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ALGEBRAIC GEOMETRIC INTERPRETATION
OF DONALDSON’S POLYNOMIAL INVARIANTS

JUN LI

0. Introduction

The purpose of this paper is to understand Donaldson’s polynomial in-
variants of four-manifolds in the context of algebraic geometry. In particu-
lar, we explore, among other things, the possibility of defining Donaldson’s
polynomial invariants of algebraic surfaces by relying on the intersection
theory of algebraic varieties.

Let X be any smooth algebraic surface and let H be a very ample
line bundle on X with g its Hodge metric. For any 4 > 0, there is a
unique SU(2) bundle E over X of second Chern class d . We denote by
A,(g) the space of gauge equivalent classes of irreducible anti-self-dual
(ASD) (with respect to g) SU(2) connections on E. According to Uh-
lenbeck’s weak compactness theorem, there is a canonical compactification
of /,(g) [2]. Let N 4(8) be such a compactification. On the other hand,
any irreducible ASD connection on E induces a holomorphic structure
on E, which turns out to be u-stable with respect to the divisor H [1].
Thus, .#,(g) can be identified with a subset of the moduli scheme .#;(H)
of rank two H-semistable sheaves F with detF = & and c¢,(F) =d.
M, (H) is projective, thus is compact [8]. In this sense, .#,(H) is another
compactification of the space .#(g) . It is both interesting and important
to understand the relation between Uhlenbeck’s compactification .7 (8
and Gieseker’s compactification .#,;(H). Based on Uhlenbeck’s compact-
ification ./ 4(8), Donaldson introduced a series of polynomials {g,} of
the four-manifold X . The polynomials are defined by calculating the self-
intersection numbers of proper subsets of .7 4(8) when g is a generic
Riemannian metric. In the case where the manifold X is simply con-
nected and bi(X ) is odd and strictly larger than 1, he showed that these
numbers are well defined and are indeed invariants of the smooth structure
of the four-manifold X [3].
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The first main theorem of the paper is

Theorem 0.1. There is a complex structure on N 4(8) making it a re-
duced projective scheme. Further, if we let /@“(H ) be the open subset of
M, (H) consisting of locally free p-stable sheaves and let M Z(H ) be the
closure of M (H) endowed with the reduced scheme structure, then there
is a morphism

y: AY(H) T,
extending the map between the set of u-stable rank-two vector bundles and
the set of gauge equivalent classes of irreducible ASD connections with fixed
Chern classes.

The idea of the proof is straightforward. We construct a line bun-
dle “Zl,k on .#,(H) that is the dual of the determinant line bundle
of a perfect complex on .#,(H). We show that for large m, the space
HO(JId , 3} "','c) is base point free. Then a suitable choice of a subspace

7,(m) C HO(A’d(H) , 3}:’,‘() gives rise to a morphism
My (H) = P(Z(m)").

We will show that the image scheme of ZZ(H ) C #,(H) under this map
is homeomorphic to Uhlenbeck’s compactification ./ (8-

By using what we know about the relation between .#,(H) and V4 (8>
we can redefine part of Donaldson’s polynomial invariants of the algebraic
surface in the algebraic geometric context. More precisely, to any suffi-
ciently large integer d and ample divisor H which is d-generic in the
sense that whenever D € NS(X) with D-D > —d, then H-D # 0, we
then construct a homomorphism p: NS(X) — NS(#,) and define the
polynomials J,(H) by

0 ,(H)(ay, -+ 5 o) = [p(ay) - pl))(A4) s

where a,,--- ,a, € H"'(X, Z) and k = dim./#,(H). We then show

Theorem 0.2. Let X be a smooth simply connected algebraic surface
with p, 21, let NS(X )6 C NS(X) ®, Q be the cone spanned by am-
ple Q-divisors, and assume % C NS(X )a is any compact subcone. Then
there is a constant A(%) such that whenever d > A(%) and H € ¥
is d-generic, then the polynomial 6,(H): Symmk H"“'(X,Z) > Z with
k = dim.#,(H) is identical to the restriction to Symmk H"'(x,2) c
Symmk Hz(X , Z) of Donaldson’s polynomial invariant g, .

The paper is organized as follows. In §1, we recall the construction of
the determinant line bundle and study the descent problem of the moduli
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functor associated to .#,(H). In §2, we deal with the space 7, (m) C
HO(Jld , .‘Zﬁf’,’c) and analyze the image scheme .#; — P(Wk(m)v) in §3.
The proof of Theorem 0.1 occupies §4. Finally, in §5 we compare the
polynomials 6, (H) with g, and prove Theorem 0.2.

1. Determinant line bundles on /ld

Let X be a smooth algebraic surface over the complex number field
k = C and let H be an ample line bundle on X . For any sheaf F on
X , we denote the Hilbert polynomial of F by

xp(n) =Y (1)K (F @ H®").

A sheaf F on X is said to be stable (resp. semistable) with respect to H
if F is coherent, torsion free, and, for any proper subsheaf L C F,

1 1
kD)X = Tankggy e () (resp. ).

Here for polynomials p and g with real coefficients, we say p < g (resp.
p = q) if for n > 0, p(n) < q(n) (resp. p(n) < q(n)). In this paper,
unless otherwise stated, we will fix the polarization H and study the space
of sheaves that are semistable with respect to H .

In [8], Gieseker showed that there is a scheme coarsely representing the
moduli functor of semistable sheaves on X with fixed Hilbert polynomial.
More precisely, if we let . be the set of schemes separable over C and
let & d(H ) be the set of all rank two semistable sheaves F on X with
det F =& and c,(F) = d, then we can define a functor ,Zf: & - é”d(H)

as follows. For any S € ., 91’1‘1 (S) is the set of all families of sheaves

Eg in %d(H) on X x § flat over S such that detE =p;L, where L
is a line bundle on S. We identify two families F, and F, on X if
F, =F® p;L’, where L' is a line bundle on S and p, (resp. p,) is
the projection onto the second (resp. first) factor. We have the following
theorem that follows directly from Gieseker’s proof.

Theorem 1 (Gieseker [8]). There is a projective scheme #,(H) coarsely

representing the functor Z,d .

We remark that .#,;(H) does depend on the choice of H . In the sequel,
we abbreviate .#,;(H) to .#, when the polarization H is clear from the
context.

The goal of this section is to introduce a family of determinate line
bundles on .#;. First let us recall the construction and basic properties
of the determinant line bundle of a perfect complex on a quasi-projective
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scheme. Assume that Z is a quasi-projective scheme. A complex of
sheaves ¥ on Z is said to be a perfect complex if locally on Z there
exists a bounded complex %[, of finite locally free &,-modules that is
quasi-isomorphic to 97 U , Wwhere U C Z . It was shown in [12] that there
is a determinant functor from the category of perfect complexes on Z to
the category of graded invertible sheaves on Z . Indeed, let ¥ be any
perfect complex and let

(1.1) 2y Ly

be a finite locally free &,-module that is quasi-isomorphic to & ". Then

r top G
(1.2) det(F) = Q) (\/y) :

i=0

Let Y and Z be quasi-projective schemes and let p: Y — Z be a
proper morphism that is flat over Z . It is known that if ¥ is a perfect
complex on Y, then R'p, ¥ is again a perfect complex. Hence to every
perfect complex on Y we associate an invertible sheaf det(R'p,¥ ) on
Z . In the following, we consider the case where p: Y — Z is a flat family
of reduced curves. Assume that F is a locally free sheaf on Y, and that
D C Y is a divisor which is a multiple section of p such that & (D) is
ample relative to p. Then, since Z is quasi-projective, there is a large
n so that R' p,(F(nD)) = 0. Since F is locally free, we have the exact
sequence

(1.3) 0— F — F(nD) - F,, — 0.
The corresponding long exact sequence
0— p,F —p,F(nD) % p,F,, — R'p,F -0
on Z states that the complex p F X0 R! p,F is quasi-isomorphic to the

complex ROp*F(nD) —ﬂp*RlnD. Note that both ROp*F(nD) and p F,,
are locally free. Thus

(1.4) det(R'p,F) = det(R°p,F(nD)) ® det(p, (F,,p))

In general, if & = {F'} is a complex of finite locally free sheaves on Y
of the form (1.1), then

(1.5) det(R'p,7") = R det(Rp,F) ™"
i=0
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We remark that such a functor det(R'p,(-)) is canonical under the base
change and that if

(1.6) 0-F -F - F -0
is a triangle of perfect complexes, then
(1.7) det(R'p, %) ® det(R p,#, ) = det(R p, F, ).

We refer to [12] for the details of the proof.

Let S be a quasi-projective scheme. Then two line bundles 4, and 4,
on S are said to be algebraic equivalent if there is a smooth irreducible
variety T, a line bundle 4, on S x T, and two closed points ¢,,t, € T
such that 4, (resp. 4,) is isomorphic to the restriction of 4, to Sx{¢,}
(resp. S x {t,}). We denote by NS(S) the quotient of Pic(S) by the
algebraic equivalence relation. Now let X be a smooth algebraic surface
and let F be a family of torsion free sheaves on X x S flat over S. We
define a homomorphism

(1.8) pr: NS(X) — NS(S)
as follows. Since X is smooth, dimX = 2 and Fj is flat over §, F;
belongs to the exact sequence
(1.9) 0-0,—- 0, - F;—0,
where Q, and Q, are locally free sheaves on X x §. For any smooth
divisor C C X, we tensor (1.9) by &,

0 — Tor (Fg, Ocys) = @ ®s,  Fexs

=0, 8g  Fcxs — Fs®xys Icxs = 0-

We claim that Tor,(Fg, &) = 0. Indeed, the set Sing(Fg) C X x S
consisting of closed points, where Fg ceases to be locally free, is a closed
subset of codimension at least two. Clearly, Supp(Tor,(F, F.,g)) C
Sing(Fg) . Thus,

Tor,(Fs, Ocys) CQ @5, Fcxs>

as a torsion subsheaf of Q, ®ﬂ”s O s » 18 a trivial subsheaf since the later
is locally free on C x S. Hence, Tor,(Fg, G, s) = 0. We acknowledge
that in the sequel we will use FS|C to denote the restriction of Fg on
X xS to C xS. In particular, FSlC is a prefect complex on C x §S'.
Now by using the smooth morphism p,: C x § — S, we can form the
determinant line bundle of the perfect complex:

R‘Pz,*(quc ®p,0c),
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where 6. is a line bundle on C with degf. = g(C)—1. We denote such
a line bundle by

(1.10) Det(Rp, ,(Fgc ®p,0.)) = det(R p, ,(Fgc ®p6,)),

whose inverse is denoted by ,?},(C , 8-) , which may depend on the choice

of 6. € Jacg(c)_l(C). Since Jacg(c)_l(C) is connected and smooth,
it follows that ,S”F(C,Gcl) ~alg Z(C, 0,) for ec, and 0C2 in

Jact(©)-! (C). So if we denote by [£,(C, 6.)] the algebraic equivalence
class of £, (C, 6.) in NS(S), then [Z(C, 0.)] is independent on the
choice of 6. . Finally, an arbitrary divisor C can be written as the dif-
ference of two ample divisors: C = C, — C,. Then we define p(C) =
[Z%(C,, 0] - [£R(C,, OCZ)]. To show that p.(C) = [Z(C,, OC,)] -
[Z5(C,, GCZ)] is a well-defined homomorphism from NS(X) to NS(S),
we need to show that [.Z}(C,, ec,)] = [Z(C,, BCz)] if €}~y C,,and
that [%7.(C,, HCO)] = [Z(Cy, OCI)] + [Z(C,, 0C2)] if Gy~ €, +GC,.
We remark that by 6. we always mean a line bundle on C with degf . =
g(C)—1.

Lemma 1.1. With the notation as above, assume that C, and C, are
two smooth algebraic equivalent divisors of X and that GCi € Jac® (C')_l(Ci) ,
i=1,2. Then [£(C,, OCI)] = [Z(C,, GCZ)]'

Lemma 1.2.  With the notation as above, assume the following: C,, C,,
and C, are smooth divisors with C,, linear equivalent to C,+C,, C, and
C, meet transversally, C, is very ample, and C,NnC,NC, = . Then
[-%'(Co > oco)] = [%:(Cl > acl)] + [-%:(Cz > GCZ)]'

Proof. We will only prove Lemma 1.2. Lemma 1.1 can be proved
similarly. Without loss of generality, we can assume that Fg is locally
free and that C, is generic. Let D, be a linear series of divisors on X
so that D = C, and Dﬂ = C, + C,. By blowing up the surface X
along the base points of the linear series, we obtain a smooth surface Y
and a projection ¢: Y — P' such that q_l(c) is a divisor in the linear
series for any c € P'. Since C, is very ample, C,NnC, and C;N C, are
nonempty. Let z, € (,N C, and z, € C,N C, be closed points, and let
E, and E, be exceptional divisors in Y over z, and z,, respectively.
Then we can choose appropriate integers a and b so that the line bundle
0 = &(aE, + bE,) on Y has the property that deg(d, C)) = g(C,) — 1
and deg(f, C,) = g(C,) — 1. Let p: Y — X be the projection, let f =
(g,id): Y xS - P' xS and j = (p,id): Y xS - X x S, and let
Pp: Y xS§ — P'. Consider the locally free sheaf F = ﬁ*FS on Y xS§
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and define the line bundle

(1.11) %, = Det(Rf, (5" Fg ®p;0))”"
on P' x S. The lemma will be proved if we can show that
(1.12) %‘lp;l(a) =3}(C0, 0|C0)’
A
(113) Pp (1)

* -1 * -1
= Det(sz,*chl ®p, HCI) ® Det(RpZ,,‘:st2 ®p, OCZ) ,

where 001 and 0C2 are line bundles on C, and C, defined by gc, =
0(_C2)|c, and 0C2 = 0|C2 , respectively. Note that deg(6(-C,), C,) =
g(C,)~1. (1.12) follows from the base change property of the determinant
line bundle. (1.13) can be seen as follows. By the base change property,
2l b7 () is isomorphic to the dual of the determinant line bundle of the
complex R F. ® p;0). Since F. is locally free, we have the
exac? sequen’;ze’*( sicue; © P : * ’

0 Fge ®p, 0, (=C) = Fgc.uc, ® P 9icuc, = Fsic, ® P10, ~ 0>
and therefore the triangle of complexes
0—Rp, (Fgc, ®p0c) = Rp, (Fgcuc, ®P10c,uc,)
- R.pz,*(stZ ®p;0C2) —0.
Hence,
. * -1
Zrlpz1gy = 4UR P, (Fgicuc, ® P10 uc,)
. * -1 . * -1
= det(R Pz,*(FS|c, ®p, GCI)) ® det(R pz’,“(FmC2 ®p, HCZ)) ,

which proves (1.13). So, [-Z(C, UC,)] = [Z(C)]+[Z(C))].  qed.
Applying Lemmas 1.1 and 1.2, we arrive at
Proposition 1.3. Let S be any quasi-projective scheme and let Fg be
a family of coherent, torsion free sheaves on X x S flat over S. Then
there is a homomorphism p: NS(X) — NS(S). For any smooth divisor
C € NS(X), p(C) is the algebraic equivalence class in NS(S) represented
by the line bundle

Z,(C, 0.) =Det(Rp, ,Fgc®p;0.)"

where 0. is a line bundle on C with deg(6.) = g(C) — 1. Further, the
homomorphism p is canonical in the sense that if S’ is another scheme,
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g:S' = S, and Fy = g"Fg is the family of torsion free sheaves on X xS’ ,
then the homomorphism p': NS(X) — NS(S") is identical to g* o p.

