to the interval [t3, tχ + / ] , we obtain that 0 < f(tx +/) < -f{t3).

Combining this statement with the lemma, we obtain that 0 < j'(tι +/) <

-J'{t3)<j\tχ).

3. Splitting of stable and unstable manifolds

Let M be a C°° n-dimensional compact Riemannian manifold. Ham-
iltonian flows are usually flows on T*M (the cotangent bundle to M).
However, we are mostly interested in geodesic flows which are more
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naturally thought of as flows on TM (the tangent bundle to M). Using
the Riemannian metric, we may transfer the natural symplectic structure
on T*M to TM and consider Hamiltonian flows on TM. TheHamilto-
nian function H : TM -> R for geodesic flows is given by the Riemannian
metric, i.e., H{υ) = g(v, v). Let π : TM -> M be the canonical projec-
tion.

Assume that our system has two closed orbits a(t) and ω(t) (not neces-
sarily distinct) and a biasymptotic orbit x(t). We will assume that x(t) is
backwards asymptotic to a(t) and forwards asymptotic to ω(t). We con-
sider Hamiltonian perturbations of our flow He = HQ

Jt-eHι such that the
support of Hx is bounded away from a(t) and ω(t). This insures that a
and ω will not be affected by the perturbation. Under these assumptions
we can prove the following theorem.

Theorem 3.1. Let φ'o : TM -• TM be the Hamiltonian flow for the
Hamiltonian Ho. Let H€ = Ho + eHx be a perturbation such that the
support of Hx is bounded away from a(t) and ω(t). Let φ[ be the asso-
ciated Hamiltonian flows on He = 1. Assume that for e sufficiently small
the biasymptotic orbit x(t) persists under the perturbation He, i.e., there
exists a family of orbits xe(t) such that xo(t) = x(t)9 d(xe(t), a(ή) -•
Ofort-* -oo, d(xe(t), ω(ή) -^Ofort-^ oo, and d(x€(t)9 x(ή) = 0(e)
uniformly in t. Furthermore, suppose that the flow associated to HQ pos-
sesses a smooth integral of motion F : TM -> R which is in involution
with Ho, i.e., {HQ,F} = 0. Then

Γ
Remarks. (1) Since the support of Hχ is bounded away from a and

ω, the integral always exists and is finite.
(2) If F = HQ, this integral is called the Poincare integral (or

the Poincare-Melnikov integral) and vanishes since ^H{ (x(ή) dt =
{Hl9HQ}(x{t)).

(3) For the geodesic flow on the ellipsoid E, Wws{c) = Wwu(-c) and
Wws{-c) = Wwu(c) where c and -c are the hyperbolic closed geodesies
of "middle length", and Wws{c) and Wwu{c) denote the weak stable and
weak unstable manifolds for c.

Proof Since F is an integral of motion of the unperturbed system Ho,
there are constants c{9 c2, and c3 such that F(a(ή) = c{, F(ω(ή) = c2,
and F(x(ή) = c3 for all t e R. Since x(t) is biasymptotic, the continuity
of F implies that the constants coincide.
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Lemma 3.2. Under the conditions of the theorem we have
r+oo J

y ±F(xe(t))dt = 0.
J—oo U ί

Proof of Lemma.
τ d _

= rlirn (F(xe(T)) - F(xe(-T))) = 0,

since xe(t) —* ω as t - κ » , xe(ή —> a as t —> -oo, and F(a) = F(ω).
q.e.d.

We continue with the proof of our Theorem 3.1. Using the Lemma and
the definition of Poisson bracket we obtain

0 = ί*" TtF(χMdt= Γ°°{F,H€}{xe{t))dt
J—oo a ι J — oooo

+OO

r+oo r+oo

= {F,H0}(xe(t))dt + e {F.ffjt
J—oo J—oo

The first integral above vanishes since F and HQ are in involution. We are
left with

r+oo

/ {F,Hι}(xe(t))dt = 0, for sufficiently small e.
J—oo

Since Hχ has support bounded away from a(t) and ω(£), this integral is
between finite limits. We can take the limit inside the integral and since
d(x€(t), x(ή) = O(e), we obtain

r+oo

{F,Hι}(x(t))dt = 0.

