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0. Introduction

The purpose of this paper is to understand Donaldson's polynomial in-
variants of four-manifolds in the context of algebraic geometry. In particu-
lar, we explore, among other things, the possibility of defining Donaldson's
polynomial invariants of algebraic surfaces by relying on the intersection
theory of algebraic varieties.

Let X be any smooth algebraic surface and let H be a very ample
line bundle on X with g its Hodge metric. For any d > 0, there is a
unique SU(2) bundle E over X of second Chern class d. We denote by
y^(g) the space of gauge equivalent classes of irreducible anti-self-dual
(ASD) (with respect to g) SU(2) connections on E. According to Uh-
lenbeck's weak compactness theorem, there is a canonical compactification
of ^ ( g ) [2]. Let Λ^(g) be such a compactification. On the other hand,
any irreducible ASD connection on E induces a holomorphic structure
on E, which turns out to be //-stable with respect to the divisor H [1].
Thus, Λ^(g) can be identified with a subset of the moduli scheme Jίd{H)
of rank two i/-semistable sheaves F with detF = & and c2(F) = d.
J?d(H) is protective, thus is compact [8]. In this sense, J£d(H) is another
compactification of the space ^ ( g ) It is both interesting and important
to understand the relation between Uhlenbeck's compactification Jf'^(g)
and Gieseker's compactification J?d{H). Based on Uhlenbeck's compact-
ification yt/'d(g), Donaldson introduced a series of polynomials {qk} of
the four-manifold X. The polynomials are defined by calculating the self-
intersection numbers of proper subsets of ^d(g) when g is a generic
Riemannian metric. In the case where the manifold X is simply con-
nected and b^(X) is odd and strictly larger than 1, he showed that these
numbers are well defined and are indeed invariants of the smooth structure
of the four-manifold X [3].
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The first main theorem of the paper is
Theorem 0.1. There is a complex structure on JV^(g) making it a re-

duced projective scheme. Further\ if we let ^d(H) be the open subset of

{consisting of locally free μ-stable sheaves and let <£d{H) be the
closure of Jid{H) endowed with the reduced scheme structure, then there
is a morphism

extending the map between the set of μ-stable rank-two vector bundles and
the set of gauge equivalent classes of irreducible ASD connections with fixed
Chern classes.

The idea of the proof is straightforward. We construct a line bun-

dle -2^, k on Jfd(H) that is the dual of the determinant line bundle

of a perfect complex on Jtd(H). We show that for large m, the space

dS^m

k) is base point free. Then a suitable choice of a subspace

c H°[jrd(H), &*™k) gives rise to a morphism

We will show that the image scheme of Jΐμ

d{H) c ^d{H) under this map

is homeomorphic to Uhlenbeck's compactification JV'^(g).

By using what we know about the relation between J?d{H) and « ^ ( g ) ,
we can redefine part of Donaldson's polynomial invariants of the algebraic
surface in the algebraic geometric context. More precisely, to any suffi-
ciently large integer d and ample divisor H which is rf-generic in the
sense that whenever D e NS(X) with DD>-d, then HD φ 0, we
then construct a homomorphism p: NS(Jf) —• N S ( ^ ) and define the
polynomials δd(H) by

δd{H){aχ, , ak) = [p(ax) p{ak)]{*d),

where aχ, , ak e Hι'ι (X, Z) and k = dim^(7/) . We then show
Theorem 0.2. Let X be a smooth simply connected algebraic surface

with pg > 1, let NS(ΛQQ C NS(ΛQ ® Z Q be the cone spanned by am-

ple Q-divisorsf and assume Ψ c N S ( X ) Q is any compact subcone. Then

there is a constant A{^) such that whenever d > A(&) and H e &

is d-genericy then the polynomial δd{H): Symπf HXΛ{X, Z) -> Z with

k = άimJTd(H) is identical to the restriction to Symm^ Hι'ι(X, Z) c

SymmkH2(X, Z) of Donaldson's polynomial invariant qk.
The paper is organized as follows. In § 1, we recall the construction of

the determinant line bundle and study the descent problem of the moduli
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functor associated to Jίd(H). In §2, we deal with the space 2^(m) c

H°(jrd93%™k) and analyze the image scheme Jtd -> P ( ^ ( m ) v ) in §3.

The proof of Theorem 0.1 occupies §4. Finally, in §5 we compare the

polynomials δk(H) with qk and prove Theorem 0.2.

1. Determinant line bundles on Jίd

Let X be a smooth algebraic surface over the complex number field
k = C and let H be an ample line bundle on X. For any sheaf F on
X, we denote the Hubert polynomial of F by

A sheaf F on X is said to be stable (resp. semistable) with respect to H
if F is coherent, torsion free, and, for any proper subsheaf L c F,

Λ0 b W {resp ^
Here for polynomials /? and q with real coefficients, we say p -< # (resp.
p ^ q) if for « > 0, p(/ι) < g(π) (resp. p(/ι) < ?(Λ)) . In this paper,
unless otherwise stated, we will fix the polarization H and study the space
of sheaves that are semistable with respect to H.

In [8], Gieseker showed that there is a scheme coarsely representing the
moduli functor of semistable sheaves on X with fixed Hubert polynomial.
More precisely, if we let S? be the set of schemes separable over C and
let &d(H) be the set of all rank two semistable sheaves F on X with

det F = (9 and c2(F) = d, then we can define a functor &£:&-+ g

as follows. For any S e S*, ^H{S) is the set of all families of sheaves

Es in %d{H) on X x S flat over S such that d e t £ 5 = p\L, where L

is a line bundle on S. We identify two families Fχ and F2 on Xs if

F{ = /^ <g> P*2L! , where Z/ is a line bundle on 5 and p2 (resp. /?j) is

the projection onto the second (resp. first) factor. We have the following

theorem that follows directly from Gieseker's proof.

Theorem 1 (Gieseker [8]). There is aprojective scheme ^d{H) coarsely

representing the functor ^ d .
We remark that J£d{H) does depend on the choice of H. In the sequel,

we abbreviate Jίd{ΐί) to Jίd when the polarization H is clear from the
context.

The goal of this section is to introduce a family of determinate line
bundles on J?d . First let us recall the construction and basic properties
of the determinant line bundle of a perfect complex on a quasi-projective
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scheme. Assume that Z is a quasi-projective scheme. A complex of
sheaves &" on Z is said to be a perfect complex if locally on Z there
exists a bounded complex J ^ of finite locally free ^-modules that is
quasi-isomorphic to ^ υ , where U c Z . It was shown in [12] that there
is a determinant functor from the category of perfect complexes on Z to
the category of graded invertible sheaves on Z . Indeed, let 9" be any
perfect complex and let

(1.1) j/°_j^_...^j/'

be a finite locally free ^-module that is quasi-isomorphic to SF*. Then

r /top \(~1)1

(1.2) ' ®(V
ι=0

Let Y and Z be quasi-projective schemes and let p: Y —• Z be a
proper morphism that is flat over Z . It is known that if ^ is a perfect
complex on Y, then R'pφ&" is again a perfect complex. Hence to every
perfect complex on Y we associate an invertible sheaf dct(Rp^) on
Z . In the following, we consider the case where p: Y —• Z is a flat family
of reduced curves. Assume that F is a locally free sheaf on Y, and that
D c Y is a divisor which is a multiple section of p such that <f(D) is
ample relative to p. Then, since Z is quasi-projective, there is a large
n so that Rιp^(F(nD)) = 0. Since i 7 is locally free, we have the exact
sequence

(1.3) 0 ^ F i

The corresponding long exact sequence

0 - pj - p.FinD) ^ p.FlnD - Rlp.F

on Z states that the complex p^F ^2 i?1/^/7 is quasi-isomorphic to the

complex Rop^F(nD) Λ / ^ i ? ^ . Note that both R°p^F{nD) and A,F | A I Z )

are locally free. Thus

(1.4) detCR'p.F) = det(R°p«F(nD)) ® d e t ^ J F j ^ ) ) " 1 .

In general, if ^ ' = {F'} is a complex of finite locally free sheaves on Y
of the form (1.1), then

(1.5)
i=0
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We remark that such a functor det(i?'/?*( )) is canonical under the base
change and that if

(1.6) o-> ^ - > ^ ' - > ^ # - > 0

is a triangle of perfect complexes, then

(1.7) det(i?>^') ® det(Rp^) = det(Rp^).

We refer to [12] for the details of the proof.
Let S be a quasi-projective scheme. Then two line bundles Aχ and A2

on S are said to be algebraic equivalent if there is a smooth irreducible
variety T, a line bundle Aτ on S x T, and two closed points tx, t2eT
such that Ax (resp. A2) is isomorphic to the restriction of Aτ to S x { / J
(resp. S x {t2}). We denote by NS(5) the quotient of Pic(S) by the
algebraic equivalence relation. Now let X be a smooth algebraic surface
and let Fs be a family of torsion free sheaves on X x S flat over S. We
define a homomorphism

(1.8) pF: NS(ΛΓ) -* NS(5)

as follows. Since X is smooth, dim Λ" = 2 and Fs is flat over S, F 5

belongs to the exact sequence

(1.9) o-Qa-d-^-O,

where ζ?i and Q2 are locally free sheaves on X x S. For any smooth
divisor C c JΓ, we tensor (1.9) by (fCxS,

0 - Ίor{(Fs,d?CxS) - β 2 ® ^ χ s ^ C x 5

We claim that T o r ^ i ^ , &CxS) = 0. Indeed, the set Sing(i^) c X x S
consisting of closed points, where Fs ceases to be locally free, is a closed
subset of codimension at least two. Clearly, Supp(Torj ( F 5 , #CxS)) c

. Thus,

as a torsion subsheaf of QΊ O^ @r v o, is a trivial subsheaf since the later
L σx*s C X Λ

is locally free on C x S. Hence, Tor{(Fs, &CxS) = 0. We acknowledge
that in the sequel we will use Fs^c to denote the restriction of Fs on
X x S to C x S. In particular, Fs^c is a prefect complex on C x S.
Now by using the smooth morphism p2: C x S —> 5 , we can form the
determinant line bundle of the perfect complex:
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where θc is a line bundle on C with deg θc = g(C) - 1. We denote such
a line bundle by

(1.10) ^{Rp29Λ
Fs\c®Piθc)) = ά*(RmP2fΛ

Fs\c®P*iθc))>

whose inverse is denoted by <5^(C, θc), which may depend on the choice

of θc e Jac8{C)~ι(C). Since J a c * ^ " 1 ^ ) is connected and smooth,

it follows that «5^(C,0 C ) ~ a l g &F(C, θ2) for θc and θc in

J a c * ( C M ( C ) . So if we denote by [-2^(C, θc)] the algebraic equivalence
class of -2^(C, θc) in NS(S), then [-2J,(C, 0C)] is independent on the
choice of θc . Finally, an arbitrary divisor C can be written as the dif-
ference of two ample divisors: C = C{ - C2. Then we define p(C) =
[&F{CX, 0C)] - [-%(C2, 0 q ) ] . To show that pF(C) = [&F{CX, 0Cj)] -
[-2^(C2, 0 C )] is a well-defined homomorphism from NS(Λf) to NS(5),
we need to show that \&F{CX, θc )] = [«5^(C2, 0C )] if Cj ~ a l g C2 , and
that [5?F(C0, 0Co)] = [ ^ ( q , θc)] + [^ F (C 2 , 0C2)] if Co ~ a l g q + C2 .
We remark that by θc we always mean a line bundle on C with deg 0C =
g(Q - 1.

Lemma 1.1. With the notation as above, assume that C{ and C2 are

two smooth algebraic equivalent divisors of X and that θc e J a c * ^ " 1 ^ . ) ,

ι = l , 2 . Then [SrF(Cx, θc)] = [5?F(C2, θ^)].
Lemma 1.2. With the notation as above, assume the following: C o, C{,

and C2 are smooth divisors with CQ linear equivalent to C{+C2, C{ and
C2 meet transversally, Co is very ample, and CQΠ C{Π C2 = 0 . Then

Proof We will only prove Lemma 1.2. Lemma 1.1 can be proved
similarly. Without loss of generality, we can assume that Fs is locally
free and that Co is generic. Let Dt be a linear series of divisors on X
so that Da = Co and Dβ = C{ + C 2 . By blowing up the surface X
along the base points of the linear series, we obtain a smooth surface Y
and a projection q: Y —> P 1 such that q~l(c) is a divisor in the linear
series for any c € P 1 . Since Co is very ample, Co Π Cj and Co Π C2 are
nonempty. Let Zj e CQ n Cj and z 2 e C 0 Π C2 be closed points, and let
E{ and J?2 be exceptional divisors in Y over z{ and z 2 , respectively.
Then we can choose appropriate integers a and b so that the line bundle
θ = ^(αiίj + ££ 2) on Y has the property that deg(0, Co) = ^(C0) - 1
and deg(0, C2) = g{C2) - 1. Let p: Y -• X be the projection, let / =
( ί , id): y x 5 -+ P 1 x S and p = (p, id): 7 x 5 -> X x S, and let
p^: y x S —• P 1 . Consider the locally free sheaf & = p*Fs on Y x S
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and define the line bundle

(1.11) &F tf;1

on P x S. The lemma will be proved if we can show that

Fψpl

(1 13)
=

where θc and θc are line bundles on Cχ and C2 defined by 0C =

θ(-C2)\C

l and 0 C

2 = 0 | c , respectively. Note that deg(0(-C2), C\) =

g(Cι) - 1 . (1.12) follows from the base change property of the determinant

line bundle. (1.13) can be seen as follows. By the base change property,

-2̂ .I -\,β) is isomorphic to the dual of the determinant line bundle of the

complex Rp2 *{FS\CuC <8>p*θ). Since Fs is locally free, we have the
exact sequence

0 "> Fs\Cι ®P\e\cS-Ci) -> Fs\c^c2 ®P*xθ\cxuc2 "* Fs\c2 \

and therefore the triangle of complexes

0 - \ \

= det(Rp2 +(FslCi ®p*θc))

Hence,

C2>>

- 1

which proves (1.13). So, [£?F(Cι U C2)] = [^fF(C{)] + [&F(C2)]. q.e.d.
Applying Lemmas 1.1 and 1.2, we arrive at
Proposition 1.3. Let S be any quasi-projective scheme and let Fs be

a family of coherent, torsion free sheaves on X x S flat over S. Then
there is a homomorphism p: NS(ΛQ —• NS(5). For any smooth divisor
C e NS(Λf), p(C) is the algebraic equivalence class in NS(S) represented
by the line bundle

where θc is a line bundle on C with deg(0c) = g(C) - 1. Further, the

homomorphism p is canonical in the sense that if Sf is another scheme,
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g: Sf —> S, and Fs, = g*Fs is the family of torsion free sheaves on X x S1,

ίλe« */ze homomorphism p \ NS(X) —• NS(5') w identical to g* °p.
In case Fs is a flat family of torsion sheaves with detFs = p2L for

some line bundle L on S, we have the following lemma which reveals
the significance of choosing the line bundle θc which satisfies χ(θc) = 0.