In case Fg is a flat family of torsion sheaves with det Fg = p; L for
some line bundle L on §, we have the following lemma which reveals
the significance of choosing the line bundle 6. which satisfies x(6.) =0.

Lemma 14. Let F, and F, be two families of torsion free sheaves
on X xS flat over S such that detF, = p,L. Assume F, and F, are
equivalent in the sense that there is a line bundle P on S such that F, =
F,® p; P . Then, for any smooth curve C C X,

Det(Rp, ,F, ®p;0.) = Det(Rp, ,Fy ®p;0.).
Proof. We have
Det(Rp, ,Fc ®p;0.) = Det(Rp, ,(Fy-®Pp,P-®p;f.))

= Det(Rp, ,Fy ¢ ® p;0) ® PP T2ac®n 00

= Det(Rp, ,F, - ®p;0).

The last equality holds because x(F, s1c® p;6.) = 0. Here we have used
the fact that det F, = @ for all closed points s € §. q.e.d.

In the remainder of this section, we will study the existence of the
homomorphism p: NS(X) — NS(4,). To apply Proposition 1.3 directly,
we need a universal sheaf on X x .#,. By a universal sheaf of .#;, we
mean a sheaf F on X x.#, such that, for any point s € .#,, the sheaf
F, which is the restriction of Fg to X x {s} is isomorphic to the sheaf
represented by the point s € .#,. When d is odd, such a universal sheaf
does exist.

Proposition 1.5. When d is odd, there is a homomorphism

p: NS(X) — NS(A#,)

such that, for any smooth divisor C € NS(X), p(C) is the algebraic equiv-
alence class represented by the line bundle Det(Rp, Fie® p’f(?c)’1 , where
F s the universal sheaf on X x #.

Proof. By Maruyama [14, Theorem 6.11], the universal sheaf does ex-
ist. Since .# is projective, by applying Proposition 1.3 directly, we get
the desired homomorphism. q.e.d.

When d is even, the universal sheaf does not exist even locally near a
semistable point. To remedy this difficulty, a discussion of the proof of
the existence of moduli scheme .#, is in order (see [8] for details).

Let & d(n) be the set of all rank-two H-semistable sheaves F such that
detF = H®" and ¢,(F® H ") =d. There is a constant A, such that
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if n> A,, then any sheaf F € é/'fd(n) has the property that hi(F) =0
for i > 0 and F is generated by the global sections HO(F ) = cV. Let
Quot{‘;’No be the Grothendieck quotient scheme parametrizing all quotient
sheaves F of @" & satisfying det F(—n) = & and c,(F(-n)) = d.
Clearly any F € & d(n) coupled with an identification HO(F )= c® isa
closed point of Quot;’h,0 , and thus any point in & d(n) corresponds to a
PGL(N, C) orbit of a closed point of Quoty’. Let & c Quot’;’ be the
open subset consisting of torsion free good quotient sheaves o L E
in the sense that the induced homomorphism HO(ﬁN) — HO(E ) is an
isomorphism. We set & = PGL(N, C). In [8], Gieseker introduced an
immersion

2
(1.14) u: @ - PHom(A\C", H'(H®™)),

where we adopt the convention that P((CI) is the space of all lines in c.
Through the dual action of GL(N, C) on Hom(A*C", H(H®™)), the
GL(N, C)-action on the projective space P(Hom(/\2 cV, HO(H ®2"))) de-
scends to a Z-action and under this Z-structure, x4 is a Z-mor-
phism. Gieseker showed that F € & is a stable (resp. semistable) quotient
sheaf if and only if u(F) is a Z-stable (resp. Z-semistable) point in
P(Hom(A\>C" , H(H®™))). Therefore if we let &° (resp. &°°) be the
set of Z-stable (resp. &-semistable) points in &, then .#, is the geo-
metric quotient of @° under & that is isomorphic to a subscheme of
P(Hom(A\>C", H*(H®™)))/€ . TIis completion M, is a good quo-
tient of &*° by £ which is a closed subscheme of P(Hom(A>C",
H(H®™))"//% .

Let F, be the universal quotient sheaf on X x & . We denote by

F4(—n) the sheaf F, ®p H®™™ . Note that det Fg(—n) = pyI for some
line bundle 7 on &. Let C C X be a smooth divisor and let 6. be a
line bundle on C with degf. = g(C) — 1. Then,
(1.15) Z4(C, ;) = Det(Rp, ,Fo(—n),c®p;6c)"
is a line bundle on & . In the following, we shall study when we can de-
scend the line bundle Z,(C, 6.) to .#,. We need the following descent
lemma.

Lemma 1.6. Let E be a Z-vector bundle on @*. Then E can be
descended to .#, if and only if for every closed point s € @* with closed
orbit @ s, the stabilizer & C & of s acts trivially on E_.

Proof. Note that the condition in Theorem 2.3 of [4] can be relaxed
to cover the case where ¥ — 2 is a good quotient by a reductive group

1
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¥, ¥ and 2 being any quasi-projective schemes. Since £ is a good
quotient of &°*° , we can invoke this theorem directly to cover our situation.

Proposition 1.7. Let C C X be a smooth divisor and 0. €JacsO! (C).
The line bundle Z,(C, 6.) can be descended to #, if whenever F € &
is a split semistable sheaf with splitting F = J, & J,, then ¢,(J,(-n))-C =
0.

Proof. We use the descent lemma to prove this proposition. As before,
we denote by & the group PGL(N, C). Let

Z,(C, 6.) = Det(Rp, ,Fg(—n),c ®p;0c)"

be the line bundle on @ ; we first show that .Z,(C, 6) is a Z-bundle.
The action of £ on & does not lift to an action on F, . To remedy this
difficulty, we introduce the general linear group GL(N, C) acting on &*°
through surjection GL(N, C) — PGL(N, C). There is a canonical lift
making F, a GL(N, C)-sheaf. The induced action on the determinant
line bundle then makes .#,(C, 6.) a GL(N, C)-bundle. To show that
2Z5(C, 6.) is a Z-bundle, we need only show that the subgroup C' c
GL(N, C) acts trivially on .Z,(C, 6.).

Let h = a-id: F, — F, be the homothetic where a € C". On each
irreducible component of €*°, the induced homomorphism

Det(h c): Det(Rp, ,Fg(—n)c ®p;0,)

(1.16) .
— Det(sz,*Fg(—n)lc ®p,0.)

is a multiplication by the scalar (a)*fe.s(""1c®%)  where s € @ is any

closed point. The exponent is zero since c, (Fg (1), ¢) = 0. Therefore
Det(h ) =1d and then Z,(C, 6.) is a &-bundle.

For any quotient sheaf F € &, &-{F} is closed if and only if either
F is stable or F is semistable and splits as a direct sum of two rank-one
sheaves, say F = J, @ J, [8]. In the former case, the stabilizer of {F}
is {e}, while in the second case, G{F} =C" if J, # J,, and Gipy =
PGL(2,C) if J, = J,.

By the descent lemma, .‘ZQ(C , 0-) descends to a line bundle on ./#,
if the induced homomorphism (1.16) is an identity homomorphism for
any semistable sheaf F =J, @ J, and h € Gy: J,®J, = J & J,, the
induced homomorphism (1.16) is an identity homomorphism. We check
the case where & = (‘; a91 ). An easy argument shows that

Det(h'c) = (a)x(Jl(_n)|C®0C) . (a)‘X(JZ(—n)|C®0C) J1d .
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Det(hlc) =1d if and only if
(1.17) deg(J,(—n), C) — deg(J,(-n), C) =0.

Since ¢ (J,(=n)) +¢,(J,(=n)) = 0, (1.17) is equivalent to ¢,(J;)-C =0.
Thus the proposition is established. q.e.d.

When & (D) = H®* for some k > 0, the sheaf F = JioJ, is
semistable only if ¢, (J;(—n))-[D] = ¢,(J,(=n))-[D] = 0. So we have
proved

Corollary 1.8. Let D € |kH|. Then one can always descend the line
bundle Z,(D, 6,) on @ to a line bundle on #,;. We shall denote the
descent line bundle by £, (D, 6,)).

2. Linear series of .2, (D, 6,,) on .#,

Fix k> 1. Let D € |kH| be a smooth divisor. In this section we show
that the line bundle ., (D, 6,) on .#, is independent of the choice of
D and 6. We will also show that if Kk > 2d + 1 and m > 0, then
the line bundle Z,"(D, 0,) = (Z,(D, 6,))®" is generated by global
sections. Therefore, HO(/ffd s ,7} "(D, 6,,)) induces a morphism
(2.1) y: My~ PH (M, L5 (D, 6,)).

We use the notation introduced in §1, and recall that F, is the universal
quotient sheaf on X x £ . The immediate goal of this section is to prove
the following theorem.

Theorem 2. Let kK > 1, let D € |kH| be any smooth divisor, and
let 6, € Jac®P )_I(D). Then the line bundle £ ,(D, 6,,) constructed in

Proposition 1.3 is independent of the choice of D and 6,,. In other words,
there is a line bundle £, | on #, so that for any pair (D, 6y),

“CZJI,k E’CZI(D’ HD)

We first study the general situation. Let S be any quasi-projective
scheme and let F be a family of torsion free sheaves on X x S flat over
S having the property that det Fg = p, I, where I is aline bundle on S.
Let D € |kH| be any smooth divisor and let 6, 6, € JactP~1(D) be
two line bundles on D. By Proposition 1.3, to the line bundles 6, with
i =0, 1, we associate the line bundles ZS(D, 6;) on S. Now let © be
the Poincaré line bundle on D x Jac*® ™! (D) and let K be the line bundle
Df:t(sz,,,‘G)Qg’2 on Jacf®)~!(D) = Jac(D). We have the following useful
observation.
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Lemma 2.1. For any 6,0, € Jacg(D)"l(D) and any identification
h: K ®k(0,) =K ®k(0,), there is an isomorphism

P8y, 0,): Z(D, 6)) — Z(D, 9,

that is functorial under the base change.

Proof. Let p,, (resp. p,5, p,;) be the projection from D x § x Jac(D)
to Dx S (resp. D xJac(D); S x Jac(D)). Consider the sheaf Prz(FS| ) ®
p;’3(6) on D x S x Jac(D), and the corresponding line bundle

* * -1
(2.2) Zswgac(p) = DeURDy; ,(015(F5)p) ® P15(8)))

on S x Jac(D). By base change property, %, Jac()) o) = Z(D, 0,)
and .‘ngjac(b)lq{.(ol) =£Z§(D, 0,), where g,: SxJac(D) — S and g,: Sx
Jac(D) — Jac(D) are projections. We claim that % .., 2 ¢;L®q,K,
where L = “%xJaC(D)ISxﬂo is the restriction of ’ZSxJac(D) to §x0,cC
S x Jac(D). Indeed, for any rank-two vector bundle £ on D satisfying
det E = &, we can associate the vector bundle p;E ® ® on D x Jac(D)
to a line bundle Det(sz’*(pl*E ®0)) on Jac(D). Let J be a very ample
line bundle on D so that

0-J ' E—J-0.
Then
Det(Rp, ,(p;E ® 8)) = Det(sz’*(prJ—l ®0)) @ Det(Rp, ,(p;J ©8)).
We further fit J into the exact sequence
056 —J Pk, -0
with {x;} C D distinct. Then J ~! belongs to the exact sequence
0~J"' =&~ Pk, 0.
So
Det(Rp, ,(p;J ®©)) = Det(Rp, ,(p;C ® ©))

® Det (sz,* (P; (@ kx,-) ®6)) ’

Det(Rp, ,(p;J”' ®©)) = Det(Rp, ,(r;& ®©))

® Det (sz,* (p: (@kxj) ®(E)))_1 :
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Thus,
Det(Rp, ,(;E ®6)) = Det(Rp, ,(p;J ' ©8)) @ Det(Rp, ,(p;J ©6))
= Det(Rp, ,(p;@ ©6))%*.

