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THE HARNACK ESTIMATE FOR THE RICCI FLOW

RICHARD S. HAMILTON

1. The result

Let i
vature to the Ricciflow

1.1. Main Theorem. Let gtj be a complete solution with bounded cur-

aϊ*v = -2R«
on α manifold M for t in some time interval 0<t<T and suppose gtj

has a weakly positive curvature operator, so that

for all two-forms Ui . Let

and let

Mu = ̂ u ~ \ D i D j R + 1RikjιRki ~ RikRjk + γt

Rtj •

Then for any one-form Wt and any two-form Ui} we have

M WW +2P ,U W,+R ,,U U,, > 0 .
I l l ϊ ' I I K I I K l i l c l l i K i —

1.2. Corollary. For any one-form Vt we have

+ + 2DiRVi + 2R

The corollary follows immediately by taking

and tracing over W..
The existence of inequalities on the second derivatives of solutions of

parabolic equations was first noted by Peter Li and S.-T. Yau [12] for the
scalar heat flow on a Riemannian manifold. The author has observed a
similar phenomenon for the matrix of second derivatives in the scalar heat
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flow [9] and for the Ricci flow on a surface [6] and for the mean curvature
flow [10]. Ben Chow has derived similar results for the Gauss curvature
flow [3] and the Yamabe flow [4]. These are called Harnack estimates
because they can be integrated along paths in space-time to produce com-
parisons of the solution between different points at earlier and later times,
as in the classical Harnack estimates.

1.3. Corollary. Let Xχ and X2 be two points in M and let tχ and t2

be two different times with 0 < tx < t2. Let c(Xχ, X2, tx) be the distance
between Xχ and X2 at time tx. Then

, t2) >

Proof. Take the geodesic path X{t) from Xχ to X2 at time tχ para-
metrized proportional to arc length with parameter t starting at Xχ at
time tχ and ending at X2 at time t2 . At time tχ the constant velocity is

d(Xχ,X2,tχ)/(t2-tχ).

Now consider the path (X(t), t) in space-time. Since the curvature is
weakly positive the metric g.. will be weakly shrinking, so if we take the

velocity vector V1 = j-tX
ι its length at time t > tχ will be no more than

its length was at time tχ. Thus

gij(X(t), t)ViVj < d{Xχ, X2, tχf/(t2 - tχf.

Now from Corollary 1.2 (and replacing V by \V) we have the estimate

where the total derivative dR/dt is the rate of change of R along the
path in space-time. Now R.j < Rgtj for weakly positive Ricci curvature,
so

We use the estimate on the length of V given above and integrate over
time to get

* , ) " *h 2{t2-h) •
Now exponentiating and rearranging gives the desired result.

2. The notation

We interpret covariant differentiation in terms of vector fields on the
frame bundle. Let M be the manifold, X a point in M, and Y =
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(Y{, Y2, ,Yn) a frame at X consisting of a basis for the space TMχ

of tangent vectors at X. A symmetric connection Γ on the tangent bundle
determines a choice of horizontal tangent vectors on the bundle F(M) of
all frames. We let Da be the vector field on the frame bundle which is
horizontal and projects onto the vector Ya in M when we are at the point
Y in F(M). If / is a function on the frame bundle, we denote by Daf
the derivative of / in the direction of the vector field Da. Any tensor
gives rise to a system of functions on the frame bundle. For example if
V: TM —• R is a covector then

V = {Va} where V(Ya) = Va,

or if V: TM x TM -»• TM is a tensor then

V = { F J where V(Ya, Yb) = Vc

abYc.

We can thus interpret the covariant derivative as applying the vector field
Da to the component functions of the tensor V. In the first case V = {Va}
we have

DV = {DaVb) where DV(Ya)(Yb) = DaVh,

and in the second case

DV = {Datfc) where DV(Ya)(Yb, Ye) = DaV
d

hcYd.