4. Splitting of asymptotic manifolds

Given a hyperbolic closed orbit γ of a flow, the weak stable (weak
unstable) manifold consists of the set of points that are forwards (back-
wards) asymptotic to γ. The Stable Manifold Theorem [9] tells us that
the weak stable and unstable manifolds for γ are smooth surfaces that
vary smoothly when the flow is smoothly perturbed. Let a and ω be two
hyperbolic closed geodesies, and let W™u(a) denote the weak unstable
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manifold of a and W™s(ω) the weak stable manifold of ω with respect
to the system H€ = H0 + eHχ. The following Corollary is an immediate
consequence of Theorem 3.1.

Corollary 4.1. Assume that W™u{a) = W™{ω). If there exists a bi-
asymptotic orbit x(t) of HQ such that x(t) e W™u{a) = W™s(ω), and if
there exists a second integral of motion F : TM -• R that is independent
of Ho and in involution with Ho such that

H{(φs

F(x(t)))dtφ0,
s=0

then W™u{a) φ W™(ω) for e sufficiently small.
Proof of Corollary. Assume that W™u(a) = W™\ω) for sufficiently

small € . By the continuous dependency of stable and unstable man-
ifolds on the perturbation parameter [9], we can find a family of or-
bits xe e We

wu(a) = W€
ws(ω) such that d(x€(t),x(t)) = O(e). Since

jU H{(φs

F(x(t))) dt = {Hχ, F}(x(ή), an application of Theorem 3.1

yields the corollary.
Warning. The condition that W™u{a) Φ W™s{ω) for e sufficiently

small does not necessarily imply that the two manifolds intersect trans-
versely; they may be disjoint or they may intersect nontransversely with a
one-sided or two-sided crossing.

5. A local conformal perturbation of the ellipsoid

which produces positive topological entropy

Let x(t) and y(t) be biasymptotic orbits such that there are constants
0"+ 9

 τ+ > G- > τ_ such that x(t) —> c(t + σ+) and y(t) -> c(t + τ+) as
t -> oo and x(t) -• -c(t + σ_) and y(t) -> -c(t + τ_) as t -> -oo.
We also choose the parametrizations of x{i) and y(t) so that π o χ(Q)
and π o y(0) do not lie on c and are distinct points. Let N, Nf be
the respective neighborhoods of π o c(O), π o y(0) such that N Π Nf =

does not reenter iV, and π o y(t) does not reenter Nf.
We want to use the map GN(s, t) = π(φs

Hx(ή) = π(φs

F o </>^(JC(O))) as
a coordinate system in a neighborhood of π o JC(O) . It is clear from the
remarks in §2 that this will be possible provided uxφu2 and ύ{ φθφύ2

at x(0). The first condition holds because π o χ(0) is not an umbilic
point; the second condition holds because x(0) is tangent to a geodesic
that passes through the umbilic points. Thus GN: [-δ, δ] x [-e, e] -+ N
will provide local coordinates for JV for sufficiently small e and δ .
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We now define a function PN : [-δ, δ] x [-e , e] —• R by

239

where χ,_δ δ], κ^_e e ] are smooth positive functions supported in [-δ, δ]
and [-e , e] respectively with χ(0) = κ(0) = 1. Let

i7 , t Λ ._ / P N ( ° N 1 oπ(υ)).H0(υ), if π(v) e image(^) c iV,

[ 0, otherwise.

If Ho = g, we obtain a conformal perturbation

H ( l + e P ( G ~ * ) ) ( l + t P ) g

For this perturbation we have

d_
ds

d_
ds

i = 0

5=0

PN{GN

ιoπ{φs

Fx{t))

,t) = t2'K{_et]{t).

