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NONNEGATIVELY CURVED LEAVES
IN FOLIATIONS

S. R. ADAMS & A. FREIRE

Abstract

We use techniques from geometric analysis to prove that any Riemannian
foliated measure space with finite total measure and leaves of nonnegative
Ricci curvature has the property that a.e. leaf is the product of a compact
Riemannian manifold and a flat Euclidean space

0. Introduction

We solve here a conjecture of R. Zimmer concerning nonnegatively
curved leaves in foliations by Riemannian manifolds. We prove

Theorem 5.1. Let (M, &, 31) be a Riemannian foliated measure space
with finite total measure such that a.e. leaf is complete and has nonnegative
Ricci curvature. Then a.e. leaf can be written as the product of a compact
Riemannian manifold and a flat Eucliean space.

Thus, while it is possible to foliate a torus by lines, this theorem implies,
for example, paraboloids cannot wrap around one another tightly enough
to foliate a space of finite volume.

Theorem 5.1 is the counterpart of Zimmer's theorem [12] on nonposi-
tively curved leaves in amenable foliations. In nonnegative curvature, it is
not necessary to assume amenability; this comes for free since the leaves
of the foliation have polynomial growth.

Our result, proved in the general context of foliated measure spaces,
immediately implies the following theorem for foliations of Riemannian
manifolds with holonomy-invariant measure (as defined for example in
[8]):

Corollary 5.2. Let SF be a foliation of a compact manifold with a
holonomy-invariant measure that is finite on compact subsets of transversals.
Assume that almost every leaf {with respect to this measure) is a complete
Riemannian manifold of nonnegative Ricci curvature. Then almost every
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leaf of & is the Riemannian product of a compact manifold and a flat
Euclidean space.

It is conceivable that, in the conclusion of Corollary 5.2, 'almost every
leaf may be replaced by 'every leaf.'

Theorem 5.1 is an analogue for foliations of a combination of two the-
orems. One is a theorem of S.-T. Yau [10, Theorem 7, p. 667] which states
that a finite volume (complete) manifold of nonnegative Ricci curvature
is compact. The other result [4, proof of Theorem 8.21, p. 150] states that
the universal cover of a compact manifold of nonnegative Ricci curvature
splits as compact cross Euclidean.

The idea in [10, Theorem 7, p. 667] is that the Busemann function of
any ray in a nonnegatively curved manifold is Lipschitz and weakly super-
harmonic. Yau proves that such a function cannot occur in finite volume
unless it is harmonic. In this case, by Lemma 3.2 below, any flow line
of the gradient of the Busemann function would be an everywhere mini-
mizing bi-infinite geodesic line. This line splits off (by [5] or [4, Theorem
8.17, p. 148]) as a direct factor, contradicting the finite volume hypoth-
esis. Thus, the manifold cannot contain any rays and must therefore be
compact.

We will attempt in this article to implement these ideas measurably
on all of the leaves of a foliation. Unfortunately, it is sometimes not
possible measurably to choose a ray from every leaf. The solution is to
follow [12]: rather than choosing a single point in the boundary of each
leaf, we instead use amenability to set up a system of measures on the
boundaries of the leaves. As in [12], we can concentrate these measures
on the anti-Euclidean boundaries, where none of the corresponding Buse-
mann functions are harmonic. Then the superposition of these Busemann
functions is not harmonic on any leaf. By an argument analogous to [10,
Proposition 2, p. 667] (but done globally across the foliation), systems of
leafwise Lipschitz subharmonic functions on a foliated measure space with
finite total measure must be harmonic on almost every leaf (Theorem 4.6).
Thus, we arrive at a contradiction. This implies that these anti-Euclidean
boundaries must have been empty, which (by well-known facts from man-
ifolds of nonnegative Ricci curvature) shows that the leaves are compact
cross Euclidean.

To simplify matters, we do not actually use Busemann functions in this
paper. Instead we use the abstract boundary of a locally compact space
developed by Gromov ([7] or [2, §3, p. 21ff]).

Next we wish to describe two purely geometric applications of the main
theorem (Corollary 5.3 and Theorem 6.5).
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Recall that an action of a group Γ on a manifold M is said to be
properly discontinuous if every p e M has an open neighborhood U such
that {g e Γ\gU n U φ 0} is a finite subgroup of Γ.

Corollary 5.3. Let N be a complete manifold of nonnegative Ricci cur-
vature. Suppose N admits a properly discontinuous action by isometries of
a discrete countable group Γ which has 'finite covolume* in the following
sense: there exists an open subset U c N with finite volume whose trans-
lates {γU\γ e Γ} cover N. Then N splits isometrically as a product of a
compact manifold and a flat Euclidean space.