The same applies to any tensor.
In local coordinates X = {x*} and Y = {y[} where Ya = Ϋ 1

The vector fields are given locally by

where Γ*(JC) are the Christoffel symbols of the connection. We then have

where

is the usual local formula for covariant derivative.
We also have vector fields tangent to the fibres of the frame bundle

representing the action of the change of frame group Gl(n). These are
the vector fields
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representing the skewing of the α-axis into the Z?-axis for a Φ b, or the
stretching of the axis when a = b. The action of Va

b on tensors is easy
to describe. For example, if Vc = yJ

cVj(x) comes from a covector then

*iK = Ia

cVb .
 w h i l e if Vab = yybVu(X) then %Vcd = Ia

cVM + fdVch and
so on.

It is important to compute the commutators of these vector fields. The
Da and Vb

a form a basis for the tangent vectors on the frame bundle
F(M). The curvature tensor is given by Rc

abd where

and as usual

ijl" dx> j l dχj il im j l j m il'

Then we can easily compute the commutator relation

We also have

and

Suppose now that we have a Riemannian metric g with Levi-Civita
connection Γ. The metric defines the system of functions gab = g(Ya, Yb)
on the frame bundle F(M). The orthonormal frame bundle is the sub-
bundle OF(M) where gab = Iab . The vector fields Vab are not tangent.
For this purpose we introduce the vector fields

which represent infinitesimal notations of the α6-planes. Then Da and
δbc form a basis for the vector fields on OF{M). For covectors we have

and similar formulas hold for other tensors. Thus

for a 2-tensor, and in particular δabgcd = 0 which shows that δab is indeed
tangent to the subbundle of orthonormal frames where gab = Iab.

The commutator of Da and Db is given by
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where Rabcd = SceR
e

abd Thus for covectors we have

and similar formulas hold for other tensors. [Note we can sum over low-
ered indices since gab = Iab .] The other commutators are

and
δabδcd ~ δcdδab = Sac

δbd + 8bdδac ~ %adδbc " Sbc
δad '

For example in three dimensions we have the usual formulas

[<J12 > ̂ 13] = ^23 ' ^ 1 3 ' δ2l) = δl2 ' ^ 2 3 > S\i\ = ^13 '

which generalize as above.
When we come to look at the Ricci flow, we must cross the manifold

with the time axis t. We can then just cross the whole frame bundle with
t also. There is thus a single new vector field §-t on the frame bundle cross
time. If the metric were constant, the orthonormal frame bundle would
also be constant. But since the metric varies according to the formula

-Ql^ab = ~2Rab

we see that the orthonormal frame bundle where gab = Iab will now vary
with time. Therefore we modify the timelike vector field to make it tangent
to the orthonormal frame bundle. We let

so that Dt is the unique vector field which is tangent to the orthonormal
frame bundle and has the property that Dt - jj-t is a space-like vector or-
thogonal to the orthonormal frame bundle [in the metric on F(M) where
Da and V^ are an orthonormal basis]. We can then define the time covari-
ant derivative of a tensor by differentiating its components in the direction
Dt. Thus for example for a covector Va we have

and similar formulas for other tensors. Indeed

DtSab = -d-t8ab+ RacSCdSbd + Λ*<Λ<u/ = ° >

which shows Dt is tangent to the orthonormal frame bundle. (We obtain
the same formulas as from the procedure in [8] where instead we vary the
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orthonormal frame.) We can compute the time derivative of the Rieman-

nian curvature tensor as

DtRabcd = ARabcd + 2(Babcd " Babdc + Bacbd ~ Badbc) >

where Δ = DeDe and Babcd = RaebfRcedf as in [8].

For our computations we will need the commutators of Dt and Da and

δab. Recall that

_ i ί d jJc, Λ i d \

For the Ricci flow we have

so on the frame bundle we compute

aRbc + DbRac - DcRab)Vb

d.

