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L2-COHOMOLOGY OF KAHLER VARIETIES
WITH ISOLATED SINGULARITIES

LESLIE SAPER

0. Introduction

Let V be a complex projective variety. If V is smooth, we may ap-
ply the de Rham-Hodge theory to represent the cohomology by harmonic
forms. As a consequence of this and the Kahler identities, we obtain a
Hodge decomposition (or Hodge structure) on the cohomology,

Hk(V;C)=
p+q=k

When V is singular, such a decomposition no longer exists in gen-
eral. However, by imposing restrictions on the intersections of chains
with singular strata, Goresky and MacPherson [21], [22] defined an alter-
nate cohomology theory for singular spaces. This intersection cohomology,
IH\V\ C), has many of the properties of ordinary cohomology on man-
ifolds. For example, there is a nondegenerate Poincare duality pairing,
and by using the theory of ^-modules, Saito [38]-[40] (see also [41]) has
shown that IH\V\ C) admits a natural Hodge decomposition. (We are
always referring to the middle perversity intersection cohomology. For an
excellent historical introduction to intersection homology theory and its
many ramifications, see Kleiman's article [28]; for an overview of recent
advances in Hodge theory, see [10].)

It is natural to try to represent intersection cohomology analytically by a
de Rham-type theory, and obtain another, more classical, proof of the ex-
istence of a Hodge decomposition on IH\V\ C). In a number of contexts
[11], [52] it has been conjectured that the appropriate de Rham theory to
consider is the L2-cohomology of some metric on V\ Sing( V), the set
of regular points of V. Given a Riemannian metric on V\ Sing(F), the
L2-cohomology H^(V\ Sing(F)) is the cohomology of the complex of L2

differential forms whose exterior derivatives are also L 2 . L2-cohomology
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is an invariant of the quasi-isometry (§0.8) class of the metric. (For an
introductory survey of L2-cohomology and its topological interpretations
(both conjectural and realized) see [46].)

A natural metric to consider on F\Sing(F) is one induced from the
Fubini-Study metric by a projective embedding; the quasi-isometry class
of this metric is independent of the embedding. In this case, Cheeger,
Goresky, and MacPherson [13] have conjectured that

(0.1) Hl2)(V\SingV)*IH(V;C),

and that a decomposition of harmonic forms yields a Hodge structure.
Recently, Ohsawa [35] has used our main result (Theorem 0.1) to give a
proof of (0.1) for V having only isolated singularities.

The conjectured existence of a Hodge decomposition is more subtle,
however, due to the incompleteness of the metric. For a complete Kahler
metric, on the other hand, a Hodge decomposition would immediately fol-
low from the isomorphism (0.1) (see §9). Unfortunately, there does not
seem to be a unique natural complete Kahler metric associated to a gen-
eral variety V . In this paper, when V has only isolated singularities, we
introduce a family of complete metrics on F\ Sing V which we call distin-
guished metrics on V . The quasi-isometry classes of distinguished metrics
on V are in one-to-one correspondence with the resolutions n : V —• V
whose exceptional set is a divisor with smooth irreducible components in-
tersecting in normal crossings; as we will show below, the definition of
distinguished metrics is motivated by the metrics of locally symmetric va-
rieties. Our first main result is (Theorem 8.4 and Corollary 8.8):

Theorem 0.1. Let V be a projective variety with only isolated singular
points. Then:

(i) The quasi'isometry class of distinguished metrics on V associated to
a resolution π : V -> V for which n is a projective morphism contains a
Kahler metric.

(ii) For any distinguished metric on V, we have the natural isomorphism

(0.2) H(2)(V\SmgV)^IH\V;C).

Remark. By a result of Hironaka [26], any modification V' -> V is
dominated by a resolution satisfying the condition in (i).

This theorem is a generalization of our previous work [42] which cov-
ered the cases where dimc V = 2 or where the singularities could be
resolved with a smooth exceptional divisor. In this latter case, Ohsawa
[34] has given another proof of (0.2), with a different (nonquasi-isometric)
metric.
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As a corollary, we obtain for each Kahler distinguished metric an L2-
Hodge structure on_ 1H{V C). In fact, the (p, q) part is given by the
corresponding L2- d-cohomology Hp ' ^ ( F \ S i n g F ) . A priori these Hodge
structures may depend on the specific metrics. However, Zucker has shown
that this is not the case:

Theorem 0.2 (Zucker [55]). For V aprojective variety with isolated sin-
gularities, the L2-Hodge structure on IH{V C) arising from any Kahler
distinguished metric agrees with the canonical Hodge structure given by
Saito,

When V has isolated singularities, the existence of a natural Hodge
decomposition on IH\V C) was originally proven by Steenbrink [48].

Using Zucker's result, we are able to prove (see Theorem 10.2):
Theorem 0.3. Let V be a protective variety with isolated singularities.

For any Kahler distinguished metric on V and for any resolution V of V,

In particular, the L2- d-index

χ{2)(V\ Sing F) = £ ( - 1 ) * dimif(°2;^(F\ Sing F),

equals the arithmetic genus χ(V) of any resolution V of V.
Remark. The requirement that F be projective in Theorems 0.1-0.3

can be weakened to admit at least the class of compact Kahler varieties;
see (8.5) and Remark 8.5.

In other contexts, the equality χ{2)(v\ Sing F) = χ(V) was conjectured
by MacPherson [30]. In particular, the case of projective curves and sur-
faces where V\ Sing F is given the (incomplete) metric induced by the
Fubini-Study metric has been studied by Haskell [24], [25] and Pardon
[36]. Recently, Pardon and Stern [37] have given a proof for arbitrary
projective varieties if one uses L2- d-cohomology for the Fubini-Study
metric with Dirichlet boundary conditions.

In the remainder of this introduction, we present an overview of the
paper, with the aim of motivating many of the constructions.

0.1. We first look at a class of examples where natural metrics do exist,
the locally symmetric varieties; this will motivate the definition of distin-
guished metrics.

Let I b e a bounded symmetric domain and let Γ be an arithmetic
group of automorphisms of X acting freely (for a simple example, take
the upper half-plane SL(2, E)/SO(2) for X, and a finite index, torsion-
free subgroup of SL(2, Z) for Γ). The complex manifold T\X has a
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natural complete Kahler metric induced from the Bergman metric on X.
(Equivalently, a metric on X invariant under the automorphism group
descends to T\X.)

Such manifolds arise in many areas of mathematics, often as moduli
spaces. One difficulty in studying them is that Γ\X is usually noncompact.
However, Γ\X is a quasi-projective variety, called a locally symmetric
variety; in fact there is a natural projective compactification, the Baily-
Borel-Satake compactification Γ\ΛT* [3]. In general Γ\X* is very singular;
however, Zucker conjectured [52] that

(More generally one also considers cohomology with coefficients in a local
system arising from a finite-dimensional complex representation of the
automorphism group of X.) The conjecture was proven independently by
Saper and Stern [44], [45] and by Looijenga [29],

What do the metrics on locally symmetric varieties look like? For sim-
plicity, assume that Γ\X* has only a single isolated singular point. Let
Uc be a closed neighborhood of the singular point with the singularity
itself deleted (a punctured closed neighborhood; see §0.8). We may choose
Uc such that it decomposes as [ c , o o ) x Z , where the coordinate r on
[c, oo) tends to oo near the singular point and Z is a compact manifold
called the link having a doubly fibered structure. Specifically, there is an
integer p, 1 < p < n = dimc X, such that

(1) Z is a flat bundle over a compact locally symmetric space M of
dimension p - 1, with a nilmanifold fiber S,

S > Z

(0.3) j Φ

M,

and

(2) S is a principle (Sι)p-bundle (equipped with a connection) over an
abelian variety Nj of complex dimension n — p ,

O S 1 ) ' > S

(0.4) jπ,
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The metric on Uc may be written quasi-isometrically as

(0.5) dr2 + ds2

M + e~rn\ds\ + e~2r £ A>

where the (τ,.)^ are connection forms for πx. (This is a special case of
BoreΓs formula [5], [6].) Simply put, a vector field tangent to the level sets
of r, which is invariant under translation in r, may have its norm-squared
decay at one of three possible rates toward the singularity: 1 = eOr, e~r,
e~2r these different "weights" play a crucial role in L2-cohomology.

Before turning back to a general variety V, it will be helpful to view
the above structure and metric in the setting of a smooth toroidal compact-
ification T\X of Γ\ΛΓ ([2], [31]); for this we assume Γ is neat (every Γ
contains neat subgroups of finite index, so this is not a severe restriction).
The compactification Γ\X is not unique, but depends on the choice of
a certain type of triangulation of M. By decomposing M into its top-
dimensional simplices {Ma} (over each of which Φ becomes trivial), Uc

may be decomposed into regions Uc

a = [c, oo) x Ma x S with disjoint in-
teriors. Projecting onto the third factor and applying πχ, we obtain a real
analytic fibration of XJc

a over the abelian variety Nx, whose fibers turn out
to be holomorphic submanifolds of Γ\,Y. (It is possible to decompose Uc

somewhat differently so as to obtain an actual holomorphic bundle, but we
shall not need this.)

The point now is that this fibration sits inside a principle (C*)p-bundle
over Nχ. Explicitly, the embedding of fibers

(0.6) lc,oo)xMax(Sιf-+(Cy

is given by

(0.7) (r, (ttfM , (*,£,) - (e-'^Y' , , e-^e*'),

where the (^)f=1 are barycentric coordinates on Ma . (Actually, for this
formula to hold exactly, the exhaustion function r must be chosen care-
fully, and may in fact be only piecewise smooth on Uc, though smooth
on each Uc

a.)
The image of (0.6) lies in the product of the punctured closed disks

(Δ*y . A partial compactification Uc

a is obtained by embedding each fiber
further into Δ^ and taking the closure; gluing together the different Uc

a

along their boundaries yields the toroidal compactification T\X. For ap-
propriate triangulations of M, one can show that T\X is a compact com-
plex manifold and that there is a natural map Γ\X -* Γ\X* which is a
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resolution of singularities, with exceptional set D = T\X - Γ\X a divisor
with normal crossings.

Using (0.7) we may reexpress the locally symmetric metric (0.5) quasi-
isometrically as

(0.8) logfl
k=l ι=l \zi\

n-p

where (^y)^=1 and (Wy)*=f are coordinates on Άp and Nx, respectively.

Alternatively, the same expression holds when ((z.)f=1, (w, )yΓf) are any

holomorphic local coordinates on Γ\X for which D = U?β l z~ (0).
0.2. We now return to a general protective variety V of dimension n

which we assume to have only isolated singularities. We would like to use
the locally symmetric metrics as models for a metric on V\ Sing V, so we
need to find near the singularities of V some of the structure present in
the cusps of a locally symmetric variety.

As before, we express a punctured closed neighborhood Uc of a singular
point as [c, oo) x Z the link Z now no longer has the global structure
of (0.3) and (0.4) for a fixed p. It is possible however to decompose
Uc into regions (with disjoint interiors) U^ = [c, oo) x Z^ for p =
1, , « , such that for each p, t/£, has structure mimicing that on Uc

a

for some locally symmetric variety with the given value of p. In fact,
J7̂ j = [c, oo) x Λ/̂ j x S^j, where Mr , is a (p - 1 )-dimensional simplex

and π^j : 5 ^ -> Z>* is an (5ι/-bundle (equipped with a connection)

over a Kahler manifold (with corners) Z>Γ , of dimension n-p .

To do this, the theory of toroidal compactifications suggests that we

consider a resolution π : V —> V whose exceptional set D is a divisor with

normal crossings; identify V\D = V\ Sing F. For simplicity we assume

the components of D are smooth. Then D*, and Uf, may be defined

inductively: Assume t^ + 1 i , , t/ î have already been defined. Then

£>^ will consist of points of D where exactly p local components of D

intersect, minus those in the interior of U^+l]U U U^ (here the closures

are taken in V)\ U^ will be a certain closed tubular neighborhood of

Z> ĵ. The fibration structure and connection on U^ = £/£, Π (F\Z>) are
constructed using a theorem of Clemens [14] (Theorem 5.1).

For each p = 1 ,-••,«, we would now like to use (0.8) as a model
metric in U^ . However such a model near a /?-fold intersection will not
restrict to the corresponding model at nearby points where fewer compo-
nents intersect; to cure this we use a perturbation of the model:
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Definition 0.4. A Riemannian metric on V\D is called distinguished
if near a /7-fold intersection of local components of D it has the quasi-
isometric form

(0.9)

dzidzi

where {{z.)p.={, (t0 )"=f) are holomorphic local coordinates for which D =

U?=i Z^{{Q) A metric ds2 on F\SingF is called a distinguished met-

ric on V if there exists a resolution π : V —> F for which π*ds2 is

distinguished.
Remark. To be precise we should call a metric on F\Z> with the form

(0.9) distinguished relative to π this is because if F were to have noniso-
lated singularities, the correct description of a distinguished metric would
depend not only on the configuration of D c V, but also on how π blows
down D. Since we are only considering isolated singularities at present,
we will usually suppress the reference to π.

Also note that if V D D is any compact complex manifold containing
a divisor with normal crossings, (0.9) defines a quasi-isometry class of
metrics on V\D. We will also call these metrics distinguished (relative to
π :V -+ v, where now F is merely a topological pseudomanifold formed
by collapsing D to a finite number of points). As we shall see however
(Example 7.10), (0.2) does not always hold in this more general situation.

In terms of the decomposition U^ = [c, oo) x ϋίΓn1 x S*nΛ, a distin-
guished metric is quasi-isometric to (Proposition 6.5):

(0.10) dr2 +ds2

MJr) + e +e ~2r

Λ-e V).?.

where the (t^p

i=χ are barycentric coordinates on M^ and

ί=I

Compare this with the locally symmetric model (0.5); note that in a com-

pact subset of the interior of M.

are quasi-isometric.
(1 + e~ti€ er) ~ 1 and the two metrics
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It is easy to see from (0.10) that a distinguished metric is complete and
has finite volume; unlike a locally symmetric metric, however, whose Ricci
curvature is a constant negative multiple of the metric, a distinguished
metric in general may have unbounded Ricci curvature.

03. The theory of locally symmetric varieties not only motivates the
definition of distinguished metrics, but also suggests how to construct
Kάhler ones (Theorem 0.1 (i)).

For example, let H = { u e C | Im u > 0 } be the upper half-plane and
Γ the modular group. The cusp of Γ\H is biholomorphic to a punctured
neighborhood of 0 e Δ via z = e2πw , and a compactification is obtained
by gluing in z = 0. Since a Kahler potential for the Bergman metric on
H is -loglmw, the resulting locally symmetric metric on Δ* near the
origin has Kahler potential (modulo constants) - log(log |z|2)2 .

Less trivially, let X = Bq^1 x . x Bqp+ι be the product of complex
balls of dimensions qχ + 1, , q + 1, and let Γ be an arithmetically
defined group of automorphisms of X. There is a biholomorphism X =
{(u,v)eCpxCn-p\Imua-\υQ\2>Q, 1 < α < / ? } , where rc=/? + Σ<7α

is the dimension of X, and we write u = (ua)
p

a={, υ = (va)^={, ua € C,
va € CQa this is a realization of X as a Siegel domain of the second
kind [47]. Over a 0-dimensional stratum of T\X*, a smooth toroidal
compactification of Γ\ΛΓ has the following local structure ([2], [31]): Let
σ C (R*)p be a closed simplicial cone with nonempty interior, that is,
a = γfi={ lR+f., where ξχ, , { is a basis of Rp consisting of vectors
with positive coordinates, and for c e R let σc denote the truncated cone
{Σxiζi € σ I Σχi > ec} For appropriate σ and c large, Γ acts on
{(uy v) I Imw € σc, v e An~p} C X merely through translation on w
via the lattice X) Zf.. Thus this set descends in Γ\X to a segment of the
cusp Uc

σ which is diffeomorphic to iσc x (Rp /ΣZf,.) x Δ Λ - P . (Warning:
this is not quite the same as our previous region and decomposition.) We
now have an open holomorphic imbedding Uc

σ ^ (Δ*)p x An~p given by
(u,υ)~ {e2πil'{u), , elπil>{u), v), where lχ, , lp is the dual basis to
ξ{, 9ξp. A partial toroidal compactification is obtained by taking the
closure of the image in Ap x An~p .