= Γ t2

K[_ee](t)dt>0.
J —oo

This construction yields

f°° d_ H s

J-oo ds s=0

 1>N

We repeat the preceding construction in Nf to obtain a local coordinate
system GN,, a conformal factor PN,, a Riemannian metric ge N> and a
Hamiltonian function Hχ N, such that

d Hχ N,(φs

F(y(t)))dt>0.
5=0

We combine these two local conformal perturbations by defining Hχ =

PN{GN

l oπ(v)) H0(v)9 if π(v) G image^) c N,
H\(v) := \ PN'{G^ o π(υ)) HQ(υ), if π(v) e imagetG ,̂) c rf,

0, otherwise,

and
lge = HQ + eHx = //0 (1 + ePN(GN

l o n) + β P ^ ^ 1 o π))

Since c Π (JV U N9) = 0 , c is not affected by the perturbation. Thus by
Corollary 4.1, We

ws(c(ή) φ We

wu(-c(ή) and w™(-c(t)) φ We

wu(c(t))
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for e sufficiently small. It will follow from the results in §7 that the
geodesic flow for ge has positive topological entropy for e > 0 sufficiently
small.

6. Local genericity of positive topological entropy

In this section we show that the geodesic flow for a generic metric per-
turbation of Ho = g having support contained in N U Nf has positive
topological entropy.

Let N and Nf be as in §5. Let 6t)tn2 NuN>(M) denote the space

of symmetric 2-tensors with support in NUN'. Then the function K :

Gt)m2NuN<{M) -> R2 defined by

K:ζ (Γ- ξ(Φs

F(χ(t)),ΦsΛχ(t)))dt,
5=0

4z
as

5=0

is clearly linear and locally bounded. In §5, we showed that the function K
does not vanish identically by explicitly constructing a metric perturbation
Hχ of HQ such that both integrals do not vanish.

Choose ξ e &ϊ)m2 NuN*(M) and consider the integral K(ξ). If this
integral does not vanish, we need not do anything further. If it does van-
ish, then the local continuity of K implies that we may slightly perturb ξ
such that the integral does not vanish. In fact, an open, dense subset of
6t)tn2 NuN'{M) will have nonvanishing integrals, and the results in §7 will
imply that the corresponding geodesic flows will have positive topological
entropy.

7. The two-sided intersection of weak stable and weak unstable manifolds

Consider the set of all the unit tangent vectors having footpoint on the
long basic closed geodesic /, and remove the two tangent vectors pointing
along /. What remains has two connected components—both annuli. Let
Σ denote the Poincare section consisting of one of these annuli. The cor-
responding Poincare map preserves a natural smooth 2-form and possesses
a pair of nontransverse heteroclinic points υ and -υ , where v is tangent
to c. In §5 we constructed an explicit local metric perturbation {#e} of
E. The corresponding geodesic flows induce Poincare maps {Pe} on Σ,
which preserve smooth 2-forms.
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FIGURE 3. HETEROCLINIC POINTS WITH 2-SIDED CROSS-

ING.

If a diffeomorphism / has a hyperbolic fixed point p, the stable mani-
fold W\p) of p consists of the set of points that are forward asymptotic
to p and the unstable manifold Wu(p) of p consists the set of points
that are backwards asymptotic to p.

It follows from the nonvanishing of the two integrals for our explicit
metric perturbation in §5 that W*(v) φ We

u(-v) and Ws

e(-v) φ We

u(v)
for the perturbed Poincare maps {Pe}. To show that the geodesic flow
for the perturbed metric g€ has positive topological entropy, we will show
that W*(v) has a two-sided intersection with We"(-w),and W*(-v) has
a two-sided intersection with W"(υ).

We required our metric perturbation to be supported in N and Nf

because for the metric deformation ge N supported in N, one can only
conclude that W*(y) has a two-sided intersection with W"(-v) for the
corresponding Poincare maps. It is possible, although highly improbable,
that W*(-υ) = W"(v). In this case, it is not clear whether the Poincare
maps have positive topological entropy. We elected to eliminate this possi-
bility by considering a metric perturbation supported in N and Nf, which
was engineered to split both connections and produce two-sided crossings
for the Poincare map. See Figure 3.