Since

and we know the commutator of Da with Vb

d, we can compute

We can also compute the commutator

ADa - DaA = RabDb + DbRacδbc - RabcdDbδcd,

and get the important formula

(Dt - A)Da - Da{Dt - Δ) = RabcdDbδcd

for commuting the evolution operator Dt - Δ with the covariant derivative

Da. For example,

(Dt-A)DJ-Da(Dt-A)f = 0

for functions / on M, and

(Z), - A)DaVb - Da(Dt -A)Vb = 2RacbdDcVd

for covectors Vb , while

( Λ " Δμ) β K f c - Da(Dt - A)Vbc = 2RadbeDdVec + 2RadceDdVbe

for two-tensors Vbc, and similar formulas hold for higher tensors (as we

must expect from the product rule).
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I r\ I r\ I
Finally, since V£ = yι

bd/dyι

a we see that

Then using
dt^b Vbdt °'

we also compute

We summarize these results.
2.1. Theorem. On the orthonormal frame bundle the metric is given by

gab = Iab. A basis for the tangent vectors to the orthonormal frame bundle is
given by the horizontal spacelike tangent vectors Da, the vertical spacelike
rotation tangent vectors δbc, and the timelike vector Dt. The commutators
are given by

δabDc ~ Dcδab = SacDb ~ SbcDa '
δabδcd ~ δcdδab = SaΛd + **Ac " S B A C ~ &bcδad '

AbW
We also have

(Dt-A)Da-Da(Dt-A) = R

The action of δab on a covector Vc is given by
δabVc = SacVb-ξbcVa

and extends to other tensors by the product rule. Thus

DaDbVc-DbDaVc = RabcdVd

and
(Dt - A)DaVb - Da{Dt -A)Vb = 2RacbdDcVd,

and these formulas also extend to other tensors by the product rule. The
curvature tensor itself evolves by

(Dt - A)Rabcd = 2(Babcd - Babdc + Bacbd - Badbc),

whereBabcd=RaebfRce4f'

3. The solitons
We call a solution to an evolution equation a soliton if it moves under

a one-parameter subgroup of the invariance group of the equation. For
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example, the invariance group of the Ricci flow contains the full group
of diffeomorphisms. A Ricci soliton is a solution to the Ricci flow which
changes only by a diffeomorphism. Thus there will be a one-parameter
family of diffeomorphisms such that the metric gab(X", 0 at times t is
obtained from the metric gab(X, 0) at time 0 by the diffeomorphism
X —> φ(X, t). If the subgroup is obtained by exponentiating the vector
field Va then we will haveVa

since the motion of g is by the Lie derivative of the vector field to be a soli-
ton, and by the Ricci tensor to solve the Ricci flow. Conversely if we start
with a metric which satisfies this equation, it must evolve under the Ricci
flow by composing with the one-parameter family of diffeomorphisms ob-
tained by exponentiating Va. If we have a soliton where Va = Daf is the
gradient of a function / , we say it is a gradient soliton. In this case

so we have a gradient soliton precisely when the Ricci tensor is the Hessian
of a function. We are indebted to Robert Bryant and Thomas Ivey for an
extensive study of the Ricci soliton and gradient soliton equations in terms
of the calculus of exterior differential systems [1], [11].

These are steady solitons, which exist for -oo < t < oo. There are also
homothetically expanding solitons for 0 < t < oo, and shrinking solitons
for —oo < t < 0, corresponding to the fact that the Ricci flow equation
is also invariant under a one-parameter group of homotheties, where time
dilates like space squared. For a homothetically expanding soliton we have

and the opposite sign for a shrinking one. The expanding gradient soli-
tons are closely related to the Harnack inequality, because it becomes an
equality in this case. Indeed this is how we found the correct Harnack
expression. Moreover it is a great aid in doing the calculations to check at
each step that we get equality on the expanding gradient solitons.