For the moment we assume s € S is a closed point such that Fsl p 18

locally free. Let V' be a neighborhood of s € S so that F, = Foxuy is

locally free at D x V' and that F,,| p belongs to the exact sequence

0 —>p;"J“l — FV|D —>p;J®detFV|D - 0.
Then the restriction of the sheaf .7, Jacp) 0V x Jac(D) is equal to

Det(Rp,; (P12 Fyp ® P1®)”

= Det(Rp,; . (p;J ' ® p};©))
® Det(Rp,; ,(pJ ® py, det(Fy ) ® p36))

* * . —1 * —1
= ;1% ® Det(Rp,;, ,(p; )" ®p};0))
-1

-1

-1

(2.3)

® Det(Rp,; ,(p;J ® p};8))

=g 1> ®qK,
where ¢ is an integer. The situation where F, is a rank two nonlocally
free sheaf with s € S can be proved similarly by using the locally free

resolution (1.9). Therefore, the line bundle %, Jac(p) ® 4, K ~! is a pull-
back line bundle from a line bundle L on S. So

(2.4) FLixsaep) =PILODK.

Finally we remark that (2.4) is canonical under the base change. Now if
we specify an identification 4: K ® k(6,) = K ® k(6,), thanks to (2.4),
there is a unique isomorphism

(2.5) p, (6, 0,): Z(D, 6,) = Z(D, 6,)

that is functorial under the base change. q.e.d.

Now we study the case where two different D, D, € |kH| are involved.
Let D, be a linear series of divisors in |kH| containing D, and D, as
its members. Parallel to the proof of Lemma 1.2, we let D, be the linear
series in |kH| that contains D, and D, and let Y be the blowing-up
of X along base points of the linear series D,. Let Q, and Q, be
locally free sheaves on X xS satisfying (1.9) and let p*Q, and p"Q, be
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corresponding locally free sheaves on Y xS (see Lemma 1.2 for notation).
Then we form the determinant line bundle

s = Det(RL(5°Q, ®p"0)) "' ® Det(Rf, (50, ® p}9))

on P' xS, where 6 isaline bundle on Y with deg(ﬁ?lD0 , Dy) = g(Dy)—1.
Thanks to the cohomology and base change theorem [10, III, 12.11], the
line bundle %, ; must be of the form

(2.6) G s =PiO@)®DL,

where @(c) is a line bundle on P', and L is a line bundle on S. One
checks directly that o is an integer depending only on the second Chern
class of the family F . Finally, one notes that this construction is canon-
ical. So.we have proved the following lemma.

Lemma 2.2. Let Dy, D, € |kH| be two smooth divisors and let 0, €

Jacg(D")_l(Di) with i =0, 1 be any line bundles. Then there is an isomor-
phism

(27) p(Dy, 63 Dy, 0,): Z(Dy, 6y) — Z(D, 6,),

which is functorial under the base change.

Proof. Clearly for t€P' and D, smooth, %1, 1. s=Z(D,, 6)p)-

If we denote by 0, 1 € P' the points corresponding to D, and D, in the
linear series D, , then by (2.6) there is an isomorphism p(D,, 6,; D, , 6,)
which is uniquely determined if we specify an identification 4 : &(a) ®
k(0) = @(a) @ k(1). Since a depends only on the second Chern class
of the family, # can be chosen independent of the particular families.
Since the decomposition (2.6) is functorial under the base change, the
isomorphism (2.7) is functorial under the base change also. g.e.d.
Combining these two lemmas gives the following general result.
Proposition 2.3. Assume that S is a quasi-projective scheme and that
Fg is any family of rank two torsion free sheaves on X x S flat over S
such that det Fg = p,1, where I is a line bundle on S and c,(F,)=d for
closed s € S. Let k> 1, let Dy, D, € |kH| be any smooth divisors, and

let 9, € Jac*®~"(D,) and 0, € Jac*®)"(D,) be any line bundles. Then
based on the data depending only on d, described in Lemmas 2.1 and 2.2,
there is a unique isomorphism

(2.8) p(Dy, 6,3 Dy, 6,): Z(Dy. 6)) — Z(D,. 6,),

which is functorial under the base change.
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We are ready to prove Theorem 2. Let & ¢ Quot:;;vo be as before and
let F, be the restriction of the universal quotient sheaf to X x @ . For
any smooth D € [kH| and 6, € Jac®*®~!(D), define

(2.9) Z4(D, 0p) = Det(Rp, ,Fy(—n),, @ py0p) " .

Now given pairs (D;, 0,) with D, € |kH| and 6, € Jac®*™~'(D,), i =
0, 1, there are corresponding line bundles .2, (D;, 6,) on @ and descent
line bundles 2, (D;, 6,) on .#,. Thanks to Proposition 2.3, there is a
unique isomorphism (depending on some specific data)

(2.10) k(D,, 64; D, 6,): Z,(D,, 6,) = Z,(D,, ).

To show that this isomorphism can be descended to an isomorphism
P 4Dy, 6y;D,,0,) between £, (D, 6,) and £, (D,, 0,), we need to
show that the isomorphism p(D,, 6,; D,, 6,) in (2.10) is £-equivariant.
Recall that through the surjection GL(N,C) — PGL(N,C), &% is a
GL(N, C)-scheme and, further, F, admitsa GL(N, C)-linearization. Let
g € GL(N, C) and let g, be the action on F, induced by the GL(N, C)-
linearization. Then, since the isomorphism p(D,, 6,; D,, 6,) is functo-
rial under the base change,

p(Do’ 00; D, 91) °det(g*|po) = det(g.[pl) ° p(Do, 00; D, 86).

Therefore, p(D,, 6,; D, , 6,) is Z-equivariant. In particular, it descends
to an isomorphism between .2, (D, 6,) and £, (D,, 6,). In the fol-
lowing, we will denote this unique line bundle by & k- q.e.d.

Next, we will study the space H'(.#,, &Ly ,",'C) when m is sufficiently
large. We begin our discussion with any quasi-projective scheme S cou-
pled with a flat family of torsion free sheaves F; on X xS with det Fg =
p; I. Let S(D) C S be the open subset consisting of points s € S where
FSI p is locally free and semistable. The restriction of Fg to D x S(D)
induces a morphism

(2.11) Jp: Vs(D) = (D),

where # (D) is the moduli scheme of rank-two semistable vector bundles
E on D with detE =& . On .#(D), there is a similar line bundle %},
which is the descent of the dual of a determinant line bundle on a properly
chosen Grothendieck quotient scheme. We describe the construction of
this quotient scheme and .#7, briefly. Let L be a very ample line bundle
on D so that for any rank-two semistable bundle £ on D with degE =
@, h'(L®E) =0 and H°(L®E) generates LQE . Let 2] = h°(L®E) and
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let W = @2 "L, Then any semistable vector bundle on D corresponds
to a unique SL(2/, C) orbitin Quotg,, , where Quoth is the Grothendieck
quotient scheme parametrizing all rank-two quotient sheaves E of W
with detE = &. Let # C Quotg,, be the open subset consisting of
those quotient sheaves W — E such that HO(W ®L)— HO(E ®L) is
an isomorphism. Then, similar to the surfaces case, there is a Gieseker
immersion

2
(2.12) py: E—P (Hom (/\ c, HO(L®2))) .

In the following, we abbreviate 77" = Hom( /\2 c?, HO(L®2 )) and &' =
SL(2/, C). Note that P(#") is a &'-scheme and y;, is a2 £'-morphism.
Further, if we let #*° C Quotg‘, be the set of semistable quotient sheaves,
then E € #* if and only if up(E) is semistable under & ". Therefore,

7 A 40))

is a subscheme of P(W)*//Z". Now, if we let E_, be the universal quo-

tient sheaf on D x.# and let 6, € Jac® ®=1(D) be any line bundle, then,
by using the descent lemma, the restriction to #*° of the determinant line
bundle

(2.13) Det(Rp, ,(E4 ®p,0,))

descends to a line bundle on .# (D). We denote the dual of (2.13) by
Z,(0,,) and denote the descent of .Z,(6,) by £},(0,) . Note that there
is a canonical Z’-linearization of the hyperplane line bundle Op(1) on
P(#") induced by the canonical GL(#", k)-linearization of &Z,(1). We
have the following observation made by Donaldson.

Proposition 2.4 (Donaldson). Let &,(1) be the hyperplane line bundle
on P(#'). Then there is an isomorphism

(2.14) Zp(0p) = upp()l 5 »

which is Z'-equivariant.

Proof. The proof given by Donaldson for the case sz = K, and for
the family of semistable vector bundles works for any 6, € JactP~! (D)
and any family of sheaves on % without any change (see [3, Proposition
5.4]or[7,8§3]). q.e.d.

Now let us recall the geometric invariant theory. There is an integer
my, such that the line bundle &,(m,l) descends to ample line bundle
Op 5 (myl) over P(#)*//Z ". For sufficiently large m, m,|m , the set of
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%'-invariant sections H(%", ﬁp(ml))g’ cH (7, Op(ml)) is nonempty.
Further, an element x € P(7") is semistable if and only if there is a

veH O(W , Op(ml ))gl such that v(x) # 0. Consequently, the geometric
invariant theory quotient P/ /:? is defined to be the image scheme

of P(Z)* in P(H (7, &, (ml)) )). Therefore, H'(P(¥'), @ (mI))
is canonically contained in H° PX)*|%", P/.? «(ml)). Note that
Cprz(MD) gy = (Z5(0,)°" = Z5™(6,). We denote by Vj,(m) C
H(# (D), Z2™(6,)) the image of

(2.15) H W, 6,(ml))° — H(# (D), Z2"(6,)).

For simplicity, in the remainder of this paper, by m > 0 we always mean
m >0 and mym.

Returning to the sheaf Fg on X x § flat over §, since F is a flat
family of torsion free sheaves, the restriction of it to D x §, say FSl D> 18
a family of sheaves on D x S flat over S. Since S is quasi-projective,
we can choose L tobea suﬂimently ample line bundle on D so that for
any se S, h'( S|D®L) 0 and H(F ip ® L) generates the sheaf F, SID -

We still denote 2/ = A° (F;p ® L). Now we cover S by affine open sets

T,,---, T, sothatoneach T;, F, T = FS| XxT, > there is an isomorphism

2
(2.16) N Py (Frip®p L) =Dy .
Then the homomorphism #; induces morphism
n:T,— Quot(:,,

Clearly, 7,(T;) C % . Further, since both Z,(D, 0p)r and 7 -Z5(0))
are duals of the determinant line bundles of isomorphic complexes, we
have

(2.17) ML (0p) = Z(D, 0p), 1 T,

If we restrict isomorphism (2.17) to 7;nNS(D), then, since £, (6 D)y de-
scends to the line bundle .#},(6,,) , we conclude that {7; |, spy} provides
an isomorphism

(2.18) JpZp(0p) = Z(D, 6,) 5, -
Thus (2.18) induces a homomorphism

(2.19) Jo: Vy(m) — HY(S(D), Z2"(D, 6,)).
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We claim that there is a canonical homomorphism
(2.20) pp: Vp(m) = H'(S, Z°"(D, 6,))

extending j; and having the property that for any v € V,(m), p,(v)(F)
=0 if F ¢ S(D). Indeed, by Proposition 2.4, we have

—* * _* * —1
M o upp(l) =71; Det(sz,*Eg ®p, by
* -1
= Det(RPz,*FmD ®p,0p)

Let v € Vp(m) be any section. There is a & "invariant section T €
HO(P(W), ﬁp(ml))g which descends to v. Define ﬁ;‘ ° u;)(ﬁ) to be
the pullback section in H° (13, .S’fg@m(D, 90)|T.) . We claim that on 7;N
T, # @, 7; o up(T) = 7; o up(v). Indeed, since both 7; and 7, are
isomorphisms and FT,. 'T,- nr, = FTj IT; ar, > there is an isomorphism

21 21
g: @ﬁTmTI — EDﬁT,nTj

over T;NT; so that 7, = go n; . Note that each isomorphism ﬁ; depends
canonically on 7,, thus n: °g, = ﬁ; , where g, is induced by the & =
linearization of the line bundle .%,(6,) . Since U is & -invariant and u,,
is &'-equivariant, u;,(¥) is & -invariant. Thus, g, o u;,(¥) = u;,(v) and
then 7; o uy(0) = ﬁ; o up,(V) . Therefore, the local sections {7 o up,(7)}
glue together to form a global section p,(v) on S. We remark that for
closed s € S, pp(v)(s) =0 if s € T; and v(7;(s)) = 0. This is exactly
the case where either F SID is not semistable or v(F, D) = 0. Thus we
proved the following proposmon

Proposition 2.5. Let k > 1. For any smooth D € |kH| and any
section v € Vy(m) C H (A (D), &™), the pullback section jy(v) €
H(S(D), .‘Zf’m(D, 0p)) from (2.18) can be extended over S to a section
v e H(S, £2™(D, 0,,)). Furthermore,

(2.21) S\S(D) c 571(0).

We remark that the subset V,(m) C H° (# (D), % ®"') may depend on
the choice of the ample line bundle L on D. But this is irrelevant to our
study as long as the linear series V,,(m) provides a projective immersion
of # (D).

Theorem 3. Let k > 1 and let £, , be the line bundle provided by
Theorem 2. Then for any smooth D e |kH| and m > 0, there is a
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homomorphism
(2.22) pp: Vp(m) — H'(#y, L")

induced by the rational map j,: #; --+» .# (D) and the isomorphism
j;.‘?D & “Zl,k defined on the open set where j,, is a morphism. Fur-
ther, if k > 2d + 1, then, for any closed point E € M; and generic
D € |kH|, E is not the base point of p,(V,(m)). In particular, if
we let WDl(m) = pp(Vp(m)) and let Wk/(m) be the linear span of all
7% (m)c H(#,, Zg") with smooth D € |kH|, then 7% (m) is base
point free.