Lemma 1.4. Lei Fj am/ F2 be two families of torsion free sheaves
on X x S flat over S such that detF{ = p*2L. Assume Fχ and F2 are
equivalent in the sense that there is a line bundle P on S such that Fχ =
F2®p2P. Then, for any smooth curve C c X,

Όet(Rp2 + F 1 | C ®p*θc) 2 Όet{Rp2^F2lc®p*θc).

Proof We have

Όet(Rp2 + F 1 | C ®p*0c) = Oet(Rp2^F2lc®p*2Plc ®p*θc))

The last equality holds because χ(F2 ,c ®p\θc) = 0. Here we have used
the fact that det F2 s=@ for all closed points s e S. q.e.d.

In the remainder of this section, we will study the existence of the
homomorphism p: NS(X) —> N S ( ^ ) . To apply Proposition 1.3 directly,
we need a universal sheaf on X x Jfd . By a universal sheaf of J?d we
mean a sheaf F o n l x Jίd such that, for any point s e Jίd , the sheaf
Fs which is the restriction of Fs to X x {s} is isomorphic to the sheaf
represented by the point s e Jϋd . When d is odd, such a universal sheaf
does exist.

Proposition 1.5. When d is odd, there is a homomorphism

p: </
such that, for any smooth divisor C e NS(JΓ), p(C) is the algebraic equiv-

alence class represented by the line bundle Όet(Rp2 Fc <8>p*θc)~ι, where

F is the universal sheaf on X x Jfd .
Proof By Maruyama [14, Theorem 6.11], the universal sheaf does ex-

ist. Since Jίd is projective, by applying Proposition 1.3 directly, we get
the desired homomorphism. q.e.d.

When d is even, the universal sheaf does not exist even locally near a
semistable point. To remedy this difficulty, a discussion of the proof of
the existence of moduli scheme J?d is in order (see [8] for details).

Let %d{n) be the set of all rank-two //-semistable sheaves F such that

detF = // 0 2 / ί and c2(F <g> H~n) = d. There is a constant Ad such that
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if n > Ad, then any sheaf F € &d{ri) has the property that h\F) = 0
for i > 0 and F is generated by the global sections H°(F) = CN. Let
Quot^V0 be the Grothendieck quotient scheme parametrizing all quotient
sheaves F of φN & satisfying detF(-/ι) = 0 and c 2(F(-«)) = d.

Clearly any F e &d(n) coupled with an identification H°(F) = CΦN is a

closed point of Quot^iP, and thus any point in &d(n) corresponds to a

PGL(iV, C) orbit of a closed point of Q u o t ^ 0 . Let β c Quot^V0 be the

open subset consisting of torsion free good quotient sheaves £fθ —• E

in the sense that the induced homomorphism H°(<fN) —• H°(E) is an

isomorphism. We set 9 = PGL(N, C). In [8], Gieseker introduced an

immersion

(1.14) μ:f^-p(Hom{/\CN,H0(H»2n))),

where we adopt the convention that P(CZ) is the space of all lines in Cι.
Through the dual action of GL(iV, C) on Hom(Λ 2 C*, H°{H®2")), the
GL(N, C)-action on the projective space P(Hom(Λ2 C^, H°(H®2n))) de-
scends to a ^-action and under this ^-structure, μ is a ^-mor-
phism. Gieseker showed that F e& is a stable (resp. semistable) quotient
sheaf if and only if μ(F) is a ^-stable (resp. ^-semistable) point in
P(Hom(Λ 2 C*,#°(// Θ 2 / ί ))) . Therefore if we let @s (resp. β*s) be the
set of ^-stable (resp. ^-semistable) points in β, then Jt% is the geo-
metric quotient of βs under S? that is isomorphic to a subscheme of
P(Hom(A2C*\i/°(//®2")))7S?. Its completion Jtd is a good quo-
tient of Sss by 9 which is a closed subscheme of P(Hom(/\2 C^,
H°(H®2n)))ss//&.

Let Ff be the universal quotient sheaf on X x β. We denote by
Fa(-ή) the sheaf Fά®p\H®{~n). Note that d e t i ^ ( - π ) =p*2I for some
line bundle / on β. Let C c X be a smooth divisor and let θc be a
line bundle on C with deg0 c = g(C) - 1. Then,

(1.15) ^ ( C , β c ) = Det(Λp 2 f ,F ί f (-Λ) | c ®p β c Γ 1

is a line bundle on β. In the following, we shall study when we can de-
scend the line bundle -2^>(C, θc) to Jtd . We need the following descent
lemma.

Lemma 1.6. Let E be a 2?-vector bundle on &ss. Then E can be
descended to Jίd if and only if for every closed point s e @ss with closed
orbit β s, the stabilizer &s c 9 of s acts trivially on Es.

Proof Note that the condition in Theorem 2.3 of [4] can be relaxed
to cover the case where y —• 3? is a good quotient by a reductive group
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9, y and %? being any quasi-projective schemes. Since Jίd is a good
quotient of &ss, we can invoke this theorem directly to cover our situation.

Proposition 1.7. Let C cX be a smooth divisor and θc e Jac*(C)~ ι(C).
The line bundle &a(C,θc) can be descended to J?d if whenever F e Sss

is a split semistable sheaf with splitting F = JχφJ2, then cx(Jx(-n))-C =
0.

Proof We use the descent lemma to prove this proposition. As before,
we denote by 9 the group PGL(N, C). Let

be the line bundle on &ss we first show that -2^(C, θc) is a ^-bundle.
The action of 9 on Sss does not lift to an action on F^ . To remedy this
difficulty, we introduce the general linear group GL(iV, C) acting on @ss

through surjection GL(iV, C) —> PGL(TV, C). There is a canonical lift
making F@ a GL(N, C)-sheaf. The induced action on the determinant
line bundle then makes -S^(C, θc) a GL(7V, C)-bundle. To show that
-2^(C, θc) is a ^-bundle, we need only show that the subgroup C* c
GL(iV, C) acts trivially on ^ ( C , θc).

Let h = a id: F@ —• F& be the homothetic where a e C*. On each
irreducible component of €ss, the induced homomorphism

(l.lo)

is a multiplication by the scalar (a)χ{F*^~n)\c®θc), where s e Sss is any
closed point. The exponent is zero since cx{Fβ 5(-w)|C) = 0. Therefore
Det(A|C) = Id and then - % ( C , 6>c) is a ^-bundle.

For any quotient sheaf F e @ss, ^ {F} is closed if and only if either
F is stable or F is semistable and splits as a direct sum of two rank-one
sheaves, say F = Jx Θ J2 [8]. In the former case, the stabilizer of {F}
is {e}, while in the second case, G^Fy = C* if /j / J2, and G ^ =
PGL(2,C) if JX=J2.

By the descent lemma, -2^(C, θ c ) descends to a line bundle on Jfd

if the induced homomoφhism (1.16) is an identity homomorphism for
any semistable sheaf F = Jγφ J2 and h e GrFy: Jx Θ J2 —̂  Jγ Θ /2 , the
induced homomorphism (1.16) is an identity homomorphism. We check
the case where h = (a ϋ , ) . An easy argument shows that

Det(A |c) = ( α ) * W - Λ ) ι ^ c ) . ( α ) - ^ 2 ( - » ) , c ^ c ) . I d .
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Det(A,c) = Id if and only if

(1.17) degW-Λ), C) - deg(/2(-π), C) = 0.

Since cx(Jx(-ή)) + c{(J2(-n)) = 0, (1.17) is equivalent to c1(/1) C = 0.
Thus the proposition is established, q.e.d.

When (9{Jΰ) = H®k for some k > 0, the sheaf F = Jχ θ J2 is
semistable only if cχ(Jχ(-ή)) •[£>] = cx(J2(-n))-[D] = 0. So we have
proved

Corollary 1.8. Let D e \kH\. Then one can always descend the line
bundle <&g(D, ΘD) on Sss to a line bundle on Jίd. We shall denote the
descent line bundle by &jg{p, ΘD).

2. Linear series of -2^0°, ΘD) on Jtd

Fix k > 1. Let D G \kH\ be a smooth divisor. In this section we show

that the line bundle Jz^(Z>, ΘD) on Jίd is independent of the choice of

D and ΘD. We will also show that if k > Id + 1 and m > 0, then

the line bundle ^m{D, ΘD) = (-2^(D, θD)fm is generated by global

sections. Therefore, H°(^d, βS^>m(Z), ΘD)) induces a morphism

(2.1) r.JTd d ^

We use the notation introduced in §1, and recall that F# is the universal
quotient sheaf on I x ί . The immediate goal of this section is to prove
the following theorem.

Theorem 2. Let k > 1, let D e \kH\ be any smooth divisor, and
let ΘD e Jacg{D)~ι(D). Then the line bundle - 2 ^ ( # , ΘD) constructed in
Proposition 1.3 is independent of the choice of D and ΘD. In other words,
there is a line bundle -2^ k on J?d so that for any pair (D, ΘD),

We first study the general situation. Let S be any quasi-projective

scheme and let Fs be a family of torsion free sheaves on X x S flat over

S having the property that detFs = p%I, where / is a line bundle on S.

Let D e \kH\ be any smooth divisor and let ΘQ,ΘX e Jacg{D)~ι(D) be

two line bundles on D. By Proposition 1.3, to the line bundles θt with

i = 0, 1, we associate the line bundles &S(D9 θt) on S. Now let θ be

the Poincare line bundle on D x J a c * ^ " 1 ^ ) and let K be the line bundle

Όet(Rp2 ^θf2 on J a c ^ " 1 ^ ) = Jac(Z)). We have the following useful

observation.
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Lemma 2.1. For any θ0, θχ e ίacg^~ι(D) and any identification
h: K <g> k(θ0) = K (8> k(θ{), there is an isomorphism

that is functorial under the base change.
Proof. Let pl2 (resp. pn, p23) be the projection from DxS x Jac(-D)

to D x S (resp. D x Jac(£>) S x Jac(Z))). Consider the sheaf P*12(^S\D^ ®
pj"3(θ) on D x S x Jac(Z)), and the corresponding line bundle

(2.2) - % x J a c ( β ) = Det(i?p2 3 > t(p;2(F5 | o) ® ^ ( θ ) ) ) " 1

on S x Jac(D). By base change property, &Sx}aC(D)\qς\θ0)
 = ^ D ' » βo)

a n d -Ssxj cwl^β,) =-%(£» θ i ) > w h e r e ^SxJaciD) -*S and ^ 2: 5 χ

Jac(Z>) —• Jac(-D) are projections. We claim that ^Sx}MiD) — <l\L ® q\K,

where L = ^ x j a c ( 0 ) | 5 x β o is the restriction of = % x j a c ( o ) t o S x f l 0 c
5 x Jac(D). Indeed, for any rank-two vector bundle E on D satisfying
detE = (9, we can associate the vector bundle p\E <g> θ on D x Jac(Z>)
to a line bundle Όet(Rp2 t(p\E®&)) on Jac(Z>). Let J be a very ample
line bundle on D so that

Then

DetCR/>2;,(/>*£: ® θ)) = Det(Λp2tJp\J~X ® θ)) ® Det(i?p2J^*/ ® θ)).

We further fit / into the exact sequence

with {x ;} c D distinct. Then J ' belongs to the exact sequence

So

) φ(p*/ ® θ)) = Όet(Rp2t(p;<? ® θ))

- 1
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Thus,

For the moment we assume s e S is a closed point such that F.D is
locally free. Let V be a neighborhood of 5 € 5 so that i y = i Γ

5 | X x F is
locally free at D x F and that F K | O belongs to the exact sequence

Then the restriction of the sheaf =2^xjac(£,) to V x Jac(D) is equal to

(2 3) ®Όet(Rp23,(p*J ®p*2det(FviD) ®p*3θ))~ι

where c is an integer. The situation where F is a rank two nonlocally
free sheaf with s £ S can be proved similarly by using the locally free
resolution (1.9). Therefore, the line bundle -£^ x J a c (m ® # 2 ^ * *s a P u ^"
back line bundle from a line bundle I on .S. So

( 2 4 ) 5?S*WD)=P\L®P*2K

Finally we remark that (2.4) is canonical under the base change. Now if
we specify an identification h: K 0 k(θQ) = K ® fc^), thanks to (2.4),
there is a unique isomorphism

(2.5) ph(θ0, ΘJ .&siD, ΘO)*J7S(D, θχ)

that is functorial under the base change, q.e.d.
Now we study the case where two different Do, D{ e \kH\ are involved.