Here is how we derive the Harnack expression Z . On an expanding
gradient soliton

DaVb=Rab + γt8ab

since Va = Daf implies Da Vh = Db Va. Differentiating and commuting
give the first order relations
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and differentiating again gives

DaDbRcd ~ DaDcR

bd = DaRbcdeK + RaeRbcde + γt

Rbc<ta

We take the trace of this on a and b to conclude that

where

Kb = Mab - \DaDbR + 2RacbdRcd - RacRbc

and

as before. The first relation was then

and in order to get a good expression we add the two equations to make

Mab + (Pcab+Pcba)Vc + Racbd

VcV<, = °-

We apply this to an arbitrary vector Wa and get

Kb

WaW

b + (Pcab + Pc

If we write

for the wedge product of V and W, the above can be rearranged as

Z = MabWaWb + 2PabcUabWc + RabcdUabUcd = 0,

which shows that the Harnack inequality becomes an equality on an ex-
panding gradient soliton.

Since there are other expressions which vanish, one may ask how we
come to select this one. One important criterion is that if Z > 0 for all
choices of W and U then when Z = 0 on the soliton we must also have
dZ/dW = 0 and dZ/dU = 0. This dictates that we need to take the
trace of the second derivative expression, since otherwise we cannot mix
it with the first derivative expression, and it also shows we must take an
equal amount of each.

The author has written down a steady gradient soliton in dimension two
(see [6]) given by

, 2 ^ γ 2 -*- ^Λ'2

ds = -
+x2 +y2
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which has positive curvature and one end of finite circumference like a
cylinder. In dimension three Robert Bryant [2] has proved the existence
of a rotationally symmetric complete steady gradient soliton by proving
existence of a solution to an ODE which is hard to solve in closed form. It
has positive curvature and opens more like a paraboloid. There seems little
doubt that the same techniques will prove existence of both steady and
expanding rotationally symmetric complete solitons of positive curvature
operator in all dimensions. The proof of the Harnack inequality by no
means depends on such an existence result. We use it only as inspiration.

As an example of this, on the soliton we chose

and we have
1

If we take the arbitrary section Wa such that DaWb = 0 at a point, then
we get

D Uu = -(R uW - R WΛ + —(z uW - 2 WΛ,
CL DC *) ^ Λu C (XC 0' Λf ^ CLD C ύC D'

which is a choice we will make in the proof of the Harnack inequality.
Now you will know where it comes from.

4. The computation

We assume we have a solution to the Ricci flow and let

and

Kb = *Xab - \DaDbR + 2RacbdRcd - RacRbc + γ(Rab,

and form the quadratic

Z = MabWaWb + 2PabcUabWc + RabcdUabUcd

where Wa is a one-form and Uab is a two-form, depending on space and
time.

4.1. Theorem. At a point where

= jWa,(Dt

DaWb = 0 and DaUbc = \{RabWc - RacWb) + ±{gabWc - gacWb),
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we have

[Dt - Δ)Z = 2RachdMcdWaWh - 2PacdPbdcWaWb

+ ^^

][PabeWe + RabefUef].

Proof. First we must compute the evolution of the coefficients Mab,

4.2. Lemma.

(Dt - Δ)Rabcd = 2(Babcd - Babdc + BacM - Badbc),

where Babcd is the quadratic

Babcd = RaebfRcedf'

Proof. This is the standard formula.

4.3. Lemma.

{Dt - Δ)Pabc = 2RadbePdec + 2RadcePdbe + 2RbdcePade - 2RdeDdRabce.

Proof. The evolution of the Ricci tensor is given by

and from the commutator formula

(Dt - A)DaRbc = Da(Dt - A)Rbc + 2RadbeDdRec + 2RadceDdRbe.

Evaluating the first term on the right gives

(D, - A)DaRbc = 2RadbeDdRec + 2RadceDdReb

Now we use

and the second Bianchi identity

to complete the lemma.