We require the following simple lemma.
Lemma 7.1. Let f : E 2 -> R2 be a smooth diffeomorphism that

preserves a smooth 2-form ω and has a double heteroclinic connection,
i.e., there exist hyperbolic fixed points p and q such that Ws(p) = Wu{q)
and Ws(q) = Wu{p). Let N denote a small disk such that Nn{p,q} =
0 , NΠ W\p) φ0,and Nn W\q) = 0. Let fe, fo = f be a smooth de-
formation of f that is supported in N and which preserves smooth 2-forms
ωe that vary smoothly in e . If W€

s{p) φ We

u(q), then Ws

e{p) and We

u{q)
intersect with a two-sided crossing for e sufficiently small. See Figure 4
(next page).
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FIGURE 4. HYPOTHESIS OF LEMMA 7.1.

FIGURE 5. FORBIDDEN CONFIGURATIONS.

Proof. In [18, §308], Poincare proved a related result for homoclinic
points. He proved that if / is an area-preserving surface diffeomorphism
and p is a hyperbolic fixed point such that Ws(p) = Wu(p) , and if one
considers a smooth deformation f€ of / by area-preserving diffeomor-
phisms such that the stable and unstable manifolds of the perturbed hyper-
bolic fixed point pe do not coincide, then the perturbed stable and unstable
manifolds for p intersect with a two-sided crossing. Poincare considered
the possible ways that the perturbed stable and unstable manifolds might
not intersect and then showed that each case leads to a violation of the
area-preserving hypotheses.

The proof of our Lemma for heteroclinic points is similar to Poincare's
argument. We illustrate the two main cases of the Lemma in Figure 5—the
case when We

s(p) n We
u(q) = 0 , and the case W*{p) n W€

u(q) with only
one-sided crossings. Both cases violate the area preserving property of the
perturbed Poincare maps. The wiggly arc represents the image under /
of the straight arc. Since N and Ws{q) are disjoint, Ws{q) does not feel
the perturbation, and hence W*(q) = W"(p).

The following proposition will ensure that the Poincare maps for the lo-
cal metric deformation will have heteroclinic points with two-sided cross-
ings on both branches.
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FIGURE 6. HYPOTHESIS OF PROPOSITION 7.2.

Proposition 7.2. Let f: R2 —• R2 be a smooth diffeomorphism that
preserves a smooth 2-form ω and has a double heteroclinic connection,
i.e., there exist hyperbolic fixed points p and q such that Ws{p) = Wu(q)
and W\q) = Wu(p). Let N and N1 denote disjoint small disks such that
(NuN')Π{p, q} = 0 , NnWs(p) φ0, NnWs(q) = 0 , N'nWs(q) φ0f

and Nf Π Ws(p) = 0 . Let f€, fQ = f, be a smooth deformation of f
that is supported in N U Nf and preserves smooth 2-forms ωe that vary
smoothly in e. Suppose that We\p) φ W€

u(q) and We
s{q) φ W€

u(p) for e
sufficiently small. Then W*(p) Π We

u{q) φ 0 , Ws

e(q) Π We

u(p) φ0tand
both intersections have two-sided crossings for small positive e .

Proof. We may assume that f€(x) = foge ohe where support(#c) c N
and support(Λe) c Nf. Since NnNf = 0, ge ohe = h€ oge. Consider the
deformation foge supported in N. It follows from the hypothesis that for
these maps, the stable manifold of q coincides with the unstable manifold
of p, and the stable manifold at p does not coincide with the unstable
manifold at q, for small positive e . By Lemma 7.1, these manifolds must
intersect with a two-sided crossing. Similarly, by reversing the roles of p
and q we obtain that for the deformation foh€ that the stable manifold of
p coincides with the unstable manifold at q and that the stable manifold
of q intersects the unstable manifold at p with a two-sided crossing for
small positive e.

Since support(Λe) c Nf, adding this perturbation to f°g€ will not in-
fluence the two-sided crossing of the stable manifold at p and the unstable
manifold at q. This implies that for the deformation fogeohe, W*(p)
has a two-sided crossing with W*(q) for small positive e . Similarly, we
obtain that for the deformation f°heoge, W*(q) has a two-sided crossing
with W"{p) for small positive e .

Remarks. (1) These results in this chapter are also true for diffeomor-
phisms of an annulus, and the proofs are identical. We apply Proposition
7.2 in the case of an annulus.
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(2) Proposition 7.2 is false if the perturbation is not supported away
from p and q, and it is also false if the perturbation is large or non-
area-preserving [25]. In addition, this Proposition is false in higher di-
mensions if we consider smooth perturbations of a symplectomorphism
through symplectomorphisms.