Proof. Recall that ,71, « 1s the descent of the line bundle Z,(D, 6,))
with D € |kH| and 6, € Jac*®~Y(D). If we apply Proposition 2.5 to
the quasi-projective scheme &* C & and the sheaf F,(—n) on X x&@™,

then we obtain a rational map j&: & --» #(D), the isomorphism
Jp""Zp(6) = Z (D, ) g5
and the homomorphism
p5: Vy(m) - HY@, Z2™(D, 6,,)).
It is clear that to show ;. (6,) = Zy i and
pp: Vp(m) — H (A, ZE™(D, 6,))

exist, it suffices to show that jg’* and the image p;‘;(VD(m)) are '-
invariant. That is apparent since the constructions are canonical. So we
have proved that such a homomorphism exists.

In the case k > 2d + 1, Bogomolov’s theorem states that if E is any
u-semistable vector bundle with ¢,(E) <d and D € |kH| is any smooth
divisor, then E| p is necessarily semistable. Thus to any closed point F €
M, Fp is semistable for generic D € |kH|. Choose v € V},(m) so that
v(FI p) #0; then p,(v)(F) # 0. Hence we have established the theorem.

Remark. It is unclear whether the meromorphic sections of Zf ",'{
which are pullback sections from H 0(/ (D), ,5’1,8"”) via j: M, --+ # (D)
can always be extended to holomorphic sections of .Zf ”,’( over .#;. When
H is fixed, it is proved that when d is sufficiently large, .#; is normal.

Thus such a homomorphism p,,: HO(I (D), .9”} ’",'c) does exist [13].
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3. The canonical p(_)ints of y(A,)

In this section, we will use the linear series 7, (m) C HO(/[d , ,?; f','()
produced in Theorem 3 to introduce a new scheme y(.#,). We will then
give a complete geometric description of the closed points of y(.#).

Parallel to the discussion of §1, we denote by &)(n) the set of u-
semistable rank two sheaves F with det F = H®*" and ¢, (FOH ™ =d.
Choose 7 > 0 such that for any F € &/(n), H'(F) = {0} for i >0
and F is generated by global sections HO(F ). Let N = x(F) and let
Quot{‘;;vo be the Grothendieck quotient scheme parametrizing all quotient
sheaves F of @" @ with detF = H*”" and c,(F®@ H ") =d. Let
F, be the universal quotient sheaf on @* , where @" C @ is the open set
consisting of all u-semistable quotient sheaves. We then let k£ > 2d +1 be
a sufficiently large integer so that whenever E, € gd‘: (n) and E, € gd‘: (n)
are locally free sheaves with d,, d, < d, then ’(X, E) ® E,(~k)) = 0
for j =0,1. We will fix such a k once and for all. Finally, we denote
by

-1

(3.1) Z4(D, 8,) = Det(Rp, ,Fy(—n),®p;0))

the line bundle on @* where D € |kH| and 6, € Jac*®~'(D). If we
apply Propositions 2.3 and 2.5 directly to £” and the sheaf F,, we have
Proposition 3.1. With the notation as above, the following hold.
(1) The line bundles £,(D, 6,)) in (3.1) are independent of the choice

of smooth D € |kH| and 6, € Jacg(D)_l(D). We denote this unique line
bundle by .‘Z;?’ P
(2) For any smooth D € |kH| and m > 0, there is a homomorphism

bp: Vp(m) —» H(@", Z0),

which is defined by applying Proposition 2.5 to @" and Fyu. We denote
the image by Wf(m).

(3) Let € = PGL(N,C). Then &" is Z-invariant. Furthermore,
%y « is a Z-bundle and 7 (m) c H(&", 5’;;3',:‘)3.

(4) With m > 0, for any closed s € &", there is a smooth D € |kH)|
such that s is not the base point of the linear series Wf(m) .

It is evident that the restrictions of the sections 7 (m) to & c @*
descend to sections in %’l(m) c HO(/[d, ,?f,",'(). If we let %f?(m) C
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H@*, .ng',:’) be the space spanned by all %"?(k) with D € |kH|, then
there is a canonical surjective homomorphism Wk‘?(m) — Wk“l(m). Fi-
nally we choose m sufficiently large so that for any smooth D € |kH|,
the linear series V,(m) provides an immersion .# (D) — P(VD(m)V).
Now let y (resp. y,) be the morphism y: £, — P(Wk“’(m)v) (resp.
Ve: @" = P(Z,°(m)")). Let V be the kernel of 7% (m) — 7;* (m) and
let Wk"g(m) — V' be a homomorphism that is the identity when restricted
to VcC %g(m) . Then we have the isomorphism Wk‘f(m) = %k“’(m) N4
and the following diagram:

g c a" P (m))
(3.2) ! I
My, L PZF(m)Y) c P(ZFm)eV)).

Lemma 3.2. With the notation as above, y, and y are morphisms
making the diagram (3.2) commutative. Furthermore, y@(@’” N @Ss) is
identical to y(#,) as sets, where @ s the closure of @ in @ .

Proof. The first part is evident. The second part is a consequence of
the facts that .#, is complete, 74,(&@") = y(4#,), and € is dense in
e'n@’. qed.

In the sequel, we denote the scheme theoretic image of .#, under y by
7(#,;). We will give a canonical presentation of closed points of y(.#)
by studying the preimage A(s) = y;l(s) c @" for any closed point s €
7(#,) . We first introduce the concept of polystability. A locally free sheaf
E is said to be polystable if E splits into a direct sum of u-stable (with
respect to the ample divisor H) sheaves of the same slopes. A coherent
torsion free sheaf F is said to be polystable if the double dual F"" is
polystable. We state the main theorem of this section:

Theorem 4. For any closed s € y(#,), the following assertions are true:

(i) There is a quotient sheaf F € A(s) so that F is polystable.
(ii) Let F,, F, € A(s) be any two polystable sheaves. Then necessarily
F"V = F)" and length(F,”'/F,), = length(F,""/F,)  forany x € X .
(iii) Let F,, F, € @" be any two polystable sheaves. Assume that
F"” = F)’Y and that length(F,"" /F,), = length(F,"/F,)_ forany x € X .
Then ygz(F,) = 74(F,).



438 JUN LI

We divide the proof of the theorem into several lemmas.

Lemma 3.3. For any closed s € y(#,), there is at least one F € A(s)
that is polystable.

Proof. Let F € A(s) be any semistable sheaf. If F YV is u-stable, then
F is polystable. Otherwise there is a rank-one subsheaf 7 Cc F, F/I is
torsion free, and deg(I(—n)) =0. Let J = F/I be the quotient sheaf,

(3.3) 0—-I—->F—>J-0.

We claim that I & J € A(s). This will establish the lemma since I ® J is
a polystable sheaf.

Let C be the set of complex numbers and, as usual, let p, (resp. p,)
be the projection of X x C onto the first (resp. second) factor. Let v, €
Extl(p;J , pI) be the extension class, v, =t-p;v, where v € Ext'(J, I)
is the extension class of (3.3) and ¢ is the uniformizing parameter of C.
Let

(3.4) 0—pI—F.—pJ—0

be the corresponding extension sheaf. F_. isasheafon X xC flat over C.
One checks that F. ® k(t) = F for generic ¢ and F.®k(0)=I1&J. To
show that /®J € A(s), we need to show that F. can in fact be realized as
a family of EBN @ quotient sheaves. This is obvious from the base change
theorem since 4'(F.®k(t)) =0, i=1,2, and h’(F.®k(1)) = N for all
t € C. Here we have used the fact that I & J is u-semistable and that n
is sufficiently large. Since F.®k(f) € " for t€ C,and F.®k(t) = F is
semistable for ¢ # 0, it follows that y,(F. ® k(¢)) = y(F) =s for t #0.
Then y,(F. ® k(0)) is also equal to s. Therefore, A(s) contains at least
one polystable sheaf. q.e.d.

To finish the proof of (ii) and (iii) of the theorem, we introduce some
subsets of &*. For any locally free sheaf E with detE = H®*" and
¢,(E(-n)) =d' < d, we define

@"(E)={F e@"|F"Y = E}.

Let I: X — Z* be an integer valued function, where Z* is the set of
nonnegative integers. We further define

&/ (E) = {F € @"(E)|l.(x) > I(x) for any x € X},

where /. is the function associated to F via /,(x) = length(F YVIF )y -

Lemma 34. Let E be any locally free sheaf that is polystable and let
l: X - Z* be any integer valued function. Assume GE)+3 I(x)<d.
Then @}”(E ) is a closed, connected algebraic subset of @" .
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We postpone the proof of the lemma to the appendix. Now we finish
the proof of Theorem 4. We first show
Lemma 3.5. Assume F|, F, € @" are two polystable sheaves such that
VV A v _
F, =F2V and lFl(-)=le(-). Then yg4(F)) = 74(F,).
Proof. Let E = FIW and let /: X — Z"* be the function /(-) = lF,(’)-

Then F,, F, € &/(E). Since @/'(E) is connected, the lemma is proved
if we can show that y,(g(C)) is a single point for any smooth irreducible
curve C and g: C - &/ (E).

Let C be an affine curve, let g: C — Q;‘(E) be any morphism, and let
F, be the pullback sheaf of the universal quotient sheaf on a* . FC\,/ Vs
isomorphic to p’;E . Then F belongs to the exact sequence

(3.5) 0—>FC->prE—>AC—»O.

The surjection pI‘E — A, induces a morphism g: C — Quotz_dl(l),
where Quoté_d'(l ) stands for the Grothendieck’s Quot-scheme parametriz-
ing all quotient sheaves 4 of E with length(4) = d—d' and length(4,) >
I(x) for any x € X. Since Quot’é‘d'(l) is complete, there is a smooth
completion C of C and h: C — QuotdE_d’(l) extending the morphism
z2:C— Quotg_dl (). Let F= be the kernel of p{E — Az — 0, where
Az is the pullback of the universal quotient sheaf on Quotg'd'(l ) via h.
By Proposition 2.3 there is a line bundle %, on C, and for any smooth
D e |kH| and 6, € Jac®*® ™' (D) we have

* -1
(3.6) & = Det(Rp, Fz(—n)p®p,0p) .
In particular, if D is the divisor away from the support of /(-) on X,
then
* -1
%, = Det(Rp, F&(—n),®p,0p)
= Det(Rp, 0, Ep ®pi0,) " ==
Now assume D € |kH| is any smooth divisor. Since g(C) C &*, there
is a canonical isomorphism (up to scalar) g*_if?(D, 6, = ch- Let

g": Wké(m) —H° (C, ,?ﬁc'") be the induced homomorphism from Propo-
sition 2.5 between the sets of global sections of the corresponding line
bundles. Since the determinant line bundles and the isomorphism g* are
canonical, and since Wk‘?(m) are spanned by %@(m) , by Proposition
2.5, any section in g*(%‘?(m)) C HO(C , ,‘chiecm ) extends to a section in
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H(C, #®™). Finally, since %, = @, it follows that H°(C, £>") =
C. So the image y,(g(C)) C P(Wk‘j(m)v) must be a single point. Thus
we have established part (iii) of the theorem.

Lemma 3.6. Let 5,5, € @" be two closed points and let F,, F, be
the corresponding quotient sheaves such that both are polystable. Assume
FY#EY or K =F" and I (-) £l (+). Then pg(F)) # v¢(F,).

Proof. Assume F,”Y # F,’Y. Then, according to our choice of k,

Fp # F2|D for generic D € |kH|. Since .#(D) — P(V), (m)") is an
immersion, there is a section v € V,(m), where v vanishes at F| 1D and is
nonzero at F, . Therefore, for the pullback section 7 € Wk‘?(m) , U(F)) =
0 while 9(F,) # 0. Hence, y,(F) # yg(F,) -

For the second case, let E = FIW and let X € X be the point such
that IFl (x)>1 F, (X) > 0. We first choose a smooth D, € |kH| such that
X €D, and F) D, and F, D, are locally free at Dy)\X. Let D, be a linear
series in |kH| containing D, such that X is not its base point. Following
the proof of Lemma 2.2, we can form a smooth surface g: ¥ — X by
blowing up X along the base points of the linear series. Let 6 be the
line bundle on Y such that deg GID(, =g(Dy)—-1.Let n: Y — P' be the
projection. We then form the determinant line bundles

Z, o =Det(Rn,(q"F,®0))"'

on P' with i=1,2. By Lemma 22, & p =% 1 =(a). Now let
C c P! be the open neighborhood of 0 such that for any ¢ € C, n_l(l)
is smooth, and for 0 #¢€ C, F, and F, are locally free at n_’(t) . W
think of n—l(C ) C Y as a family of smooth curves parametrized by C.
We denote this family by n: D. — C.