4.4. Lemma.

(Z>, - A)Mab = 2RacbdMcd + 2Rcd[DcPdab + DcPdba

+ 2PacdPbcd ~ *PacdPbdc + 2RcdRceRadbe ~ tf

Proof. It is easiest to start from

Mab = DcPcab + RacbdRcd + γ{

Rab '
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which can be easily checked. The commutation formula gives

(Dt - A)DcPcab = Dc(Dt - A)Pcab + 2RdeDdPeab

+ 2RcdaeDdPceb + 2RcdbeDdPcae

We now use the identities

Pabc + Pbca + Pcab = ®' ^cRcdab ~ Pabd >

DcDdRcabe = DdPbea + RdfRfabe + Bdaeb + Bdeab ~ Bdabe ~ Bdbae '

and

which comes from the symmetry and antisymmetry in c and d to con-
clude that

(Dt - A)DcPcab = 2RacbdDePecd + 2Rcd(DcPdab + DcPdba) + 2PacdPbcd

~ *PacdPbdc + 2RcdRceRadbe + 2DeRacbdDeRcd

~ 2Rcd(Babcd + Bacbd ~ Bacdb " Badcb>

using the fact that the tensor Babcd = RaebfRcedf has the symmetries

abcd ~ ncdab ~ nbadc ~ Ddcba '

Also

+ 2Rcd(Babcd + Bacbd Bacdb Badcb>

and

(Dt - A) ^-Λ^j = 2Racbd [ - R ^ - —2Rab .

Adding these reuslts completes the lemma, once we use

Mcd=DePecd+RcedfRef+γt

Rcd

and observe the obvious cancellations.
Now when

Z = MabWaWb + 2PabcUabWc + RabcdUabUcd

and we are at a point where

DaWb = 0 and (Dt-A)Uab = 0,
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we compute

= [(Dt-A)Mab]WaWb

2[(D, - WabcWabWc + [(Dt - A)Rabcd]UabUcd

Wa + PabcUab](Dt-A)Wc

- 4DeRabcdDeUabUcd

If we substitute the computed values for (Dt - A)Mab , (Dt - A]Pabc, and
(Dt-A)Rabcd from the lemmas, and the chosen values for (Dt-A) Wa and
DaUbc, the result in the theorem follows from the obvious cancellations.

We now give the idea of the proof, in a form which is not quite rigorous,
but shows why it works. We shall have to mess the formula up a bit to
sneak an ε > 0 in, as is usual in making maximum principle arguments
work, so it is best to see what is really happening before it gets too messy.

If the manifold is compact and the curvature operator is strictly positive,
then the quadratic form Z will be strictly positive for small time. If it
ever becomes negative, there will be a first time f when it is zero, and this
will happen at some point X° and in the direction of some eigenvector
Wl and U°ab . We can extend these in space-time to sections Wa and Uab

with Wa = Wl and Uab = XJ°ab, and we can do so however we please
and still have Z > 0 up to time t°. In particular we can make the first
derivatives in space and time anything we like, so we can extend first in
space to make

DaWb = 0

and

Wbc = \<<Rabwc - Racwb) + lt(gabwc - gacwb),

and then, knowing AWa and ΔUab, we can extend in time to make

(Dt-A)Wa = jWa and (Dt -A)Uab = 0.

Actually, if we compute carefully, it turns out that at a null eigenvector of
Z it does not matter what (Dt - A) Wa or (Dt - Δ) Uab is anyway, but it
is easier to prescribe than compute. In the evolution of Z the quadratic
term

\Pabcwc + Rabcducd][Pabewe + Rabefuef]

is clearly nonnegative. Actually at a null eigenvector,
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anyway. The fact that (Dt - Δ)Z > 0 at (X°, *°) then follows from the
lemma below. Since Z > 0 everywhere at time f we get ΔZ > 0, and so
DtZ > 0. Thus wherever Z first becomes zero it is nonincreasing. This
sort of shows Z stays > 0, but we need to sneak an ε > 0 in somewhere,
as we mentioned before. The crucial step is the following.

4.5. Lemma. If the quadratic form in W and U

Z = MabWaWb + 2PabcUabWc + RabcdUabUcd

is weakly positive, so is the quadratic form

Q = 2RacbdMcdWaWb - 2PacdPbdcWaWb

PROOF. A weakly positive quadratic form can always be written as a
sum of squares of linear forms. This is equivalent to diagonalizing a sym-
metric matrix and writing each nonnegative eigenvalue as a square. Write

N

This makes

N N
NγN

N

where X^ is a one-form, and Y^b is a two-form for each N. It is then
easy to compute

Q = Σ (γ"x>a - YaCχ>a - 2γ"γb

N

cuab)
2,

M,N

which shows Q is also a sum of squares of linear forms and hence is a
weakly positive quadratic form.