Let Dt be a linear series of divisors in \kH\ containing Do and Dχ as
its members. Parallel to the proof of Lemma 1.2, we let Dt be the linear
series in \kH\ that contains DQ and D{ and let Y be the blowing-up
of X along base points of the linear series Dt. Let Qx and Q2 be
locally free sheaves on X x S satisfying (1.9) and let β*Qx and p*Q2 be
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corresponding locally free sheaves on 7 x S (see Lemma 1.2 for notation).
Then we form the determinant line bundle

on P 1 xS, where θ is a line bundle on Y with deg(0)D , Do) = g(D0)-l.

Thanks to the cohomology and base change theorem [10, III, 12.11], the

line bundle <5^ix5. must be of the form

where (9{a) is a line bundle on P 1 , and L is a line bundle on S. One
checks directly that a is an integer depending only on the second Chern
class of the family Fs. Finally, one notes that this construction is canon-
ical. So.we have proved the following lemma.

Lemma 2.2. Let Do, Dχ e \kH\ be two smooth divisors and let θt e

Ja.c8^Di)"x(Di) with i = 0, 1 be any line bundles. Then there is an isomor-

phism

(2.7) p(D09 θo;Dχ,θχ):J?s(Do, θ0)->&s(Dl9 θx)9

which is functorial under the base change.
Proof. Clearly for ί e P 1 and Dt smooth, - 2 ^ x 5 | { , } x S = - % ( £ , , Θ{D).

If we denote by 0, 1 e P 1 the points corresponding to Z>0 and Dχ in the
linear series Dt, then by (2.6) there is an isomorphism p(DQ, ΘQ Dχ, θχ)
which is uniquely determined if we specify an identification h : &{ό) <8>
k(0) = tf(a) O k{\). Since a depends only on the second Chern class
of the family, h can be chosen independent of the particular families.
Since the decomposition (2.6) is functorial under the base change, the
isomorphism (2.7) is functorial under the base change also, q.e.d.

Combining these two lemmas gives the following general result.
Proposition 2.3. Assume that S is a quasi-projective scheme and that

Fs is any family of rank two torsion free sheaves on X x S flat over S
such that dctFs = p\l, where I is a line bundle on S and c2(Fs) = d for
closed s e S. Let k > I, let Do, Dχ e \kH\ be any smooth divisors, and
let θoe Jac8{Do)~\Do) and θχ e J^c8{D^~ι(Dχ) be any line bundles. Then
based on the data depending only on d, described in Lemmas 2.1 and 2.2,
there is a unique isomorphism

(2.8) p(D09 θo;Dχ, θχ):^s(D0, θo)->J?s(Dχ, θx),

which is functorial under the base change.
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We are ready to prove Theorem 2. Let &*s c Quot^0 be as before and

let Fg be the restriction of the universal quotient sheaf to X x @ss. For

any smooth D e \kH\ and ΘD e 3acg{D)~ι(D), define

(2.9) &d{D, ΘD) = l

Now given pairs (Z>., 0.) with D. € |A:i/| and 0. e Jac*^"1 (£>,.), / =
0, 1, there are corresponding line bundles -2^>(2λ, 0Z ) on f̂55 and descent
line bundles -2^(2^., 0.) on ^ . Thanks to Proposition 2.3, there is a
unique isomorphism (depending on some specific data)

(2.10) k ( D Q 9 Θ O ' 9 D 1 9 Θ X ) : ^ , ( D O 9 0 O ) - J ^ ( D χ , θ χ ) .

To show that this isomorphism can be descended to an isomorphism
Pjt(Do' θo > D\> θ\) between &,(D0, 0O) and ^Jt(Dx, θχ), we need to
show that the isomorphism p(D0, 0O Dχ, θχ) in (2.10) is ^-equivariant.
Recall that through the surjection GL(iV, C) -• PGL(Λ ,̂ C), @ss is a
GL(Λ ,̂ C)-scheme and, further, F^ admits a GL(7V, C)-linearization. Let
g e GL(N, C) and let g^ be the action on F& induced by the GL(iV, C)-
linearization. Then, since the isomorphism p{DQy 0O; Dχ, θχ) is functo-
rial under the base change,

p ( D 0 , θ o ; D χ , θχ) o d e t ( ^ | Z ) o ) = d e t ( ^ | D ι ) o p ( D Q , θ o ' , D χ , θ x ) .

Therefore, p(DQ, 0O; Dχ, θχ) is ^-equivariant. In particular, it descends
to an isomorphism between oS^(Z)0, 0O) and 2f

J^(Ώχ, θx). In the fol-
lowing, we will denote this unique line bundle by -2^, k . q.e.d.

Next, we will study the space H°(^d, *&^m

k) when m is sufficiently
large. We begin our discussion with any quasi-projective scheme S cou-
pled with a flat family of torsion free sheaves Fs on X x S with det Fs =
p\l. Let S(D) c S be the open subset consisting of points s e S where
F,D is locally free and semistable. The restriction of Fs to D x S(D)
induces a morphism

(2.11) jD:Vs(D)-+*(D),

where Λf (Z>) is the moduli scheme of rank-two semistable vector bundles
E on D with det 2? = (9. On J?(D), there is a similar line bundle S?D

which is the descent of the dual of a determinant line bundle on a properly
chosen Grothendieck quotient scheme. We describe the construction of
this quotient scheme and Jz^ briefly. Let L be a very ample line bundle
on D so that for any rank-two semistable bundle E on D with deg£" =
(9, hx{L%E) = 0 and H°(L®E) generates L®E. Let 2/ = h°(L®E) and
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let W = φ 2 L~ι. Then any semistable vector bundle on D corresponds
to a unique SL(2/, C) orbit in Quot^,, where Quot^, is the Grothendieck
quotient scheme parametrizing all rank-two quotient sheaves E of W
with detis = 0. Let ̂  c Quot^, be the open subset consisting of
those quotient sheaves W -• E such that H°(W ®L) -> H°(E ®L) is
an isomorphism. Then, similar to the surfaces case, there is a Gieseker
immersion

(2.12) μD:X^V (πom (f\C21, H°(L*2)\\ .

In the following, we abbreviate W = Hom(Λ 2C 2 /, H°(L®2)) and &' =

SL(2/, C). Note that P(2Γ) is a ^'-scheme and μD is a S?'-morphism.

Further, if we let 3ίss c Quot^, be the set of semistable quotient sheaves,

then E e 3ίss if and only if μD(E) is semistable under %?'. Therefore,

&SSH&' = Jt(D)

is a subscheme of 1?(W)SS j/&'. Now, if we let Em be the universal quo-

tient sheaf on flxf and let ΘD e J?iCg{D)~ι(D) be any line bundle, then,

by using the descent lemma, the restriction to &ss of the determinant line

bundle

(2.13) 2 ^ \ D

descends to a line bundle on Jt(D). We denote the dual of (2.13) by
-2^(0D) and denote the descent of &#(ΘD) by &D{ΘD). Note that there
is a canonical ^'-linearization of the hyperplane line bundle &ψ{\) on
P(3Γ) induced by the canonical GL(3Γ, A:)-linearization of 0p{\). We
have the following observation made by Donaldson.

Proposition 2.4 (Donaldson). Let <fF(l) be the hyperplane line bundle
on P(W). Then there is an isomorphism

(2-14) ^{θD)^μD^{l)\^,

which is &'-equivariant.
Proof. The proof given by Donaldson for the case θ®2 = KD and for

the family of semistable vector bundles works for any ΘD e Jacg(<D)~\D)
and any family of sheaves on 31 without any change (see [3, Proposition
5.4] or [7, §3]). q.e.d.

Now let us recall the geometric invariant theory. There is an integer
m0 such that the line bundle #p(mol) descends to ample line bundle

mol) over P(W)SS//&'. For sufficiently large m, mQ\m , the set of
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^'-invariant sections H°(W, &v(ml)f cH°(W,<fF(ml)) is nonempty.
Further, an element x e ¥{W) is semistable if and only if there is a

v e H°(W, <9γ{mΐ)ψ such that v(x)φθ. Consequently, the geometric

invariant theory quotient ¥(W)SS//%/' is defined to be the image scheme

of P{W)SS in P((H°(ar, ^(ml)f')). Therefore, H°{V(W), &F(ml)f

is canonically contained in H°(F(W)SS//&', (fF/^(ml)). Note that

< V ' ( w / W ) = (^D(θD)fm = ^m(θD), We denote by VD(m) c

H°(jr(D), ^m(θΌ)) the image of

For simplicity, in the remainder of this paper, by m » 0 we always mean
m > 0 and mo\m.

Returning to the sheaf Fs on X x S flat over S, since Fs is a flat
family of torsion free sheaves, the restriction of it to D x S, say FS^D , is
a family of sheaves on D x S flat over S. Since S is quasi-projective,
we can choose L to be a sufficiently ample line bundle on D so that for
any s € S, hι(F,D 0 l ) = O and // (^m ® £) generates the sheaf F.D .

We still denote 2/ = h°(F,D ® L) . Now we cover 5 by affine open sets
Γj, , Γn so that on each T., F Γ = FS\XxT , there is an isomorphism

2/

(2.16) nrP2,SFT\D®P\L) - ®&τ.

Then the homomorphism τ/ induces morphism

ϊ/f: T. -+ Quot^ .

Clearly, //Z(ΓZ) c 31. Further, since both -%(/), (9^),^ and η*^(θD)
are duals of the determinant line bundles of isomorphic complexes, we
have

If we restrict isomorphism (2.17) to Γ.n5(Z)), then, since -2f^(θD)^sS de-

scends to the line bundle 3*D(ΘD), we conclude that P/J | r a S ( i ) )} provides

an isomorphism

1 Λ* 1 O ) / τ\t»& r\ \ \7 r\ ) —— c*Zy »̂ I λJ , C7 r> I I ς»/ τ-v\ .

Thus (2.18) induces a homomorphism

(2.19) ./': F D ( m ) - > H ° ( 5 ( O ) , ^ / m ( O , M
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We claim that there is a canonical homomorphism

(2.20) pD: VD(m) - H°\S, 3?m(D, ΘD))

extending j*D and having the property that for any v e VD(m), ρD(v)(F)
= 0 if F £ S{D). Indeed, by Proposition 2.4, we have

Let v e VD(m) be any section. There is a ^'-invariant section υ €

H°(P(W), <9γ{ml)f' which descends to v . Define η* o μ*D(υ) to be

the pullback section in //°(Γ., 3fm(D, ΘD\T) . We claim that on Γ. n

Tj Φ 0 , /7* o ̂ ( ί J ) = η* o μ*D(v). Indeed, since both η. and η. are

isomorphisms and Fτ\TnT = Fτ \TnT , there is an isomorphism

2/ 2/

over 7̂ .Π 3̂ . so that η( = goη.. Note that each isomorphism rf* depends
canonically on η., thus η* o ^ = η*, where ^ is induced by the ^ '
linearization of the line bundle S^(ΘD). Since U is ^-invariant and μ^
is ^'-equivariant, μ^(v) is ^'-invariant. Thus, ^ ° % ( ^ ) = ̂ ( ^ ) and
then rj* o μ^(?7) = η* o μ^(iJ). Therefore, the local sections {//* o μ*D(v)}
glue together to form a global section /^(υ) on S. We remark that for
closed 5 € S, pD(υ)(s) = 0 if s e Tχ and ϊ;(^.(5)) = 0. This is exactly
the case where either F>D is not semistable or v(F,D) = 0. Thus we
proved the following proposition.

Proposition 2.5. Let k > 1. For any smooth D e \kH\ and any

section υ e VD(m) c H0{J?{D), &®m), the pullback section j*D(v) e

H°(S(D), 3fm(D, ΘD)) from (2.18) can be extended over S to a section

v e H°(S, 3fm(D, ΘD)). Furthermore,

(2.21) S\S(D) cϋ'ι(0).

We remark that the subset VD(m) c H0(J?(D), &®m) may depend on
the choice of the ample line bundle L o n f l . But this is irrelevant to our
study as long as the linear series VD(m) provides a projective immersion
of Jt{D).

Theorem 3. Let k > 1 and let S*^ k be the line bundle provided by
Theorem 2. Then for any smooth D e \kH\ and m > 0, there is a
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homomorphism

(2.22) pD: VD(m)

induced by the rational map j D : Jtd —> Λf (/)) Λ/H/ ίAe isomorphism

jpJϊ?D = -2^ Λ defined on the open set where j D is a morphism. Fur-

ther, if k > 2d + I, then, for any closed point E e Jίd and generic

D e \kH\, E is not the base point of pD(VD(m)). In particular, if

we let ^f(m) = pD(VD(m)) and let Ύf {m) be the linear span of all

^f(m) c H°(Jtd, S?®m

k) with smooth D e \kH\, then Tf {m) is base

point free.

Proof Recall that -2^ k is the descent of the line bundle ^,(D,ΘD)

with D G \kH\ and ΘD e J2iC8{D)~ι(D). If we apply Proposition 2.5 to

the quasi-projective scheme Sss c β and the sheaf Fa(-ri) on X x @ss,

then we obtain a rational map j % : (§ss — •»• Jt(D), the isomorphism

and the homomorphism

It is clear that to show j*D<$?D(θD) = ^ k and

PD VD(™) ^ H°( *d9&*m(D9 ΘD))

exist, it suffices to show that j % ' * and the image p%{VD{m)) are *§'-
invariant. That is apparent since the constructions are canonical. So we
have proved that such a homomorphism exists.

In the case k > 2d + 1, Bogomolov's theorem states that if E is any
μ-semistable vector bundle with c2(E) < d and D e \kH\ is any smooth
divisor, then E*D is necessarily semistable. Thus to any closed point F €
Jίd, FiD is semistable for generic D e \kH\. Choose v e VD(m) so that
v(F,D) ψ 0 then pD{v){F) Φ 0. Hence we have established the theorem.