8. Positive topological entropy

It is well known [21] that if / : R2 -• R2 is a diffeomorphism having
hyperbolic fixed points p and p1, such that q e Ws(p)ΠWu(p) and q e
Ws(p')nWu(p), where the intersections at q and q are transverse, then /
has positive topological entropy. One finds a horseshoe (a closed invariant
Cantor set in M on which / is topologically equivalent to a subshift of
finite type) in the dynamics of / . Since a subshift of finite type has
positive topological entropy [24] and topological entropy is a topological
invariant [24], this implies that / has positive topological entropy.

Remark. Suppose / : R2 —> R2 is a diffeomorphism having hyperbolic
fixed points p and p , such that W\p) = Wu{p) and q e Ws{p) n
Wu(p) where the intersection at q is transverse. It is not known whether
/ has positive topological entropy. Hence one can not conclude that the
perturbed geodesic flows have positive topological entropy if the corre-
sponding Poincare maps satisfy the hypothesis in the Proposition in §6.

For heteroclinic points with two-sided crossings we show the following
result, whose detailed proof appears in [25]:

Theorem 8.1. Let f: R2 -• R2 be a diffeomorphism having hyperbolic
fixed points p and p, such that q e Ws{p) n Wu{p) and q e W\p) Π
Wu(p), and the intersections at q and q are two-sidedt then f has positive
topological entropy.

In the case when the stable and unstable manifolds have order r contact
at a heteroclinic point (1 < r < oo) Conley [4] (see also [19]) showed that
there exists a transverse heteroclinic point in every neighborhood of the
nontransverse heteroclinic point. By the preceding remarks, this implies
that / has positive topological entropy.

The case of infinite order contact is more delicate. It seems quite diffi-
cult to show directly the existence of a transverse heteroclinic point near
an infinitely flat nontransverse heteroclinic point. However, it is straight-
forward to prove directly that / has positive topological entropy. One
can then apply a result of Katok [13] which states that if a surface diffeo-
morphism has positive topological entropy, then there exists a horseshoe
that carries most of the entropy.
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R

FIGURE 7. COMPONENTS OF fN(R) Π R.

To prove that / has positive topological entropy, one needs only to
show that / has a topological factor that is a subshift of finite type, i.e.,
there exists a continuous surjection between an invariant subset of M and
a subshift of finite type. The hard part of constructing the horseshoe in the
transverse case is proving the injectivity of this map, and it requires the
use of Palis' λ-Lemma, which is not applicable in our situation. However,
injectivity of the map is not required to ensure that / has positive entropy.
The idea of the proof is to choose a rectangle R to obtain a picture as
in Figure 7, where Rχ and R2 are two good components of fN(R) Π R,
where fN denotes some sufficiently large iterate of / . We use R{ and
R2 to code our map and we show the continuity and surjectivity of the
coding map by imitating the proof in the transverse case.

Remark. Theorem 8.1 also applies to diffeomorphisms of an annulus
with the identical proof. It is in this form that we apply the theorem.

Proof of main theorem. Our goal is to show that the geodesic flow for
the local conformal metric perturbation ge constructed in §5 has posi-
tive topological entropy. We observed in §7 that W*(v) Φ W"(-v) and
W*(-v) Φ W"{υ) for the perturbed Poincare maps {Pe} . It follows im-
mediately from Proposition 7.2 that W*(v) Π W"(-v) ψ 0 , W*(-υ) n
W"(v) Φ 0 , and both intersections have two-sided crossings for e suffi-
ciently small. Then by Theorem 8.1, {Pe} has positive topological entropy
for e sufficiently small, and by Abramov's Theorem [1], the geodesic flow
for {ge} has positive topological entropy for e sufficiently small.
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Appendix

In this appendix we provide a short proof that for an ellipsoid with
three different axes the geodesies passing through the umbilic points are
asymptotic to the middle length basic closed geodesic. This is a folklore
theorem whose statement appears several times in the literature, for ex-
ample [15], [23]. Unfortunately, we have been unsuccessful in locating a
proof, so for the reader's convenience, we present the following argument.