The potential for the Bergman metric on X is Σ α -log(ImwQ - \vj2)
(note that the v = 0 section of X is merely i/^). Consequently the
potential on (A*)p x An~p may be written (modulo constants) as

(0.11)
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where zi = e2πιI'{u) are coordinates on (Δ*)p , ua = Σ,i&aM
u)> a n d

Returning to our general variety V with isolated singularities, we con-
sider π : V —• V, a resolution of singularities with exceptional divisor
D assume that π is a projective moφhism and that D = Dχ U U i ) m

has normal crossings. To construct a Kahler potential on K\Z) analogous
to (0.11) near a p-fold intersection of components of D, we search for
independent metrized line bundles L{, ••• , Ln e -Y^L^^ID^ which
have positive curvature in a neighborhood of D. The desired potential is
then

(0.12)
α=l

where j * e Γ(^~(L*)) vanishes only on D. Such line bundles are ob-

tained in §8.1 as π~ιJr

a, where J^, ••• , J^ are ideals in ffv si v ,

all of whose blow-ups yield the moφhism π : V —• V. The discrep-
ancy between (0.11) and (0.12), due to the different curvature hypotheses,
corresponds precisely to the difference between (0.8) and (0.9) (likewise
(0.5) and (0.10)).

0.4. We now give some indication of how to prove Theorem 0.1 (ii),

for a distinguished metric. To do this, it suffices by the local characteriza-
tion of intersection cohomology to prove the local vanishing condition

(0.13) H { 2 ) ( U c ) = 0, k > n ,

where Uc, for c large, ranges over a cofinal system of punctured neigh-
borhoods of Sing V.

We first consider the abstract situation of a domain X in a Riemannian
manifold Y together with a free S^action Γ o n I (an Sι-domain). Our
main tool for understanding the L2 -cohomology of Y is the calculation
(Theorem 2.4), under certain technical conditions, of a spectral sequence
converging to H',2)(Y) which is a combined analogue of the Leray spectral
sequence and the exact sequence of the pair. Briefly,

E
1 " ϊ " ( 2 )

for/> =

H?2)(Y\X)

H^ι(X/T,(bdγX)/T; Iτf1)
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where τ is the connection form for T and Ϋ\X is Y\X with the T-

orbits in the boundary bdy X filled in by disks; for p = ± 1 we are using
here X2-cohomology with the weight function {τ^1 (see §1.1).

Now let Y = Uc, equipped with a distinguished metric associated to a
resolution π : V —> V let Dλ, , Dm be the smooth components of the
normal crossing exceptional divisor. For each / € {1, , m) , we can
construct a free Sx-action (and thus an ^-domain X1) in a punctured
neighborhood of Di out of the (S!)p-actions on each U^ (§§7.1,7.2). If

we apply the above argument repeatedly with X = X1, , Xm , we ob-
tain a spectral sequence converging to H',2JUC) (Theorem 7.7); this spec-
tral sequence is very similar to the weight spectral sequence (Theorem 7.5)
for the mixed Hodge structure on the ordinary cohomology H\UC), with
one important difference: aside from a potentially infinite-dimensional
row at q = n + 1, the ϋ^-term is truncated so that E~p'q = 0 for q > n .

To see why this happens, consider (0.10) and define a 1-form in T*M^
(resp. π[p]^*^[p] > Σw=i Crz) to have weight 0 (resp. 1, 2); a pure wedge
product is given the weight equal to the sum of the weights of its factors.
It turns out that E~p'q may be represented by forms φ = φo + dr Λφ{,
with φ0 of pure weight q and φ{ of pure weight q - 1 (see the proof
of Theorem 7.7, particularly (7.17)). On the other hand, the volume form
contributes a factor of e~nr to the integrand of the L2-norm \\φ\\. The
weight truncation of Eχ then follows from the calculation of the weighted
L2-cohomology of R+ (Lemma 1.8(i))—basically the point is that e{q~n)r

is not integrable on R+ for q > n.

However a truncation by weight is not enough; for (0.13) we need a
truncation by degree: E^p 'q = 0 for q - p > n. Fortunately the mixed
Hodge structure on Hk(Uc) satisfies a semipurity condition (Theorem 8.6;
see [19], [33], or [48]): in degrees k = q -p>n, there is no cohomology
with weight q < k . In other words, for k = q - p > n, E^p 'q = 0 for
q < k. The previous weight truncation together with semipurity prove the
desired degree truncation.

0.5. It is natural to wonder whether the class of distinguished metrics
could be enlarged so that Theorem 0.1 remained valid. This is certainly
the case; in fact, if V is a locally symmetric variety, we have not in
general admitted the locally symmetric metric as distinguished. It may
be possible to generalize the construction of a Kahler potential in §0.3
(for example, to treat projective morphisms that are not resolutions), and
modifications of some of the techniques used here may apply to studying
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the L2-cohomology of these more general distinguished metrics. We hope
to consider this, as well as the case of nonisolated singularities, in a future
paper.

It should be stressed, however, that the complete Kahler metric consid-
ered more commonly on V\D, the Poincarέ metric, should not be admit-
ted as distinguished for V, since our aim is to distinguish metrics relative
to which analysis (in particular, L2-cohomology) will reflect invariants of
V. The Poincare metric has the local quasi-isometric form

dzidzi
ι ι
idzi ^
ι—ι—+ydwidwi;|2χ2

its L2-cohomology is easily seen to be isomorphic to the ordinary coho-
mology of V [51]. In analogy to the previous notation, we would call
the Poincare metric a distinguished metric relative to the identity map
V —> V, or simply, a distinguished metric on V.

0.6. The sections of the paper fall naturally into two parts; the first
(§§1-4) deals with basic tools for calculating the L2-cohomology and the
spectral sequence of an S{-domain, the second (§§5-10) deals with L2-
cohomology of distinguished metrics. The reader may wish to begin with
the second part and refer back to the first part when the results are needed.

After presenting some basic tools for calculating L2-cohomology in §1,
we present in §2 the calculation (Theorem 2.4) of the spectral sequence
associated to an S ̂ domain. The somewhat technical proof of this result
is relegated to §3 and a generalization to multiple overlapping Sι-domains
(Theorem 4.7) is presented in §4.

In §§5-7, V is a complex manifold of dimension n and D = U™ j Z>. c

V is a divisor with smooth components intersecting with normal crossings.
Of course our main interest is when D blows down to the isolated singular
points of a variety V, but this assumption will not be needed until §8. In
§5 we decompose a punctured neighborhood Uc of D into regions with
cusp-like structure, and thus are able to define Sι-domains X1, - , Xm .
We next define distinguished metrics in §6 and give several quasi-isometric
expressions for one. Lastly we calculate in §7 the spectral sequence (from
§4) associated to the Sι-domains {Xι}1<i<m for a distinguished metric
on Uc and observe the weight truncation.

Beginning in §8, V is a Kahler variety with isolated singularities and
π : V -» V is a resolution of singularities. We assume that the morphism
n is projective and that the exceptional divisor D has smooth components
intersecting with normal crossings. The proof of Theorem 0.1 is finished by
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showing that Kahler distinguished metrics exist (Theorem 8.4) and that the
weight truncation may be replaced by a degree truncation (Theorem 8.7).

In §9 we discuss L2-Hodge structures and in §10 we give the proof of
Theorem 0.3.

0.7. Acknowledgments. Theorem 0.1 was proven in the fall of 1985;
it was announced and an outline of the proof was presented in [43]. The-
orem 0.3 was proven in the fall of 1986 after seeing Zucker's proof of
Theorem 0.2 and after discussions with Bill Pardon concerning MacPher-
son's conjecture. We would like to thank W. Pardon and S. Zucker for
their interest in this work. We also wish to thank N. Habegger and D.
Morrison for helpful conversations. This manuscript was revised, on and
off, while visiting the University of California at San Diego, the Univer-
sity of Illinois at Chicago, and Harvard University; we would like to thank
these institutions for their hospitality. Finally, we would like to thank
Shing-Tung Yau for his continual encouragement.

We are grateful to both Bill Pardon and the referees for their suggestions
for improvements to the paper.

0.8. Notation. Two positive functions (resp. Riemannian metrics, pos-
itive (1,1) forms, etc.) g and g are said to be quasi-isometric, denoted
g ~ g , if there exists a constant C > 0 such that C~x g < g < Cg . We
write g < g if g < Cg .

If C is a complex, let C[p] denote the shifted complex so that C[p]1 =
Cι+P . For W an increasing filtration on C, we denote the associated
graded complex W.C/W.^C by G r ^ C

Denote the boundary of a piecewise-smooth (ps) manifold with bound-
ary Y by d Y if X c Y is a closed ps domain, the set of its topological
boundary points relative to Y, dX\dY, is denoted b d y X .

If A c Y is a subset of a topological space, a punctured (closed) neigh-
borhood of A is a (closed) neighborhood of A with A itself removed.

If v is a vector field, we denote the corresponding operations of interior
multiplication and Lie derivation by ιv and Lυ , respectively.

1. Basic calculations of L2-cohomology

In order to establish notation, we briefly recall the definition of L2~
cohomology in § 1.1 references are [ 11], [ 13], [52]. In the remainder of this
section, we present some tools for calculating L2-cohomology, all based on
the use of homotopy formulas (§1.2); many of the arguments are inspired
by techniques of Cheeger and Zucker. In § 1.3 we restate Zucker's theorem
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[52] on the L2-cohomology of warped products in a form convenient for
our needs; in §1.4 this is extended to some simple cases of warped bun-
dles. Finally, §1.5 deals with the problem of extending homotopy formulas
outside a domain.

1.1. L2-cohomology. Let Y be a piecewise-smooth (ps) Riemannian
manifold with boundary. In other words, Y is a ps manifold with bound-
ary equipped with compatible Riemannian metrics on each closed top-
dimensional simplex of some ps triangulation; compatible here means that
the restriction of the metric to vectors tangent to the codimension one sim-
plices is well defined. Let F C dY be a closed domain and g > 0 a ps
function on Y (called a weight function). We shall refer to this type of
data as a triple (Y, F, g). Let A\Y, F) (resp. A[(Y, F)) denote the
space of ps(resp. ps compactly supported) /-forms on Y with zero Dirich-
let boundary data on F. That is, if j' : d Y *-> Y denotes the inclusion,
then φ e A\Y, F) satisfies j*φ = 0 o n F ,

The closure of Aι

c(Y, F) under the weighted L2-norm

= f \Φ\2gdv
JY

forms a Hubert space, denoted Lι

2{Y \ g) (it is clearly independent of F).
Let dγ F. denote the exterior differential operator on the domain

Όom{dγ Fg) = { φ e A\Y, F) n L2(Y; g) | dφ € L+\Y g)}.

The L2-cohomology H'(2)(Y, F\ g) is the cohomology of the complex
(Όom(dγ F ), dγ F.g) it is an invariant of the quasi-isometry class of
g and the metric on Y.

It is often more convenient to work with closed operators on Hubert
space. Thus let dγ F be the closure of the operator dY F ,g in the
sense of unbounded operators on Hubert space; that is, the graph of
dY F g is the closure of the graph of dY F;g in the graph norm. Then
by [11] the L2-cohomology may also be defined as the cohomology of
(Dom(dYjr.g),dYJF.g).

We will omit F (resp. g) from the above notation when F = 0 (resp.
g = 1). Furthermore we will omit all the subscripts from dY F.g when
this will not cause confusion.

Decompose the L2-cohomology orthogonally as

( U ) H{2)(Y>F;g) =

' " Θ



102 LESLIE SAPER

The second term in the right-hand side of (1.1) can be seen by the open
mapping theorem to be either 0 or infinite dimensional. The first term is
called the reduced L2-cohomology, H'{2)(Y, F g) it admits a representa-
tion by harmonic forms. Namely, let d* denote the Hubert space adjoint
of ~d and let Δ = ~d d* + d*d be the corresponding Laplacian with the

— — $ — - I

induced domain. Then, since Ker(af ) = Range(d) ,

Π'{2)(Y ,F;g) = Keτ(d)/Range(d) S* Ker(rf) Π Ker(d ) = Ker(Δ).

Combining this with (1.1), we have

(1.2) H[2)(Y,F;g) = Ker(Δ) Θ Range(</)/Range(</).

Finally, we remark that if Y is complete, a theorem of GafFney [20]

states that A*C(Y, F) is dense in Όom(d) for the graph norm. In other

words, if Y is complete, one has the equality d = dc, where dc is the

exterior differential operator with domain 4C(Y, F). This sometimes re-

duces computations on Dom(ύί) to ones on A'c(Y, F).
1.2. Homotopy formulas.

Definition 1.1. Let C be a complex with differential d and let P be a
map of C . P is homotopic to the identity map if there exists a homotopy
operator H : C -+ C satisfying the homotopy formula

We call H a good homotopy if HP = P77 = 0.
If P is homotopic to the identity, it induces the identity map on the

cohomology H(C) if, in addition, C is a normed complex and P is
bounded (but not necessarily H), then P induces the identity map on
the reduced cohomology Ή{C) = Ker(rf)/Range(d) ΠKeτ(d). By a normed
complex, we simply mean that as a vector space C is endowed with a norm;
C may not be complete and the differential d may not be bounded.

Example_1.2. Let (Y, i 7 , #) be a triple as in §1.1 and let (C, d) =
(Dom(d), d). If Range(rf) is closed, then orthogonal projection P of
Dom(ύf) onto Ker(Δ) (harmonic projection) is homotopic to the identity
via a good bounded homotopy operator H. Here H is the pseudoinverse
d , that is,_Hφ is 0 if φ e Σ>om(d) θ Range(rf) and is the unique
solution of dψ = φ, ψ ± Ker(rf), if ^ € Range(J). The harmonic
projection P induces the isomorphism H^2)(Y9F; g) = Ker(Δ) of (1.2).

Remark. Good homotopies are useful when lifting a homotopy on an
associated graded complex Gτw C to a homotopy on C (see Proposi-
tion 3.7 and Lemma 4.11). Note that any operator P which is homotopic
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to the identity via a good homotopy is necessarily a projection operator,
i.e., P = P2 .

Definition 1.3. A homotopy equivalence between two complexes C and
R

D consists of a pair of maps C z t D such that SR and RS are ho-

motopic to the identity via homotopies Hc and HD respectively. The
homotopy equivalence is good if both Hc and HD are; the homotopy
equivalence is filtered (for some filtration W on C and D) if R, S,
Hc , and # D are.

Homotopy equivalences may be composed:

Lemma 1.4. Let C z ί D and D z ί £ &£ homotopy equivalences,
sι s2

with homotopies Hx

c, HX

D, H2

D, and Ή\ . Then

R2Rι

(i) C n t J? Z5 α homotopy equivalence.
sιs2

(ii) //>Ae ̂ /vβ/ί homotopy equivalences are good, then so is the homotopy

equivalence in (i), provided [Hι

D, S2R2] = [H2

D, RlSl] = 0 (we may also

need to replace Rι by R]SιR], etc.).
(iii) If the given homotopy equivalences are filtered for some filtration,

then so is the homotopy equivalence in (i).

Proof For SιS2R2Rι , use the homotopy Hι

c + S1HIR1 .

Remark. We frequently use the special case where Sι and S2 are
inclusion maps (in which case the parenthetical comment of (ii) is unnec-
essary).