Remark. It is unclear whether the meromorphic sections of -S^™

which are pullback sections from H°(Jt(D), &®m) via j D : Jtd —• Jt{D)

can always be extended to holomorphic sections of ^^^ over J!d . When

H is fixed, it is proved that when d is sufficiently large, Jfd is normal.

Thus such a homomorphism pD: H°(Jt(D), <&%™k) does exist [13].
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3. The canonical points of

In this section, we will use the linear series 2^(m) c Fp{Jίd, <&%m

k)
produced in Theorem 3 to introduce a new scheme y{Jtd). We will then
give a complete geometric description of the closed points of y{^d).

Parallel to the discussion of §1, we denote by %d{n) the set of μ-

semistable rank two sheaves F with deti 7 = H®2n and c2(F<8>H~n) = d.

Choose n > 0 such that for any F e %d{n), H\F) = {0} for / > 0

and F is generated by global sections H°(F). Let N = χ{F) and let

Quot^V0 be the Grothendieck quotient scheme parametrizing all quotient

sheaves F of φ ^ V with άtXF = H®2n and c2(F ® H~n) = d. Let

Fg be the universal quotient sheaf on (§μ , where (§μ c (§ is the open set

consisting of all μ-semistable quotient sheaves. We then let k > 2d +1 be

a sufficiently large integer so that whenever E{ e^d(n) and E2e%?d(n)

are locally free sheaves with dγ,d2< d, then hJ(X, Ey

χ 0 E2(-k)) = 0
for 7 = 0, 1. We will fix such a fc once and for all. Finally, we denote
by

(3.1) &j{D, θD) = Όet(Rp29tFf(-n)\D®p*ιθDyι

the line bundle on βμ where D e \kH\ and ΘD € Jacg{D)~ι(D). If we
apply Propositions 2.3 and 2.5 directly to &μ and the sheaf F@, we have

Proposition 3.1. With the notation as above, the following hold.

(1) The line bundles J%f(D, ΘD) in (3.1) are independent of the choice

of smooth D e \kH\ and ΘD e Jzc8{D)~ι(D). We denote this unique line

bundle by ^ k .

(2) For any smooth D e \kH\ and m > 0, there is a homomorphism

which is defined by applying Proposition 2.5 to Sμ and F^μ. We denote

the image by 2^ (m).

(3) Let & = PGL(7V,C). Then &μ is %-invariant. Furthermore,

&atk is a ^-bundle and %f(m) c H°(aμ, &£%f.
(4) With m > 0, for any closed s e €μ, there is a smooth D e \kH\

such that s is not the base point of the linear series ψ£ (m).

It is evident that the restrictions of the sections ^f(m) to Sss c Sμ

descend to sections in 3 ^ ( r o ) c H°(Jtd, <&Jm

k). If we let ψf (m) c
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Ή°(βu, &®m

k) be the space spanned by all Vf{k) with D e \kH\, then

there is a canonical surjective homomorphism ^jf(m) -» Ύ^f (m). Fi-

nally we choose m sufficiently large so that for any smooth D e \kH\,

the linear series VD(m) provides an immersion Jt(D) -+ P(VD(m)v).

Now let γ (resp. ya) be the morphism y\ Jίd -± P(^f(m)v) (resp.

ya\βμ -+ P ( ^ ( m ) v ) ) . Let V be the kernel of ?f(m) -> ̂ f(m) and

let 2^ (m) —• V be a homomorphism that is the identity when restricted

to V c ^f(m). Then we have the isomorphism ^f(m) ^ Ψ^r(m) Θ V

and the following diagram:

(3.2)

Lemma 3.2. W/ϊ/z ίΛe notation as above, y^ and y are morphisms

making the diagram (3.2) commutative. Furthermore, y@{βμ Π (§ ) w

identical to y{J?d) as sets, where @ss is the closure of &ss in €.
Proof. The first part is evident. The second part is a consequence of

the facts that Jίd is complete, y@{βss) = y{Jtd), and @ss is dense in

@μnWss. q.e.d.
In the sequel, we denote the scheme theoretic image of Jtd under γ by

y(J?d). We will give a canonical presentation of closed points of γ(Jtd)
by studying the preimage A(s) = y^ι(s) C Sμ for any closed point s e
y{J?d). We first introduce the concept of polystability. A locally free sheaf
E is said to be polystable if E splits into a direct sum of //-stable (with
respect to the ample divisor H) sheaves of the same slopes. A coherent
torsion free sheaf F is said to be polystable if the double dual F v v is
polystable. We state the main theorem of this section:

Theorem 4. For any closed s e y{^d), the following assertions are true:

(i) There is a quotient sheaf F e A(s) so that F is polystable.
(ii) Let F{, F2e A(s) be any two polystable sheaves. Then necessarily

F w ^ f w a n d l e n g t h ^ / ^ ) * = length(F2

vv/F2)JC for any x e X.
(iii) Let F{, F2 e Sμ be any two polystable sheaves. Assume that

fvv ^ f w a n d t h a t l e n g t h ^ / ^ , ) * = length(F2

vv/F2)JC for any xeX.
Then
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We divide the proof of the theorem into several lemmas.
Lemma 3.3. For any closed s e y{^d), there is at least one F e A(s)

that is polystable.
Proof. Let F e A(s) be any semistable sheaf. If i r V V is //-stable, then

F is polystable. Otherwise there is a rank-one subsheaf I c F, F/I is
torsion free, and deg(/(-λz)) = 0. Let / = F/I be the quotient sheaf,

(3.3) 0->I^F ^J->0.

We claim that IθJe A(s). This will establish the lemma since / θ / is
a polystable sheaf.

Let C be the set of complex numbers and, as usual, let pχ (resp. p2)
be the projection of X x C onto the first (resp. second) factor. Let vc e
Ext1 (/?*/, /?*/) be the extension class, υc = t-p*v , where v e Extι(J, /)
is the extension class of (3.3) and t is the uniformizing parameter of C.
Let

(3.4) 0-

be the corresponding extension sheaf. Fc is a sheaf on X x C flat over C.
One checks that Fc <g> k{t) = F for generic t and Fc <g> fc(0) = / Θ / . To
show that IθJ e A(s), we need to show that Fc can in fact be realized as
a family of φ @ quotient sheaves. This is obvious from the base change
theorem since ti(Fc ® k{t)) = 0, i = 1, 2, and h°{Fc <g> k(t)) = JV for all
t G C. Here we have used the fact that / θ / is μ-semistable and that n
is sufficiently large. Since Fc®k{t) e @μ for t € C, and Fc®k{t) ^ F is
semistable for ί ̂  0, it follows that ya{Fc ® fc(ί)) = y(F) = 5 for tφQ.
Then ytf (-Fc 0 fc(0)) is also equal to 5. Therefore, Λ(j) contains at least
one polystable sheaf, q.e.d.

To finish the proof of (ii) and (iii) of the theorem, we introduce some
subsets of &μ. For any locally free sheaf E with det£ = H®2n and
c2(E(-n)) = d! < d, we define

Let /: X —> Z + be an integer valued function, where Z + is the set of
nonnegative integers. We further define

af(E) = {F e £μ(E)\ lF{x) > l(x) for any x e X},

where lF is the function associated to F via lF(x) = length(F v v // 7 ) j c .
Lemma 3.4. Let E be any locally free sheaf that is polystable and let

I: X —> Z+ be any integer valued function. Assume c2(E) + ̂  l(x) < d.
&f(E) is a closed, connected algebraic subset of Sμ .
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We postpone the proof of the lemma to the appendix. Now we finish
the proof of Theorem 4. We first show

Lemma 3.5. Assume Fχ9 F2e (Sμ are two polystable sheaves such that

F™"F™ andlFy) = lF2{ ) . Then γa(Fχ) = γs{F2).

Proof. Let E = F™ andlet /: JT-+Z+ be the function l( ) = lF( ) .

Then Fx, F2 e &f{E). Since βf{E) is connected, the lemma is proved

if we can show that γ^(g(C)) is a single point for any smooth irreducible

curve C and g: C -»@f{E).

Let C be an affine curve, let g: C -> Qf(E) be any morphism, and let
Fc be the pullback sheaf of the universal quotient sheaf on βμ . F^y is
isomorphic to p\E. Then Fc belongs to the exact sequence

(3.5) 0^Fc-+p*{E->Ac^0.

A A1

The surjection p*E —• Ac induces a moφhism ~g: C —> Quot^~ (/),
ή—d1

where Quot^ (/) stands for the Grothendieck's Quot-scheme parametriz-

ing all quotient sheaves A of E with length(^) = d-d! and l e n g t h ^ ) >

l(x) for any x e X. Since Quot^- ί / (/) is complete, there is a smooth

completion C of C and h: C —> Quot^.~J (/) extending the morphism

£\ C -* Quotd

E~d\l). Let / ^ be the kernel of p\E -+ Aτ -> 0, where
^ is the pullback of the universal quotient sheaf on Q u o t ^ (/) via h .

By Proposition 2.3 there is a line bundle 2'k on C, and for any smooth

D e \kH\ and ΘD e Jacg{D)'ι(D) we have

(3.6) -% = Όet(Rp2Sc(-n)lD ®p\θDTx.

In particular, if D is the divisor away from the support of /( ) on X,
then

Now assume Z> G |/ci/| is any smooth divisor. Since g(C) c &μ, there
is a canonical isomorphism (up to scalar) g*2^{D9 ΘD) = -2^|C. Let

g*: ^ ( m ) -> ̂ 0 ( C , -2j c

w) be the induced homomorphism from Propo-

sition 2.5 between the sets of global sections of the corresponding line

bundles. Since the determinant line bundles and the isomorphism g* are

canonical, and since ψf(m) are spanned by 2^ (m), by Proposition

2.5, any section in g*{v£(m)) c H°(C, Sf^™) extends to a section in
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H°(C, -2f m ) . Finally, since &k * <%, it follows that H°(C, -2f m) *
C. So the image γ^(g(C)) c P ( ^ ( m ) v ) must be a single point. Thus
we have established part (iii) of the theorem.

Lemma 3.6. Let s{, s2 e &μ be two closed points and let Fχ, F2 be
the corresponding quotient sheaves such that both are polystable. Assume
F™ φ F 2

W , or F , v v = F 2

V V and lFχ{.) φ lFy). Then y^Fχ)φy^F2).

Proof. Assume F j W Φ F 2

V V . Then, according to our choice of k,
F\\D ί F2\D f o r g e n e r i c D £ \kH\. s i n c e <#(D) -> P(FD(m) v) is an
immersion, there is a section v e VD(m), where v vanishes at F{,D and is

nonzero at F2^D . Therefore, for the pullback section ϋ e ψf{m), v{F{) =
0 while ϋ(F2) Φ 0. Hence, y^Fχ) φ γ^(F2).

For the second case, let E = F™ and let x G I be the point such
that lF (x) > lF (x) > 0. We first choose a smooth Do e \kH\ such that
x eD0 and F^D and F2^D are locally free at D0\x . Let ̂  be a linear
series in \kH\ containing DQ such that x is not its base point. Following
the proof of Lemma 2.2, we can form a smooth surface q: Y —• X by
blowing up X along the base points of the linear series. Let θ be the
line bundle on Y such that degθ |Z) = g(D0) - 1. Let π: 7 -• P 1 be the
projection. We then form the determinant line bundles

on P 1 with ι = l , 2 . By Lemma 2.2, £[ pi =* ̂  p. ^ ^ ( α ) . Now let

C c P 1 be the open neighborhood of 0 such that for any t e C, n~\t)

is smooth, and for 0 Φ t € C, Fj and ,F2 are locally free at π~ι(t). We

think of π~ι(C) C Γ as a family of smooth curves parametrized by C .

We denote this family by π: Dc —• C .

Let ψ: Jt(Dc/C) —• C be the flat family of projective varieties with

q~\t) = J?{Dt). Since Dc -^ C is a flat family of smooth curves, such

an Jt(Dc/C) does exist [15]. Moreover, by using a method similar to

that in §2, we can show that there is a line bundle 2CD on Jt{Dc/C},

S?D <8> k(t) — 2fD . By shrinking C if necessary, we can assume that for

large m there is a v e H°(^(DC/C), - 2 ^ m ) , υlJt{D) e F^(m), so that
v\jt(D ) *s nonvanishing at E^D . Since 7^, i' = 1, 2, are locally free at
the base points of the family Dt, we have the following exact sequences
on Dc:

(3.7) 0-+q*Fi^q*E^Ai9C-+0,
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where q: Dc —> X is the obvious map, and A. c are torsion sheaves on
Dc.

In the following, we let the indices / be either one or two. Let wt be
the closed points of βμ representing the quotient sheaves F.. If we fix a
trivialization of 0{a)\C and use Lemma 2.2, then we have the following
canonical isomorphisms of line bundles on C:

φiC: ^

By Proposition 2.5, for any t e C, there is a canonical section ϋέ e

H°(0μ, £?f™) which is provided by the rational map βμ —> Jt{Dt) and

vt e VD{m), where vt is the restriction of v e H°(,Jr(Dc/C)i Sf®m) to

Jf(Dt). Note that this construction is canonical. Thus ϋt with t e C can

be viewed as a section ϋc e H°(&μ x C, g*<&f™), where g: @μ x C ->

^ . We denote the restriction of Ό c to {wj x C c βμ x C by Ό^ €

H°({w.} x C, ^*<5^>^| ϊ/ ; x C ) Now using (3.7), we have isomorphisms

(3.8) φ.:

where /• = length(^z 0) = length(£/Fz)-. Since φx c and φ2 c are

canonical, and i ^ - i ^ o ) = F2\π~\c\o) > w e h a v e

as sections of the line bundle Det(i?^^*E(-n)<8>θ)~ ι over C\0 . Since we

assumed that vo(E\D ) φ 0 , ^^ ί?* c(*cιc\o)) *s n o n t Γ i v i a l Now assume

that the extension of φx{φ\ c(^cιc\o)) ^n E>et(i?π+^*£'(-A2)(8)0)~1 over C

has vanishing order / at 0 e C . Then ϋι

c (resp. β^) will have vanishing

order / + lχ (resp. / + /2) at 0 by (3.8). Since we assumed that 1XΦ /2 ,

then for generic tχ, t2 e C,

Therefore, y^(wχ) / 7^(^2)
 τ h i s finishes t h e proof of the theorem,

q.e.d.
By Theorem 4, every closed point s e y{^d) is represented by a unique

pair (E, /) , where £ is a polystable vector bundle and /: X -> Z + is
an integer function such that c2(2s) + Σ X € ΛΓ ^(χ) = d - F o r ^ > 0, if we
denote the open subset of Jίd consisting of //-stable locally free sheaves
by JK% , then a corollary of the theorem states that

(3.9) y: * d

β μ
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is one-to-one set-theoretical. In fact, more is true.
Proposition 3.7. For any d > 0 and sufficiently large k and m > 0,

the morphism γ: Jίd —• y{y^d) c y(^d) is an isomorphism.