Let y: . #(D./C) — C be the flat family of projective varieties with
q_l(t) = #(D,). Since D, — C is a flat family of smooth curves, such
an #(D./C) does exist [15]. Moreover, by using a method similar to
that in §2, we can show that there is a line bundle %C on #(D./C),

.S?DC ®k(t) =2, . By shrinking C if necessary, we can assume that for
large m thereisa v € H0 (D/C), .?®m), Ve, € VDl(m), so that
V| #(D,) is nonvanishing at E . Since F i=1,2, are locally free at

the base points of the famlly D we have the following exact sequences
on D

(3.7) O_’q*Fi—'q*E—’Ai,C—’O’
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where ¢q: D, — X is the obvious map, and A; .~ are torsion sheaves on
D ,
c -

In the following, we let the indices i be either one or two. Let w; be
the closed points of @* representing the quotient sheaves F,. If we fix a
trivialization of @ (a)l ¢ and use Lemma 2.2, then we have the following
canonical isomorphisms of line bundles on C':

* -1 ~
¢; ¢: Det(Rn, g F,(—n)®0) =_€’z?’k|w’_ ® O -
By Proposition 2.5, for any ¢ € C, there is a canonical section ¥, €
H(@", i’;fj’:) which is provided by the rational map &* --» .#(D,) and
v, € VD,(m) , where v, is the restriction of v € HO(/ (D:/C), .S”DQ;"') to
# (D,) . Note that this construction is canonical. Thus @, with ¢ € C can
be viewed as a section ¥ € H'(@" x C, g*,?zf',:') , where g: @" x C —
@" . We denote the restriction of 9, to {w,;} x C c @ x C by 'ﬁ'C €

HO({wi} x C, g*,?ﬁ',?lw_xc) . Now using (3.7), we have isomorphisms

(3.8) ¢,: Det(Rm,(q"F,(-n) ® )" = Det(Rx,(q"E(-n) ® 6)) ' (1,0),

where [, = length(4; ,) = length(E/F));. Since ¢, c and ¢, . are
canonical, and F”n_l(c\o) = Fy-1c\0)» We have

8107, c(Bci100)) = 6293 c(Fgic\0))

as sections of the line bundle Det(Rz, ¢"E (—n)®t9)‘1 over C\0. Since we
assumed that 'Uo(E| Do) #0, ¢1(¢;,c(@é|cw)) is nontrivial. Now assume
that the extension of ¢1(¢;,C(ﬁé‘|C\0)) in Det(R7r*q"E(——n)®l9)—l over C
has vanishing order / at 0 € C. Then ﬂé (resp. ﬁé) will have vanishing

order /41 (resp. [ +1,) at 0 by (3.8). Since we assumed that /| # /,,
then for generic ¢, ¢, € C,

Te(,)/Delty) # Do (1) [0(1) -
Therefore, y4(w,) # yg(w,). This finishes the proof of the theorem.
q.e.d.

By Theorem 4, every closed point s € y(.#,) is represented by a unique
pair (E,[), where E is a polystable vector bundle and /: X — Z" is
an integer function such that ¢,(E)+3_ ., /(x) =d. For d > 0, if we
denote the open subset of .#,; consisting of u-stable locally free sheaves
by .Id” , then a corollary of the theorem states that

(3.9) y: My — y(My) C (M)
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is one-to-one set-theoretical. In fact, more is true.

Proposition 3.7. For any d > 0 and sufficiently large k and m > 0,
the morphism y: #}' — y(#}') C y(#,) is an isomorphism.

Proof. We only need to show that y is unramified at each point s €
' . Indeed, for k large enough, D € |kH| smooth, and E, F € 4,

we have Hom(E, F) — Hom(EI D> FI p) 18 surjective and Extf‘,(E , E) —
Ext;)(EI p» Ep) is injective. It is straightforward to check that .£; —
A (D) is an immersion. When m > 0, # (D) — P( VD(m)V) is also an
immersion. Thus . — P(%’l(m)v) is an immersion, and y: /' —
y(A)) C P(%{l(m)v) is an isomorphism. We leave the details to the
reader.

4. Uhlenbeck’s compactification of the moduli space ./Z)'

In this section, we investigate the relations between the space of gauge
equivalent classes of ASD connections and the image scheme y(4)).
Let us first recall the theory of anti-self-dual connections. Let X be an
oriented four-manifold, let g be a Riemannian metric on X, and let
E be a rank two complex vector bundle over X with ¢,(E) = 0 and
¢,(E) = d. By an SU(2) structure on E we mean a smooth isomor-
phism /\2E ~ C x X coupled with a Hermitian metric 2 on E so that
deth = 1. By an SU(2) isomorphism (resp. gauge transformation) of two
SU(2) vector bundles (resp. an SU(2) vector bundle) we mean a smooth
isomorphism (resp. an automorphism) preserving the SU(2) structures.
By abuse of notation, we will use (E, &) to denote the vector bundle E
with the prescribed SU(2) structure. A connection D is said to be an
SU(2) connection if it is a linear connection on E preserving A. D is
called anti-self-dual if in addition D satisfies

(4.1) + F(D)+F(D)=0,

where *g is the star operator of g and F(D) is the curvature tensor of the

connection D . Equivalently, if we denote by P, : NT X - /\i T"X the
projection sending any two-form to its self-dual part, then P _(F (D)) =0.
Two connections D, and D, on (E, h) are said to be gauge equivalent
if there is a gauge transformation g on (E, ) such that g*(Dz) =D
where g*(D,) =g ' 0G,o0g.

We denote by .#,(g) the space of gauge equivalent classes of irreducible
ASD connections on (E, h). We will abbreviate .#,(g) to .#; when the

1°
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Riemannian metric g is clear from the context. .# is nonempty if d
is large [20] and .# is smooth at D is I-I[2D](X ,Ad E;) = {0}. Here
H['D](X , Ad E;) are cohomology groups of the elliptic complex
Q°(Ad E,) -2 Q'(Ad E;) = Q¥ (Ad E,)

with D, = P _D, where Ad E, is the adjoint bundle of (E, #). (For
details, see [5].) Further, we denote by ,/Z the space of gauge equivalent
classes of ASD connections (not necessarily irreducible) on (E, A). If X
is an algebraic surface and g is the Hodge metric of the ample line bundle
H , then Donaldson proved that D is an ASD connection if and only if
the induced 51, operator defines a u-polystable holomorphic structure on
E . More precisely, we have

Proposition 4.1 (Donaldson). Let d > 0. Let /¥ be the space of gauge
equivalent classes of irreducible ASD connections on E and let /ld" cC A,
be the open subset consisting of locally free u-stable sheaves. Then there is a
canonical homeomorphism o: /fd" — N, Further, o is a diffeomorphism
at s € /fi’d” if /ld” is smooth at s or equivalently /¥ is smooth at o(s).

Proof. Assume (E,d) is a u-stable vector bundle. By [1], there is a
unique (up to gauge equivalence) Hermitian-Einstein connection D such
that 9, = 3. D is automatically anti-self-dual. We define o((E, 9)) =
D. That the map ¢ is a homeomorphism is guaranteed by the uniqueness
of the solutions of the elliptic system which solves the Hermitian-Einstein
connections on (E, 9).

For diffetomorphism, one observes that s = (E, d) (resp. o(s)) is a
smooth point of . (resp. %) if H*(X, &nd°(E)) (resp. H[i(s)](X ,
Ad E,)) vanishes. On the other hand, H*(X, &nd’(E)) = H (X,
Ad E,) (see [11, Proposition 2.4]). Therefore, s € /id" is smooth if and
only if a(s) € #; is smooth. To finish the proof, it suffices to show that
the homomorphism g, ,

TA T,
Il ll

H'(X, &nd"(E)) Hiy(oy(X , End’(E)),

is an isomorphism. This is apparent from [11]. q.e.d.

A is not compact since /ld" is not compact. There is a natural com-
pactification of .#; by using Uhlenbeck’s weak compactness theorem on
ASD connections.
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Proposition 4.2 (Uhlenbeck’s weak compactness theorem [5]). Let A4,
be a sequence of ASD connections on (E, h). By passing to a subsequence
{i'} c {i}, there exist

(a) a finite set of points x,, x,, -, x, with multiplicities m,, --- ,
m,, and

(b) an ASD connection A, on an SU(2) vector bundle (E, hy),
such that

(1) there are gauge transformations g, of (E, h) and an SU(2) iso-
morphism g__: E, xux, ~ E, x\us, such that for any compact subset K C

(X\Ux)),
(4.2) lim g (4,)x = 8..(Ag)x in the C'topology;
I —00

(2) considering |F AIIZ and |F, |2 as measures on X and using the
i 0
weak*-topology on the space of these measures, we have

p
(4.3) lim [F, *=I|F, | + 8z’ z; mgs, .

i=
where 0, is the singular measure of total mass 1 supported at x .

According to Uhlenbeck’s weak compactness theorem, for any sequence

of ASD connections, say {4;}, there is a subsequence {4} C {4,} such
that their gauge equivalence classes converge weakly to the pair (4, J),
where A4, € /V and ¢ is a singular measure of total mass d —d,,. Uh-
lenbeck’s removable singularity theorem of ASD connections shows such a
pair is unique (depending on the subsequence {4, }). We denote by S'x
the /th-symmetric power of X . To any point s € s'x , We associate a
singular measure J, of total mass /. &, has mass c¢ at the point x if x
has multiplicity ¢ in s. Thus § can be thought of as a point in N ¢
Now if we view (4, d) € /i/;; x S?% X as the weak limit of the sequence

{4} c A4, then there is a compactification N 4 of 74,

d .
(4.4) T[4 xsx.
j=0

N 4 1s called Uhlenbeck’s compactification of the space of gauge equiva-
lent classes of irreducible ASD connections [2, §3].

It should be noted that both .#, and N 4 are compactifications of the
space «ld“ = . The former is constructed by using algebraic geometry
while the latter is defined for any smooth Riemannian four-manifold. They
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are drastically different in nature. For instance, the subvariety .#,\.#,' is
a subset of complex codimension 1, while ./ 4\, 1s of real codimension
four in general.

In §3, we introduced another space y(#,;) containing y(/ld“ ) asadense
subset. Hence y(.#;) can be thought of as a compactification of /ld" as
well. To be more precise, we let .# Z be the closure of /ld" in .#; with the
reduced scheme structure and let y(.# Z) C y(##;) be the image scheme.
Note that for d large enough, .#; is normal [13] and thus /71_5 = #,; and
(A z) = y(#,;) . The main theorem of this section is the following.

Theorem 5. Let X be any algebraic surface and let g be the Hodge
metric of the ample divisor H. For any d > 0 where /Kd“ # &, thereis a
homeomorphism

—  —u —
g: y(/{d)a/lfd

such that @ = a when restricted to y(/ld” ) C (A g).

Corollary 4.3. With the notation as above, there is a complex struc-
ture on N 4 making it a reduced projective scheme. Furthermore, there
is a morphism y: A, — W, from Gieseker’s compactification of N, to
Uhlenbeck’s compactification of /¥ .

The main effort of this section is devoted to the proof of Theorem 5. In
the following, we shall view y(.# Z) and other reduced schemes as analytic
varieties and endow them with usual topology. We will prove Theorem 5
by showing

Proposition 4.4. Let {F;} C y(/ld” ) be any sequence of u-stable vec-
tor bundles. Assume that {F,} converges to (F, 1) in y(/7§) and that
{a(F,)} convergesto (E,, A,, ) € ¥ ,. Then F,= (E,, EAO) and | =6
under the obvious identification between 1: X — Z* and elements of S°X ,
where ¢ =3 1(x).

Proof of Theorem 5 (assuming Proposition 4.4). By Theorem 4, each
closed point s € y(A Z) is represented by the pair (E, /), where E is
a polystable vector bundle and /(-) is an integer valued function with
¢,(E)+ Y, I(x) = d. Such an E admits a unique (up to gauge equiv-
alence) Hermitian-Einstein (or equivalently ASD) connection 4. Hence
(E, 1) associates uniquely to a point

d .
(E, 4,0 e[/ =xsx,
j=0
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where § = {m,0,} with m; = [(x;). We denote such an identification by
o: '

d __ .

7y () - [[ 4 xsx.

j=0
Clearly, @ is a one-to-one map which coincides with ¢ when restricted
to the open dense subset y(/ld“ ). Next we show that @ is continuous. It
suffices to show that whenever {s;} C y(A Z) is a sequence which converges
to s, in (A Z) , then @(s;) converges to G(s,) . Since both spaces (A&’ Z)
and ./, are compact, and y(#') C y(ZZ) and o(y(A#)')) = A, C
N 4 are dense, an easy argument shows that all we have to show is that
whenever {s;} is a sequence in y(/ld" ) with lims;, = s, € % 5) and
limo(s) = t, € #,, then @(sy) = t,. That is exactly what we show in
Proposition 4.4. Finally, G(y(#;)) C #, is a dense closed subset, so
G(y(#)) = ;. Thus @ is one-to-one, onto, and continuous, and hence
a homeomorphism. q.e.d.

Let {F;} be a sequence of u-stable vector bundles in /ld” . By Propo-
sition 4.1, there are Hermitian metrics 4, on F; so that the induced con-
nections are Hermitian-Einstein. Let (E, &) be the SU(2) vector bundle
on X having the same topological type as F;. There are ASD connections
A; on (E, h) and smooth isomorphisms @,: (F;, h;) — (E, h) such that
¢3;(A ;) are the corresponding Hermitian-Einstein connections on (F;, A,).
Thanks to Uhlenbeck’s weak compactness theorem, there are SU(2) gauge
transformations g; on (E, h) such that a subsequence of g; (4;) con-
verges in the weak sense. Let ¢, = gi_l ;.

Lemma 4.5. For any sequence {F.} of u-stable vector bundles in /ld“
and the corresponding Hermitian-Einstein metrics h; on F,, there is a
sequence of ASD connections A; on (E, h) and smooth isomorphisms
9;: (F,, h;) — (E, h) such that for each i, ¢;(A,) is the Hermitian-
Einstein connection of (F;, h;). Moreover, there is an SU(2) vector bundle
(Ey» hy), a finite subset A= {x,,x,, -, xp} c X, and an isomorphism

9: (E, h)]X\A — (&, ho)]X\A
such that by passing to a subsequence {i'} c {i},
lim A, = 9" A, weakly on X\A,

I —00
where A is an ASD connection on (E, h,), and there is a singular mea-
sure & such that (4.3) holds.
We fix such a subsequence given by the lemma and still denote it by F;
(and 4;). We choose n large enough so that whenever F is a
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p-semistable sheaf with det F = & and c,(F) < d, then h'(H®"®@F) =0
for i >1 and H'(H®"®F) generates H*"® F . Thus N = h°(H®"®F))
is independent of i. We fix the Hermitian metric on H whose Chern
form is the Kihler class. Let H®” ® E has the induced metric. Let ef’ ,
a=1,---, N be sections of H®" ® E such that e;’ are holomorphic
under the holomorphic structure 8 4, and such that for all «, 8,

a B
(4.5) /X(e,. JePyr1=0,,.