If C has a norm, a usual way to establish a homotopy formula is to
prove it on a subcomplex which is dense in the graph norm:

Lemma 1.5. Let C be a normed complex, which is complete in the
graph norm of d. Let C o c C be a subcomplex, dense in the graph norm.
Say H and P are bounded operators from Co into C such that

(1.3)

on CQ. Then H and P extend to operators from C to C such that (1.3)
still holds. If H is a good homotopy on C o, so is its extension to C.

Proof Extend H and P to bounded operators on C , the Banach
space completion of C. Since Co is graph norm dense in C, we may
approximate φ e C by a sequence {φ^ in Co such that φi -» φ and
dφi -> dφ. Since H and P are bounded, we see that Hφi —> Hφ and

= Φi - Pφt - Hdφi -+φ-Pφ- Hdφ in C. Since C is closed in
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graph norm we see that Hφ e C and (1.3) holds. It follows that Pφ e C.
The final statement is clear. __

Remark. In practice, C will be a subcomplex of Όom(dYF.g), for
some triple (Y, F\ g). For example, C may be defined by invariance
under a group action. Co will typically be A\Y, F)nC, or AC(Y, F)ΠC
if Y is complete.

13 L2-cohomology of warped products. Let (M,FM,gM) and
(N,FN, gN) be triples, each consisting of a ps Riemannian manifold with
boundary, a domain in the boundary, and a positive ps weight function.
Given w : M -> E + , a positive ps function (called a warping function),
define the warped product triple to be (M xw N, FM x NuMx FN, gMgN),
where M xwN is the manifold M x N equipped with the metric

By examining compactly supported decomposable forms one can see that
[52,(2.10)]

(1.4) L2(M xwN; gMgN) 2 0 ( 4 ( M ; gkgM)®Lk

2(N; gN)[-k]),
A:

where § denotes the completed tensor product and gk = w ^ 2 ( v =

R

Theorem 1.6 (Zucker [52,(2.29)]). Assume that

(i) M xw N is complete {or, more generally, d — dc)f

(ii) dN F . Λαs closed range, and

(iii) ίAtf warping function w is bounded.
Then the operator P induced on (1.4) by harmonic projection in L'2(N; gN)
(with zero boundary conditions on FN) preserves Dom(<7). The restriction
of P to this complex is homotopic to the identity via a agood bounded
homotopy

CL~\MxwN\gMgN).

Remark. The fact that H is bounded into a space with an additional
weight of w~ will be crucial for our applications, particularly in order
to satisfy the hypotheses of Lemma 1.11 below. Neither this fact, nor the
fact that H is good, is explicitly stated in [52], however they are clear
from the proof.
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Corollary 1.7 [52,(2.34)]. Under the assumptions of Theorem L6, if

H{2)(N, FN\ gN) is finite dimensional for each k, then

H[2){M xw N,FMxNuMx FN; gMgN)

®m H{2)(N, FN;gN)[-k]).

With the metrics we will be considering, Corollary 1.7 often reduces
the computation of L2-cohomology to knowing the L2-cohomology of a
half-line with exponential weights. For convenience, we recall this here
(see, for example, [42, Propositions 3.2, 3.3]):

Lemma 1.8. Let R+ = [0, oo) have the usual metric dr2, where r is
a coordinate on K+, and let λ e R. Then

\ V ~~IZ)\— ' ~ / ' (P

infinite dimensional λ = 0.

(ii) H°2)(R\{0};eλr)= 0,

(C λ>0,

H*2ΛR+

 9 {0} € r) = < infinite dimensional λ = 0,

I 0 λ < 0.

1.4. Warped S^bundles. Let (M9FM, gM) be a triple and let π :
Y -> M be a principal 51-bundle with Sι -action Γ . Let ^ denote the
vector field on Y defined by Γ . Given a warping function w : Λf —> R+

and a connection on Y with connection form τ , the associated warped

Sι-bundle is the manifold Y equipped with the metric

π fl^M -f (π it;) τ .

Here, the connection form τ may be any Γ-invariant ps 1-form on Y
such that τ ( ^ ) = 1 this corresponds to a Γ-invariant ps choice of a,
horizontal subspace of TY, namely Ker(τ). The 1-form dτ is then the
lift of the curvature form on M. Note that any Γ-invariant metric on Y
gives Y the structure of a warped S ̂ bundle.

Similarly, if π : Ϋ -* M is the associated disk bundle to π, with radial
coordinate x, the warped disk bundle metric is defined to be

* , 2 , * λ 2 , , 2 , 2 2s

π dsM + (π w) {ax +x τ ).
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Proposition 1.9. Assume the warping function w is bounded. Then
there exists a bounded projection operator P of L'2(Y π*gM) onto the
subspace

(1.5) πl

which preserves the complex Όom(dγ π-\F .π+g ). The restriction of P

to this complex is homotopic to the identity via a good bounded homotopy

operator

H: L2(Y πgM) -> L~l(Y w'2π gM) C L-[(Y; π gM).

If we also assume that

(1.6) \dτ\2<w~\

then the analogous result holds for Ϋ with the subspace (1.5) replaced by

π*L2(M;w2gM).

Remark. Note that we do not need M , y , o r ? to satisfy d = dc.
Proof By Lemma 1.5, it suffices to consider just ps forms; for simplic-

ity, we will also assume FM = 0 , gM = 1.

Let Tθ denote the action of θ e Sι on Y and define

H{φ) = ^ J o o / e θ θ

foτφeA'(Y). P and H preserve piecewise smoothness and, since |τ | 2 =
w~ , clearly have the required boundedness properties. The homotopy
formula follows for ps forms from the standard formula doiQ.dQ + ιQ,dθo
d = Ld,dθ and integration by parts.

For the case of 7 , denote the zero section of Ϋ also by M and

consider the warped Sx -bundle y - A f - * ( O , l J x A f (the projection

is p ι-> (x(p), π(p)) and the warping function is xw ). By applying the

first part of the theorem we obtain operators Pθ and Hθ and a homotopy

formula on D o m ^ j ^ ^ ) . However, since M C Ϋ has codimension 2, a

result of Cheeger [11, Lemma 1.1] implies that d<γ_M = dψ if we identify

L'2(Ϋ - M) = L2(Ϋ). Now let φ e Dom(rfp) and decompose in Ϋ - M

(1.7) Pθ{φ) = ao + dx Aax + τ Λ(a2+dx Λa3),
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where ιd/dχai = ιd/dθai = 0. Since the αz are Γ-invariant we have

dPθ(φ) = da0 + dτΛa2 + dxΛ (-£& - daχ + dτ Λ α3

(

+ τΛ \^

here we have decomposed

Define

Pφ =

= Hθφ- aχ + / x α 1 -

where the integrals are with respect to x. Using the fact that φ is ps on
Y (and thus in particular that a2 and α 3 vanish when x = 0) one easily
computes the desired homotopy formula. The boundedness of H and P
follows from the Cauchy-Schwarz inequality and FubinΓs theorem by the
type of arguments used for [52, (2.39)]; the hypothesis (1.6) is needed for
the second term of P.

The fact that H is a good homotopy in both cases is a simple calculation
from the definitions.

1.5. Extending homotopy operators. In many situations, the previous
results may only apply in a subdomain of a larger space. We will show,
under certain conditions, that operators homotopic to the identity on a
domain X C Y can be extended to operators homotopic to the identity
on 7 .

Definition 1.10. Let X be a closed ps domain in Y, a ps manifold
with boundary. Let M = bd y X and assume M is a ps manifold with
boundary dM — MndY. A tubular boundary neighborhood (N9p, t) of
X consists of a tubular neighborhood N of M with normal projection
p : (N,NddY) -• (M, dM) and normal variable t: (ΛΓ, NΠX, M) ->
(l-b, b],[O,b], {0}), where b > 0. We identify N with [-b, 6] x M
via / x p .

Terminology. In later sections, we will say an object on N (e.g., a map
or a group action) is independent of t if it is induced from some object
on M via the identification JV = [-b, b]x M.

Lemma 1.11. Let (Y, F, g) be a triple. Let X c Y be a closed ps
domain and assume there exists a tubular boundary neighborhood (N, p, t)
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of X satisfying:

(i) p(F ΠN\(XΠN)) c FnNnX, where p denotes the reflection
ofN, (t,m)~(-t,.m).

(ii) g\N~p*{g\M).

(iii) ds2

γ\N ~ {p*w)2dt2 +p*dslί, where w(m) > 0 is a bounded func-

tion on M and ds2

M is a ps metric on M.

Let Pχ be a bounded operator on D o m ( ^ ,mx;g\ )> homotopic to the

identity via a bounded operator

Hχ : L2(X; g) -> L~\X\ w~2g) C L~\X; g),

where w > 0 is a bounded function on Y with w\N ~ p*w.

Then there exists a bounded operator Pγ on Όom(dγ F;g) satisfying

Pχ(φ\χ) on X,

Φ\Y\(XUN) onY\(XuN),

which is homotopic to the identity via a bounded homotopy operator

Hγ: L2(Y'; g) - L2\Y\w~2g) CL~\Y\ g)9

satisfying
Ίχ{φ\χ) onXf

\ onY\(XΌN).

If Hχ is a good homotopy, then so is Hγ.
Proof Let η(t) be a ps cutoff function on N such that

= 0 for t < -2bβ, η{t) = 1 for t > -b/3.

For φ € L'2(Y g) define

ί Hχ(φ\χ) mX,

Hγφ = I ηp*Hχ(φ\χ) in N\(X Π Λ0 ,

[0 iny\(ΛΓUΛΓ),

' Pχ(Φ\χ) ™X,

p Φ=\ φ~ηp*(φ\χ] + w'PxMx)
γ I - dη Λ p*Hχ(φ\χ) in N\(XnN),

. φ in Y\(X U N).

By our hypotheses, the operation ψ •-> ηp* ψ defines a bounded map

A(X,FnX)nL2(X;g)

— A(N\(XnN),FΓ\ N\(XΠJV))ΠL2(N\(XΠN);g)
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(resp. for the weight g replaced by w~2g). Thus to see that Hγ and

Pγ are bounded into the desired spaces, it remains to examine dη Λ

p*Hχ(φ\χ). But this is bounded since \dη\2 < w~2 and Hχ is bounded

into a space with an extra weight of w~~2.
Since extending a form ψ on X by ηp*ψ preserves piecewise smooth-

ness, it is easy to check that the desired homotopy formula holds on piece-
wise smooth forms and that if Hχ is a good homotopy, so is Hγ. By
Lemma 1.5, Hγ and PY preserve Όom{dγ F ) and the homotopy for-
mula extends.

2. A spectral sequence for S'-domains

Let {Y, F, g) be a triple as in §1.1, consisting of a ps Riemannian
manifold with boundary Y , F CdY a domain, and g a weight function
on Y. Assume Y contains a closed domain X possessing a free S1-
action T (an S{-domain; see below for the precise definition). Associated
to the ^-domain is a filtration W on C = Όom(dγ F~g) Formally
this filtration is composed of two well-known filtrations. The first stage,
W{C D WQC, is associated to the Leray spectral sequence of the quotient
map

γ->(Y\X)υ(X/τ),

obtained by collapsing the fibers of the S^action on X. The second stage,
W0C D W_χC, corresponds to the exact sequence of the pair

where M = bd y X. The main result of this section (Theorem 2.4) is the
computation of the PF-spectral sequence converging to H',2ΛY,F; g) un-
der the technical hypothesis that X be admissible (Definition 2.3). Briefly,
the result is what one would expect from the formal description above, ex-
cept for changes in the weight functions due to the possible decay of | ^ | .

2.1. Definitions.
Definition 2.1. An S{-domain in Y is a closed ps domain X C Y,

together with a free Sι -action T on X (preserving both dX and M =
b d y X), such that X, dX, and M are all principal ps S[-bundles over
ps manifolds with boundary.

Let X be an -^-domain in Y. We denote the projection X -• X/T by
π and the vector field on X induced by T by ̂  . If Z c I is invariant
under Γ, we write T\z for the induced ^-action.
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Denote the complex Όom(dγ F.o) by C.

Definition 2.2. Let X be an Sx -domain in Y. The filtration W on
C associated to JY is defined by

= I φ e C I f(ιd/dθτ;φ\χ) dθ ΞE 0I

where Tθ denotes the action of θ e Sι on X.

Definition 2.3. The pair (X, (N, p, 0) consisting of an £*-domain
Λ" and a tubular boundary neighborhood (N9p9 t) (Definition 1.10) is
said to be admissible relative to (Y, F, g) if the following conditions
hold:

(i) NΠX is invariant under T and the Sι-action T\Nnχ is induced
from T\M independently of t.

(ii) F ΠX is Γ-invariant and F ΠN = [-b, b] x (F D Af).
(iii) Extend T and ̂  to all of XuN, independently of / in N (this

is possible by (i)). Let τ denote the ps 1-form on Xu N given by

= 0.

Then dsy and g satisfy:

dSγ\χuN and g\XuN are quasi-isometrically Γ-invariant,
that is,

^ ^ rf 2I ~ Γ*rf 2 |

uniformly in ^ , and similarly for g,

(2.2) g\N~P*(g\u)>

(2.3) rfjyljv ^

τ )+P*(*\MTdsMiT i n

where tt (m) > 0 is a Γ-invariant function on M 9 f(t, m) > 0 is a

Γ-invariant function on [0, 6] x M, and dsM/τ is a ps metric on M/T,

(2.4) / f(s,-)ds~l inΛf, 1 </<(/? tt;) in[0,&]xΛf,
Jo

(2.5) / - I in [ε, δ ] x M f o r e > 0 } f\{o}xM~w~2>
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(2.6) |τ |~ 2 < 1 inXuN

(in N this already follows from (2.3) and (2.4)), and

(2.7) \dτ\2Z\τ\2 in X\N, \dτ\2 <w~4 in N.

(iv) (N, p, t) may be extended to a larger tubular boundary neighbor-
hood (N, p, t) in which (i)-(iii) continue to hold (say with b replaced
by 26).

When we speak of an admissible Sι-domain X, we are assuming that
we have fixed a tubular boundary neighborhood (N, p, t) such that
(X, (N,py t)) is admissible relative to {Y, F, g) (in particular, we are
assuming such a tubular boundary neighborhood exists).

2 2. Main results. In order to state the main theorems of this section
we need the following construction. Let X be an admissible S1 -domain.
Define

to be the closed disk bundle associated to π\M: M —> M/T. We give M
the warped disk bundle metric

w(m)2(dt2 4- (1 - ί ) V ) + nMds2

M(τ

(here we identify M\{zero section} = [0, 1) x M and let t denote the
first coordinate). Define

(2.8) Y\X = Y\XUMM,

where we identify the copies of M lying in the boundaries. Similarly

define {F\(FnX))^. We give Y\X the ps metric which restricts^to those

on Y\X and M. Let g denote the extension of g\Y^x to Y\X which

is independent of t in M.
Define the triples

(XJT,(FnX)/TU(M/T)9\τ\-{g) if; = - l ,

(2.9) (^,^}> gj)= \ (Y\X9(F\(FnX)Γ9g) if 7 = 0,

The tubular neighborhood N (resp. N) of M induces tubular neighbor-
hoods

{ (NΠX)/T if./ = - l ,

(N\(NnX)f if 7 = 0,

(NΠX)/T if 7 = 1
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(resp. Nj = ) of M/T viewed as a subset of Y. let

(2.11) PJ:NJ^M/T (; = - 1 , 0 , 1 )

(resp. p.) be the induced projections. Let η±(t) be ps cutoff functions

on N. satisfying

(2 12) * W s l f o r / < 6 , V ( / ) s 0 for/

ι/~(/) = 0 for t < -3b/2, η~(t) = 1 for / > -6.

Theorem 2.4. Leί X teαw admissible Sι -domain relative to ( 7 , F9 g),

and let W be the associated filtration on C = Dom(dγ F.g). Then the

W-spectral sequence for H'{2)(Y, i 7 ; g) has

Eχ =H (Gτp C) = H{2) \Yp>Fp,gp),

and the differential

d \ E \ " • E \

is induced by the map

{.
In these formulas it is assumed that γ\N is the pullback via p* of a form

on M/T, so that γ\M/τ is well defined. (The fact that a class in E\p'q

can be represented by such a γ will follow from the proof)
Similarly, the differential

is induced by the map

where

da2 .