Proof. We only need to show that γ is unramified at each point s e

Jίd. Indeed, for k large enough, D e \kH\ smooth, and E, F e Jίd ,

we have Hom(£, F) —• Hom(E,D, F>D) is surjective and Ext^(2?, E) —•

Ext],(/?.£, -E.̂ ) is injective. It is straightforward to check that Jΐ£ —•

^f(D) is an immersion. When m > 0, ^f (Z>) -• P(Fp(m)v) is also an

immersion. Thus Jt£ -> P ( 3 ^ ( w ) v ) is an immersion, and y: ^ μ ->

y ( ^ ) c P ( ^ ^ ( m ) v ) is an isomorphism. We leave the details to the

reader.

4. Uhlenbeck's compactification of the moduli space ^

In this section, we investigate the relations between the space of gauge
equivalent classes of ASD connections and the image scheme γ{J?d).
Let us first recall the theory of anti-self-dual connections. Let X be an
oriented four-manifold, let g be a Riemannian metric on X, and let
E be a rank two complex vector bundle over X with c{(E) = 0 and
c2(E) = d. By an SU(2) structure on E we mean a smooth isomor-
phism /\2 E = C x X coupled with a Hermitian metric h on E so that
detΛ = 1. By an SU(2) isomorphism (resp. gauge transformation) of two
SU(2) vector bundles (resp. an SU(2) vector bundle) we mean a smooth
isomorphism (resp. an automorphism) preserving the SU(2) structures.
By abuse of notation, we will use (E, h) to denote the vector bundle E
with the prescribed SU(2) structure. A connection D is said to be an
SU(2) connection if it is a linear connection on E preserving h . D is
called anti-self-dual if in addition D satisfies

(4.1) *gF(Z)) + F(D) = 0,

where * is the star operator of g and F(D) is the curvature tensor of the

connection D. Equivalently, if we denote by P+: /\2T*X -+ Λ+ T*X the
projection sending any two-form to its self-dual part, then P (F(D)) = 0.
Two connections Dχ and D2 on (E, h) are said to be gauge equivalent
if there is a gauge transformation g on ( £ , h) such that g*(D2) = Dχ,
where g*(D2) = g~ι o G2 o g.

We denote by ^ ( g ) the space of gauge equivalent classes of irreducible
ASD connections on (E, h). We will abbreviate ^ ( g ) to J^d when the
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Riemannian metric g is clear from the context. JVd is nonempty if d

is large [20] and Jfd is smooth at D is H*D](X, Ad Eh) = {0}. Here

H*D](X, Ad Eh) are cohomology groups of the elliptic complex

Ω°(Ad Eh) -*• Ω*(Ad Eh) -^ Ω* (Ad Eh)

with D+ = P+D, where Ad Eh is the adjoint bundle of (E, h). (For

details, see [5].) Further, we denote by jVd the space of gauge equivalent
classes of ASD connections (not necessarily irreducible) on (E, h). If X
is an algebraic surface and g is the Hodge metric of the ample line bundle
H, then Donaldson proved that D is an ASD connection if and only if
the induced ΈD operator defines a μ-polystable holomorphic structure on
E. More precisely, we have

Proposition 4.1 (Donaldson). Let d > 0. Let jVd be the space of gauge
equivalent classes of irreducible ASD connections on E and let Jίd c Jίd

be the open subset consisting of locally free μ-stable sheaves. Then there is a
canonical homeomorphism σ: Jίd —> jVd . Further, σ is a diffeomorphism
at s e Jίd if Jίd is smooth at s or equivalently jVd is smooth at σ(s).

Proof Assume (E, d) is a //-stable vector bundle. By [1], there is a
unique (up to gauge equivalence) Hermitian-Einstein connection D such
that Ί)D = ~d. D is automatically anti-self-dual. We define σ((E, ~d)) =
D. That the map σ is a homeomorphism is guaranteed by the uniqueness
of the solutions of the elliptic system which solves the Hermitian-Einstein
connections on (E, d).

For diffeomorphism, one observes that s = (E, d) (resp. σ(s)) is a

smooth point of Jt£ (resp. Jfd) if H2(X, %nd*(E)) (resp. rfσ{s)](X,

AdEh)) vanishes. On the other hand, H2(X, g?nd°(E)) £ rfσ{s)](X,
Ad Eh) (see [11, Proposition 2.4]). Therefore, s € Jίd is smooth if and
only if σ(s) eJ^ is smooth. To finish the proof, it suffices to show that
the homomorphism σ^,

Ts^d 1 ~ > Tσ{s)Jlίd

\\l II'

Hι(X, %nd°(E)) Kis)\(X> &nd°(E)),

is an isomorphism. This is apparent from [11]. q.e.d.
J^ is not compact since Jϊ£ is not compact. There is a natural com-

pactification of jVd by using Uhlenbeck's weak compactness theorem on
ASD connections.
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Proposition 4.2 (Uhlenbeck's weak compactness theorem [5]). Let Aέ

be a sequence ofASD connections on (E, h). By passing to a subsequence
{/'} c {i}, there exist

(a) a finite set of points xχ, x2, , xp with multiplicities m p ,

mp, and
p

(b) an ASD connection Ao on an SU(2) vector bundle (EQ, h0),

such that

(1) there are gauge transformations g., of (E, h) and an SU(2) iso-

morphism g^: E\X\Ux -> ^oi^xux ^ ^ ^ α ί for any comPact subset K c

\U
(4.2) lim g}{AΛκ = g^iA^ in the Cltopology;

(2) considering \FA t \ and \FA \ as measures on X and using the

weak*-topology on the space of these measures, we have

(4 3) /i™ιV= |V+ 8 π 2Σ>A />
where δχ is the singular measure of total mass 1 supported at x .

According to Uhlenbeck's weak compactness theorem, for any sequence

of ASD connections, say {A^ , there is a subsequence {A^} c {A^ such

that their gauge equivalence classes converge weakly to the pair (AQ, δ),

where Ao e Jfd and δ is a singular measure of total mass d - dQ. Uh-

lenbeck's removable singularity theorem of ASD connections shows such a

pair is unique (depending on the subsequence {A^}). We denote by S X

the /th-symmetric power of X. To any point s e S X, we associate a

singular measure δs of total mass /. δs has mass c at the point x if x

has multiplicity c in s. Thus δ can be thought of as a point in Sd~d°X.

Now if we view (Ao, δ) e JΫd x Sd~d°X as the weak limit of the sequence

{At, } c / r f , then there is a compactification JV d of ^ ,

d

(4.4) yFdc\lsηχSd~jx.
7=0

./f ^ is called Uhlenbeck's compactification of the space of gauge equiva-
lent classes of irreducible ASD connections [2, §3].

It should be noted that both Jίd and Jf d are compactifications of the
space Jίd = JVd . The former is constructed by using algebraic geometry
while the latter is defined for any smooth Riemannian four-manifold. They
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are drastically different in nature. For instance, the subvariety ΛζjVrfζf is
a subset of complex codimension 1, while JVd\JVd is of real codimension
four in general.

In §3, we introduced another space γ(Jtd) containing γ{J?d) as a dense

subset. Hence y(^d) can be thought of as a compactification of Jίd as

well. To be more precise, we let Jίμ

d be the closure of Jtd in Jtd with the

reduced scheme structure and let γ{Jtμ

d) c γ(J?d) be the image scheme.

Note that for d large enough, Jtd is normal [13] and thus Jtμ

d = Jίd and

γ(Jtμ

d) = γ(Jtd). The main theorem of this section is the following.
Theorem 5. Let X be any algebraic surface and let g be the Hodge

metric of the ample divisor H. For any d > 0 where Jίd Φ 0 , there is a
homeomorphism

such that ~σ = σ when restricted to y{Jfd) c γ(Jt'd).

Corollary 4.3. With the notation as above, there is a complex struc-

ture on JIf d making it a reduced projective scheme. Furthermore, there

is a morphism γ: Jίμ

d -> JVd from Gieseker's compactification of jVd to
Uhlenbeck's compactification of d

The main effort of this section is devoted to the proof of Theorem 5. In
the following, we shall view y(J?d) and other reduced schemes as analytic
varieties and endow them with usual topology. We will prove Theorem 5
by showing

Proposition 4.4. Let {FJ c y{Jtd) be any sequence of μ-stable vec-

tor bundles. Assume that {Ft} converges to (F0,l) in y(^d) and that

{σ(F.)} converges to {EQ,A0,δ)eyFd. Then FQ £ (Eo, dAJ and l = δ

under the obvious identification between I: X -> Z+ and elements of ScX,

where c = Σx£X /(*)

Proof of Theorem 5 (assuming Proposition 4.4). By Theorem 4, each
closed point s e y{^d) is represented by the pair (E, I), where E is
a poly stable vector bundle and /( ) is an integer valued function with
C2^) + ΣxK

χ) ~ d. Such an E admits a unique (up to gauge equiv-
alence) Hermitian-Einstein (or equivalently ASD) connection A. Hence
(E, /) associates uniquely to a point

d _

(E,A,δ)e]JJ'jχSd-iX9
j=0
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where δ = {miδχ } with mi = /(JC ) . We denote such an identification by

σ:

7=0

Clearly, σ is a one-to-one map which coincides with σ when restricted

to the open dense subset y{Jίd). Next we show that σ is continuous. It

suffices to show that whenever {sj c y{Jfμ

d) is a sequence which converges

to s0 in y(^f^),then σ(^) converges to σ(s 0). Since both spaces y(^)

and Jfd are compact, and y{J^d) c y(^d) and

jyd are dense, an easy argument shows that all we have to show is that

whenever {sj is a sequence in y{Jίd) with lims. = sQ e y(^d) and

limσ(£{ ) = tQ £ Jr

d, then ^(s0) = / 0. That is exactly what we show in

Proposition 4.4. Finally, ~σ(y{Jtμ^j) c JVd is a dense closed subset, so

tfM'Ό) = ^ j Thus σ is one-to-one, onto, and continuous, and hence
a homeomorphism. q.e.d.

Let {JF.} be a sequence of //-stable vector bundles in Jίd . By Propo-
sition 4.1, there are Hermitian metrics h{ on Fi so that the induced con-
nections are Hermitian-Einstein. Let (E, h) be the SU(2) vector bundle
on X having the same topological type as F.. There are ASD connections
Ai on (E, h) and smooth isomorphisms φ.: (F., Λ ) -> (E, h) such that
φ*(A.) are the corresponding Hermitian-Einstein connections on (F., A ).
Thanks to Uhlenbeck's weak compactness theorem, there are SU(2) gauge
transformations gi on (E, h) such that a subsequence of .g*(A.) con-
verges in the weak sense. Let φ.: = g~ι o ̂ j : .

Lemma 4.5. /br Λ«y sequence {F.} of μ-stable vector bundles in Jίd

and the corresponding Hermitian-Einstein metrics h{ on F , there is a
sequence of ASD connections A( on (E, h) and smooth isomorphisms
Ψr (Fi> ht) -• (E, h) such that for each i, φ^AJ is the Hermitian-
Einstein connection of (F., h.). Moreover, there is an SU(2) vector bundle
(EQ, h0), a finite subset Λ = {JCJ , x2, , xp} c X, and an isomorphism

such that by passing to a subsequence {/'} c {/},

lim A., = φ*A0 weakly on X\A9

where Ao is an ASD connection on (Eo, Ao), and there is a singular mea-
sure δ such that (4.3) holds.

We fix such a subsequence given by the lemma and still denote it by Fi

(and A.). We choose n large enough so that whenever F is a
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μ-semistable sheaf with detF = (9 and c2{F) < d, then h\H®n®F) = 0
for i> 1 and H°(Hm®F) generates H®n®F. Thus N = h°(H®n®Fi)
is independent of /. We fix the Hermitian metric on H whose Chern

form is the Kahler class. Let H®n <g> E has the induced metric. Let e?,

a = 1, , N be sections of H®n <8> E such that e° are holomorphic

under the holomorphic structure ~d A and such that for all a, β ,

(4-5) ap

Lemma 4.6. W7ίA ίΛe notation as before, there is a subsequence {/'} c
{/} such that for any 1 < a < N, {e"}^ considered as a sequence of
smooth sections of H®n <g> E converges uniformly in the C1 topology on
any compact subset of X\A.