5. The argument

We assume that we have a complete solution to the Ricci flow with
bounded curvature and nonnegative curvature operator. We may easily
assume we are working on a closed time interval 0 < t < T, for if we only
start with a solution for 0 < t < T we can pass to the interval ε < t < Tε

and let ε —• 0. By the work of W. X. Shi [13] we can then also assume
bounds on the covariant derivatives of the curvature. Note that the final
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conclusion is independent of these bounds. In what follows we will let C
denote various constants which depend only on the dimension, the time
interval T, and bounds on the curvature \Rm\ and its derivatives \DRm\
and \D2Rm\. The constants will vary from line to line, and to be precise
could be indexed by the order of occurrence.

The idea of the proof is to perturb the expression Z slightly to Z so
as to make Z very positive if t —• 0, or if the point X —• oo in case the
manifold is not compact. Also our perturbation must add a little positive
push, so that wherever Z first acquires a zero it is strictly increasing. It
then follows that Z never could make it to zero after all. Since we can
take Z as close to Z as we like on compact sets in space-time avoiding
t = 0, we get Z > 0 as desired.

We take Z in the form

Z = MabWaWb + 2PabcUabWc + RabcdUabUcd,

where we take

Rabcd ~ Rabcd + _

for suitably chosen functions φ and ψ. In fact we will later choose

φ = —=e f{X) and ψ — δe ι

yjt
with 4̂ and 5 large and ε and <J small, and where f(X) is a function
of position only such that f(X) —• oo as X —• oo but the derivatives of
/ are bounded. In case the manifold is compact we just take / = 1.

First we review the construction of / , as in Greene and Wu [5] and
W.X.Shi [13].

5.1. Lemma. There exists a smooth function f such that / > 1 ev-
erywhere and f(X) —• oo as X —• oo but all the covariant derivatives are
bounded, so that \Df\ < C and \D2f\ <C for a constant C.

Proof. Let d(X) be the distance from some fixed point at time zero,
let p(V) be a smooth function on Euclidean space which is rotationally
symmetric with support in a small ball, and let

= / p(V)d(cxpxV)dV

be the integral over the tangent space Tχ at X. If the size of the support
of p(V) is small compared to the maximum curvature, it is well known
that this smoothing gives a function with f(X) -> oo as X —> oo, while
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its derivatives are bounded (See Greene and Wu [5]). We can also easily
bound / from below, and by dilating p(V) by a constant we take / > 1.
Finally (as W. X. Shi does in [13]) we can bound covariant derivatives of
/ at times t > 0 using the standard estimate on the change in the metric
and the change in the connection, all of which is easily controlled.

5.2. Lemma. Given any constant C, any η > 0, and any compact set
K in space-time we can find functions ψ = ψ(t) depending on time alone
and φ = φ(X, t) depending on both space and time such that

(1) ψ < η everywhere, and ψ > δ for some δ > 0,
(2) φ < η on the set K, and φ>ε for some ε>0, while φ(X, t) -* oo

if X -> oo in the sense that the sets φ < M are all compact in space-time
for 0 <t <T (if the manifold is compact this condition is vacuous),

(3) (Dt-A)φ>Cφ,
(4) Dtψ>Cψ,
(5) φ>Cψ.
Proof. We look first for φ in the form

φ(X,t) = εeAίf(X)

with / as before. Since Δ/ < C and / > 1 we get Aφ < Cφ, and so
to make (3) work we only need Dtφ > Cφ with a different C. But this
works if we pick A > C. To make (2) work we need

ε < ηe maxf(X),

which we can do.
Then we look for ψ in the form ψ(t) = δeBt and find that (4) works

when B > C. To make (1) work we take δ < ηe~BT and to make (5)
work we take δ < εe~BT/C and use eΛt > 1 and / > 1. This proves the
lemma.