(- l)d € gVτΛ(y -

and ψ satisfies dψ = -qχy.
In order to compute L2-cohomology of XjT (and thus, by the theorem,

Efι'q), it is useful to replace the metric and weight function by simpler
ones in which the function f(t, m) (see (2.3)) has been replaced by 1.
By (2.4), this is equivalent to starting with a new metric on X which
has been averaged with respect to / in I n i V . Sometimes this yields an
isomorphism on L2-cohomology:
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Theorem 2.5. Let X be an admissible Sι -domain relative to (Y, F, g).

Let X/T denote the manifold X/T equipped with the metric

ds2

χ/τ on(X\N)/T,

dt2+p*ds2

M/τ on(XΠN)/T,

|τ| denote:

(2.14) |7 |~

(

and let |τ| denote:

~ ί]τ| on(X\N)/T,

\(p*w)~2 on(XΓ)N)/T.

Then there are isomorphisms ofcohomology

H[2ΛX/T, (F ΠX)/TU M/Γ lτf1 g)

H[2)(X/T, (FΠX)/T; \τ\g) <* H^X/T> (FnX)/T;\τ\g),

which are induced by bounded inclusions of L2-forms.
2.3. Preliminaries for the proofs. In order to prove the theorems, we

will show that (C, W) may be replaced by a filtered complex (Cx, W)
in which W is naturally split. As vector spaces,

S

and

(2.15)

where

(2.16) C f r y > y ; ^ ^

Intuitively, C*{ and c f represent the terms without τ and the coefficient
of τ respectively of a form on Γ restricted to X this accounts for the
different weight functions and the shift in degree. CQ represents the

restriction of a form to Y\X, extended to Y\X this extension allows us
to avoid the special boundary conditions on Y\X that were used in [42].

The differential dcx on (Cx, W) is given by the following proposition.

Proposition 2.6. There exists a differential dcx on (Cx, W) such that

(i) ύfĉ  = ®dcχ + ^, π̂ Λ̂ r̂  {JCA-} are rÂ  respective d-operators on

Z. } and q = q{+q2 strictly lowers W-weight
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(ii) There exists a good filtered homotopy equivalence

The proof of this proposition will occupy the next section; the proof
of Theorem 2,5 will appear along the way. We conclude this section by
giving the

Proof of Theorem 2.4. By Proposition 2.6(ii), Gτw C is homotopy
equivalent to G r ^ Cx, thus it suffices to prove the result for the spectral
sequence of (Cx, W). In this case, however, it is obvious given Proposi-
tion 2.6(i) and (2.16).

3. Proof of Proposition 2.6

We retain the notation established in §2. Since the weight function g
and the boundary conditions on F play no role in the following arguments
due to their Γ-invariance and independence of t, we will omit mentioning
them.

3.1. In this subsection we head towards the proof of Proposition 2.6
by showing that C is filtered homotopy equivalent to the subcomplex

C i n v = { φ e C I φ\χ is Γ-invariant and φ\N is the

pullback under p : N -> M of a Γ-invariant form on M }.

Lemma 3.1. There exist maps Pθ and Hθ of C (of degree 0 and — 1,
respectively) such that

(i) dHθ + Hθd = I-Pθ,
(ii) Pθφ is T-invariant in XΌN for φ eC,

(iii) Hθ is a good homotopy,
(iv) Pθ and Hθ preserve the filtration {WpC}.

Proof. XUN is (quasi-isometric to) a warped Sι-bundle by (2.1) and
the warping function |τ |~ 2 is bounded according to (2.6). Assertions (i)-
(iii) now follow by applying Proposition 1.9 (to construct PQ and Hθ

on X U N) and Lemma 1.11 (to extend Pθ and Hθ from X u N to
Y). (The hypotheses of Lemma 1.11 are fulfilled due to (2.3), (2.6), and
Definition 2.3(iv).) Assertion (iv) follows by inspection.

Lemma 3.2. There exist maps Pt and Ht of PΘC such that

(i)
(ii)
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(iii) Ht is a good homotopy,
(iv) Pt and Ht preserve the filtration {WpCΓ)PθC}.

Proof. We begin by operating on forms in N. Set

CN = { Φ e Dom(dN) I φ is T-invariant}.

For φ e CN we decompose

(3.2) ^ = α o + Λ Λ a j + τ Λ ( α 2 + ΛΛ α3)

analogously to (1.7).

In order to motivate the construction of a homotopy operator to forms
pulled back from M, we recall that Cheeger [11] used the operator

rt
φ»Haφ= (ιd/dίφ)

J a

on metrical collars and cones to obtain the homotopy formula

But φ *-+ Φ\sa\xM does not define a bounded operator. To get around this,
we average the formula (and Ha) in a . Furthermore, in order to preserve
the W filtration, we must treat the terms of a form with and without τ
separately: terms with τ will be homotoped in the negative t direction,
and terms without τ will be homotoped in the positive t direction.

Thus for φ e A(N) n CN, define

and

""•-^έjf 0Γβ ) Λ

where unmarked integrals are over the normal variable in N. From Def-
inition 2.3(i), (ii) we see that ^φ e A'(N) Π CN . One easily computes
(using the analogue of (1.8)) that

+ H+dφ = φ-\^ ί <*o + lf (fdτΛaλda

(3.3)
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and

I I Γb ί Γa

α 0 + T / I / dτAc
b Jo \Jt

1 fb

(3.4) +dtΛa] + τ Λ τ / α 2

o Jo

where we are defining P± by these equations. It is also easy to check that
H± are good homotopies.

We now claim that i/* and P± are bounded; consequently, by Lemma
1.5, they define maps of CN (of degree -1 and 0, respectively) for which
the good homotopy formulas (3.3) and (3.4) remain valid.

To prove the claim, first note that due to (2.3) we have

2 if in X Π N,

\w2 inN\X,

and

_ i -1 ί f w in X Π iV,

I w2 in ΛΓ\ΛΓ.

Thus since /0* f(s, )ds ~ 1, 1 < / , and w2 < 1 (by (2.4)), we have

(3.5) ' - 6

and

(3.6) ί \τ\~ι\dt\~ι - tϋ2 < |τ| ι \dt\ x in iV.
y~6-b

We also have

\ l\dt\

although since φ is Γ-invariant we will suppress the integration in the
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Γ-orbits from our formulas. Now compute

(by Cauchy-Schwartz)
(3.7)

f ( ίb 2\ ( Γb -1 -1 \
< / / |d/Λα.| ) / |τ| \dt\ dt)dVMIT (by (3.5))

JMiτ\J-b ι J\J-b ) f

rb

MjT
(f \dtN«χΐ\τ\-\dt\-χ dt\dVMIT (by (3.6))

and

[3.8)

(by Cauchy-Schwartz)

2

rb
i it

<

fM/T
ι,2

f ([" iτ^dίΛafyf^dtf'dλdV (by (3.6))

If we note that

|τ| 2, \dτ\2 < w- 4 (by (2.3), (2.4), and (2.7)),

then it is easy to see that all terms in //* and P± involving integrals
of α, and α3 have their L2-norm squared dominated by (3.7) and (3.8)
respectively. As for the other terms, if we replace αj by α 0 in (3.7)
and change the application of the Cauchy-Schwarz inequality to merely
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(ΛKI) 2 ^(/-.KI 2 )^e obtain

(3.9) f" f ([" la^lτΓ^dt^dV^dtzUΦW2.
J-bJM/T\J-b J 'fM/Ti

rb
On the other hand, if we replace in (3.8) α 3 by α 2 and the inner f__b by

JQ , then we have

(3.10) f" f w~4(f"^lαV
J-bJλf/T VO

since \dt\2 < 1 for / > 0 (by (2.3) and (2.4)). Thus the remaining two
nontrivial terms in P± , involving integrals of α 0 and α 2 , are bounded
by (3.9) and (3.10), respectively. This completes the proof of our claim.

Since one may easily check that [/>* , H* ] = 0, Lemma 1.4 shows that
Pt = P+P~ is homotopic in CN to the identity via the good homotopy
Ht = H~ + H+P- .

To extend these results to PΘC we use Lemma 1.11; this can be done

provided we show that H (and thus Ht) is bounded into L2~ (N \dt\ ) .

For H~ this is clear from (3.8) since \dt\2\τ\2 < w~4 (see (3.6)). For H+

the estimate is obvious when t > 0, where \dt\2 ~ f~ι < 1 (2.4). If

t < 0, we note that H*φ only depends on 0|f_^ O]XΛ/5 S O ^n (̂ - )̂ a " '

integrals in t can be restricted to [-b, 0]. Then an extra weight of \dt\2

can be cancelled by applying $°_b \dt\~2 ~ w2 ~ \dt\~~2 (instead of (3.5))

to the second line of (3.7).

Thus we have proven (i) and (iii). We leave it to the reader to check
that (ϋ) and (iv) are satisfied (note that the choice of /0 or f®b in H^
is essential for (iv)). q.e.d.

Combining Lemmas 3.1 and 3.2 with Lemma 1.4 we find:
Proposition 3.3. There exist maps Pc and Hc of C such that

(i) dHc+Hcd = I-Pc,
(ϋ) P c (C)cC i n v ,

(iii) Hc is a good homotopy,
(iv) Pc and Hc preserve the filtration {WpC} .

Corollary 3.4. We have a good filtered homotopy equivalence

where ic is the inclusion map and Pc is a projection.
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3.2. We now show that a subspace C*v of Cx , defined similarly to
C i n v, has a differential for which it is isomorphic to C i n v .

Recall we have tubular neighborhoods {N., pj) of M/T c ϊ^ , defined
in (2.10) and (2.11). For 7 = 0, (Nj9Pj) is a warped disk bundle with

warping factor w2 (this is bounded by (2.4)), while for j' = - 1 or 1 it is
a trivial [0, Z>]-bundle. Although in the latter cases, the metric is not the
product metric (due to the dependence of f(t, m) on t), estimate (2.4)
shows this is irrelevant when computing L2-norms of forms lifted from

M/T with weights |τ|± L = \/J w^2. Thus we have quasi-isometric
embeddings defined by lifting forms:

/>!, : L2(M/T; w2) - L2{N_γ \τfι),

(3.11) P;:L2(M/T;w2)-+L2(N0),

(the change in the weight function for p^ is due to the effect of |τ| on the

volume form). The analogous embeddings defined by lifting to Nj will be

denoted p*.

Define C^v C Cx (merely considered as graded vector spaces, for now)
by

where

(3.12) C* V ) , = { φ e C* I φ\Nj e RangeCpJ)}.

Clearly C^v is a subcomplex of C*. The advantage of Cx

nv . is that a

form φ € C^v has a well-defined restriction Φ\MjT to the submanifold

M/T. By (2.16), (3.11), and (3.12), the restriction φ *-+ Φ\M/T defines

bounded cochain maps:

(3.13)

_ 1 | A / / r = 0 due to the boundary conditions in C*t).
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Proposition 3.5. There exists a differential dcx on (C* v , W) such

that:

(i) dcx^ = ®dcx + qiny, where qiny : C^v -+ C*y strictly lowers W-

weight.
(ii) There exist filtered isomorphisms

(Cinv,W)^(C*v,W)

such that Riny and Siny are inverses of each other.

Proof. For part (i), define

(3.14) dcL--

where

(3.15)

Here /?* is defined following (3.11) and the ^ ± are the ps cutoff functions
defined in (2.12).

It is straightforward to see that the condition for drχ to be a differen-

tial,

(3.16) ( 0 d c x ) qim + qϊm (β dcf) + ^ i n v ^ i n v = 0,

holds on A n C* . If we show that q. is bounded, it will follow that
Λ X

qmv preserves C i n v and that (3.16) holds on C i n v (compare Lemma 1.5);
note that the —1 component of # i n v has zero boundary values on M/T
as desired. Thus the following estimates (which follow from the form of
the metric in (2.3) and the noted references) will finish the proof of part
(i):

(by (2.5) and

(by (3.13)),
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\\dτΛ(γϊ -η¥p%{yx

; | τ |

(by (3.13)),

.^ (by (3.11))

( b y ( 2 7))
(by (3.13)),

(d) £ IIJΊU/rlU/r-,,,-2 ( f ey (2-3) and (3.11))

i (by (3.13)).

For part (ii), decompose φ e C i n v as

where ιd,dθΦj = 0 (j = - 1 , 1). From the definition of C i n v (3.1), φj is
!Γ-invariant, so we may write

where π: X ^ X/T denotes the quotient map and ψj is a form on X/T.
Furthermore, since ψ- is independent of t m N, ψj\M,τ is well defined.

Define Rinv = (RiDV^ , Λ i n v > 0 ^ i n v t ) : C inv - C^v formally by

(3.17) A n v , o |

(PO(Ψ-I\M/T)

± iswhere p* is defined following (3.11) and η± is defined in (2.12)
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Define S i n v : Cfm -> C i n v formally by

(3-18)

We leave it to the reader to verify that Riav and S1ΠV formally commute
with the differentials, are inverses of each other, and preserve W. It
remains to see that they are bounded.

By (2.1), we have quasi-isometric embeddings

( 3 1 9 ) π*:L2(X/T;\τΓ{)->L2(X),

π*:L2(X/T;\τ\)->L2(X;\τ\2).

From ( 3.19), (3.11), (3.13), and (for the last term in Siny) the estimate

1 < w~2 (2.4), one easily checks that Riπv and Sinv are bounded.

3.3. We now show that Gτw Cx is homotopy equivalent to Gτw C* v,
which enables us to prove Theorem 2.5. Next we extend the differential
on C*v (Proposition 3.5) to a differential on all of Cx in such a way
that Cx is filtered homotopy equivalent to C* v. We then finally give the
proof of Proposition 2.6.

Lemma 3.6 There exist maps P. and H. of Cx (j = - 1 , 0, 1) such
that

( i ) c j j c j

(ii) Pj(C*)ccί'J9

(iii) Hj is a good homotopy.

Proof. We first construct the required maps over Nj (defined at the
begining of §3.2). For 7 = 0 , they exist by Proposition 1.9. For j = - 1 ,
1, we adapt the maps constructed in the proof of Lemma 3.2. That is,
when j = - 1 , write φ e Cx

y _{ as φ = α 0 4- dt Λ a{ and use

H+φ = f a{ and P+φ = 0

for Hj and P} when 7 = 1, write φ e Cx

v { as φ = α2 + dt Λ α 3 and
use

ir*~ji£(Xa>)da and p ~ φ - £
The proof that these maps are bounded and satisfy (i)—(iii) is similar to the
proof of Lemma 3.2. We now conclude by applying Lemma 1.11. q.e.d.
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We pause briefly to present the
Proof of Theorem 2.5. The function / of (2.3) appears in the norm

integral for forms in L\(X/T\ \τ\~ι) either to the 1st power or not at all
(for terms of a form without and with dt respectively), while for forms
in L\(X/T\ | τ | ) , / appears to the - 1st power or not at all. Since / > 1
(2.4), there are thus bounded inclusions

(note that the metric and weight functions on the right are obtained by
replacing / b y 1).

To see the isomorphism on cohomology, define Cx and C^v . (j =

- 1 , 1 ) analogously to cf and Cx

yJ, but with X/f and |τj. Then the

analogue of Lemma 3.6 still holds. However, C * v J = C* v J 9 by (2.4)
(see the remark before (3.11)).

Proposition 3.7. There exists a differential dcx on (Cx, W) such that:

(i) dcx = ®dcx + q, where q strictly lowers W-weight and q\cx =
n.

(ii) We have a good filtered homotopy equivalence

where icχ is the inclusion map and Pcx is a projection.