If the action is free, this is a corollary of the Cheeger-Gromoll splitting
theorem [5, Theorem 3] and the above-mentioned result of Yau. The
corollary follows from the foliated bundle construction in ergodic theory.

The second geometric application which we have in mind came out of a
general suggestion of H. Furstenberg to try to understand conditions under
which a Riemannian manifold might turn out to live inside a foliation of
a finite measure space. As one example in that direction, we consider "al-
most periodic" metrics (Definition 6.1) on Euclidean d-space. In Lemma
6.4, we show that manifolds with such metrics can be "put into foliations,"
whereupon Theorem 5.1 has the following corollary.

Theorem 6.5. Let g be a metric on R^ which is quasi-isometric to
the usual flat metric, and is almost periodic to order two {Definition 6.1).
Assume that either the sectional curvatures of g are all nonpositive or the
Ricci curvatures of g are all nonnegative. Then g is flat.

This is a generalization of the statement that the torus carries no nonflat
metrics of nonpositive or nonnegative curvature. Our proof requires the
full generality of foliations of measure spaces; the group A of Lemma 6.4
will typically not be a Lie group.

While the statement of Theorem 6.5 is completely geometric, we know
of no proof of this result that does not proceed by embedding R^ into a
foliation.

In §1, we set up basic definitions, including a definition of a foliation
of a measure space. In §2, we recall a result from [1] on the existence of
partitions of unity. In §3, we recall from [2] (or [7]) the abstract boundary
of a Riemannian manifold. We study the analytic properties of the bound-
ary function classes. We prove our analogue (Lemma 3.2) for [12, Lemma
5, p. 1016], one of the key ingredients in Zimmer's flat leaves theorem
[12, Theorem 1, p. 1011]. In §4, we prove our foliation analogue (The-
orem 4.6) of Yau's theorem on Lipschitz, weakly subharmonic functions
on manifolds [10, Proposition 2, p. 667]. In §5, we prove our main result
(Theorem 5.1) and Corollaries 5.2 and 5.3. In §6, we study almost peri-
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odic metrics and prove (Theorem 6.5) that such metrics, in the presence
of curvature assumptions, are flat.

1. Basic definitions

All Borel spaces which we consider will be standard, i.e., Borel isomor-
phic to [0,1] . A measure space will always be a standard Borel space
with a σ-finite Borel measure.

For the remainder of the paper, we fix a positive integer n (to denote
the dimension of the leaves of the foliation which we study). Let D denote
the unit ball in Rn .

If R is an equivalence relation on a set S, then, for all s e S ,we let
[s]R denote the equivalence class of s. If A c S, then the R-saturation
of A is denoted [A]R := \JaeA[a\R We say that R is countable if every
equivalence class of R is countable.

Definition 1.1. If R is a countable equivalence relation on a Borel
space B , then we say that R is Borel if its graph R c B x B is a Borel
subset. A Borel automorphism f:B->B is called an automorphism of
R i f ( b , f ( b ) ) e R f o r a l l b e B .

Definition 1.2. A countable Borel equivalence relation R on a finite
measure space T is said to be measure preserving if every automorphism
of R is measure preserving.

Definition 1.3. A flow box consists of

(i) a countable measure preserving Borel equivalence relation R on
a finite measure space T and

(ii) a measurable map t —> gt from T to the space of all Riemannian
metrics on D.

Let μt be the volume density associated to gt, and define a measure μ
on T x D by

μ(A):= [ μt{deD\(t,d)eA}dt
j T

for all measurable A c T x D. The resulting measure space is denoted
TxgD.

In the next definition, no measurability assumption is made on the map
31. In fact, Definition 1.5 makes precise what it means for the map 3Z
to be "measurable."

Definition 1.4. Let & be a Borel equivalence relation on a measure
space M. Let 31 \ L t-> 31 (L) be an association of an ^-dimensional
C°° -Riemannian manifold structure to each equivalence class L C M. A
foliation chart for (M, &, 31) consists of
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(i) a flow box (T,R,t*-+ gt) and

(ii) a measure preserving Borel injection u: T xgD -> M such that for

all d,d' eD and all t,tr e T,

and such that, for every equivalence class L c M, u(T x {0}) Π L has no
accumulation points in the topological space L.