Lemma 4.6. With the notation as before, there is a subsequence {i'} C
{i} such that for any 1 < a < N, {e}}, considered as a sequence of

smooth sections of H®" ® E converges uniformly in the c! topology on
any compact subset of X\A.

Proof. Since A; is the Hermitian-Einstein connection of the holo-
morphic vector bundle (E, 5[4,) , and ef‘ are holomorphic sections of
(H®" QE,d ) » the Bochner-Weitzenbock formula asserts that for some
constant C independent of i and a,

2 2
AJel)’ > —Clefl’,

where A is the Laplacian operator. Then, since llefll,» = 1, we have the
uniform supreme estimate

(4.6) suple’| < C'.
X

For any compact subset K C X\ A, let K, be another compact set, K C
K™ c K, ¢ X\\. By Lemma 4.5, A, < 9" Ay - Since e are
] 4, holomorphic on K, and q)*AOl k, is smooth, {e]}; are uniformly
bounded in the C* topology on K. Then a subsequence {eff},., will

converge on K in the C ! topology. A diagonal tracing technique shows
that a subsequence {i'} C {i} can be found so that on any compact subset
of X\A andany 1 <a<N,

(4.7) lime; = e . g.e.d.
1

By the homomorphism ¢: (E, k) x\, — (Ey, hy) x\a » the sections e
can be considered as holomorphic sections of H®" ® E, on X\A under
the holomorphic structure 9 4y Since A, is regular, by Hartogs lemma,

e, extends to holomorphic sections of H on ®E, over X . Thanks to (4.6)



448 JUN LI

and Fatou’s lemma,
(4.8) llm/eue' *1=[(e§,ef)*1-

Thus the limit sections ej, a =1, --- , N, are linear independent holo-
morphic sections of H®" ® E,. We let eo @" H*™™ - E, be the
homomorphism induced by sections {eo} _, and let E C E, be the
sheaf E =Im{e,} . We claim that detE =@ and c2( )< d . Assume
not, then we can find a subsheaf F C E so that E, C F detF =&,
and ¢,(F) = d. Since E, is u-semistable, F is ,u-semistable. By our
choice of n, h(H®" @ F) = N and H(H®" @ F) generates H*" ® F .
Since H'(H®" ® E;) c H'(H®" ® F) and h’(H®"®E)> N, E,=F.
So the claim is established. We have the following two propositions.

Proposition 4.7. With the notation as above, if the y(F;) converges,
then c,(E)) = d and y(F,) — y4(E,), where E, is considered as a u-
semistable quotient sheaf given by e: EBN H®C™ _Eo .

Proposition 4.8.  With the notation as above, assume that A, — [A,, 6]
in the sense of Uhlenbeck’s weak compactness theorem, where J € % x
is an integer valued function on X having total value d —d,. Then (x) =
length(E E ), .

Proof of Proposition 4.4 (assuming Propositions 4.7 and 4.8). Let {F;}
in J?d" be any sequence of u-stable vector bundles such that limy(F;) = s,
in y(A# Z) and limo o y(F,) = t,. Then, by Proposition 4.7, , S = y@(F ).
Note that under the map 7, G(y4(E 0)) = (E, Iz ) € /V . Applying
Proposition 4.8, we conclude that G(y,(E 0)) = to . q e.d.

We first prove Proposition 4.7. We denote by e, the homomorphism
EBN H®™™ - E induced by sections {e’ }a_ | > and by ¢; the surjective
homomorphisms @ i S F, such that ¢, 0¢, =¢;:

@N H®(—") €; F'l

U [

e

@N H@(—’l) i
g; can be thought of as a sequence of closed points in the Grothendieck’s

Quot-scheme Quot%, , where W = @" H®™™ and y = Xy is the Hilbert

polynomial of E . Since Quot’,‘,, is a projective scheme [9, Theorem 3.1],

tx ,red

the underlining analytic space Quotj; ™ is compact. Hence, by passing to
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a subsequence, we can assume the ¢; converge to ¢;: GBN H®CM F,,
where F; is a sheaf with det F; =& and c,(F)) =d

To compare the two limit sheaves E, and F;, we introduce the induced
metrics on quotient sheaves. Let F be any quotient sheaf of EBN H®"
and let Q be the kernel of the homomorphism g : @Y H®™ - F.
Then we get an exact sequence

N
(4.9) 0-0-EPH"-F-0.

On the open subset U C X where F is locally free, (4.9) is an ex-
act sequence of vector bundles. Then, by identifying Fy with QllU C
@™ H®"™ and using a fixed Hermitian metric on @~ H®™™ , we get a
Hermitian metric g on F|U . We call g the quotient metric of F . Note
that g is only defined on where F is locally free.

Lemma 4.9. There is a constant C so that if we let g, be the quotient
metrics of €, : @N H®M F,, then I(pi(v)lh(x) < Clv]g‘(x) Jorany x e X
and any v € F, ® k(x). '

Proof. Since the supremum norm of e € H 0(H ®" @ E) is bounded
from above by a constant C, the supreme norm of the homomorphism
e;: @N H®"" _, E is bounded from above by NC. Therefore, for the
corresponding quotient metric g; on F and u € E ® k(x),

(4.10) [Ulyiy < NClttl oy -

Since ¢,0¢; =e¢; and g, (resp. g,) are the quotient metrics corresponding
to g (resp. e) then |p; (u)]g ) |u|g(x . Combined with (4.10), we
have proved the desired mequahty q.e.d.

Next we shall show that there exists a homomorphism ¢,: F, — Eo
which is an isomorphism at generic points of X . Let ker(eg,) (resp.
ker(e;)) be the kernel of ¢, (resp. ¢;). We have the following diagram:

0 — ker(g) —— @YH®W 2, F . 0

0 —— ker(e)) —— @Y H®"
If we can show that in this diagram,

(4.11) ker(¢;) C ker(e;)

€

E, 0

as subsheaves of EBN HE™ , then ¢, exists and ¢,c¢&, =¢,.
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Since both ker(g,) and E, are torsion free, (4.11) holds if it holds at
generic points of X. Let x € X be any point where F; and Eo are
locally free. For any v € ker(g)) ® k(x),

(4.12) lim |¢;(v)| =0,

8;(x)
which can be seen as follows. Let U C Quot’,‘,, be an analytic neighbor-

hood of the quotient sheaf @~ H®™™ — F, and let F be the universal
quotient sheaf on X x U. Since F is locally free at x, there is an
open neighborhood ¥ ¢ X of x and an open neighborhood U’ c U
of {¢,} such that F is locally free on ¥ x U’. Let Q be the kernel of

@" p;H® ™ — F over V x U'. Then

N
(4.13) 0~ 0—-@PrH* ™ - F -0

is an exact sequence of vector bundles on ¥ x U’. Hence, for any w in
U’ with the corresponding quotient homomorphism e,: @N HEM

F ® k(w), and for any v € @" H®""™ @ k(x) with x e V,

wan(})o e, (v) = ewo(v), w, € U'.
In particular, since we assume that ¢;: @N H®M F, converges to
&y: @ H®>" - F, in Quot}, , we have for large i, {g;: @ H®"
F}e U’ and then for any v € ker(e,) ® k(x),

(4.14) ,-l_i,‘}}oei(”) =¢gy(v) =0.

Then (4.12) follows easily from the fact that lim g, = g, over V.

Now we apply Lemma 4.9 to v € ker(g,) ® k(x) ¢ @ H®" @ k(x)
over a generic point x € X . We obtain lim|g, o &,(v)] hx) = 0. Finally,

limg; o g,(v) = lime,(v) = ¢y(v).

Therefore, leo(v)lh(x) =0 or v € ker(ey) ® k(x). Since x is generic, we
have proved ker(g;) C ker(e,) .

Let ¢,: F, — E, be the induced homomorphism. _

Lemma 4.10. With the notation as before, let ¢,: F, — E, be the
induced homomorphism from (4.11). Then ¢, is an isomorphism.

Proof. Since rank(ker(g;)) = rank(ker(e,)), it follows that ker(e)) ®
@x, x = ker(e)) ® Gy . as subsheaves of -@N H®C™ at generic points of
X . Let T C F, be the torsion subsheaf and let ker(;) be the kernel of the
induced homomorphism g,: @N H®M F,/T. Since T is supported
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at a subvariety of X', we have ker(¢,) ® @, , = ker(ey) ® é’X at the
generic points of X . Then gg(ker(e;)) (resp ey(ker(g;))) is a torsion
subsheaf of F,/T (resp. FO) and hence g(ker(e)) (resp. ey(ker(g,))) is
trivial. So there is a homomorphism ¢: F,/T — E, (resp. ¢: E, — F,/T)
that is an isomorphism on the generic point of X . As a consequence,
XE, = Xp 7 Since detF0 = detF,, T is supported at a discrete point
set of X . Thus, c¢,(Fy/T) = c,(F,) +length(T) = d + length(T) . But we
know cz(EO) <d. So length(T) = 0. The lemma is established.

Proof of Proposition 4.7. By the previous lemmas, for the sequence
{F} C 4, there is a subsequence {i'} ¢ {i} with surjections € -
oY H® ") — F; such that if we denote by {F,} the corresponding
quotient sheaves, then lim,{F,} = {F,} in Quot}, with Fy= E

Since F; is u-semistable, lim,{F,} = {F,} implies yg(E )= yg(Fo) =
lim, y@(F,.,) = lim; y(F;) . Hence the proposition is proved. q.e.d.

For the proof of Proposition 4.8, we first give a geometric interpretation
of the Dirac measure J in Uhlenbeck’s compactification % 4+ In the
following, we denote by B, (x) the closed e-ball of X centered at x and
denote by 9B, (x) the boundary of B, (x).

Lemma 4.11. With the notation as in Lemma 4.5, for any x, where
0, #0, let B,(x) be a ball of sufficiently small radius €. The trivializa-
tion of EOI 98, (x) which is induced from a trivialization of E0| B,(x) induces

a trivialization B: Cc®? x 0B, (x) = EIBBe(x) by using the isomorphism
9: Ex\pn = Egx\s as in Lemma 4.5. If we denote by EIBe(x)/ElaBe(x)
the complex vector bundle on S* = B,(x)/0B,(x) derived by identifying
E|‘9 B,(x) to C®? using B, then

o(x) = Cz(Ewe(x)/Ech(x))'

Proof. 1In[7, §3], Friedman and Morgan showed that J(x) is equal to
the second Chern class of a vector bundle on S*. It is easy to see that their
construction of the vector bundle is parallel to the procedure described in
the lemma. Therefore,

o(x)= CZ(EIBe(x)/ElaBC(x))‘ q.e.d.

For our application, we need the following lemma.

Lemma 4.12. Let B> c C? (resp. D C C) be the unit ball and let €
be a sufficiently small positive number. Assume that F S B’xDisa
family of torsion free (analytic) Sheaves of rank two on B*xD flat over D
and that F is locally free on B> x D\(0, 0). Let B (0) c B* x {u} be
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the two-dimensional €-ball centered at (0, u) and let F, be the restriction
of F to B2 4(0). Then the smooth trivialization of F, 0198 o(0) which is
induced from a trivialization of (F, 082 (0)) induces a famzly of trivial-

izations P,: Cc®? x BB =F,, B (
u € D small. Similar to Lemma 4. 11 we can view F, B 0 /Fya B (0 354

smooth vector bundle over S* = 6’u(0)/8B€’u(0) by zdentljfvmg F uloB? ,(

to C? using the given trivialization. Then

length(F,”"\F,), -

whzch depend smoothly on u with

)

¢ (Fu|82 o/F, uldB2, (0))“

Proof. We prove the lemma by induction on the length of F,"'/F,.
First we check the case where length(FOW /Fy)y = 1. Let (y, z) (resp.
u) be the complex coordinates of B’ (resp. D). Then F; is of the form

@ & I,, where I, = (v, z)T is the ideal sheaf of 0 € B*. Since F is
flat over D, F fits into the exact sequence

(4.15) 000 Lo L F 0

with f = (u™ fi» zf,, yf;), where f; are holomorphic functions on B? x
D with f;(0,0) #0 for i =1, 2, 3. Without loss of generality, we can
assume f,=1 for i=1,2, 3. We now check for €, u small,

1 =¢,(F, ulB? ( o/F, uldB2. (0))

Letv=(1,0,0)¢ @ be the section over B*xD . Clearly g(v)lex{o} =
(1,0) € & ® 5. So under the obvious trivialization f: C? x 0B (0) —
F0|a B.(0) g("’)|aBt(0) iS a nonzero constant section on BBS,O(O). Now
we choose a continuous family of trivializations g, so that the section
g(”)wa ©) is still constant on 3352,,4(0) under B So g(v), B, (0) can
be pushed down to a well-defined section g(v), u Bz /F ulo B (0"
For |u| small, g(v)I 2B (0) # 0. Thanks to the exp11c1t expresswn ‘that
f=0",z,y)), &), "vanishes at (0, 0) only and the contribution of
this zero to the ¢, (F, ulB2 ,(0) /F 408 (0)) is 1 since g(v), is transverse to
the zero section, since g(v) is holomorphlc and since € is sufficiently
small. So the lemma is established when- length(FOW [Fy)e=1.

Now assume that the lemma holds when length(FOW [Fy)y < k, and
that the sheaf F, has length(FOW /F,) = k + 1. Then we have an exact
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sequence similar to (4.15) on B*xD:
(4.16) 00" % o% L F 0.