Proof Define the differential dcx of Cx as φ y d c x +q, where

(3.20)

The differential condition

(3.21) {®dcfj <* + <* {θdcf) + W = 0
follows from (3.16) and Lemma 3.6 (note that (®Pj)qiπv = Qmy). Clearly
part (i) holds.

For part (ii), let Pcχ = φ P y and Hcx = @H).. The homotopy for-

mula

(3.22) dcxHcx + Hcxdcx = / - Pcχ
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holds after applying Gτw by Lemma 3.6. To see that (3.22) is actually
valid on Cx , we must show that the terms which do not respect the grad-
ing, qHcx and Hcxq, vanish. This follows from (3.20), since the Ή. are
good homotopies. q.e.d.

Finally we may give the

Proof of Proposition 2.6. Apply Corollary 3.4, Proposition 3.5, and

Propostion 3.7. The proposition follows upon setting R = icχRinwPc and

S = icSinγPcχ . By (3.15) and (3.20), q has the desired form (on C* v ) .

4. A generalization of Theorem 2.4 to a family of S -domains

In this section we extend Theorem 2.4 to handle a family

of (possibly overlapping) admissible Sι-domains of (Y, F, g). We re-
quire the family to be associative (Definition 4.4). The main result is The-
orem 4.7, which computes the spectral sequence of a convolution W
(§4.1) of the nitrations {Wi}ι<i<m associated to 3?.

For brevity, we will sometimes write 3? simply as {Xι}ί<i<m

4.1. Convolution of filiations.
Definition 4.1 [49, (1.4)]. If W and W' are nitrations on a complex

C , their convolution W *W' is the filtration defined by

(W*W')JC= 2 WpCnW^C.

We note the
Proposition 4.2 [53, (A. 1)]. ifW and W1 areβtrations of C, bounded

from below, there is a natural isomorphism

The induced fiϊtrations W and W1 on the left-hand side are given by trun-
cating the sum in the obvious manner.

Definition 4.3. Let 3? = {Xi}x<i<m be a family of admissible S1-

domains (relative to ( 7 , F9 g)). The filtration W^ on the complex

C = Dom(rfκ F.g) associated to 3? is the convolution

1 *(

where the {W1} are the filiations associated to {X1} .
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Since convolution is commutative but not associative, the definition of
W depends on an ordering of 3?. When Theorem 4.7 below applies,
however, it will follow that the filtered homotopy equivalence class of
(C, W ) is naturally independent of the choice of ordering.

4.2. Associative families of ^-domains. In order to apply §2 succes-
sively for all X1, we need to impose some conditions on our family of
S^domains. Let {T1} denote the S^actions corresponding to {X1}.

Definition 4.4. 3? = {(X1, (Nι, pι, ti))}ι<i<m is an associative family

of admissible S^-domains (relative to (Y, F, g)) if the following hold for
all u and v , 1 <uψv < m:

pv\NunNv is induced from pv\M*nN» independently of tu.

(ii) MUΠXV and NunXv are invariant under Tv, and Tv\NUf)χV

agrees with the action induced from Tv\MunχV independently of tu.
(iii) d/dθu is quasi-isometrically perpendicular to d/dθv on XUΠXV ,

that is, the angle between d/dθu and d/dθv is uniformly bounded away
from 0.

(iv) For / c {1, , m } , the ^-actions Tι (i e I) on X1 =

Γ\ieIX
ι (which is invariant under Tι ( i e I) by (ii)) commute, and de-

fine a free action T1 of (S1)1. With this action, X1 is a ps principal

(S1/-bundle over a ps manifold with boundary.

Remark 4.5. The last part of condition (i) is equivalent to tu\NunNv =

Let %? = { I ^ ^ . ^ be an associative family of admissible S 1 -domains
(relative to (Y, F~ ~g)). For w e {1, - , m}, define

(4.1) (Yj9Fj9gj) (J = - 1 , 0 , 1 )

as in (2.9), with respect to Jf" .

Now for i e {1, , m}, / ^ «, the ^S^domain Xz of Y induces

S'-domains (X*)". of 7/ ( = - 1 , 0, 1). Namely, define

<*')• - {
with the induced Tι action (for 7 = 0, extend T1 in Λf"nX i in-
dependently of tu). Furthermore, the tubular boundary neighborhood
{N*, p1", ίf.) of X[ in r induces one of {X1)) in Γ/ (with N = (ΛΓf")J,
etc.). The following proposition is now easy to check (to verify that
gu = \τu\

jg, j = - 1 , 1, satisfies (2.2), use Definition 4.4(iii)).
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Proposition 4.6. Let {Xι}i<i<m be an associative family of admissi-

ble Sι-domains (relative to (Y, F, g)) and fix u e {1, ••• , m}, j e

{-1,0, 1}. Then {(Xι)"}\<i<m i±u is an associative family of admissible

Sλ-domains {relative to {Ju

} , Fj, g")).
Thus we may iterate the above discussion. For / c {1, • , m] , and

J = Ui)ia e ί" 1 ' 0 ? 1)/» c h o o s e a n y u e ι a n d define /' = /\{w} and

/ ' = (j /) / e //. Let the triple

(4.2) (Y^Fj^gj)

be the result of applying the ; w th line of (2.9) to the triple {Y*,, FJ,, g!

r)

with admissible Sι-domain (Xu)j<. It is straightforward to verify that this
definition is independent of the choice ofuel (equivalently, the order
in which the constructions of (2.9) are applied for u e I is irrelevant).

For ; 6 { - l , 0 , l } m , denote

(γST F & & λ _ _ ( γ { \ , ,m} F{L'~>m} { 1 , - , m K
\ J J 9 Γ J > SJ ) — \ J J 9 Γ J 5 5/ ) '

4.3. Main results.
Theorem 4.7. Let 3? = {Xι}λ<i<m be an associative family of admissible

Sλ-domains relative to (Y, F, g) and let W^ be the associated filtration

on C = Όom(dY F.g). Then the W^ -spectral sequence for H^(Y, F; g)

has

ε;p « = H^-"{Grf C) - e H?2-
p-^»(Yf, Ff; gf),

J€{-l,0,l}m

\J\=p

and the differential dχ : E~p>g -> E~p+Uq is induced by the map

w αy /n Theorem 2.4, relative to Xs.

Similarly, the differential d2 : E~p q -» E~p+2'q~λ is induced by the

map

Σ 4\Vu j+i j)

Σ
lΛ—1}
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where {ψj\j^p_x satisfies

dψj = - Σ ^ ϋ 1 . . . . . Λ + i . . . . j j

Theorem 4.7 follows from Proposition 4.8, below. To begin with, let

( C f , rfc^) denote the rf-complex associated to the triple (Yf, Ff y gf)

shifted by \{s | ̂  = 1}|, and set (as a vector space)

with filtrations

wjc* = 0 cf.
/e{-i,o,i}w

Ji<J

This is one case where convolution is associative, thus the filtration W* =

Wι * - *Wm on C ^ is well defined. We assume Gr**^ C ^ is given
the differential φ y rfc^ the next proposition will define a compatible

differential on C * \
Proposition 4.8. Γλm> ejc/̂ 5 Λ differential dc* on {C*, Wr) such

that

(i) dcsr = ®jdc& + Y%LX Q
ι > where qι = q\ + q\ strictly decreases

Wι-weight and is graded with respect to Wι , i φ i.
(ii) There exists a good filtered homotopy equivalence

(C, W^) mi (C , W*).
s

Proof. We first make some preliminary constructions. For / €
{1, •• , m}9 let 8?' = ^\{X{} and apply Proposition 2.6 (with S1-
domain (Xιγj> ) simultaneously to all (CJΓ ,dcS,<). The result, after tak-

ing the direct sum over / , is a differential φ 7 dcsr + q on Gr C ,

such that

ί = #! + #2 •* Gr C -> Gr C ,

and such that there is a good MΓ'-filtered homotopy equivalence

5'
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via homotopies

/ φ : Or** C* - Or"* C* ,

H^ : GxW* C^ -+ Gr* '* C * .

Precisely, we have the following lemma.

Lemma 4.9. There exist Wι -filtered maps qι, Rι, Sι, H1^,, and
{between the spaces indicated above) satisfying

dc

j

(iii)

(iv)

(v)
J

If we do this for all / e {1, , m) , the next lemma is straightforward
to verify from the constructions of §3 and Definition 4.4.

L e m m a 4 1 0 L e t u, v e {I, •- , m } , u φ v . Then

( l ) q q =-q q

(ii) quRv =Rvqu,

(iii) Svqu = quS\

(iv)

(v) S R He?, = HL

We now prove the proposition by induction o n / n = \3?\. In the case
where m = 1, it is merely Proposition 2.6. In general, fix i: == m and
3? = %?\{Xm) we may assume the proposition has been proven for 8? .
The fact that

(4.3) d<*
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is a differential on ( C ^ , Wr) follows from Lemmas 4.9(i) and 4.10(i).

With this differential (and the corresponding one for C )3 the maps

(C , W^) ^ (C , W*)
sm

are filtered chain maps by Lemmas 4.9(ii), (iii) and 4.10(ii), (iii). Fur-
thermore, by Lemmas 4.9(iv)-(vi) and 4.10(iv), they define a good fil-
tered homotopy equivalence. By the inductive hypothesis, Lemma 1.4,
and Lemma 4.10(v), this completes the proof, q.e.d.

Actually, Theorem 4.7 and Proposition 4.8 remain valid under weaker
conditions on 8? than Definition 4.4, but without the homotopies being
good and with a less explicit formula for the differentials. For example,
we could omit the last part of Definition 4.4(i). Since Lemma 4.10 then
no longer holds, the proof of Proposition 4.8 becomes more complicated.
One proceeds by induction on m = \%?\ and defines

where M? =3f\{Xm} and adΓr> is a conjugate of drK. for which SmRm

is a chain map on C
Since we will not need this more general result, we omit the details

except for the following lemma which may be of independent interest.
Basically it says that a good homotopy on an associated graded complex
Gτw C can be lifted to a homotopy on C after perhaps conjugating the
differential of C.

Lemma 4.11. Let (C, W) be a finite filtered complex and assume we
have fixed a splitting by which we identify (as filtered vector spaces)

(4.4) (C9W)

Let P be a projection map of (Gτw C, W) which is homotopic to the
identity via a good filtered homotopy H. Then there exists a filtered vector
space automorphism a of (C, W) satisfying the following conditions:

(i) P is a cochain map of (aC, W) which is homotopic to the identity

via H, where aC is the complex with the same underlying space as C but

with the differential adc = adc a~ι.

(ii) G Λ α = / {and hence Gτw{aC) = Gτw C).
(iii) Any filtration W' ofC which is preserved by H and is compatible

with the identification (4.4) is preserved by a and thus induces a filtration
ofaC.
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(iv) If Gτw P is a cochain map of Grw C, where Wf is as in (iii),
then

Gτw\adc - GτW dc) = (Gr*" P) GrW\dc - GrW dc).

Remark 4.12. Note that a yields an isomorphism of complexes C =
aC, which is filtered for any Wf as in (iii).

Proof We first prove (i). We are given that

(4.5) (Gr^ dc)H + H(GτW dc) = / - P.

Define q by the equation

(recall our splitting (4.4)). From d^-Q we see that

(4.6) (Gr^ dc)q + $ (GΛ dc) + qq = 0.

(4.5) and (4.6) easily imply

(4.7) (GτW dc)(I + Hq) = (I + Hq)(GrW dc) + (/ + Hq)q - Pq

and

(4.8) (GτW dc)(I + qH) = (/ -f qH)(GτW dc) - q{I + ?//) + qP.

Since ^ strictly lowers JF-weight, Hq and ^// are nilpotent; thus
(/ + /ίήf) and (/ + ̂ if) are invertible. It follows from (4.7) and (4.8)
that

(4.9) (I + Hq)dc(I + HqΓl =GrWdc + Pq(I + Hqyl

and

(4.10) (/ + qHΓldc(I + qH) = Gr^ dc + (/ + qH)~{ qP

respectively. Note that conjugation by either α = (/ + # # ) or α =

(/ + qH)"1, as in (4.9) and (4.10) respectively, satisfies (ii)-(iv). (For
w'

(iv), we apply Gr to (4.9) and (4.10) and note that the hypothesis

implies G r ^ P and G r ^ q commute. The result now follows since
PH = HP = 0 for a good homotopy.) Thus in proving (i), we may replace
dc with the conjugated differential of (4.9); consequently we may assume
that Pq — q (since P2 = P ) . Similarly, we may assume in addition that
qP = q by using (4.10).
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Thus P becomes a rfc-cochain map. Since H is good, qH + Hq -
qPH + HPq = 0 thus we may add qH + Hq to the left-hand side of (4.5)
to obtain a homotopy for dc , which establishes (i).

5 Local structure associated to a divisor with normal crossings

Let V be a complex manifold and D c F a divisor with normal cross-
ings. Write D = JJϋLi ̂ i > w h e r e the Z). are the irreducible components
of D which we assume to be smooth, and define

iei

for / C {1, , m} . For c € R we will define a punctured closed regular
neighborhood Uc c F\Z> of Z> as c -• oo these will form a cofinal
system. The set Uc will be formed as a union U/c{i m> ̂ / ? w ^ e r e the
sets £// have disjoint interiors and Uj is bounded away from \Jkq.jDk*
Furthermore, each set Uj will be given the cusp-like structure

[c, oc) x Lj x S^ ,

where L7 is an (|/| - l)-simplex and S* is a principal (51 )7-bundIe over

a subset of Dj. This will allow us later to define a family {X1}™^ of

^'-domains, by X* = U / 3 / ^ /
In order to motivate the construction, let us first examine the situation

locally. Near a point of DI\\Jk^JDk, we can define the following struc-
ture. Let ((z, ), €/> (W/)y€{i «-ι/|}) be holomorphic coordinates on Δ*

such that An ΠD = \JieI z~\θ). Provisionally define

/ € /

Then we can define a decomposition

(5.1) Δ"\(Δ* n/>) s K x L7° x

via

where Lj is an open (|/|-l)-simplex with barycentric coordinates ( ί z ) l € / .
For the global version of this structure, we begin with a construction of

Clemens [14] of compatible tubular neighborhoods of the D 7 . This allows
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us to repeat the above discussion globally on [// the factor (Sι) x Δ " " "

in (5.1) is replaced by a principal (S1/-bundle.
5.1. Compatible tubular neighborhoods and torus actions. The follow-

ing construction of Clemens [14] applies, even though he was working in
a different context.

Theorem 5.1 (Clemens [14, Theorem 5.7]). For each I c {1, , m),
there exists a tubularneighborhood Uj of Dj and a C°° normal projection
711: u i " * D i such t / ι a t :

(i) the fibers of πf are holomorphic submanifolds of Uι,

(ii) for all I,JC{1, . . . , m},

(iii) if I D J, then on

πί°πj = πr

Furthermore, for each i e {1, , m), there exists a C°° one-form ωi

defined on (U^D.) (we set Ui = U{i}), such that if x e DJt i e I, and

X = πjι(x) (a complex submanifold by (i)), then the following hold:
(iv) ωt\χ is a closed meromorphic one-form on X with simple pole {and

residue 1) along (D.nX),
( v) if ^o € (X\(DnX)), then the functions

iel,
V

give a system of holomorphic coordinates on X such that

z J ,
I

(5.2) z /^ = 0 deft™ D.nX9

and such that on U,t ky (i φfc), zi χ is constant on fibers of π r

(vi) there exist C°° functions h. on Ui with

h. > 0 on Ui\Di, A. = 0 on D{,

and if x e Dj and i €l, then

Proof Repeat the proof of [14, Theorem 5.7] noting the following. In
Clemens's situation there is a global holomorphic function t with D as
its zero set. We do not have this but it is not essential for his proof. His
construction begins with a collection of holomorphic coordinate patches
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in which t has a canonical form [14, (5.6)] but it will actually work using
any local holomorphic coordinates ( ( ^ ) i € / , (wj)jςs\ n-\i\ύ f o r w h i c h

z{ = 0 defines D.. The only other change necessary is to let {m.} at
the bottom of [14, p. 239] be arbitrary positive integers and to ignore
the equation at the top of [14, p. 240] involving r. Then (i)-(v) follow
(in [14], (v) is the stronger statement that t\χ has a canonical form with
respect to ziχ). (vi) follows from [14, (6.1), (6.3)]. (There is a misprint
in [14, (6.3)]; it should be as in (vi) above.) q.e.d.