Proof Since A( is the Hermitian-Einstein connection of the holo-

morphic vector bundle (E, dA ), and ef are holomorphic sections of

(7/®" <g> E, ΈA ), the Bochner-Weitzenbock formula asserts that for some

constant C independent of / and a,

where Δg is the Laplacian operator. Then, since ||^α||L2 = 1, we have the
uniform supreme estimate

(4.6) s u p | < | < C ' .
x

For any compact subset K c X\ Λ, let K{ be another compact set, K c

#; n t C Kχ C X\f\. By Lemma 4.5, A iκ ^ <P*\\Kχ

 S i n c e eΓ a r e

9^ holomorphic on Kχ and ^*^OιA: is smooth, {ef}t are uniformly

bounded in the C 2 topology on K. Then a subsequence {e°}it will

converge on AT in the C1 topology. A diagonal tracing technique shows

that a subsequence {/'} c {/} can be found so that on any compact subset

of X\A and any 1 < a < N,

(4.7) lime° = e£. q.e.d.

By the homomorphism φ: (E, h)^A -> (Eo, A0)(^yΛ, the sections e%

can be considered as holomoφhic sections of H®n <g> Eo on X\A under

the holomoφhic structure ~dA . Since AQ is regular, by Hartogs lemma,

el extends to holomoφhic sections of H®n®E0 over X. Thanks to (4.6)
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and Fatou's lemma,

(4.8) Km/<e? , ef)h * 1 = J (e«, eζ) * 1.

Thus the limit sections e% , a = 1, , N, are linear independent holo-

moφhic sections of H®n ®EQ. We let e 0 : φN H*ι~n) -> £"0 be the

homomorphism induced by sections {e% }^=1 and let Eo c Eo be the

sheaf Έo = lτn{e0}. We claim that detϊ?0 = (9 and c2(E0) < d. Assume

not, then we can find a subsheaf F c Eo so that Eo c F, det F = 0,

and C2(F) = rf. Since EQ is μ-semistable, i 7 is μ-semistable. By our

choice of n, h°{Hm ® F) = N and H°(H®n 0 F) generates Hm ® F .

Since //°(i/0 n 0 £ 0 ) c H°(H®n ® F) and λo(/f0π ®Έ0)>N,Έ0 = F.

So the cl^im is established. We have the following two propositions.

Proposition 4.7. With the notation as above, if the y(F.) converges,

then c2(E0) = d and γ(F.) —• y^(ϊ?0), wΛ r̂̂  £ 0 is considered as a μ-

semistable quotient sheaf given by eQ: φN H^~n^ —• £ 0 .
Proposition 4.8. With the notation as above, assume that Ai —* [Ao, δ]

in the sense of Uhlenbeck's weak compactness theorem, where δ e S ~ °X
is an integer valued function on X having total value d-d0. Then δ(x) =
lεngth(E0Έ0)χ.

Proof of Proposition 4.4 (assuming Propositions 4.7 and 4.8). Let {Ff}

in Jί% be any sequence of //-stable vector bundles such that lim y(F/) = s0

in y{^μ

d) and limcr o γ(F.) = t0. Then, by Proposition 4.7, s0 = 7g(E0).

Note that under the map σ, σ(y^(EQ)) = (EQ, AQ, l^) e JVd . Applying

Proposition 4.8, we conclude that ~σ(y^(EQ)) = t0 . q.e.d.

We first prove Proposition 4.7. We denote by et the homomorphism

φN H®(-n) ^ E i n d u c e d b y sections {^α}^=1, and by εz the surjective

homomoφhisms 0 ^ // 0 (~Λ ) —• F. such that φi o εz = et:

I I "
ε( can be thought of as a sequence of closed points in the Grothendieck's

Quot-scheme Quot^ , where W = 0 * H®{~n) and χ = χE is the Hubert

polynomial of E. Since Quot^, is a projective scheme [9, Theorem 3.1],

the underlining analytic space Quot^;red is compact. Hence, by passing to
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a subsequence, we can assume the ε. converge to ε0: φ ^ H^~n) -> FQ,
where F o is a sheaf with detF 0 = (9 and c2(F0) = d.

To compare the two limit sheaves EQ and F o , we introduce the induced

metrics on quotient sheaves. Let F be any quotient sheaf of φ ^ i/<g)(~w)

and let Q be the kernel of the homomorphism β : φ ^ H®{~n) -• F .

Then we get an exact sequence

N

(4.9) 0 -> Q —• φ i/~Λ -» F -> 0.

On the open subset t/ c X where F is locally free, (4.9) is an ex-
act sequence of vector bundles. Then, by identifying F^v with Q^υ c

φNH*(~n) and using a fixed Hermitian metric on φN H*{~n), we get a
Hermitian metric g on F ^ . We call g the quotient metric of F . Note
that g is only defined on where F is locally free.

L e m m a 4 .9 . Γ λ e r e is a constant C so that if we let gt be the quotient

metrics of e.: φN H*{~n) -• F , then b z ( ^ ) | Λ ( x ) < C\v\g{χ) for any xeX

and any v e F. ® fc(jc).
Proof Since the supremum norm of e? € H°{H®n 0 F) is bounded

from above by a constant C, the supreme norm of the homomorphism
et: φ Λ Γ // < 8 ) ( " " ) -* E is bounded from above by 7VC. Therefore, for the
corresponding quotient metric g[ on E and u e E ® k(x),

(4.10) |w|.rj:, <iVC|w| i, v.

Since φioεi = ei and ^ (resp. ^') are the quotient metrics corresponding
to ε (resp. e.), then |^. (w)L'/γx = Mσ(γλ. Combined with (4.10), we
have proved the desired inequality, q.e.d.

Next we shall show that there exists a homomorphism φ0: F o -> Eo

which is an isomorphism at generic points of X. Let ker(ε0) (resp.
ker(e0)) be the kernel of ε0 (resp. e0). We have the following diagram:

0 > ker(ε0)

0

If we can show that in this diagram,

(4.11) ker(ε0) c

as subsheaves of φΛΓ

JfΓ
<g>(~"), then φQ exists and φ0oε0 = e0.
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Since both ker(ε0) and Eo are torsion free, (4.11) holds if it holds at
generic points of X. Let x e X be any point where FQ and ΈQ are
locally free. For any v e ker(ε0) <8> k(x),

(4.12)

which can be seen as follows. Let U c Quot^, be an analytic neighbor-

hood of the quotient sheaf 0 * H®(~n) -> Fo and let F be the universal

quotient sheaf on X x U. Since FQ is locally free at x, there is an

open neighborhood V c X of x and an open neighborhood U' c U

of {ε0} such that F is locally free on V x U'. Let Q be the kernel of

®Np\Ή*(-n) - F over F x ί / ' . Then

(4.13) 0 - Q -> 0 p ; / / ^ ( - π ) - , F -, 0

is an exact sequence of vector bundles on V x Jj'. Hence, for any ω in

{/' with the corresponding quotient homomorphism eω: φ ^ / ί ^ " ^ —•

F (8) ik(ω), and for any υ eζ&N H®{~n) <g> k(x) with c G V,

In particular, since we assume that ^ : φN H®(~n>> _• /r converges to

e0: ®NH®{-n) ^Fo in Quot^, we have for large /, {β : φN H®l~n) -+

Ft} e U' and then for any t; e ker(ε0) Θ k(x),

(4.14) lim e,(v) = εJv) = 0.
/-•oo

Then (4.12) follows easily from the fact that lim^. = g0 over V.

Now we apply Lemma 4.9 to v e ker(ε0) (8) k(x) c φ ^ ^ " ^ Θ fc(x)
over a generic point x e J . We obtain lim \φi o ε^υ)^^ = 0. Finally,

lim φ. o ε^υ) = lim^.(i ) = eo{v).

Therefore, \eo(v)\h,X) = 0 or υ e ker(^0) <g> k(x). Since x is generic, we
have proved ker(ε0) c ker(^0).

Let φ0: Fo —• E o be the induced homomorphism.
Lemma 4.10. With the notation as before, let φ0: FQ -> £ 0 te ί/ẑ

induced homomorphism from (4.11). 77ze« p 0 is an isomorphism.

Proof Since rank(ker(ε0)) = rank(ker(e0)), it follows that ker(ε0) 0

@χ χ = ker(e0) ®@χ x as subsheaves of φ ^ fj®(-n) a t generic points of

X .Let Γ c F o be the torsion subsheaf and let ker(ε0) be the kernel of the

induced homomorphism ε 0 : ®N H®^^ ^ Fo/T. Since T is supported
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at a subvariety of X, we have ker(ε0) ® <9χ χ = ker(e0) ®0χ x at the
generic points of X. Then εo(ker(eo)) (resp. βo(ker(εo))) is a torsion
subsheaf of FQ/T (resp. 2?0) and hence εo(ker(eo)) (resp. eo(ker(εo))) is
trivial. So there is a homomorphism φ: FJT -> ΈQ (resp. φ:ΈQ^> Fo/T)
that is an isomorphism on the generic point of X. As a consequence,
XE = %F /T' Since det/s0 = detF 0 , Γ is supported at a discrete point
set°of X°. Thus, c2(F0/T) = c2(FQ) + length(Γ) = rf + length(Γ). But we
know c2(EQ) <d.So length(Γ) = 0. The lemma is established.

Proof of Proposition 4.7. By the previous lemmas, for the sequence
{F.} c J?£, there is a subsequence {/'} c {/} with surjections ε.ι :
$N jj®(-») -> p., such that if we denote by {F.,} the corresponding
quotient sheaves, then limJ./{î ./} = {FQ} in Quot^, with FQ = ΈQ .

Since FQ is μ-semistable, lim./{F /} = {Fo} implies y^(E0) = γ^,(F0) =
limz/ y^{Fit) = liπij/ γ{F.ι). Hence the proposition is proved, q.e.d.

For the proof of Proposition 4.8, we first give a geometric interpretation
of the Dirac measure δ in Uhlenbeck's compactification JVd. In the
following, we denote by B€(x) the closed e-ball of X centered at x and
denote by dBe(x) the boundary of Be(x).

Lemma 4.11. With the notation as in Lemma 4.5, for any x, where
Sχ ψ 0, let Be(x) be a ball of sufficiently small radius e . The trivializa-
tion of E0>dB ,v which is induced from a trivialization of E0>B ,χ, induces

a trivialization β: C®2 x dBe(x) = E*dB,x<, by using the isomorphism

V d b
'' E\X\A "^ £0|Z\Λ aS i n L e m m a 4 5 VWe d e n O t e by E\Be{x)/E\dBe{x)

the complex vector bundle on S4 = B€(x)/dBe(x) derived by identifying
2E\dBe(x) t0 C<S>2 usin8 β> t h e n

Proof In [7, §3], Friedman and Morgan showed that δ(x) is equal to
the second Chern class of a vector bundle on S4. It is easy to see that their
construction of the vector bundle is parallel to the procedure described in
the lemma. Therefore,

δ(x) = c2(Emx)/EldBM)). q.e.d.

For our application, we need the following lemma.
Lemma 4.12. Let B2 c C2 (resp. D c C) be the unit ball and let e

be a sufficiently small positive number. Assume that F -> B x D is a
family of torsion free (analytic) sheaves of rank two on B2 xD flat over D
and that F is locally free on B2 x D\(0, 0). Let B2

u(0) c B2 x {u} be
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the two-dimensional e-ball centered at (0, u) and let Fu be the restriction

of F to B2

 M(0). Then the smooth trivialization of FQ,dB2 ( 0 ) which is

induced from a trivialization of (F0,B2 ( 0 )) W induces a family of trivial-

izations βu: C 0 2 x dB2

 u = F.dBi ( 0 ) which depend smoothly on u with

ueD small. Similar to Lemma 4.11, we can view Fu^Bi ^/Fu^dBi ( 0 ) as a

smooth vector bundle over S4 = B2

 u(0)/dB2

u(0) by identifying Fu^dB2

hen

= length(Fo

vVoV

to C2 using the given trivialization. Then

(0)

Proof We prove the lemma by induction on the length of F o

v v /FQ.

First we check the case where length(F0

v v/i7

0)0 = 1. Let (y, z) (resp.

u) be the complex coordinates of B2 (resp. D). Then FQ is of the form

^ θ / 0 , where IQ = (y, z)&Bi is the ideal sheaf of 0 e B2. Since F is

flat over D, F fits into the exact sequence

(4.15) Q^0-L>0®* Λ+F -+Q

with / = (wm/j, z/ 2 , yf3), where f. are holomorphic functions on B2 x
D with f^O, 0) Φ 0 for i = 1, 2, 3 . Without loss of generality, we can
assume fχ]= 1 for / = 1, 2, 3. We now check for e , u small,

1 = C2(Fu\B2

e u(0)/Fu\dB2

e U(Q)) '

Let υ = (1, 0, 0) e ^ θ 3 be the section over B2xD. Clearly ί (v) |^2 x { 0 } =

( l , 0 ) e ^ θ / 0 . So under the obvious trivialization β0: C2 x d£ e(0) ->

^oia^ (0)' S(v)\dB (0) ^s a n o n z e r o constant section on dB2

 0 (0). Now

we choose a continuous family of trivializations βu so that the section

S(v)\dB (0) * s s t ^ constant on dB2

 M(0) under βu. So g(v)*B (0) can

be pushed down to a well-defined section g(v)u e F,β2 ^/Fu\dB2 ( 0 ) .

For \u\ small, g{v)\dB2 ,0) Φ 0. Thanks to the explicit expression that

/ = (um, z, y), g(v)u vanishes at (0, 0) only and the contribution of

this zero to the c2(Fu^Bi f0JFuιdB

2 (0)) *s * s * n c e ^ ( V ) M ^S t r a n s v e r s e t 0

the zero section, since g(v)u is holomorphic and since e is sufficiently

small. So the lemma is established when length(iΓ

o

vv//Γ

o)o = 1.

Now assume that the lemma holds when length(i7

0

v v/F0)0 < k, and

that the sheaf Fo has length(/7

0

vv/iΓ

0) = k + 1. Then we have an exact



INTERPRETATION OF DONALDSON'S POLYNOMIAL INVARIANTS 453

sequence similar to (4.15) on B2 x D:

(4.16) 0 -> &p -2U &θp+2 -+ F -> 0.