Definition 1.5. Let & be a Borel equivalence relation on a finite
measure space. Then (M,&',31) is a Riemannian foliated measure
space with finite total measure if there exists a countable collection sf :=
{Tt, ut: T. x D —• Af}/=1 2 of foliation charts such that

(i) U, ui(Ti x D) contains a.e. equivalence class; and
(ii) for every i and every t e Γ , u^t, •) is an orientation preserving

C°°-isometry of (D, gt) onto an open subset of the Riemannian manifold

Such a collection J / is called an atlas. Equivalence classes are called
leaves.

Now, if / is a function on M, then it makes sense to speak of / being
C°° along leaves. For such functions, we have a well-defined leafwise
gradient V/ and a leafwise Laplacian Δ / .

2. Partitions of unity

Let (Af, SF ,&) be a Riemannian foliated measure space with finite
total measure.

Definition 2.1. If si = {T , «,: T xσ D —• M} is an atlas, then a
sequence ft: M —• [0, 1] is called a locally finite partition of unity subor-
dinate to sf if

(i) Σ/ fi - 1 a e o n M
(ii) each yj. is measurable on M and C°° along leaves;

(iii) for all ' i , /;. = 0 on M\ui{Ti x Z))
(iv) for all / and t e Tt, d *-+ ft(t, d): D ^ R has compact support;

and
(v) if L is a leaf and K c L is compact, then / ^ Ξ 0 for all but

finitely many /.
Lemma 2.2 [1, Lemma 2.2]. There exists an atlas s/ for (M, &,

Ίich has a locally finite partition of unity subordinate to it.
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3. Boundary theory in Riemannian manifolds

Let L be an ^-dimensional complete Riemannian manifold. A line in
L is a bi-infinite (i.e., parameterized by R) geodesic which is distance
minimizing between any two of its points. A ray in L is a positive-time
(i.e., parameterized by [0, oo]) geodesic which minimizes the length of any
segment. All bi-infinite geodesies, positive-time geodesies, rays, lines, and
geodesic segments will be parameterized by arc length. Let d: Lx L -» R
denote the distance function on L.

Following [2, §3, p. 21], we let C(L) denote the space of continuous
functions on L in the topology of uniform convergence on compact sets.
We let C+(L) denote the quotient of C(L) by the constant functions and
give this space the quotient topology. An element of C% (L) will be called
a function class. We embed L in C^(L) by identifying a point I e L with
the function class of d( , I) in C#(L). Then dL denotes the boundary
of L in C^(L) it is a compact metric space.

Note that, if h e CΦ(L), then it makes no sense to evaluate h at a
point I e L. However, it does make sense to compute the change in h
between / and /'. That is, if h* e C(L) is any preimage of h, then we
define

Λ|f :=*V)-*'(/)•
We will denote the C°° functions of compact support by C™(L).

A function on L will be said to be Lipschitz-l if, for all /, /' e L,
\f(l') — f(l)\ ^ d(lf, /) . This property is invariant across function classes,
so it makes sense to speak of an element of C#(L) being Lipschitz-l. Note
that every element of dL, being a limit of Lipschitz-l function classes, is
again a Lipschitz-l function class.

Other concepts which descend to C^(L) are differentiability, differen-
tiability at a point I e L, harmonicity, superharmonicity, weak superhar-
monicity. (A function A* e C{L) is weakly superharmonic if / h*Ag < 0
for all g e C™(L) satisfying g > 0 on L. To see that this concept is
invariant across function classes, note that Stokes' theorem implies that
fΔg = 0 for all g e C™{L).) At a point / e L of differentiability of
h e C^{L), the gradient VA(/) e TtL is well defined.

Lemma 3.1. IfhedL and h is differentiate at I e L, then |Vλ(/)| =
1.

Proof. Let / p / 2 , € L b e a sequence such that d(-, /•) -> h mod
constant functions. Let g. be a length minimizing geodesic segment from
/ to lr Passing to a subsequence, g'.(0) converges. Let g be the positive-
time geodesic such that ^'(0) -> g'{0). Then, since the length of g. tends
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toward infinity as i —• oo , we see that g: [0, oo) —• L is a ray.

Claim. For all s > 0 , h\8

g^ = - 5 . Discarding finitely many i , we may

assume d(l, l ) > s, for all /. Thus, for all /,

(1) rf(/,^(j)) + rf(^.(j), /,)=£/(/,/,.).

Let ε > 0 be arbitrary. Since d( , I.) -> A mod constants, we may assume
that, for all i ,

(2) l<o!-^ >';)0<e
Finally, discarding finitely many i we may assume that the angle between
#'(0) and g;'(0) is so small that, for all /,

(3) d(g(s),gi(s))<ε.