We may use this theorem to introduce special coordinates in a neighbor-
hood of a point on Z>7, which will be useful in several ways. Let W cDΊ

be an open subset and let

(5.3) σ:W

be a local section of π 7 . For each / e I, define

(5.4) zi σ(y) = exp|2πi/ ωλ

analogously to Theorem 5.1 (v). These are C°° functions on πJι(W) in
fact zi σ = fizi, where f. is a nonvanishing C°° function, and f. is a
local holomorphic defining function for Di (see the end of [14, §5]). If
w = {wj)jei\ n-\i\\ a r e C°° complex coordinates on W,then

are our special coordinates on πjι (W).
Remark 5.2. Note that the special coordinates (5.5) defined relative to

Ttj are also special coordinates relative to κκ , for K c / . This follows
from Theorem 5.1(iii), (v); one uses the local section σκ of πκ which is
d e f i n e d o v e r n J ι { W ) Π D κ b y z i σ = 1 ( i e K ) .

These special coordinates allow us to define a smooth (5 [ ) 7 - a c t i ° n T1

on Uj. Namely, let T1 be given in the coordinates (5.5) by

(5.6) (A|.)/€/ x ((zi>σ)i£I, π)w) ~ {{λfr^j, π)w),

where (A ) z € / € (S1)7 . This is well defined in U7, for if a is another
local section of π 7 as in (5.3), then

(5.7) ^σ' = (*/7Hσ>

where / is a C°° function on W.
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Note that these torus actions for different / c {1, . , m} are com-
patible, that is,

(5.8) T'l^y = TK on Uj , for K c / ,

and that T1 is free on Uj\\Ji€lDr

Proposition 5.3. There exist tubular neighborhoods Uj as in Theo-
rem 5.1 such that (in addition to (i)-(vi)), for each i € {1, ••• , m),
there exists a C°° one-form τi defined on (U^D^ such that for all / c
{1, ••• , m} and i e I:

(vii) // σ is a local section of πι over W cDj as in (5.3) and z{ σ is
defined as in (5.4), then

on (πJι(W)\Di)> where γi σ is a C°° one-form on W.

Proof Let {U$0)} and {U^} be two sets of tubular neighborhoods

satisfying the conditions of Theorem 5.1 and such that C/)o) c U^ for all
/ . For every K C {1, .. . , m} and / e K, Theorem 5.1(v), (vi) implies
that the function ht may be expressed locally as

(5-9) Λ, = ( * k , σ ) K J 2 .
where zt σ is defined as in (5.4) and cz σ is a C°° function on W C Dκ .
Let

where / is the almost complex structure. This is independent of the
choice of special local coordinates by (5.7) and (5.9) and so defines a C°°
one-form on U^\D.. Furthermore, it follows from Theorem 5.1(iii) and
Remark 5.2 that τκ . satisfies (vii) whenever / C K.

Now define

forall / . As in [14, (5.15)], we can find a partition of unity {f//}/C{i ... my

subordinate to the covering {C//}/c{1 my of \J™=1 Ujl) and such that

(5.10) for all / C K, ηκ is constant on the fibers of π^^o).

Then define

K3i
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for all i e {1, , m] , and set ί/7 = UJ0) for all / . By (5.10) and the
construction of the cover {(/j},we may express

KDI

thus (vii) for τκ . (KDI) implies (vii) for τ .
5.2 A cofinal system of neighborhoods of D. Let {UI}Icrl m, be

compatible tubular neighborhoods of {Df} as in Theorem 5.Ϊ and Propo-
sition 5.3. We may assume, after rescaling, that {y e Uιr | 0 < ht(y) < 1 }
is a compact subset of Ui. Then define

U* = [y e Uj I 0 < Λ.(y) < 1 for all i e /,

and Hh iy) < l}\ [J{y e Uk\ 0 < Afc(y) < 1},
6/ t?716/

and

The set £/* is an open neighborhood of D with D itself deleted.
Define a piecewise-smooth function r on ί/* by

(5.ii) r(y) = log if y € u;.

This is well defined on £/* since

Λ2.(y) = 1 for y € ί// Π ί/̂  , if i e (I\K) u (ϋΓ\7).

For c € R, let

f/c= U u%

where IJ] = {y e ί// | r(y) > c} . Since r -* oo at Z>, the sets ί/c u D
form a cofinal system of closed neighborhoods of D, with piecewise-
smooth boundary.

5.3. Decompositions of the U*. Define

SE = {y € ί/71 A.(y) = 1 for all i € / }

and
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Let

(5.12) x. = -logλ1. ( /€/)

and let

(5.13) Pi'U^S,

be the projection which is given with respect to special local coordinates
(5.5) by

These maps allow us to define our first decomposition,

by the diffeomoφhism

Note that the (^/-action T1 operates only on the second factor of
(5.14), making nι: S* -> D* a principal (S1/-bundle. The forms (τ/) € /

from Proposition 5.3 are pullbacks under p* of forms on «S7, which we
also denote (τ / ) / € / they are Γ7-invariant and define a connection on S^ .

Our second decomposition of Uj breaks apart the first factor of (5.14)
further using r. Note that

(5.15) er =

So let Lj be the standard simplex in R7,

and define

(5.16) ',• = *,•
k€l

in Uj . Now we can further decompose

(5.17) Uj ^RxLj

by

and hence

(5.18) V\ Sί [c, oo) x Lj x S*.
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6. Distinguished metrics on the complement of a divisor

Let V be a complex manifold of dimension n , and D c V a divisor
having smooth irreducible components {Di}ixl intersecting with normal

crossings. Let π : V -» V be a topological quotient map such that π|~v

is a homeomorphism and π(D) is a finite set.
In §6.1 we single out a particular class of metrics on V\D whose L2-

cohomology we wish to study by the method of Theorem 4.7; we will call
these metrics distinguished relative to π . Our special interest in these met-
rics is that, as we will see in §8, if π is a projective morphism resolving a
Kahler variety V with only isolated singularities and D is the exceptional
divisor, then V\D admits a Kahler distinguished metric relative to π and
the L2-cohomology of the distinguished metric represents the intersection
cohomology of V.

In §6.2 we relate the asymptotics of distinguished metrics relative to π
to the local structure near D discussed in §5.

6.1. Distinguished metrics.
A metric ds on V\D is distinguished relative to π ifDefinition 6.1.

near all q e D,

(6.1)

where q € D} for / C {1, , m) , and ((z,) / e / , {Wj)J€{ι ... Λ _ | / | } ) are

C°° complex coordinates in some neighborhood Δ" c V of q such that

- 1 ,

(6.2)
0 ,

Remark. Since it will not cause confusion in the present work, we will
simply call such a metric a distinguished metric on V\D. In future papers,
we intend to consider the case where π(D) does not necessarily consist of
isolated points, in which case the mention of the map π is necessary.

Lemma 6.2. The property of a metric being distinguished is independent
of the choice of coordinates (satisfying (6.2)) used to verify (6.1).

Proof Let ( ( z . ) ί € / , ( ^ ) / G { 1 , , . . j Λ_, / ( }) and ( ( z / ) / G / , ( ^ ) ^ { 1 . . . j Λ H / | } )
be C°° complex coordinates near q e D satisfying (6.2). Let
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n-\ϊ\

2

iei 7=1

and ds = be the respective model distinguished metrics as in the
right-hand side of (6.1), except that we put in a constant K > 0 in front
of the dzidzi (respectively dzidϊi) terms; the constant K will be deter-

2 — 2

mined later. We must show that ds ~ ds , perhaps after shrinking the
coordinate patch.

By Taylor's theorem and (6.2) we may write

where fAA and fAA are C°° functions. In this formula and in what
follows, the indices A and B range over / U /, while C and D range
over {1, , n - \I\, I, - , n - | / | } . From (6.3) we deduce |zf.| ~ |zf.|
and hence

(6.4) βf7~5,7 a n d βj]~Pj]

Furthermore,

**Λ = fAΛ**A + fjjfiH + Σ O{\ZA\)dZB

= Σ kCDdwD

where

(6.6) detfί" 1 and |det(JkC i ))|~l.

Thus, if we plug (6.5) into the expression for ds , we obtain terms quasi-
isometric to the correspon
as cross-terms of the form
isometric to the corresponding terms of ds1 (by (6.4) and (6.6)), as well

(6.7) (a) Ka^dz^dz^y, (b) KaaO{\z^)dydy (i e I),

(6.8) (a) βjΊO(l)dwcdzB, (b) βjjO(l)dzAdzB

where dy and <sf/ represent either rfz^ or dwc.
It remains to show that each of these cross-terms is bounded by a small

constant times ds . First note the following estimates, which are easy to
verify:
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(6.9) \*t\2*al«BB ~* ° a t 4>

(6.10) {Zifaa/βcc^O atί,

(6.11) βcc/OβB*1-

Now (6.7)(a) is bounded by

eaπdzidzi + β V o d z / l Q ^ j ,

in which the second term can be controlled by (6.9) or (6.10). A similar
argument (without e) applies to (6.7)(b). Also (6.8)(a) is bounded by

eβcCdwcdwc + e~lO{l)βcCdzBdzβ

(note that β.- is independent of j)9 in which the second term can be
controlled by using (6.11) and choosing K sufficiently large. Again, a
similar argument applies to (6.8)(b). q.e.d.

Thus distinguished metrics always exist; one simply patches together
local models using a partition of unity.

Proposition 6.3. Near D, a distinguished metric on V\D is complete
with finite volume.

We postpone the proof of this proposition to the next subsection.
6.2. Distinguished metrics and decompositions of U*. We use the no-

tation of §5. Recall that in §5.2 we constructed a punctured neighborhood
U* = U/cn m\ Hi of D and a piecewise-smooth exhaustion function
r tending to oo at D. In this subsection we express a distinguished metric
on Uj = { y e Uj I r(y) > c } in terms adapted to the product decompo-
sitions and bundle structures constructed in §5.3. We begin with (5.14),

Lemma 6.4. For c G E , a distinguished metric is quasi-isometric in Uj
to

e~lr Yμ + e-V)(rfx? + τ]) + e'ψπ]ds2

DV

Here ds2

D* is an arbitrary Riemannian metric on D*f .

Proof. It suffices to prove the result in the domain of special coordi-
nates ((zi σ ) / € / , π]w), as in (5.5); we can further assume the section σ

maps into S], and thus that A. = \ziσ\
2. Recall that x. = -loghi and

er = Σi&χi T h i s shows that the model distinguished metric of (6.1) is
equal to
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Since τ. = dzx%ziσ-\-π\yi σ (Proposition 5.3(vii)), (dzx%zia)
2 maybe

replaced by τ], modulo terms that can be controlled precisely like those
in (6.7). q.e.d.

Our main concern is how the metric on the level sets of r behaves as
r —> oo. So we now consider the decomposition (5.17), Uj =RXLJXS*J .
Let £ = Σ i € / * , ^ : denote the vector field induced by translation in the
R factor.

Proposition 6.5. For c e l , a distinguished metric is quasi-isometric in

dr2 + ds2
L (r) + e 2 r ^ ( l + e '** e')τ~ + eτi

Ucj to

where

is a family ofRiemannian metrics on L} depending on r.
Proof. Set ai = e~lr(\ + e~Xier). Then in view of (5.16) and Lemma

6.4, it suffices to show that the metric ^2ieI a^xf on [c, oo) x L7 is
quasi-isometric to dr2 + ds2

L (r). Clearly the restriction of the metric

to TLj is ds2

Lj(r), while | £ | 2 = e'^Σx).+ e~rΣx2e~Xi - 1 (since

Σxϊ ~ (Σxi)2 a n d xfe~Xi ^ 1)- Thus it only remains to show that the
angle between ^ and TLj is uniformly greater than 0.

Assume this is not the case, that is, for some sequence of points in
[c, oo) x Lj , the angle Z(£ , TLj) -> 0. Equivalently,

(6.12) / ( έ , ^ π

where v is a normal vector field to L7. Express ^ = ^ ^ . α j ^ and

v = 53 α Γ 1 ^ . with respect to the orthonormal frame e = °^lίlj^ Since

1̂ 1 ~ 1, we can assume, after passing to a subsequence, that (^/»//2)/€/

converges to a nonzero vector. We can also assume that both points in real
projective space, [(x^l/2)ieI] and [(α,~1 / 2)/€/], converge. But since the
coordinates are nonnegative, (6.12) implies the limit points must lie on
oppposing faces of the boundary of the projectivized positive quadrant.
In particular, if z0 G / is an index such that

(6.13) j c , α ϊ / 2 ~ 0 ,



L2-COHOMOLOGY OF KAHLER VARIETIES 141

then the corresponding homogeneous coordinate of [(α~ 1 / 2) ί G /] must go
to 0, i.e.,

α " 1 / 2

(6.14) - ^ Ϊ 7 2 ^ O

for some k Φ L. However (6.13) implies 1 £ x. aι/2 < x- e~r/2 (since
!o Ό o

α < *? ), or A:, > e ' . But then

which contradicts (6.14). q.e.d.
We now give the
Proof of Proposition 6.3. It suffices to prove the result on Uj, for

each / . Completeness is clear from Proposition 6.5. Now note that since
\I\<n=dimcV,

Thus the volume form is dominated by e~rrfr Λ dVL (l)AdVs , which is

integrable.

7. L2-cohomology of distinguished metrics

As in the previous two sections, let V be a complex manifold and

D = U/li £>i C F a divisor with normal crossings and smooth irreducible

components. In §5 we constructed a cofinal system Uc ( c e l ) o f punc-

tured closed regular neighborhoods of D, whereas in §6 we defined the

notion of a distinguished metric.

In this section we examine the L2-cohomology of Uc with respect

to a distinguished metric (and certain boundary conditions and weight

functions). Our approach is to construct in §7.1 a family {Xι}x<i<m of

S^domains of ί/c; this uses the constructions of §5. We then show in

§7.2 that this is an associative family of admissible Sx-domains (Defini-

tions 2.3 and 4.4). Thus the techniques in §§2-4 apply to yield a spectral

sequence converging to H^(UC, F g) in §7.3 we compute Eχ and dλ

for this spectral sequence using Theorem 4.7. We find that, modulo a row

of infinite-dimensional groups, the terms E^p*q vanish if q > n in the

next section, under the hypothesis that D can be blown down to isolated
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singularities, we will see that this truncation by weight (i.e., q) in Eχ

becomes a truncation by degree (i.e., p -f q) in E2.
We freely use the notation of §5.
7.1. ^-domains in Uc and tubular boundary neighborhoods. Fix c £

R. For all i e {1, , m} define

/C{1,

Z ' together with the free ps Sι-action Tι = Γ { ί } defined in §5.1 is an
51-domain of Uc. In the remainder of this subsection we will construct
tubular boundary neighborhoods (Definition 1.10) of X1 c Uc, that is,
tubular neighborhoods (Nι, pι, t.) of

Mι = bd^ Ĵ £ = dX\dUc = U t// n

It suffices to do this for each Uj c Uj U ̂ /\/α (where I ^ {i}) in such a
way that the constructions match up piecewise smoothly along the bound-
aries.

We begin with the following simple lemma, which may be proved sim-
ilarly to Clemens's Theorem 5.1, although more simply. Recall that L7

denotes the simplex with barycentric coordinates ( ^ ) ί € / . For K C / we
identify Lκ with the subsimplex of Lι defined by setting ( ^ ) ί € / \ ^ to
zero.