By Proposition 6.3 in the Appendix, we can find a deformation G of

Fo on B2 xD', D' cC, such that (G ? v v) ί ; £ FQ

VV for all n D ' c C 1

and length(G^v/Gv)JC < k for any x e B2

υ{0) when v φ 0. Since G is

a flat family of torsion free sheaves, there is an exact sequence on B2xDf,

(4.17) 0 -> ̂  - ^ ^ θ p + 2 -+ G -> 0,

such that a(y9z90) = a(y 9 z, 0). Now consider a new matrix val-

ued holomorphic function / on B2 x D x D' such that f(y, z, u, 0) =

α(y, z, w) and /(y, z,0,υ) = a(y, z, υ). Such a holomorphic func-

tion does exist. / induces an exact sequence over B x D x D\

(4.18) O-^&P M &®P+2 -> £ -> o.

Since E>Bixr0 0 } = F o is torsion free, is,^ xrM v} is torsion free for u, v

sufficiently small. Further, £ | j 5 2 x Z ) x { 0 } = F and £ | i ? 2 x { 0 } x Z ) , = G. Let

Σ c B x D x D' be the set of points where i? is not locally free. Since

Σ ί l 5 2 x f l x { 0 } = {(0, 0, 0)}, Σ is a curve. Hence for any v φ 0,

\υ\ sufficiently small, E,R2 vr,A vr 7,i is locally free for generic u e D.

Further, for any such u, υ , there is a path in D x {υ} connecting (0, υ)

and (w, υ) such that any (u ,v)Φ(0,v) in this path has the property

that ElBi x{u>]x{v} is locally free. Finally, let (s, t) e [0, 1] x [0, 1] be

real parameters and let p: [0, 1] x [0, 1] —> D x Df be a family of paths
having the properties: p(0, 0) = (0, 0), />((0, 1] x {0}) c (D\0) x {0} ,
p({0} x (0, 1]) C {0} x (D ;\0), ^((0, 1] x (0, 1]) c (D\0) x (D ;\0),
and Σ Π 5 ^ x {p(s, ή] = 0 for any (s,ή e (0, 1] x [0, 1]. Thus,
£ι»2 v J / # u is locally free whenever s ^ 0. In the following, we will

l l /2 X i " ' ί > ^̂ J

only consider those (u,v)eDxDf that are contained in the image set

/>([0, l ]x[0, l ] ) .

Let B2

euv{0) cB2 x {u} x {v} be the 6-ball. Since ( £ | i ? 2 2 X { 0 } x Z y ) V V

is locally free, we can assume the trivialization β0 v: C θ x dBeQv(0) -*

^IΛ»2 m '̂ which is induced from the trivialization (E,R2 r m ) w , is

smooth in variable v when \υ\ is sufficiently small. Thus for u,v small

enough (in/?([0, 1] x [0, 1])), the induced trivializations βu v : C x

dB2

 u v(0) -• J?)a52 ( 0 ) can be smooth in (w, v) also. So
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(4.19) c2(EKuo(O)/Eldgluo{O)) = c2(E^gB^

By a s s u m p t i o n , for ( 0 , v) smal l , t h e r e a r e p o i n t s p { , p 2 , ••• , p { e

lnt(B^0υ(0)) ( d e p e n d i n g o n v) s u c h t h a t p{,p2,- , p t a r e t h e only

nonloca l ly free p o i n t s o f E,βi ( 0 ) . F u r t h e r , a t e a c h of t h e p o i n t s p { , p 2 ,

-" ,pn l e n g t h ( ( £ | ^ 2 ^ ) ) V V / E \ B

2 (o))Pj < ^ By t h e i n d u c t i o n h y p o t h -

esis, w e c a n u s e 5-balls ( ί « 6 ) c e n t e r e d a t p { , p 2 , , p ι a n d t h e tr ivi-

alization CΘ2xdB# u v{p.) = E,dRi , , induced from C Θ x^s,o,v(^ —

(E\tf rm)V V t 0 conclude

(4.20)

7=1

Since E,Ri (muR2 , x is a smooth family of vector bundles (in w), the

contribution of its second Chern class with respect to the trivializations

on dB] u v(0) and dB]tUiV{pj) for j = 1, 2, •• , / is constant and

consequently trivial because E,Ri ,uBi , , is flat. So

B] U υ{0)lE\dB] u v(0)) = ΣCl(E\B2

 u v{Pj)lE\dB]
1

u v j ] u v{
7=1

7=1

) w

o o ( 0 ) ) w / £ | β a o o ( 0 ) ) 0 .

The last equality holds since E, ̂  is a flat family of torsion free sheaves
' e , 0 , υ

over D' with E^i = E^R\ . Combined with (4.19), the lemma is
1*6,0, t; l 5 c,0,0 V '

established.
Proof of Proposition 4.8. By the proof of Proposition 4.7, we know

that the limit At —> [Ao, δ] is compatible with the limit F. -> FQ , where

Ft, F o are considered as quotient sheaves of 0 ^ //<S)(~AZ). Hence from

Lemma 4.11 the singular measure

is identical to
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!(<Fi\B2
e(x)/Fi\dB2

€(x)>>

for / > 0 when the trivializations are induced from the limit F -> Fo.
Then Proposition 4.8 follows from applying Lemma 4.12. q.e.d.

In the sequel, we will view JVd as a projective scheme that is isomorphic

to y(Jtβ

d).

5. Donaldson's polynomial invariants of algebraic surfaces

The goal of this section is to redefine Donaldson's polynomial invari-
ants of the underlining smooth four-manifold of an algebraic surface in
algebraic geometric context. Loosely speaking, we will show that part of
Donaldson's polynomial invariants can be calculated by evaluating the in-
tersection numbers of certain Cartier divisors on the space Jfd , the coarse
moduli scheme of rank-two semistable sheaves on X.

For any simply connected oriented smooth four-manifold X with
b2(X) odd and strictly greater than 1, Donaldson defined a series of inte-
ger valued polynomials ™

(5.1) q d 2 2

with deg qd = Ad — | (1 + b2). qd is defined as the intersection number of
some properly defined subsets in JV^(g), where g is a generic Riemannian
metric. For a detailed discussion of Donaldson's polynomial invariants,
we refer the reader to Donaldson's original paper [3] or Friedman and
Morgan's recent book [7].

Let H be any ample divisor. For any d > 0, we put

(5.2) Ω(77,rf) = {/)€NS(X)|Z) / / = 0, D D>-d}

and put Ω(#, df = {D e NS(X)\D Df = 0 for any Df G Ω(//, d)}.
We have the following observation.

Lemma 5.1. Let F e ^d(H). Assume L c F with degH(L) = 0.

Then c{{L) D = 0 for any DeΩ(H,d)L .
Proof. Assume F e ^d(H) is not //-stable, and L c F is a subsheaf

such that deg//(L) = 0 and F/L is torsion free. Since det(F) = &,
we have c2(F) > -cχ{L)2. Thus, cx(L) e Ω(//, d). So the lemma is
established, q.e.d.

By applying Proposition 1.7 to the moduli scheme ^d(H), we construct
a homomorphism

(5.3) p H f
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In the case d i m ^ ( / / ) = c{d), where c(d) = Ad - 3χ(#) is the virtual
dimension of ^d(H), we define a polynomial

(5.4) δd{H): Symmk(Ω(H, df) -> Z,

k = c(d), as follows. For a{, , αfc

(5.5) δd{H)(aγ, , ak) = [pH{aχ) pH(ak)]{*d(H)).

Theorem 6. Lei X be any smooth, simply connected algebraic surface

with pg > 0 and let H be any ample divisor. Then there is a con-

stant A(H) such that for any d > A(H), δd(H) coincides with the re-

striction of Donaldson's polynomial invariant qd to Symmfc(Ω(AΓ, d)L) c

Symm* H2(X, Z), where k = c(d).
Proof- We choose A(H) > 2p + 1 to be large enough so that when-

ever d > A(H), then Jίd(H) is dense in Jtd(H) and Jtd{H) is smooth
at generic points of Jtd(H). Thus JVd (= γ(^μ

d(H))) is isomorphic
to the reduction of γ(^d(H)). We first state a general result concerning
Donaldson's polynomial invariants. The proof of it can be found in [3,
§5.3] or [7, §3.9.21]. Let d > A(H), let Cx, , Ck € Ω(H, df be any
smooth divisors, and let 5fje(Ci, 0f ) € Pπi^i) ^ e ^ e associated determi-
nant line bundles (see Proposition 1.7). Assume that there are line bundles
-2^(C., 0.) on JFd(H) such that

via y: ^ ( i / ) -> ̂ ( ^ ) . Then

( 5 . 6 ) [ ^ r ( C 1 , 0 1 ) ] . [ ^ r ( C f c , 0 f c ) ] < ί 1

Here [•]•••[•] is the intersection of the Cartier divisors in J(μ

d{H). Since
3?^m{D, 0D) always descends to a very ample line bundle on JVd(H) for
D e \nH\, the theorem will be established if we can show that for any
Co G Ω(//, ύf)x , ^ ( C o 4- IH) descends for / > 0.

Let φ: J?d°
r -» Jfd{H) be the normalization of the reduction of Jtd(H)

and let Φ'.J^™* —> JVd(H) be the normalization of Jr

d(H). Since

y: ^ # ^ —> Λr

d(H) is a birational morphism, there is a unique y: ^ n o r -^

c/T ̂  such that
^ o γ = γ o φ .

Since ^ and φ are birational finite morphisms, the proof of (5.6) [7]
shows that the theorem will be proved if the line bundle ^*«5^(C, θc)



INTERPRETATION OF DONALDSON'S POLYNOMIAL INVARIANTS 457

τdescends to a line bundle on yF™τ via γ: ^ n 0 Γ -> JF™X, where C
|C 0 + /7/|.

Recall the following diagram:

(5-7)

If we let φQ: $™m —> if" be the normalization of the reduction of @$s,
then there is a new diagram compatible to (5.7):

jrγ

(5.8)

Let s e J¥™X be any closed point. Then there is a C' € \C\ and an open
neighborhood V c J^^ of s such that whenever F is a quotient sheaf

in ΪQ1(V) , then F is locally free at C' . Since / > 0, F^c, is semistable.

We claim that there is a morphism p: V -> J£{C') making the following
diagram commutative:

(5.9)

Here /?β is the morphism induced by restricting the universal quotient
sheaf to C'. Indeed, since all schemes involved in (5.9) are normal and
γQ is surjective, all we need to show is that p as a map is well defined,
making the diagram (5.9) commutative. This is apparent from Theorem
4. Note that

(5.10) fQ{P^c \\v) =p*<^c;f_Uv) - t C

and that (5.10) is PGL(N, C) equivariant, with PGL(7V, C) acting triv-

ially on JF™T. Thus (5.10) descends to
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on γ~ι(V). Now we cover Jf™τ by open sets Vχ, , VL so that on
each V , there is a line bundle £?• having the property that

Since γ: Jfd{H) —• JVd{H) is an isomorphism (Proposition 3.7), the re-
striction of the identity homomorphisms

to y " 1 ^ - Π F;.) Π φ~ι(Jt£(H)) C Jί™x induce isomorphisms

Since codim(Jr™τ\JrJ10T) > 2, the f.. extend to isomorphisms

ιj JiVjΠVj ι\vjnvi

Clearly, fig^) = fir So the line bundle φ*(^(C, θc)) descends to

the line bundle on yy*™. Thus the theorem is established, q.e.d.

In general, Ω(/f, d)1' is much smaller than Hι'ι(X9Z). Indeed, for
any fixed H, Ω(/f, d)^ = %{H} for d sufficiently large. One solution
of this is to consider a more general class of polarizations. Let NS(X)Q

(resp. NS(JQR) be the tensor product NS(X) <g>z Q (resp. NS(^Γ) Θ z R)
and let NS(Z)^ (resp. NS(X)J) be the cone spanned by NS(X)+. For
any ωr e NS(Z)^ , we define the Hubert polynomial of a rank-two sheaf
F by

(5.11) jrF(n) = n2(ωr ωr) + nωr (c{(F)-Kχ) + χ(F).

The concept of ωr-stability can be defined analogously to the definition of
instability.

Analogously to §1, we let &d(ωr) be the set of all rank-two sheaves F
with detF = (9 and c2(F) = d which are semistable with respect to ωr.
We define &~d(ωr) to be the functor sending a scheme S to the set of
all families of sheaves F in £?d(ωr) on X x S flat over S, where two
families F{ and F2 are equivalent if F{ = F2<s>p2L with L a line bundle
on S.

Corollary 5.2. For any ω e NS(ΛΓ)Q, ^d(ω) is coarsely represented
by a projective scheme ^d{ω). In particular, if H is an ample divisor
representing an integer multiple of ω, then Jίd(ω) = ^d{H).

Proof We simply let J(d{ρS) = Jίd{H) with H an ample divisor rep-
resenting an integer multiple of ω . Lemma 5.1 states that Jtd{ω) is
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independent of the choice of H. Hence Jtd{ω) is well defined and has
the desired properties.

Theorem 6'. Let X be as in Theorem 6. For any compact subcone
& c N S ( X ) Q , there is a constant A(W) such that for any H e Ψ and any
d > A(W), the polynomial δd{H) is identical to the restriction of Donald-
son's polynomial invariant qd to Symm*(Ω(i/, d)^) c Symm^ H2(X, Z),
where k = c(d).

Proof Recall that for any compact cone 8" c NS(X)+ , there is a con-
stant A($?) such that for any H e W and any d > (W), the moduli
scheme Jfd{H) satisfies the condition in Theorem 6 [6]. Thus, Theorem
6' follows from Theorem 6. q.e.d.

In the remainder of this section, we will use a single polarization ωr e
NS(Z)^ to recover Donaldson's polynomial invariants. We need the fol-
lowing result.