We use the notation from §2. We denote the shortest, middle length,
and longest basic closed geodesic (as curves on E) by s, c, and / re-
spectively. As in §2, we use the coordinate system (ux, u2) e (α 0, aχ) x
(a{, a2). We recall that this coordinate system is one to one in each of
the eight regions bounded by the coordinate planes.

Lemma 1. Suppose that σ :[a, b]-+ E is a geodesic from the invariant
torus F = γ, γ e (α 0, aι)U(aι, a2), and (u{(t), u2(ή) are the coordinates
ofσ(t). Then

ϊ
J a

uΛt)
dt -f

J a

uM)
-MM) dt,

where Pγ(x) = -x(x - aQ)(x - ax){x - a2)(x - γ).

Proof. As stated in §2 the geodesies belonging to the invariant torus
F = γ are subject to the relation

= 0,

where Ut = Ufa) = (-1)%//^) f(ut) = 4(α0 - ut){ax - u^a2 - ut).
Integrating this equation yields the proof of Lemma 1.

Lemma 2. Consider the parameter γ e (a{, a2). Then the following
equality holds:

ra2r*dx=r^L=dx-f0
dx.

Proof. Consider the Riemann surface associated to the algebraic equa-

tion w =Pγ(z). This is a surface of genus 2 on which ω = (z/JPγ(z))dz

is a holomorphic differential. Integrating the differential along a suitable

null homotopic path, we obtain the relation in Lemma 2.
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Corollary 3. Suppose that σy is a geodesic on the invariant torus F =
γ e (aχ, a2). Let a and b be consecutive times at which σ crosses I.
Then the u2-coordinate of σy(t) takes on each of the values γ and a2 at
most once for t e [a, b].

Proof It is well known that if y e (ax, a2), then the geodesies on the
torus F = γ are always transverse to the lines of curvature uχ = const,
and oscillate between the lines of curvature u2 = const, becoming tangent
to them only when u2 = γ. We have (cf. the proof of Proposition 4)

rb

1
J a

dt
yJPγ(uχ(t)) l

If the lemma were false, we would have

u2(t)

:dX.

-MM) dt dx.

Lemmas 1 and 2 show that this is impossible, q.e.d.
We now define a return map R: [aχ, a2] —• [aχ, a2] that describes the

behaviour of the geodesies passing through the umbilics. Choose an urn-
bilic q . For u2 e [aχ, a2], let p denote one of the points on the longest
basic closed geodesic / with coordinates (a0, u2) that is on the oppo-
site side of the shortest closed geodesic s from q (or on s if u2 = a2).
Define R(u2) so that (ao,R(u2)) are the coordinates of the point where
the geodesic σ from p to q next intersects /. By the symmetry of the
ellipsoid, this definition does not depend upon the choices that have been
made. Obviously aχ is a fixed point of R. The following proposition
shows that it is the only fixed point.

Proposition 4. For u2 e {ax, a2] we have R(u2) < u2.
Proof Fix u2 € (ax, a2] and let p, q and σ be as above, and

parametrize σ so that σ(0) = p. For γ e (ax, a2) consider a family
of geodesies σy such that limy_^ σy = σ and each σγ is a geodesic on
the invariant torus F = γ with σy(0) = σ(0). It is easily seen that if γ is
close to aχ, then σy becomes tangent to the line of curvature u2 = γ at a
point qy near q. Let ty be the first time after 0 when σy crosses /, and
let v(γ) be the ^-coordinate of σy{ty). During [0, tγ], the first coordi-
nate uχ(t) of σ increases form a0 to a maximum of aχ when γ crosses
c and then decreases to a0. See Figure 1. Thus

uλjt) dt = 2

Jγ

dx.
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The second coordinate u2(t) satisfies γ < u2(t) < a2 and has the following
values: u2 at p\ a2 when σγ crosses s; γ at qγ; and υ(γ) at time tγ.
We see from Corollary 3 that

It follows from Lemmas 1 and 2 that

Since the integrands on both sides are positive, this is possible only if
v(γ) < u2 . Furthermore, if γ decreases, the integrand on the left decreases
and the integrand on the right increases, which forces v(γ) to decrease.
Since R(u2) = limy_^ υ(γ), we obtain the desired inequality.