Lemma 7.1. There exist b > 0 (small) and C°° normal projections
(for all / C {1, . , m) and i € /)

(7.2) ^ : { ^ € L 7 ^ A {

which satisfy

(7.3) P1I\LK=PK (Jbri€KCl),

and, for u, v e I, u Φ v,

(7.4) P

(7-5)

on { y e l ^ O O . i . O e l O
Denote also by p| the projections

(7-6) Pr-iyetf I ί,(r) € [0, b]} - . c/;n c/;N{ί}
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induced by applying (7.2) to the middle factor of (5.17).
Now for / C {1, ... , m} and i e / , extend t( piecewise smoothly

from Uj into a neighborhood of Uj n J7/χ{ί} in Ό] U t//χ { / } by defining

(7.7) ί ^

in {y e k/\{/} I Λf.(y) € [1, e)} . Also, perhaps after shrinking b, let

be the projection defined by restricting p} (5.13), and define

i ί P\
 o n ^/ 'p = <

Then these definitions fit together for all / 9 / to form a tubular boundary
neighborhood (ΛΓ1, pι, tt) of X1, where

Nι = U {y e C/; u.

7.2. Associativity and admissibility.
Lemma 7.2. Lei / € {1, , m} and consider I C {1, , m} sat-

isfying I 5 {Ϊ} . ΓΛen α distinguished metric on Uc is quasi-isometric in
{^[/;|^)G[O,6]} to

(7.9) (1 + e-' ^e'Kdή + ̂ τ f ) + (p1')^?

ds2

MijTi is a metric on Mι/Tι.

In view of (/>*)*(>") = r and Proposition 6.5, it suffices to show

and

(7.11)
Are/

For each K c /\{i}, define W^ c {y € C/7
C I ̂ (y) € [0, b]} by the

conditions

t.<b (ke K),
κ } tk>b/2 (kei\(Kυ{i})).
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Since { Wκ) is a cover, it suffices to prove (7.10) and (7.11) in each Wκ

separately. Now it follows from (7.5) and (7.12) that, in Wκ ,

(p')*(tk)>b/2 (k eI\(Ku {/})),

and consequently

6 ~ U (kei\(KΌ{/})).

(7.10) now follows immediately, while for (7.11) we may write the left-
hand side quasi-isometrically as

dt\.

ker\{i}

Since ΣkeIdt2

k~ dt2+(pΎ(ΣkeI\{i}dt2

k) in ^ ( [ 0 , b}), (7.11) is proved,
q.e.d.

Since

dsn+ ~ dt. + τ2 + π*Tdsn+

on { x e D*i\ίi\ I ̂ .(JC) £ [1, e)} , the next lemma follows from Lemma 6.4
applied to /\{/}.

Lemma 7.3. Let i e {1, , m} and consider I c {1, . , m} satis-
fying I 2 {/}. A distinguished metric on Uc is quasi-isometric in
{yeU\{il\φ)e[-b,0]} to

where ds2

MijTι is a metric on Mι fTι.

Proposition 7.4. {^}i< I < m is an associative set of admissible S{-
domains relative to (Uc, F, g) (Definitions 2.3 and 4.4), where Uc is
given a distinguished metric, g is any function of r, and F = 0 or dUc.

Proof. Let i e {1, , m) . We first check that X1 with the tubular
boundary neighborhood (Nι, pι, tt) defined in §7.1 is an admissible S1-
domain.

Definition 2.3, parts (i) and (ii), are clear. For part (iii), we must verify
the estimates (2.1)-(2.7). Estimate (2.1) follows from Proposition 6.5,
while (2.2) is obvious since (pz)*(r) = r. Note that the form τ of §2
corresponds to our τ,. Thus estimate (2.3), with / = 1 + e~tiβ er and
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w2 = e~r, follows from Lemmas 7.2 and 7.3. Estimates (2.4) and (2.5)

also follow by inspection since ^ fdti = (t.f -<?"''*')|* = l + 6 -e~W ~ 1

and e~εeV < 1 .

From Proposition 6.5, we can estimate |έ/τ f . | 2 Sβ 2 r in XιUNι (since by

Proposition 5.3, dτt = 7t*dγi σ ), and | τ / ~ <?2r in X'\N*. This proves

(2.6) and (2.7). Definition 2.3(iv) is satisfied by making b smaller.
The associativity conditions, Definition 4.4(i)-(iv), are all obvious from

our construction; the last part of (i) follows from (7.4) and (7.5) by Re-
mark 4.5.

7.3. A spectral sequence converging to //(*2)(t/c) We begin by recalling

the weight spectral sequence for the mixed Hodge structure on H\UC \ C)
(see [17] or [18]). Denote

(7.13) If= U D
κ .

Theorem 7 5 ([ 17], [18]). There is a weight spectral sequence converging
to H\UC \ C) and degenerating at E2. The qth row of the Eχ term is:

(7.14) || || II II
Hq~\D2) Hq~2(Dι) Hq(Dι) H\D2)

The differential d{ : E~p'q -> E~p+ι'q for p > 2 is an alternating sum of
Gysin maps, the differential for p = 1 is an alternating sum ofGysin maps
into Hq(Uc U D) composed with a map induced by an alternating sum of
restriction maps, and the differential for p < 0 is induced by an alternating
sum of restriction maps.

Remark 7 6 ([17], [18]). For p = 1, the component of dx mapping

//*~2(Z)-) -> Hq(Dj) (/ Φ j) can also be described (modulo sign) as a

restriction to Di Π D- composed with the Gysin map to D..

We now compute an analogous spectral sequence converging to the L2-

cohomology of Uc. By Proposition 7.4, Sf = {Xm}x<m<N is an associa-

tive family of admissible Sι -domains in_ Uc let Wr be the associated

filtration (Definition 4.3) on C = Dom^^c) . Define the filtration W by

' \vf.x P<O

(we shall see below that Gr0 C is acyclic).
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Theorem 7 7. The qth row of the Eχ term of the W-spectral sequence

for H'{2)(UC) is equal to (7.14) for 0 < q < n - 1. For q = n 4- 1, it is

equal to HL([c, OO)) (which is infinite dimensional) tensored with (7.14)

in which we set q = n. All other rows are zero.
Proof By Theorem 4.7,

\J\=P

In order to evaluate the right-hand side of (7.16), we refer to the con-
struction of ( y f , Ff, #;f) in §4.2 and set 7; = {5 | j s = j} . We find

«€/0

Here the "hat" operation denotes the successive applications (for each Sι-
action T" , u e Io) of the "hat" operation denned in (2.8). In effect, we
fill in with solid tori the torus fibers in the boundary of D] u 7 associated

to the (S1/'-action T1', for all /' C /Q. Similarly,

Ff = [c, oo) x U L(/ Λ { ί } ) u 7 x Dj ,

By working with the form of the metric on XJ] VI given by Proposi-

tion 6.5, we see the metric on Yf is quasi-isometric to

df + ds) {r) + e~rdsl

and the weight function is

*f~ π
By repeated application of Theorem 2.5, the L2-cohomology in (7.16)

is unchanged if we replace the metric and weight function by

dr2 + ds2

L +e-rdsl and e ( | / - I H / ' l ) r
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respectively. Thus we can apply Zucker's theorem on L2-cohomology of
warped products, Corollary 1.7. But since

H \LI_{UIX> U
i

(7.17) C for/_, = 0, k = 0,

= { C for/. = 0 , fe = | / _ J - 1,

0 otherwise,
only terms with I_χ or Iχ empty (and the other nonempty) contribute to
(7.16). Consequently, Corollary 1.7 applied to (7.16) yields

0 H*-2p([c, oo) x Dκ: epr) p > 0,
\K\=p

0 p = 0,

r(2)([c, oo); ^ l ' " " ) r ) ® i ϊ ί " 2 | F " ί ( 2 ) i f ) /> > 0,
\K\=p i

0 /? = 0,

~ :, oo); ̂ + 1 " l ~ Λ ) r ) ® / / ί + 1 ^ l ( Z ) ^ ) p < 0 .

One now applies (7.13), (7.15), and the calculation of weighted L2-
cohomology of a half-line (Lemma 1.8(i)), to see that

^1 - n \yjτn *~)

Hq~2p{I?)

Hq{D ~P+\s

P > 0 , q <n-

P<0, q<n-

p> 0, q = n+

Hι

(2){[c,oc))®Hn(D~p+ι) p<0, β = ιi + l,

0 otherwise,

as desired.
All that remains is to verify that d{ : E~p'q -+ E~p+ι >q is as claimed.

But for p Φ 1, dχ for the PF-spectral sequence agrees with d{ for the
ΣF^-spectral sequence (modulo reindexing when p < 0). For p = 1,
it is induced by rf2 for the H^-spectral sequence. Thus we can apply
the calculations of dχ and d2 from Theorem 4.7 to conclude the proof,
q.e.d.
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All the preceding arguments also apply to the complex Dom{duCdUc),

which computes H'{2)(UC, dUc), however we need to replace the use of

Lemma 1.8(i) by Lemma 1.8(ii). The result is

Theorem 7.8. For q > n + 2, the qth row of the E{ term of the

W-spectral sequence for H^2){UC, dUc) is equal to (7.14) in which q is

decreased by one. For q = n + l, it is equal to H^([c , oo), {c}) tensored

with (7.14) in which we set q = n. All other rows are zero.

Remark 7.9. There are analogous spectral sequences for the weighted
L2-cohomology with weight function g = eλr (λ e R). In the case of
H[2){UC\ eλr), the rows of E{ are equal to (7.14) for 0 < q < n - A ,
and, if λ G Z, there is an infinite-dimensional row for q = n + 1 — λ. In
the case of H'{2)(UC, dUc eλr), the rows of Ex for q > n + 1 - λ are
equal to (7.14) in which q is decreased by one, and, if λ e Z, there is an
infinite-dimensional row for q = n+\-λ.

Example 7.10. We present a simple 3-dimensional example to empha-
size the fact that, unlike in the surface case [42], the nonclosedness of
Range(J) is not the only obstruction to showing HL(UC) = 0 for i > n .
The example also shows that the L2-cohomology of a distinguished metric
relative to π, where π : V -> V is merely a topological quotient map
collapsing D to the isolated singularities of a topological pseudomanifold,
may not represent the intersection cohomology of V.

Let V = P 3 with homogeneous coordinates [z0, z{9 z2, z3] and let

D = U/=1 Dt, where Di = {z. = 0} = P 2 . It is easy to see that the nonzero

rows of E^PiQ reduce to

0-H\\χ D ) - H \ ] \ D ) Λ^(ΠD,nz>y) -> 0

and

0 - H° ( I ] D) -> H° ( U Dt n Dj) - ήύ{Dι n D2 n D3) -»0

(-2 < p < 0, β = 0).

The potentially infinite-dimensional row vanishes in this case, so we know
that Range(ύ?) is closed. On the other hand, the matrix of the indicated
map r : C -» C (with respect to the basis induced by restrictions of a
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Kahler form on P 3 ) is just

which is singular. Thus E\ '2 Φ 0 since clearly E\'2 — Eι'2 , we see that

H(2ΛUC) is nonzero.

8. L2-cohomology of isolated singularities

Let V be a complex analytic space of dimension n with only isolated
singularities. Let π : V -+ V be a resolution of V, with exceptional set
D a divisor with normal crossings. Assume the irreducible components of
D are smooth and the morphism π is projective. By Hironaka [26], such
resolutions exist and any modification V1 -> V is dominated by such a
resolution. We will study the L2-cohomology of distinguished metrics on
V\D = V\ Sing(F) such a metric is called a distinguished metric on V.

There are two important additional features to this case as opposed to
the general situation treated in §7. First, under a mild global condition on
V (satisfied, say, if V is an open subset of a projective or even Kahler va-
riety (see Remark 8.5)), there exists a distinguished metric which is Kahler;
this occupies §8.1. Second, we see in §8.2 that the local L2-cohomology
near Sing(F) vanishes in the middle and higher degrees. We deduce as
a consequence that for compact V, H'{2)(V\Sing(V)) = 1H\V C), the
(middle perversity) intersection cohomology of V .

8.1. Kahler distinguished metrics. Since π is projective, we can find
a (not necessarily reduced) complex subspace Z of V, supported on
Sing(F), such that π : V -» V is the monoidal transformation of V
with center Z . Write π~ι(Z) = Σ™=1 aiDi, where aχ € Z+ and the Di

are the smooth irreducible components of the exceptional divisor D, and
let L = - Σ™ ! α [Zλ]. In other words, if S C &VfSingV is the ideal defin-
ing Z , then $~(L) is the locally invertible sheaf %~XJ guaranteed by
the universal property of monoidal transformations.

Lemma 8.1. In a small neighborhood U of D, there exists a metric on
L with positive curvature.

Proof. Embed a small neighborhood U of Sing( V) as an analytic sub-
variety of a polydisk AM with coordinates (xχ, •• , xM). By construction
of the monoidal transformation, we know that if U is sufficiently small
and U = π~ι(U), then Γ(U, <%(L)) defines a map i : U -* FN into
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some projective space such that π x i is an embedding 1/ <-• Δ x P .

Since (π x ίγπ\H = ι*H = L, where H is the hyperplane bundle of

P ^ , and since there exists a metric on π\H with positive curvature in

AM xFN, L has a metric with positive curvature.

Explicitly, if J ^ c ffγ S i n F is the ideal defining the subspace Z and

/ 0 , , /^ are generators of J ^ , the map *|~ is given by [π*/ 0 , ,

πmfN] and the equation \s\2 = (Σj \**fj\2Γle~M ( w h e r e s i s a section
of L with (5) = - Σi aPi) defines a metric on L with positive curvature.

Lemma 8.2. There exist positive integers (0αϊ )α€{i,... ,rt},i€{i, >m}

such that (after perhaps shrinking U):

(i) ^4«y p columns of (aai) are linearly independent for p <
min(n,m).

(ii) For a e {1, - , n}, the line bundle La = - Σ ^ i ^[Z),-] ΛΛ5 α

metric with curvature form Θ Q positive in U.
Proof By Lemma 8.1, we may give the line bundles [£>•] metrics so

that the induced metric on L has positive curvature. Let Ωf. be the
curvature form of [Z>J. We can perturb {ax, ••• , am) slightly to get
rational vectors (άal, , aam) for each α € { l , • • , « } , such that (i)
is satisfied and such that - ]Γ\ 3Q I Ωf. is positive in a slightly smaller u .
Then multiplying (όα I) by a common denominator to obtain (aai) finishes
the proof.

Remark. Although we will not need it, for N sufficiently large, the lo-
cally invertible sheaves (?~(L^) have the form π - 1 ( J ^ ) for ideals J ^ , . . . ,

^n Q @γ sing v ' e a c ^ °f w ^ o s e blow-up yields the same morphism π : V —•
V.

Let j * € Γ(ί/, ^(L*)) be such that (/) = Σi^aPi» w h e Γ e (Λα/) i s a s

in the lemma. Define on V\D&V\ Sing(F) the closed (1, l)-form

(8.1) ωχ = -i^dd η\o%{\og\sl\2)\

where η is a C°° cutofF function equal to 1 near Sing(F), and equal to
0 outside a small neighborhood of Sing(K).

Proposition 8.3. The ( 1 , X)-form ωχ is positive definite near D, and
the associated Riemannian metric is distinguished.

Proof Let q eD and let ( (z /) / € / , (^ /) /€{1>... j Λ_|/| }) be holomorphic

coordinates in a neighborhood An c U satisfying An f)Di = ^ ^ ( 0 ) for
1 € / , and = 0 for / $ I. We must show that the hermitian form
associated to ωx is quasi-isometric to (6.1) near q .
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Define

and compute from (8.1) that near q,

• ι 2

- 2 ,

α = l

Write

(8.2) ua :

where ha is a positive C°° function, and thus

Furthermore, Lemma 8.2(ii) implies that —ddua is positive definite near
# . Consequently the metric associated to ωχ is quasi-isometric near q to

— 9

,2

(8.3)

Πl
fce/ Q=1

log
/ " H / | \

Σ r f M^,+ Σ dwjdwλ.