Proposition 5.3. For any ωr e NS(ΛT)£, &*\ωr) is coarsely repre-
sented by a unique projective scheme ^d(ωr).

Proof The intersection matrix ( , ): NS(X)Q x NS(X)Q -• Q is a

nondegenerate symmetric matrix with rational entries. For ωr e ^
let

(ωr, . > : N S ( Z ) Q - , R

be the linear functional, let Ω(ω r)Q be the kernel of (ωr, ) in

and let Ω(ω r)^ be the orthogonal complement of Ω(ω r)R = Ω(ωr)Q <8>Q R
in (NS(JΓ)R, ( , )) . Fix a Euclidean norm | | . || on NS(X)M . Define

(5.12)

One notes that whenever D e NS(ΛQ with ω D = 0, then ω D = 0 for
any ω e Ce{ω). We claim that for any e > 0,

We prove the claim by induction on the dimension of Ω(ω r)R . As-

sume Ω(ω r)R = M{ωr}. Then by the nondegeneracy of the intersec-

tion matrix, a multiple of ωr is in NS(ΛΓ)Q. Then the claim holds.

Assume dimΩ(ω r)R = k > 1. Then we can find a l j G Ω(ω r)R ,

P J I < e/2, and an a £ NS(X)Q\Ω(ωΓ)Q so that (α, λx + ωr) = 0.

Clearly Q{a} Θ Ω(ωr)o C Ω(ωr +λx)0. So Ω(ω r + X{)± <£ Ω(ω r)R .

By the induction hypothesis, we can find λ2 e Ω(ωr + λx)R c Ω(ω r)R ,

||A2|| < e/2, so that Ω(ώ r)R = R{ώΓ}, where ώr = ωr + λ{ +λ2. Thus the

claim is proved.
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For any d > 0, two ω{, ω2 e NS(ΛQM are said to be ^-equivalent if

Ω(ω 1 , d) = Ω(ω 2 , d), where Ω(ω, d) is defined by (5.2). It is obvious

that for any ω e NS(X)J, there is an e > 0 depending on d having

the property that any two classes in Ce(ω) are mutually ^-equivalent.

One checks directly that the corresponding moduli functors & (ώ) with

ώ e C€(ώ) are mutually equivalent. Therefore, for ω e NS(ΛQ*, we

define ^ ( ω ) to be one of ^d(ωχ), where ωχ e C€(ω) Γ\NS(X)^ with

e sufficiently small. Jίd(ωχ) is a projective scheme coarsely representing

the functor ^d(ωχ) =^d(ω). Hence, Jίd[ω) is well defined, q.e.d.

We call an element in NS(X)* a Kahler class. A Kahler class ω e

NS(^Γ)^ is said to be generic (resp. ^/-generic) if Ω(ω) = {0} (resp.

Ω(ω, d) = {0}). Note that then Ω(ω)-1 = Hι'ι(X, Z). Let ω be a

generic Kahler class and let Jtd{ω) be the moduli scheme of ω-semistable

sheaves on X. By Proposition 1.7, there is a homomorphism

(5.13) p ω : H u \ x , Z ) d

When dimc^(ω) = c(d), we define a polynomial

(5.14) δd(ω): Symmk(Hul(X, Z)) -• Z

similar to δd(H) in (5.5).

Theorem 6" . Let X be as in Theorem 6. For any generic Kahler class
ω e NS(ΛQ*, there is a constant A(ω) such that for any d > A(ω),
δd(ω) coincides with the restriction of Donaldson's polynomial invariant
qd to Symmk{HlΛ{Z,Z)) c SymmkH2{X, Z), where k = c{d).

We remark that in defining Donaldson's polynomial invariants of four-
manifolds X, one has to use the generic Riemannian metric g to avoid
the occurrence of reducible ASD connections in the closure ^d(g) In
this paper, we showed that to the generic Kahler class ω e NS(X)^ and
the corresponding moduli scheme ^d{ω), no reducible ASD connections
occur in c/Γ^ω) except the flat one. Based on these spaces, we have
reproduced part of Donaldson's polynomial invariants that are defined on
the subspace

Symm* Hι'l (X, Z) c Symπ/ H2(X, Z).

The advantage of this approach is apparent. When X is an algebraic sur-
face, the space Jίd{ω) is better understood than the space ^d{%) when g
is a generic Riemannian metric. Thus one has a better chance to calculate
Donaldson's polynomial invariants by working on J£d{oS) instead of on
^ddg) as demonstrated by [7]. We further remark that when ω e ^
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is a generic Kahler class, then any (E, A, δ) e ~jFd{ω) with (E, A) re-
ducible must be flat. Thus, there is a good chance that all of Donaldson's
polynomial invariants can be defined on JVd{ω) and thus on Jfd(ω).
One major difficulty is that the classes in H2(J/*d(ω), Z) associated to
H2(X, Z)\Hι'ι (X, Z) are defined as extensions of the first Chern classes
of (nonholomorphic) smooth line bundles on J^iω). Thus the obvious
approach in algebraic geometry does not work. When d is odd, there is a
universal sheaf on XxJtd(ω). Tyurin [21] and O'Grady [19] introduced
a series of polynomials {δk} by using the second Chern class of the uni-
versal sheaf. Their argument goes as follows. The second Chern class of
the universal sheaf on I x / r f ( ω ) is a cohomology class in / / 4 ( I x / r f , Z)
and its component in H2(X, Z) <g> H2(JTd, Z) c H4(X x Jtd, Z) defines
a homomorphism

(5.15) pδ:H2(X,Z)-+d

Then for any a{, a2, , α f c e H2(X, Z) with k = d i m ^ , define

(5.16) δ(a{, α 2 , , ak) = [^(α^) U ̂ ( α 2 ) U U ̂ K ) ] ( ^ ) € Z.

Clearly the (5̂  so defined are integer valued polynomials. By using the
Grothendieck-Riemann-Roch theorem, one checks directly that the restric-
tion of (5.15) to Hx'1 (X, Z) coincides with (5.13), thus part of the δk are
identical to qk according to Theorem 6. The author conjectures that δk

are identical to wk when ω is generic. (J. Morgan has given an affirmative
answer to this question recently [16], [17].)

6. Appendix

Some of the material contained here is known to the experts. Due to a
lack of references, we will present proofs of them. Let U be an analytic
open neighborhood of 0 6 C with coordinate chart (x, y) and let A be
the quotient sheaf of <f®2 supported on 0. We denote by F the coherent
subsheaf of &®2 which is the kernel of &®2 -> A .

Lemma 6.1. There are f{, , fn e @®2 such that fχ, , fn_2 are

divisible by x and that fx, , fn generate the submodule F c &®2 .

Proof. Let f. be the image of f{ in <f®2/(x) under the homomor-
phism

n- F r /ΨΘ2 —»ίΨ®2Kxλ
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Without loss of generality, we can assume fn_χ and fn generate the
image p(F). Then a linear combination of f. with fn_χ and fn for
j = l9 ... 9 n — 2 will provide a basis of F as desired, q.e.d.

We can define a deformation of F over the disk D e C by using the
basis constructed in Lemma 6.1. First let us rewrite f.{x, y) = xk.{x, y)

for j = 1, , n - 2 with kj(x, y) e (?®2. Then define FD to be

the subsheaf of <f®2

D generated by the sections (x - t)kχ(x, y), ••• ,

(x - t)kn_2{x, y), fn_χ(x, y), fn(x, y). We denote them by /;.(*, y, f)

respectively. Let AD be the cokernel of the homomorphism FD —> ̂ ^ .

Then we have the exact sequence

In the sequel, we denote the sheaf FD®k(t) (resp. AD®k(t)) by Ft (resp.

Lemma 6.2. ΓΛere w α neighborhood V <z D of 0 e D such that
Av = AD\UχV is flat over V.

Proof. Let t e D be any closed point. By tensoring (6.1) with k{t),
we get the exact sequence

0 -> T o r ( ^ , k{t)) ^FD® k(t) -+ @f ^AD% k(t) -+ 0.

So to show that AD is flat at t, it suffices to show that Tor(^ D , k(ή) = 0
or, equivalently, FD 0 k(t) is torsion free. We prove that FD <8> A:(0) is
torsion free.

Assume FD <s> k(0) is not torsion free. Then there exist h e FD and

/ e @υ such that f-h = thf for some h1 e FD. Let

n-2

h = Σgi(χ> y> t)'(χ - ι)ki(χ> y)

+ gn-{(x,y, t)-fn_l(x,y) + gn(x,y, t) fn(x,y).

Then the facts that f(x,y)-h = 0, mod(/) in &®2 and fn_x(0,y)9

fn{0,y) generate the sheaf &®2/{x) for y φ 0 imply x\gn_x(x, y, 0),

x\gn(x, y, 0) > and

n-2 j

(6.2)
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Further, if we write g((x, y, t) = at{x, y) + tβt(x ,y,t), then the follow-

ing identity holds in ®*

h = Σ [ ( « , ( * >y)-(χ- ι)kM> y) + tβM ,y,t) (χ- t)kt(x,

+ [(<*n_ι(x,y)'fn_ι(χ,y) + tβn_ι(x,y, t)fn_x{x,y)

where h" is an element of FD C (9^D. Since FD is a submodule of

' h " th" = ° i n ^UXD i s equivalent to h - th" = 0 in FD . There-
fore, A = 0 in FD O k(0) or F D (8) A:(0) is torsion free.

Proposition 6.3. Assume that A is a quotient sheaf of &®2 supported

at 0 e U with length(Λ) = / > 2. Then there is a flat family of &®2

quotient sheaves At, t e Dι c C, such that Ao = A and l e n g t h A ί χ < I

for any x e U.
Proof Let FQ be the kernel of @®2 -> A,let n = dimFQ®k{0), and let

f\> '" ' fn ^ e a ^ a s ^ s °^ ^o * ^ e ^ r s t a s s u m e Λat for any / = 1, , n ,
yj(O, 0) = 0 and that the basis /, , , fn has been rearranged accord-
ing to Lemma 6.1. Note that then n > 4. Let Ft be the flat family of
torsion free sheaves constructed as in Lemma 6.2. We claim that except
in some special cases, the cokerael At of Ft -* &®1 gives the desired
family. Indeed, for generic /, Ft is generated by (x - t)kχ (x, y), ,
(x - t)kn_2{x, y), fn_χ(x, y), fn(x, y). Let yt be the solution of
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f n - X { t 9 y ) S f n { t 9 y ) = 0 G ^ . S i n c e f n _ { ( 0 , 0 ) Λ f n ( 0 , 0 ) = . Q a n d
/Λ_i(0 5y) Λ fn{0,y) Φ 0 for y Φ 0, such a solution y, does exist.
Then At ®k((t,yt)) is nontrivial. Assume supp(^) is a single point
for generic t. Thus kχ(x,y)9 - , kn_2(x, y) generates ^ ® 2 at the ori-
gin. So n - 2 < 2 and then n = 4. Further, fχ and ^ contain linear
terms of x . Now by canceling the terms in /3 and f4 which involve x
by using fχ and / 2 , we see that f2 and /4 depend on y only. If we
exchange the variable x and y and let (/\ , , f4) = (/3, f4, fx, f2)>
then the family F, provided in Lemma 6.2 will induce the right deforma-
tion unless /3 and f4 are linear in y also. Therefore 4̂ = C Θ C and the
deformation of it can be written down by hand. In case there is an / such
that ^ ( 0 , 0) Φ 0, then F o = <9υ Θ J , where J" c ^ is the ideal sheaf
of a zero scheme. The deformation can be found similarly. We leave it to
the reader.

Proposition 6.4. Let A be any quotient sheaf of (f®2 supported on the
origin 0 e U. Then there is a deformation At of A as quotient sheaves
of(?®2 such that for generic t, At is supported at I distinct points, where
/ = l e n g t h ^ .

Proof By Proposition 6.3, for any quotient sheaf A, there is a de-
formation At such that for generic t and any p e U, length^)^ <
length(Λ)0. We use the obvious fact that a deformation of a deforma-
tion is still a deformation. Then by applying Proposition 6.3 successively,
we conclude that there is a deformation At of A so that for generic t,
length ^ r χ < 1 for any x e U. q.e.d.

The following proposition is of its own interest. To the author's knowl-
edge, the question whether Quot^.(/) is irreducible is still open.

Proposition 6.5 (Lemma 3.4). Let E be any locally free polystable sheaf
and let /: X -> Z + be any integer function. Assume c2(E) + Σx Kχ) < d
Then ^{E) is a closed, connected algebraic subset of @μ(E).

Proof Since we do not need the closedness in this paper, we leave the
proof to the reader.

Now we prove the connectedness of the set Sf(E). Let Quot^ be the
Grothendieck quotient scheme parametrizing all quotient sheaves A of E
with length(^4) = c. For the given function /, let

(6.3) Quot^(/) = {A € Quot^ | l engthμ^ > l{x) for any x e X}.

It is easy to see that βf{E) is connected if and only if Quot^(/) is con-
nected.

We continue our proof by working in the analytic category. Assume
x{, x2, - , xk e X are the points where l(x) Φ 0. For i = 1, , k,
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let {U"}™^ be sequences of decreasing connected open subsets of X such

that the closure V". satisfies Π^li ^ = {*,-} T h e n define

Q*otc

E(l)n =

Quotc

E(l)n is a decreasing sequence of open subsets of Quot^ . We claim

that Qμotc

E(I)n is connected. Indeed, thanks to Proposition 6.4, any A e

Quot^(/)π can be deformed within Quotc

E(l)n to a quotient sheaf Af such

that length Af

χ < 1 for all x e X. Clearly, all such A' form a connected

set. So Quot^(/)π is connected. Note that

and the right-hand side is a decreasing sequence of closed, connected sub-
sets of the compact ambient space Quot^ . Therefore, Qμotc

E(l) is con-
nected.
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