Theorem 5. Every geodesic that passes through an umbilic point is
asymptotic to c.

Proof. Every geodesic which passes through an umbilic point also
passes through a pair of diametrical umbilics at fixed intervals. With at
most one possible exception, every time it passes through one of the two
regions bounded by /, it intersects s, and it follows by the proposition
that it must be asymptotic to c.

References

[1] L. Abramov, On the entropy of a flow, Amer. Math. Soc. Transl. (2) 49 (1966)
167-170.

[2] H. Alkier, ϋber geodάtische Linien aufFlάschen zweiten Grades, Dissertation Leipzig.

[3] K. Burns & M. Gerber, Real analytic Bernoulli geodesic flows on S2 , Ergodic Theory
Dynamical Systems 9 (1989) 27-45 .

[4] C. Conley, Twist mappings, linking, analyticity and periodic solutions which pass close
to an unstable periodic solution, Topological Dynamics (Joseph Auslander, ed.), Ben-
jamin, New York, 1968.

[5] I. Cornfeld, S. Fomin &Y. Sinai, Ergodic theory, Springer, Berlin, 1982.
[6] W. de Melo, Lectures on one-dimensional dynamics, 17th Colόq. Brasileiro Mat., Inst.

Mat. PuraApL, 1990.
[7] V. Donnay, Geodesic flow on the two-sphere, I: Positive measure entropy, Ergodic Theory

Dynamical Systems 8 (1989) 531-553 .



A SURFACE WITH POSITIVE CURVATURE 249

[8] , Perturbations of elliptic billiards, preprint.
[9] M Hirsch, C. Pugh & M. Shub, Invariant manifolds, Lecture Notes in Math., Vol. 583,

Springer, Berlin, 1975.
[10] C. G. J. Jacobi, Note von der geodάtischen Linie aufeinem Ellipsoid and der verschiede-

nen Anwendungen einer merkwύrdigen analytischen Substitution, Crelles J. 19 (1839)
309-313.

[11] A. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Math.
USSR-Izv. 7 (3) (1973) 535-571 .

[12] , Bernoulli diffeomorphisms on surfaces, Ann. of Math. (2) 110 (1977) 529-574 .
[13] , Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Etudes Sci.

Inst. Publ. Hautes Math. 51 (1980) 137-173 .
[14] , Nonuniform hyperbolicity and structure of smooth dynamical systems, Proc. In-

ternat. Congress Math. (Warszawa), 1983, 1245-1254 .
[15] W. Klingenberg, Riemannian geometry, de Gruyter, Berlin, 1982.
[16] S. Newhouse, Continuity properties of entropy, Ergodic Theory Dynamical Systems 8

(1988)283-300.
[17] H. Poincare, Sur les equations de la dynamique et le probleme de trois corps, Acta Math.

13(1890) 1-270.
[18] , Les mέthodes nouvelles de la mecanique celeste, Dover, New York, 1957.
[19] C. Robinson, Bifurcation to infinitely many sinks, Comm. Math. Phys. 90 (1983)

433-459.
[20] H. Scuth, Stabilitάt von periodischen Geodάtischen aufn-dimensionalen Ellipsoiden, Bon-

ner Math. Schriften 60 (1972).
[21] S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatori-

cal Topology (S.S. Cairnes, ed.), Princeton University Press, Princeton, NJ, 1965,
pp. 63-80.

[22] A. Thimm, Integrabilitάt beim geodάtischen Fluss, Bonner Math. Schriften 103 (1978).
[23] H. Viesel, Uber einfach geschlossen Geodάische aufdem Ellipsoid, Arch. Math. 22 (1971)

106-112.
[24] P. Walters, An introduction to ergodic theory, Graduate Texts in Math., Vol. 79, Springer,

Berlin, 1982.
[25] H. Weiss, Surface diffeomorphisms having homoclinic points with 2-sided crossings have

positive topological entropy, preprint.
[26] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987) 287-300.

U N I V E R S I T A T A U G S B U R G

P E N N S Y L V A N I A S T A T E U N I V E R S I T Y