Thus it only remains to show that Σ2=i ^u

a^
ua m a y ^ e repla c e <l i n

(8.3), up to quasi-isometry, by Σ / € / -^γdzidzi. We compute from (8.2)

that

and thus
*€/ k A

(8.4)
AyB

+ Σ oα^i)-T^C + Σ
AX A CD

Lemma 8.2(i) implies that the first term of (8.4) is quasi-isometric to what
we want, whereas the remaining cross-terms are quasi-isometrically negli-
gible near q by the arguments used to treat (6.7).



152 LESLIE SAPER

Theorem 8.4. Let V be a complex analytic space with isolated singu-
larities satisfying-.

There exists a Kάhler form ω0 on F\Sing(F) which is
dominated near Sing( V) by the Kάhler form of an ambient

^ " metric, for some embedding of a neighborhood of Sm%{V)

in a domain of CN.

Then for any resolution π : V -> V, with π a projective morphism and
with exceptional set D a divisor with normal crossings, there exists a Kάhler
metric on V\D = F\Sing(F) which is distinguished relative to π .

Proof For K > 0 large, ωχ + Kω0 is the desired Kahler metric on
F\ Sing V. By Proposition 8.3, we merely have to verify that locally near
Z>, π*ω0 is dominated by (6.1). However, (8.5) implies that

for coordinates satisfying (6.2), which easily yields our estimate.
Remark 8.5. (i) Condition (8.5) is certainly satisfied if V is a subvari-

ety of a domain in projective space; one simply takes for ω0 the restriction
of the ambient Fubini-Study Kahler form. Now recall that a function φ on
V is called plurisubharmonic (resp. C°° pshf strictly psh, etc.) if locally

V can be embedded in a domain of C^ such that φ is the restriction of
an ambient plurisubharmonic (resp. C°° psh, strictly psh, etc.) function.
Then a complex analytic space V is called Kahler if it admits a covering
by open subsets ( F ) and a system of C°° strictly plurisubharmonic func-
tions φa on Va with φa-φβ pluriharmonic on VaΠVβ. Condition (8.5)
is again satisfied if F is Kahler; let ω 0 = iddφa on Va\(Va n Sing(F)).
By a regularization result of Varouchas [50], a complex space F is Kahler
if there exists (FJ and φa as above, with φa only continuously strictly
plurisubharmonic, so the theorem holds in this case as well.

(ii) We note that it is clear from the proof of Theorem 8.4 that condition
(8.5) can be weakened, however we do not have an example where this is
necessary.

8.2. L2-cohomology and intersection cohomology. We need the follow-
ing "semipurity" result which may be derived (see [17], [19], or [48]) from
the decomposition theorem for intersection cohomology (see [4] or [38]-
[40]); an alternate proof is given by Navarro Aznar [33].

Theorem 8.6 ([17], [19], [33], [48]). Let ( F , x) bean n-dimensional
contractible germ of a complex analytic isolated singularity. Then the
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weight filtration W of the mixed Hodge structure on H\V\{x) C) satis-
fies

k ί ° fork> ny

(8.6) WkH
k(V\{x};C) = \ k

k [Hk(V\{x}'9C) . fork<n-L
Together with Theorems 7.7 and 7.8, this implies
Theorem 8.7. Let V be a complex analytic space with isolated singular-

ities and let π : V —• V be a resolution with exceptional divisor D having
smooth irreducible components with normal crossings. Then for c G l and
for any distinguished metric relative to π, we have

Hk

2)(Uc) = 0 fork>n,

Hk

2)(Uc,dUc) = 0 fork<n}

where Uc c V\D (c € R) is the cofinal system of punctured neighborhoods
of D defined in §5.

Proof Note that the convention for the weight filtration W on H\UC)
is such that Gτ^+pH

k(Uc) = E^'k+P for the weight spectral sequence.
Thus Theorem 8.6 may be interpreted as saying that the sequence (7.14)
is exact at E[p'q for q - p > n, p < 0 or q - p < n - 1, p > 0.
Together with Theorems 7.7 and 7.8, this shows that the E2 terms of
the W-spectral sequences for H^ΛUC) and H',2ΛUC ,dUc) vanish for
q - p > n and q-p <n 9 respectively, q.e.d.

Now let Jẑ 2) be the complex of sheaves on the space V associated to

thepresheaf U *-> &om(dv^{UnSirίg{v))) when V is compact, Γ(K,^' } ) =

Όom{dv, s i n g ( F ) ) . Oh F\Sing(F), an L2 version of the usual Poincare
lemma shows that Jz^) ^s a resolution of the constant sheaf
whereas for p e Sing(F), Theorem 8.7 implies

^f{2)) = 0 for k > n ,

a n d
lim Mk(U, £?{2)) = 0 for k < n .
UBp

Thus by the local characterization of. intersection cohomology in [22] or

[8], -2?2) ^s quasi-isomorphic to the intersection cohomology sheaf S Φ ,

and hence the hypercohomology M(V, «2^)) ιs naturally isomorphic to in-

tersection cohomology. However, jg^) ^s actually a fine resolution since
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the singularities are isolated, so we may replace hypercohomology by co-
homology of global sections. Consequently we have

Corollary 8-8. H\T{V9&*2))) 2 IH\V\ C). In particular, if V is

compact, then i/('2)(F\Sing(F)) 2 IH\V \ C).
Theorem 0.1 in the introduction follows from Theorem 8.4 and Corol-

lary 8.8.

9 L2 -Hodge structures

Let Y be a hermitian manifold (possibly with corners) and let L2(Y) =

P+q2 be the decomposition into (p9q) type. If Range(rf) is
closed, then by (1.2) any decomposition of Ker(Δ) induces a decomposi-
tion of L2-cohomology. In particular, if Ker(Δ) decomposes into (p, q)
parts, i.e.,

(9.1) Ker(Δ*) = 0 Ker(Δ*) nLp

2'
9(Y),

p+q=k

then the £2-cohomology acquires a Hodge structure

(9.2) rf
p+q=k

by setting Hp'9 = Ker(Δ*) nLp

2'
q(Y). (Properly speaking, this is a real

Hodge structure since we have not defined a rational structure on H£2)(Y) .)
Define the filtration

r>P

We have induced filiations on Dom(rf), Ker(Δ*), and H^(Y) in the
usual manner.

Lemma 9.1. Assume Range(d) is closed and (9Λ) holds. Then the β-
trations Fp on Hk

2){Y) and Ker(Δ*) agree under the isomorphism induced
by harmonic projection.

Proof It suffices to show harmonic projection preserves Fp since the
inverse isomorphism Kcτ(Ak)^Hk

2)(Y) clearly does. But this is obvious
from (9.1). q.e.d.

This filtration on cohomology is called the Hodge βtration.
Remark 9.2. A sufficient condition for (9.1) to hold is that Y be com-

plete (without boundary) and Kahler. In this case it is well known [1] that
Ker(Δ) = Ker(D), where D = d*d+dd* is the Hubert space 9-Laplacian
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defined analogously to Δ in §1.1. In fact, we have [55, §1] the stronger
result that

(9.3) Δ = 2D (strict operator equality),

and, if Range(rf) is closed, that the spectral sequence of F degenerates
at Eχ in other words, (Dom(rf), F) is a real Hodge complex.

Of course, we are mainly interested in the case where Y is a smooth
Zariski open dense subset of V, a compact complex space, and where

(9.4) IH\V;C)*Hm(Y)

holds. Since IH'(V\C) is finite dimensional in this case, Range(rf) is
closed (although finite dimensionality often follows directly from the meth-
ods used to verify (9.4)). If (9.1) holds in addition, intersection cohomol-
ogy acquires an L2-Hodge structure.

Example 9.3. If Y = K\SingF is a given metric which is quasi-
isometric to a piecewise flat metric relative to a triangulation of V, then
Cheeger [11] has shown that the L2-cohomology if('2)(K\SingK) is a
finite-dimensional combinatorial invariant of V, represented by the In-
harmonic forms and satisfying Poincare duality. This invariant, he shows,
turns out to be intersection cohomology; thus we have (9.4). If the singu-
larities of V are isolated complex cones and the metric is Kahler (although
incomplete), he has verified (9.1) by showing [12] that the almost complex
structure J preserves Dom(Δ) and hence Ker(Δ).

Example 9.4. Let V be any Kahler variety (or, more generally, a
complex analytic space satisfying (8.5)) with isolated singularities and let
Y = V\ Sing V be equipped with a complete Kahler metric which is dis-
tinguished on V. Such metrics exist by Theorem 8.4 and Proposition 6.3.
The conditions (9.1) and (9.4) follow from Remark 9.2 and Corollary 8.8,
respectively.

Example 9.5. Let X be a bounded symmetric domain, and Γ an arith-
metic group of automorphisms acting freely on X. Let V be the Baily-
Borel-Satake compactification of the locally symmetric variety T\X, and
let Y = T\X be equipped with the complete Kahler metric induced by
the Bergman metric on X. (Equivalently, give Y a metric induced from
a metric on X invariant under the automorphism group G.) Assertion
(9.4) is Zucker's conjecture [52] (more generally, one admits a metrized
coefficient system induced from a representation of (7). This was proven
independently by Saper and Stern [44], [45] and by Looijenga [29]. Previ-
ously, special cases with Q-rank 1,2, and 3 were verified by Zucker [52],
[54], the general Q-rank 1 case was settled by Borel [7], and the general
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Q-rank 2 case by Borel and Casselman [9]. Again, (9.1) is automatic since
the metric is complete and Kahler.

Example 9.6. Let V be a projective variety, and let Y = V\ Sing V
have the induced Fubini-Study metric. Then (9.4) and (9.1) were conjec-
tured by Cheeger, Goresky, and MacPherson [13]. In [27], Hsiang and Pati
(see also Nagase [32]) have verified (9.4) for V a projective surface with
isolated singularities. However the Fubini-Study metric on F\ Sing V is
not complete, and (9.1) has not yet been verified, so the existence of the
L2-Hodge structure is open. Recently Ohsawa has shown that (9.4) holds
for all projective varieties V with isolated singularities; the proof reduces
the problem to (9.4) for a complete metric, and then applies Theorem 0.1.

The L2-Hodge structure depends a priori on the metric on Y. Thus
in the situation of Example 9.4, one may conceivably obtain different L2-
Hodge structures on IH'(V; C) associated to different resolutions of V.
However this is not the case; Zucker has proven the following theorem:

Theorem 9.7 (Zucker [55]). Let V be a compact complex analytic
space having only isolated singularities and satisfying (8.5); give V any
Kahler distinguished metric. Then the corresponding L2-Hodge structure
on IH\V'; C) coincides with the canonical Hodge structure (see below).
The same result holds if V is the Baily-Borel-Satake compactification of an
arithmetic quotient of a ball or a Hubert modular surface, and F\SingK
has the metric induced from the Bergman metric.

Here the canonical Hodge structure on IH\V C) (for V having iso-
lated singularities) is defined as follows. We have a canonical isomorphism
[21] (complex coefficients throughout)

ί
Hk{V\SingV) for k<n,

lm(Hn(V)->Hn(V\SingV)) for k = n,

Hk{V) for k>n.
The terms on the right-hand side possess mixed Hodge structures con-
structed by Deligne [15], [16], which are pure [19], [33], [48].

10. L2-d-cohomology and MacPherson's conjecture

We remain in the setting of §9. The L2-~d-cohomology HP

2)

q^(Y) is

defined analogously to ordinary L2-cohomology. Namely, let ~dP'q denote

the operator closure of d acting on the domain { φ e ApJrq{Y)c\Lp

2

q(Y) \

dφ G Lf * + ι ( r ) } . Define H™j(Y) = Hq(Όom(dpr)). As for ordinary
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L2-cohomology (1.2),

(10.1) H™Έ * Ker(D) θ (Range(#)/ Range(d)),

where the second factor is either infinite dimensional or 0 (the latter case

occurring when Range(9P'^~ ) is closed).
Proposition 10.1 IfY is a complete Kάhler manifold without boundary

and Range(^) is closed, the Hodge structure on L2-cohomology (9.2) can
be represented as

Proof, The closure of Range(d) (resp. Range(d)) is equivalent to the
closure of Range(Δ) (resp. Range(D)). Thus by (9.3), Range(rf) closed
implies Range(d) closed and Ker(D) = Ker(Δ). Thus

H™Έ(Y) * KerfD"'*) = Ker(Δfc) n LP

2

q{Y) = //*'*. q.e.d.

If H?'qjj(Y) is finite dimensional for all q, define the L2-d-index to

be

(io.2) X(2)(Y) =

Let V be a compact analytic variety and define the arithmetic genus to be

dimK

MacPherson [30] has conjectured that the L2-5-indexof F\SingF equals

the arithmetic genus of any resolution V of V, in the contexts:
(I) Where V\ Sing F has a Kahler metric induced from an embedding

of V in a Kahler manifold (e.g., F a projective variety with the Fubini-
Study metric on F\SingF).

(II) Where F is the Baily-Borel-Satake compactification of a locally
symmetric variety with the Bergman metric.

In other words, the conjecture states that χ(V), which is a birational
invariant for smooth F , may be replaced by χ ( 2 ) (F\SingF) to yield a
birational invariant for possibly singular F . For the context we considered
in §8 (which was motivated by (II)), the following theorem proves the
conjecture; in fact, there is even equality term by term.

Theorem 10.2. Let V be a compact complex analytic space with only
isolated singularities and satisfying (8.5); consider any Kahler distinguished
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metric on V. Then

where V is any resolution of V and 0 < q < dim V. The same result
holds for the cases of context (II) mentioned in Theorem 9.7.

Proof Since Hq(V, &~) is a birational invariant for smooth varieties,
we can assume V —• V has an exceptional divisor D with smooth com-
ponents intersecting in normal crossings. Then from the weight spectral
sequence for F\Sing V - V\D as in [15] or [23], we have an isomorphism
of Hodge structures

(10 3) Gτ^Hk(V\SmgV)^lm(Hk(V)^Hk(V\D))

s Cokeτ(Hk'2(Dι)^Hk(V)),

where Dι is the disjoint union of the components of D, and G is an
alternating sum of Gysin morphisms. We will also need

Lemma 10.3. For k <nt there is an isomorphism of Hodge structures
IHk{V) s G r y # * ( F \ S i n g F ) , where IHq{V) is given the canonical
Hodge structure {see (9.5)).

Proof For k <n, this is clear from (9.5) since Hk(V\ Sing V) is pure
[19], [33], [48, §1]. For k = n , we simply need to show

(10.4) Im(Hn{V) ->

Let ί/ be a regular neighborhood of Z>, and U its image in F . Then
#*((/) -> Hn(U\D) is the zero map [48, (1.11)]. (10.4) and hence the
lemma now follow from the Mayer-Vietoris diagram:

Hn{V) -> //Λ(K\SingK) Θ 7/n(C/) -> /fΛ(ί7\SingC/)

1 II 1 II
7/Λ(K) -• Hn(V\D) Θ //Λ(&) -• Hn{U\D). Q e d

We now apply Proposition 10.1, Theorem 9.7, Lemma 10.3, and (10.3),
respectively, to see that

- ( 0 , 9 ) part of the Z,2-Hodge structure on IHq(V)

- ( 0 , 9 ) part of the canonical Hodge structure on IHq{V)

^(0,9) part of Coksr(Hq(Dl)-£+Hq(V)).

But the Gysin map is a morphism of Hodge structures of type (1, 1) [23],
that is, it maps type (p, q) into type ( p + 1 , q + 1 ) , and thus in particular
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its image lies in φ r>, H^q~r(V). Hence H^(V\ Sing V) * H%'q(V) s

tP<y>0y) as desired.

Corollary 10.4. In the situation of the theorem, χ{2) (V\ Sing V) = χ(V).
This proves Theorem 0.3 of the introduction.
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