By Proposition 6.3 in the Appendix, we can find a deformation G of
F, on B? x D', D' c C, such that (GVV)U = FOVV forall v e D' c C!
and length(G;/V/Gv)x <k forany x € BS’U(O) when v #0. Since G is

a flat family of torsion free sheaves, there is an exact sequence on B*xD' ,
(4.17) 00" 2L 0% G0,

such that o'(y, z,0) = a(y, z,0). Now consider a new matrix val-
ued holomorphic function f on B> x D x D' such that f»,z,u,0)=
a(y,z,u) and f(y,z,0,v) = oy, z, v). Such a holomorphic func-
tion does exist. f induces an exact sequence over B*xDxD' ,

(4.18) 0-0" Lo®? k0.

Since E, Bx{0,0} = F, is torsion free, E is torsion free for u, v

x{u v}
sufficiently small. Further, E| B'xDx{0} = F and E‘ BIx{0)xD' = G. Let
S c B> x D x D' be the set of points where E is not locally free. Since
2N B* x D x {0} = {(0 0,0)}, X is a curve. Hence for any v # 0,
|v| sufficiently small, E x{u}x{v} is locally free for generic u € D.
Further, for any such u, v thcre is a path in D x {v} connecting (0, v)
and (u, v) such that any (u' , V) # (0, v) in this path has the property

that EIB,sz{u }x{v} is locally free. Finally, let (s, t) € [0, 1] x [0, 1] be

real parameters and let p: [0, 1] x [0, 1] = D x D' be a family of paths
having the properties: p(0, 0) = (0, 0), p((0, 1] x {0}) c (D\0) x {0},
p({0} x (0, 1) c {0} x (D'"\0), p((0, 1] x (0, 1]) C (D\0) x (D"\0),
and Zn B}, x {p(s, 1)} = @ for any (s, ) € (0, 1] x [0, 1]. Thus,
EI B2, x{p(s,0} is locally free whenever s # 0. In the following, we will

only consider those (u,v) € D x D' that are contained in the image set

p([0, 1]><[0, 1]).
Let B> (0) c B* x {u} x {v} be the e-ball. Since (sz y {0}><D DY

€,u,v
is locally free, we can assume the trivialization f; ,: Cc®x0 B, 0 ,(0) =
EIB B, S0 which is induced from the trivialization (E| B, (o))vv, is
smooth in variable v when |v| is sufficiently small. Thus for u,v small
enough (in p([0, 1] x [0, 1])), the induced trivializations S, : c®? x

B, , ,(0)— E’aBz can be smooth in (u, v) also. So
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(4.19) 2B, 0fEes, o) = 2B\, 08, 0
By assumption, for (0, v) small, there are points p,,p,, - ,p, €
Int(Bez’o’ ,(0)) (depending on v) such that p, p,, - -, p, are the only

nonlocally free points of EI B o0 Further, at each of the points p, , p,,
LDy length((Ew(z,o’v(O))W /Ejg | (@))p; < k- By the induction hypoth-
esis, we can use J-balls (J < €) centered at p,, p,, --- , p; and the trivi-
alization C**x9B; , ,(p;) = Ejpp ,, induced from C®’xB; , ,(0)=
(EI B?,o,.,(o))w to conclude

1l
> B, )/ Eps2, 0
(4.20) =

)
\AY
= leength((Ew;_o‘v(p,.)) / E|B§,o,v(pj))pj ’
]=

Since El B, (O\UB , () is a smooth family of vector bundles (in u), the
€,u,v Ju,v\j

contribution of its second Chern class with respect to the trivializations

on 9B’ (0) and aBj,u o) for j=1,2,..-, [ is constant and

€,U,v
consequently trivial because EI B is flat. So

.O.U\UBg.u,v(pj)

l
2Epg:, o/Ees, 0= Zl"z(ElBﬁ,u,uw/ Eps: , )
| <

1
A\A"
= leength((Ewg’o,v(pj)) /ElBg‘o‘u(pj))pj
Jj=

Vv
= length((ElB(z'o’o(o)) /Ele,o,o(O))O'
The last equality holds since EI B, is a flat family of torsion free sheaves

over D' with El\l/;éo = El\l/?go ,- Combined with (4.19), the lemma is
established. o o

Proof of Proposition 4.8. By the proof of Proposition 4.7, we know
that the limit 4, — [4,), ] is compatible with the limit F; — F,, where
F,, F, are considered as quotient sheaves of @N H®"  Hence from
Lemma 4.11 the singular measure

0(x) =¢,(E )/E

18200/ B9 B2 (x)

is identical to



INTERPRETATION OF DONALDSON’S POLYNOMIAL INVARIANTS 455

cz(Fiwf(x)/ Fi|aB§(x))
for i > 0 when the trivializations are induced from the limit F;, — F,.
Then Proposition 4.8 follows _f_rom applying Lemma 4.12. q.e.d.
In the sequel, we will view %, as a projective scheme that is isomorphic
to y(AY).

5. Donaldson’s polynomial invariants of algebraic surfaces

The goal of this section is to redefine Donaldson’s polynomial invari-
ants of the underlining smooth four-manifold of an algebraic surface in
algebraic geometric context. Loosely speaking, we will show that part of
Donaldson’s polynomial invariants can be calculated by evaluating the in-
tersection numbers of certain Cartier divisors on the space .# , the coarse
moduli scheme of rank-two semistable sheaves on X .

For any simply connected oriented smooth four-manifold X with
b; (X) odd and strictly greater than 1, Donaldson defined a series of inte-
ger valued polynomials {qd}: s

(5.1) 4, Hy(X) x - x Hy(X) - Z,

with degq, = 4d - % -(1 +b; )- 4, is defined as the intersection number of
some properly defined subsets in .# 4(8), where g is a generic Riemannian
metric. For a detailed discussion of Donaldson’s polynomial invariants,
we refer the reader to Donaldson’s original paper [3] or Friedman and
Morgan’s recent book [7].

Let H be any ample divisor. For any d > 0, we put

(5.2) Q(H,d)={DeNS(X)|D-H=0, D-D > —d}

and put Q(H, d)" = {D € NS(X)|D-D' =0 for any D' € Q(H, d)}.
We have the following observation.

Lemma 5.1. Let F € #,(H). Assume L C F with degy(L) = 0.
Then ¢,(L)-D =0 forany De Q(H,d)".

Proof. Assume F € #,;(H) is not u-stable, and L C F is a subsheaf
such that deg,(L) = 0 and F/L is torsion free. Since det(F) = &,
we have ¢,(F) > —cl(L)z. Thus, ¢,(L) € Q(H,d). So the lemma is
established. q.e.d.

By applying Proposition 1.7 to the moduli scheme .#,(H), we construct
a homomorphism
(5.3) py: QH, d)" — NS(A,(H)).
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In the case dim.#,;(H) = c(d), where c¢(d) = 4d — 3x(&) is the virtual
dimension of .#,;(H), we define a polynomial

(5.4) 8,(H): Symm*(Q(H, d)") - z,
k = c(d), as follows. For o, --- , o, € Q(H, dy*,
(5.5) S,(H)(ay, -, o) =[pyle) - pyla )4, (H)).

Theorem 6. Let X be any smooth, simply connected algebraic surface
with p, > 0 and let H be any ample divisor. Then there is a con-
stant A(H) such that for any d > A(H), 6,(H) coincides with the re-
striction of Donaldson’s polynomial invariant q, to Symmk(Q(H ,d )l) C
Symm* H*(X, Z), where k = c(d).

Proof.- We choose A(H) > 2p g, +1 1o be large enough so that when-
ever d > A(H), then .#'(H) is dense in .#,(H) and .#,(H) is smooth
at generic points of .#,(H). Thus N i (= y(ZZ(H))) is isomorphic
to the reduction of y(./£,(H)). We first state a general result concerning
Donaldson’s polynomial invariants. The proof of it can be found in [3,
§5.3] or [7, §3.9.21]. Let d > A(H), let C,, --- , C, € Q(H, d)" be any
smooth divisors, and let 2, (C;, 6,) € p,(C,) be the associated determi-
nant line bundles (see Proposition 1.7). Assume that there are line bundles
Z,(C;,0,) on & ,(H) such that

V' Z,(Cp,0) =Z,(C,, ei)|7§(m
via y: A'y(H) — ¥ ,(H). Then
(5.6)  [Z,(Cy, 0] [Z4(Cp, 0)1=q,([C|1, -, [C]).

Here [-]---[-] is the intersection of the Cartier divisors in .# Z(H ). Since
<z } "D, 8 p) always descends to a very ample line bundle on N 4(H) for
D € |nH|, the theorem will be established if we can show that for any
C, e Q(H, d)y*, py(Cy+H) descends for /> 0.

Let ¢: .#,° — #,(H) be the normalization of the reduction of .#,(H)
and let ¢: .7, — #,(H) be the normalization of -7 ,(H). Since
. M Z — ¥ 4(H) is a birational morphism, there is a unique 7: .£;"" —
A" such that

foy=vop.
Since ¢ and ¢ are birational finite morphisms, the proof of (5.6) [7]
shows that the theorem will be proved if the line bundle q)*iﬂl(C , 00)
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descends to a line bundle on 77, via 7: M — T, where C €
IC, + 1H].
Recall the following diagram:

@ e (M, (H))
(5.7) l ”
My (H) —L—s y(M,(H))

If we let ¢,: @,0 — @ be the normalization of the reduction of &,

then there is a new diagram compatible to (5.7):

b ——nor
5S []
@nor ‘/Vd

(5.8) l I

—=nor

nor 4
My —— N,

Let se A :Or be any closed point. Then there is a C’ € |C| and an open
neighborhood V ¢ .7/ Zor of s such that whenever F is a quotient sheaf
in )7(_2 Y(V), then F islocally free at C'. Since /> 0, Fer is semistable.
We claim that there is a morphism p: V — .#(C') making the following
diagram commutative:

——nor

@ nig' (V) Ly,

(5.9) lpg l"
H(C') ~ ()

Here Py is the morphism induced by restricting the universal quotient

sheaf to C’. Indeed, since all schemes involved in (5.9) are normal and
?Q is surjective, all we need to show is that p as a map is well defined,
making the diagram (5.9) commutative. This is apparent from Theorem
4. Note that

~k * * * /
and that (5.10) is PGL(N, C) equivariant, with PGL(N, C) acting triv-
ially on 7~ :;or. Thus (5.10) descends to
* / oK,k
0 Zy(C L)1 =7 (P Ze )
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on 77'(¥). Now we cover .7, by open sets ¥;,---, ¥, so that on

each VJ , there is a line bundle i’; having the property that
5’*5’} = ¢*3,[(Cs ec)

FaUAR

Since y: /ld” (H) — #;(H) is an isomorphism (Proposition 3.7), the re-
striction of the identity homomorphisms

Ji: 0" Zg(C 0051y = 97y (C, 00) 51y,
to )”r-l(Vj n¥,)ne ' (A} (H)) C #;° induce isomorphisms
fij: & ~Z

j”’jnVin/Vdnor i“,jﬁ,,'_nj,;inor °
. . ——nor - . .
Since codim(/#"; \A,") > 2, the f, ; extend to isomorphisms

g:.: L, g .
ij i, fyy,

Clearly, 7°(g; j) = f ;- So the line bundle ¢*(Z,(C, 6.)) descends to
the line bundle on /" Zor. Thus the theorem is established. q.e.d.

In general, Q(H, d)J‘ is much smaller than H 1’I(X , Z) . Indeed, for
any fixed H, Q(H, d)l = Z{H} for d sufficiently large. One solution
of this is to consider a more general class of polarizations. Let NS(X)
(resp. NS(X)g) be the tensor product NS(X) ®, Q (resp. NS(X) ®, R)
and let NS(X )a (resp. NS(X)y) be the cone spanned by NS(X)". For
any w, € NS(X ); , we define the Hilbert polynomial of a rank-two sheaf
F by

(5.11) Z,(n)=n'(0,-0,)+no,-(c,(F) - Ky) + x(F).

The concept of w,-stability can be defined analogously to the definition of
H-stability.

Analogously to §1, we let & d(a),) be the set of all rank-two sheaves F
with detF =& and c,(F) = d which are semistable with respect to , .
We define & d(w,) to be the functor sending a scheme S to the set of
all families of sheaves F in gd(wr) on X xS flat over S, where two
families F, and F, are equivalentif F| = F,® p;’L with L a line bundle
on S.

Corollary 5.2. For any w € NS(X )5, F d(w) is coarsely represented
by a projective scheme M (w). In particular, if H is an ample divisor
representing an integer multiple of w, then # (w) = .#,(H).

Proof. We simply let .#,;(w) = .#,(H) with H an ample divisor rep-
resenting an integer multiple of w. Lemma 5.1 states that .£,(w) is
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independent of the choice of H. Hence .#,(w) is well defined and has
the desired properties.

Theorem 6 . Let X be as in Theorem 6. For any compact subcone
& C NS(X )a, there is a constant A(€’) such that for any H € € and any
d > A(%), the polynomial 6,(H) is identical to the restriction of Donald-
son’s polynomial invariant q, to Symmk (QH, d)J‘) C Symmk HZ(X , Z),
where k = c(d).

Proof. Recall that for any compact cone € ¢ NS(X)", there is a con-
stant A(%’) such that for any H € & and any d > (%), the moduli
scheme .#,;(H) satisfies the condition in Theorem 6 [6]. Thus, Theorem
6’ follows from Theorem 6. q.e.d.

In the remainder of this section, we will use a single polarization w, €
NS(X );{ to recover Donaldson’s polynomial invariants. We need the fol-
lowing result.

Proposition 5.3. For any w, € NS(X );, F d(w,) is coarsely repre-
sented by a unique projective scheme #,(w,).