Now we study the evolution of Z . We observe the extra terms which
are added, which are few because DaWb = Q and (Dt - A)Uab = 0 at our
point as before, and ψ depends only on t so Daψ = 0 and Aψ = 0. The
extra terms come (1) when (Dt - Δ ) falls on φ/t, (2) when (Dt -A) falls
on ψ, (3) when (Dt - A) falls on Wa and there is an extra φ/t in Mab ,
and (4) when the Δ distributes as one derivative on each of Uab and Ucd

and there is an extra ψ in Rabcd . This gives us

(Dt -Δ)Z = (Dt -Δ)Z + I [(Z>, - A)φ - j p ] \W\2

\ % - A)Wa + (Dtψ)\U\2 + ψ\DaUj.
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If again we take

W

D

aubc = \(Rabwc - Racwb) + lt(gabwc - gacwb)
at our point, substitute above and use \Rm\ < C and t < C, we get

{Dt-A)Z>(Dt-A)Z

\φ-jψ\ \W\2 + (Dtψ)\U\2.

Now starting from our previous computation of (Dt - Δ)Z we replace
Mab by Mab and Rabcd by Rabcd and bound the resulting errors. This
gives

(Dt - Δ)Z > 2RacbdMcdWaWb - 2PacdPbdcWaWb

We can simplify some of these errors. First

ψ\U\\W\<ψ\W\2 + ψ\U\2

gets rid of the cross-term. Then using ψ < φ (we even have Cψ < φ)
and ψ < 1 (we even have ψ < η and since we want η small we can make
sure η < 1) the errors reduce to

Combining this with the preceding calculation we get the following result.
Theorem. Let φ and ψ be as in Lemma 2, and let Wa be a one-form

and Uab a two-form which at a given point satisfy

(Dt-A)Wa = \wa, {Dt-A)Uab = 0, DaWb = 0

and

DaUbc = \{RabWc - RacWb) + ±-t(gabWc - gacWb).

Let

Kb = Mab + -tΨSab,

Rabcd = Rabcd + 2
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and form the quadratic

Z = MabWaWb + 2PabcUabWc + RabcdUabUcd.

Then

(Dt - Δ)Z > 2RacbdMcdWaWb - 2PacdPbdcWaWb

RabefUef]

\W\2

+ [Dtψ-Cψ]\U\2.

Now we finish the argument rigorously along the previous lines. Note
that Rabcd is nonnegative, Pabc is bounded and Mab is the sum of a
bounded term plus 1/7 times a nonnegative one. It follows that

z>-c\w\2 -c\w\\u\
and hence

Now ψ > δ while φjt is big when either / is small or the point X is
outside a compact set. So we see that the quadratic form Z is strictly
positive outside of a compact set in space-time that avoids t = 0. We
claim of course that Z is in fact always strictly positive, or we would get
a contradiction.

For suppose we look at the first time t° > 0 where Z has a zero
eigenvector, occurring at some point X° in the direction of the one-form
Wζ and the two-form \J°ah. Extend then to sections Wa and Uab with
Wa = Wl and Uab = U°ab at X° in such a way that we have

and

Wbc = \ίRaoK - Racwb) + l(gabwc - 8acwb)

at the point X° . Then arguing on (Dt - Δ)Z we see as before that the
quadratic terms are nonnegative at a zero eigenvector. But now the esti-
mates of Lemma 2 give (Dt -Δ)Z > 0 (since either W Φ 0 or U Φ 0 for
an eigenvector). But Z > 0 everywhere at the time t°, so ΔZ > 0. This
makes DtZ > 0 at X° at the time t° when Z = 0. But then a short
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time before Z must have been negative at the point X°, for some choice

of Wa and Uab coming from our extension. Since this is a contradiction,

it follows that Z > 0 always and everywhere.
Now it remains to let η -> 0 in Lemma 2, and we get Z > 0 in the

limit. This finishes the rigorous proof of the Harnack inequality.
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