Proof. The intersection matrix (-, -): NS(X), x N§(X), — Q is a
nondegenerate symmetric matrix with rational entries. For @, € NS(X ); s
let

(w,, +): N§(X)g — R
be the linear functional, let Q(cor)Q be the kernel of (w,, -) in NS(X )Q ,
and let Q(a),),kl be the orthogonal complement of Q(w,); = Q(a),)Q ®q R
in (NS(X)g, (-, -)). Fix a Euclidean norm ||-|| on NS(X)g . Define

(5.12) Cw)={D=w+olacQ):, o] <e}.
One notes that whenever D € NS(X) with w-D =0, then o' -D =0 for
any @ € C (w). We claim that for any € >0,

C,(w,) NNS(X)q # 2.

We prove the claim by induction on the dimension of Q(a)r); . As-
sume Q(wr); = R{w,}. Then by the nondegeneracy of the intersec-
tion matrix, a2 multiple of ®, is in NS(X)g. Then the claim holds.
Assume dimQ(cor); =k > 1. Then we can find a 4, € Q(w,);,
I4,l < €/2, and an a € NS(X)y\Q(w,), so that (a, 4, + w,) = 0.
Clearly Q{a} ® Q(,)q S Q@, +4)g- So Qw, +2)s ¢ Qo,)g -
By the induction hypothesis, we can find 4, € Q(w, + il)é C Q(a)r); ,
4,]l < €/2, so that Q(&,)x = R{@,}, where @, = w,+4, +4, . Thus the
claim is proved.
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For any d > 0, two ®,, w, € NS(X), are said to be d-equivalent if
Qw,,d) = Qw,, d), where Q(w, d) is defined by (5.2). It is obvious
that for any @ € NS(X);, there is an ¢ > 0 depending on d having
the property that any two classes in C, (w) are mutually d-equivalent.
One checks directly that the corresponding moduli functors # d(d)) with
@ € C,(w) are mutually equivalent. Therefore, for w € NS(X )]; , We
define .#,(w) to be one of .#,;(w,), where w, € C, (w) ﬂNS(X)a with
€ sufficiently small. .#,(w,) is a projective scheme coarsely representing
the functor & d(wl) =F d(w) . Hence, #,(w) is well defined. g.e.d.

We call an element in NS(X )I‘; a Kihler class. A Kéhler class @ €
NS(X );{ is said to be generic (resp. d-generic) if Q(w) = {0} (resp.
Q(w, d) = {0}). Note that then Q(w)" = H"'(X,Z). Let w be a
generic Kébhler class and let .Z;(w) be the moduli scheme of w-semistable
sheaves on X . By Proposition 1.7, there is a homomorphism

(5.13) p,: H''(X, Z) - NS(,(w)).
When dim.#,(w) = c(d), we define a polynomial

(5.14) 8,(w): Symm*(H"'(X, 2)) -

similar to J,(H) in (5.5).

Theorem 6. Let X be as in Theorem 6. For any generic Kdhler class
o € NS(X )]JTR, there is a constant A(w) such that for any d > A(w),
0,(w) coincides with the restriction of Donaldson’s polynomial invariant
g, to Symm*(H"'(Z, Z)) c Symm" H*(X, Z), where k = c¢(d).

We remark that in defining Donaldson’s polynomial invariants of four-
manifolds X, one has to use the generic Riemannian metric g to avoid
the occurrence of reducible ASD connections in the closure ./ 4(8- In
this paper, we showed that to the generic Kahler class w € NS(X ); and
the corresponding moduli scheme .#,;(®), no reducible ASD connections
occur in & 4(@) except the flat one. Based on these spaces, we have
reproduced part of Donaldson’s polynomial invariants that are defined on
the subspace

Symm* H"'(X, Z) c Symm* H*(X, Z).

The advantage of this approach is apparent. When X is an algebraic sur-
face, the space .#,(w) is better understood than the space N 4(8) when g
is a generic Riemannian metric. Thus one has a better chance to calculate
Donaldson’s polynomial invariants by working on .#,(w) instead of on
N 4(8) as demonstrated by [7]. We further remark that when @ € NS(X );
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is a generic Kihler class, then any (E, 4,6) € & 4(@) with (E, A) re-
ducible must be flat. Thus, there is a good chance that all of Donaldson’s
polynomial invariants can be defined on ./ 4(@) and thus on /£ (w).
One major difficulty is that the classes in Hz(/_V 4(®@), Z) associated to
H 2(X , Z)\H blox, Z) are defined as extensions of the first Chern classes
of (nonholomorphic) smooth line bundles on .#;(w). Thus the obvious
approach in algebraic geometry does not work. When d is odd, there is a
universal sheaf on X x.#,(w). Tyurin [21] and O’Grady [19] introduced
a series of polynomials {Sk} by using the second Chern class of the uni-
versal sheaf. Their argument goes as follows. The second Chern class of
the universal sheaf on X x.#,(w) is a cohomology class in H4(X xMy, L)
and its component in H2(X, Z)® Hz(/%d , L) C H4(X x M;,Z) defines
a homomorphism

2
(5.15) ps: Hy(X, Z) —» H (A, Z).
Then forany o, a,, --- , o € Hy(X, Z) with k = dim./#, define
(5.16) 3(0‘1 sy, o) = [psag) U psay) U+ U ps(ay )I(#y) € Z.

Clearly the Sk so defined are integer valued polynomials. By using the
Grothendieck-Riemann-Roch theorem, one checks directly that the restric-
tion of (5.15)to H"*'(X, Z) coincides with (5.13), thus part of the J, are
identical to g, according to Theorem 6. The author conjectures that Sk
are identical to w, when w is generic. (J. Morgan has given an affirmative
answer to this question recently [16], [17].)

6. Appendix

Some of the material contained here is known to the experts. Due to a
lack of references, we will present proofs of them. Let U be an analytic
open neighborhood of 0 € C®? with coordinate chart (x,y) andlet 4 be
the quotient sheaf of é’ff 2 supported on 0. We denote by F the coherent
subsheaf of &% which is the kernel of G — 4.

Lemma 6.1. Thereare f,, -, f, e@ﬁz such that f,--- , f,_, are
divisible by x and that f,,--- , f, generate the submodule F C @’52.

Proof. Let 7,. be the image of f; in ﬁffz/(x) under the homomor-
phism

p:FCOy -0 (x).
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Without loss of generality, we can assume 7n—1 and 7n generate the
image p(F). Then a linear combination of fj with f | and f, for
j=1,---, n—2 will provide a basis of F as desired. q.e.d.

We can define a deformation of F over the disk D € C by using the
basis constructed in Lemma 6.1. First let us rewrite fj(x , V)= xkj(x ,¥)
for j =1,.---,n—2 with k].(x,y) € éf,ﬂ. Then define F), to be
the subsheaf of ﬁgf p generated by the sections (x — 1)k, (x,y), -,
(x =k, _,(x,y), f,_,(x,¥), f,(x,y). We denote them by f,(x,y,?)
respectively. Let 4, be the cokernel of the homomorphism F, — @’fff D-
Then we have the exact sequence

(6.1) 0 Fy =82, — 4, —0.

In the sequel, we denote the sheaf F, ®k(t) (resp. A, ®k(t)) by F, (resp.
A4,) .

Lemma 6.2. There is a neighborhood V C D of 0 € D such that
Ay = Apyyy is flat over V .

Proof. Let t € D be any closed point. By tensoring (6.1) with k(),
we get the exact sequence

0 — Tor(4, k(t)) — F, @ k(t) = & — Ap @ k(t) — 0.

So to show that A4, is flat at ¢, it suffices to show that Tor(4,,, k(¢)) =0
or, equivalently, F,, ® k(¢) is torsion free. We prove that F,, ® k(0) is
torsion free.

Assume F,, ® k(0) is not torsion free. Then there exist 4 € F,, and
f €0, suchthat f-h= th' for some 4’ € Fy,. Let

n—2
h =Zg,(X,y, t)'(x_t)ki(x’ )
i=1
+ & (X, ¥, ) S (x,y)+8g,(x, ¥, ) f(x,¥).

Then the facts that f(x,y)-h = 0, mod(z) in &2 and f,_,(0,),
£,(0,y) generate the sheaf ﬁ(‘fz/(x) for y # 0 imply x|g,_,(x,y,0),
x|g,(x,y,0), and

n—2

on  ZEE Ok 8y 10,7, 0) (6, 9)
. i=1

1
+;gn(x,y90)'f;1('x’ y)EO'
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Further, if we write g,(x,y, t) = a;(x, y)+B;(x, y, t), then the follow-
ing identity holds in @’f}f p-

n—2
h=YMoyx, p)-(x = Ok (x, ¥) + 1B(x, ¥, 1) (x — Dk, (x, ¥))]
i=1 i

+[(an;1(xa y)'f;,_.l(x’ y) +tﬂn_1(xaya t)f;,_l(xa y)
+an(xa Y)°f;,(x’ y)+tﬂn(x’ y, t)f;,(xa y))]

n—2
= (x-1) [(Z 0%, 9) I, )+ L,y (x, VB, (x, )

i=1

+ -)lzan(x, y)- f(x, y))]
w1 (Rapes o) fyoy + Ly £, )]

+1Y Bix, v, 0 f(x,y, 1)
i=1
=t [(‘)lgan_n(x’ V) fo_ (x, )+ %an(x,y).fn(x, y)

+ZB,‘(X’ y, t)'f;'(x’ y, t))}
i=1

—¢ h// ,
where A" is an element of F, C #52,. Since F, is a submodule of
ﬁg’f p» h—th" =0 in ﬁgf p is equivalent to A —th"” =0 in F, . There-
fore, h =0 in F, ® k(0) or F;, ® k(0) is torsion free.

Proposition 6.3. Assume that A is a quotient sheaf of @’g’ 2 supported
at 0 € U with length(4) = [ > 2. Then there is a flat family of @32
quotient sheaves A,, t € D' c C, such that A, = A and length 4, ,< l
forany x e U.

Proof. Let F be the kernel of &'g’ 2.4 , let n = dim F;®k(0), and let
fi» -+, f, be abasis of F,. We first assume that forany i=1,--- ,n,
£;(0,0) =0 and that the basis f,---, f, has been rearranged accord-
ing to Lemma 6.1. Note that then n > 4. Let F, be the flat family of
torsion free sheaves constructed as in Lemma 6.2. We claim that except
in some special cases, the cokernel 4, of F, — ﬂgﬂ gives the desired
family. Indeed, for generic ¢, F, is generated by (x — )k (x,y), -,
(x = k,_5(x,¥), f,_(x,»), f,(x,y). Let y, be the solution of
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L&, y) A f(t,y) = 0€ @,. Since f,_(0,0)A £,(0,0) =0 and
10, ) A £,(0,y) # 0 for y # 0, such a solution y, does exist.
Then A4, ® k((¢, y,)) is nontrivial. Assume supp(4,) is a single point
for generic ¢. Thus k,(x, y), -+, k,_,(x, y) generates ﬁg’z at the ori-
gin. So n—2 <2 and then n = 4. Further, f, and f, contain linear
terms of x. Now by canceling the terms in f; and f, which involve x
by using f; and f,, we see that f, and f, depend on y only. If we
exchange the variable x and y and let (f,, -, f,) = (fy, fi> f1, f)>
then the family 7, provided in Lemma 6.2 will induce the right deforma-
tion unless f; and f, are linear in y also. Therefore 4 = C®C and the
deformation of it can be written down by hand. In case there is an i such
that f;(0, 0) # 0, then Fy =&, .7, where ¥ C & is the ideal sheaf
of a zero scheme. The deformation can be found similarly. We leave it to
the reader.

Proposition 6.4. Let A be any quotient sheaf of ﬁg 2 supported on the
origin 0 € U. Then there is a deformation A, of A as quotient sheaves

of é’g’z such that for generic t, A, is supported at | distinct points, where
[ =length 4.

Proof. By Proposition 6.3, for any quotient sheaf A4, there is a de-
formation 4, such that for generic ¢ and any p € U, length(4,) , <
length(A4),. We use the obvious fact that a deformation of a deforma-
tion is still a deformation. Then by applying Proposition 6.3 successively,
we conclude that there is a deformation 4, of A4 so that for generic ¢,
lengthA,’x <1 forany xe U. q.e.d.

The following proposition is of its own interest. To the author’s knowl-
edge, the question whether Quot%(l ) is irreducible is still open.

Proposition 6.5 (Lemma 3.4). Let E be any locally free polystable sheaf
andlet 1: X — Z* be any integer function. Assume G(E)+) I(x)<d.
Then é?’," (E) is a closed, connected algebraic subset of @"(E). '

Proof. Since we do not need the closedness in this paper, we leave the
proof to the reader.

Now we prove the connectedness of the set &/(E). Let Quotj be the
Grothendieck quotient scheme parametrizing all quotient sheaves 4 of E
with length(A) = ¢. For the given function /, let

(6.3) Qupt;(l) = {4 € Quoty |length(4) > I(x) for any x € X}.
It is easy to see that &/'(E) is connected if and only if Quoty(/) is con-
nected.

We continue our proof by working in the analytic category. Assume
X, Xy, "+ , X, €X are the points where /(x) #0. For i=1,--- , k,
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let {Ui"}:‘;1 be sequences of decreasing connected open subsets of X such

that the closure U;’ satisfies ()~ , U;’ = {x;}. Then define

Quoty (), = { A€ Quoty| > length(d), > I(x,), 1<i<k
xeU;

Quotz(l ), 1s a decreasing sequence of open subsets of QuotjE . We claim
that Quot‘g(l)" is connected. Indeed, thanks to Proposition 6.4, any A4 €
Quot(/), can be deformed within Quotj(/), to a quotient sheaf A’ such
that length A; <1 for all x € X. Clearly, all such A’ form a connected
set. So Quoty(/), is connected. Note that

o0
1
Quot (1) = [)(Quoty(),) "
n=1
and the right-hand side is a decreasing sequence of closed, connected sub-
sets of the compact ambient space Quoty . Therefore, Quot(/) is con-
nected.
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