By the triangle inequality,

On the other hand, by (1) and applying the triangle inequality twice,

d(l,g(s)) + d(g(s),li)-d(l,li)

= [d(l, g(s)) - d(l, gi(s))] + [d(g(s), I.) - d(gi(s), /,.)]

<d(g(s),gi(s)) + d(g(s),gi(s)).

So, by (3),

0<d(l, g(s)) + d(g(s), /,.) - d(l, /() < 2ε.

Since d{l, g(s)) = s and / = #(0), we have

which and (2) give

for all ε > 0, proving the claim.
From the claim, it follows that Vλ(/) g'(0) = - 1 , so that |Vλ(/)| > 1.

On the other hand, h is a limit of Lipschitz-1 function classes and is
therefore Lipschitz-1, from which we have |Vλ(/)| < 1. q.e.d.

Lemma 3.2 below is our analogue to [12, Lemma 5, p. 1016]. Since
harmonic functions are C 1 , Lemma 3.2 shows that a manifold with a
harmonic boundary function contains a line. By [5] or [4, Theorem 8.17,
p. 148], this line splits off as a direct factor (assuming nonnegative Ricci
curvature).

Lemma 3.2. If h e dL and h is C 1 , then L contains a line.
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Proof. Let g: R -• L be any flow line for Vh . Then we claim that g
is a line. Let 5 , / e R , s < sf. We wish to show that d(g(s), g{s')) =
s' - s.

By Lemma 3.1, |VA| = 1 on L, so g is parameterized by arc length.
Thus

Let q: [0, d] -> L be a length minimizing geodesic segment such that
;0) = g(s) and q(d) = g{sf). Then

s-s = h(g(s)) - h(g(s)) = h(q(d)) - h(q(O))

= ί Vh{q{t)) q\t)dt.
Jo

Taking absolute values and using Lemma 3.1, we obtain

s - s < [ \Vh(q(t))\ \Q'(t)\dt= f l ldt = d = d(g{s),g(s)).
Jo Jo

q.e.d.
Next we prove that elements of dL are weakly superharmonic. This

is similar to the proof in [10, p. 669, 1.10] that Busemann functions are
weakly superharmonic; however, we follow a simpler notation. Before
starting the proof, we make the following simple observation.

Lemma 3.3. Let h be Lipschitz on L and let φ e C™(L). Let Q
denote the set of points where h is differentiate. Then

f hAφ = - f Vh Vφ.
JL JQ

Corollary 3.4. Fix I e L. Let h := d{-, /) and let C denote the cut
locus of I. Then, for all g G C™{L),

/ VhVg = - / hAg.
JL\C JL

Recall that if h G C^(L) and g e C™(L), then fL hAg is well defined
by Stokes' theorem.

Lemma 3.5. Assume all Ricci curvatures of L are nonnegative. Then,
for all h e dL, h is LipschitzΛ and weakly superharmonic.

Proof"(cf. [10, p. 669, 1.10] and [5, p. 123, 1.7]). Since every rf( , / ) ,
/ G L, is Lipschitz-1, it follows that every element of dL is as well.

Let g G C™(L) satisfy g > 0 o n L . W e wish to show that fL hAg <
0. Choose lχ, /2 , G L such that ht := d( , I.) —• h mod constant
functions. Let C, denote the cut locus of /,.
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Fix a positive integer / and let / := /.. Let S denote the unit sphere
of T{L. For all v e S, let c(υ) denote the (possibly infinite) supremum
of

{te{0,oo)\d(l,expι(tυ)) = t}.

By truncating and convolving, choose a sequence of C°° functions c.: S —•

(0, oc) such that c.(v) < c(v) and c.(v) —> c(υ) for all v e S. Let

TV := { Γ φ eS, 0 <t < Cj(v)} for = 1, 2, . Then exp; is injec-

tive on T\ and \}. exp^TJ) = i\C^. Furthermore, if F is the radial,

unit length, outward pointing vector field on Γ/L\{0}, then V points

outward along the boundary of TJ. Note that, for any /, j and any

υ e Tj , dexp{Vv) = VA^exp^)). Consequently, picking 7 large enough

(depending on /), and setting Dt := exp^TJ), we may assume
(i) dh jdn > 0 on dD , where « is the outward pointing normal to

(") I /L\(O,UC()
 v h i • v ^ l < ! / ' ; and

(ϋi) \SL\(Dlυcl)SAhi\<1/i

By Stokes' theorem,

Then, by (ii) and (iii),

^ < / VA, Vg + /
' JL\ς ./A

/

/AC.

By Corollary 3.4,

/" VhrVg = - ί htAg,
JL\Ci JL

so

-l<- ί htAg+ ί gAhr
I JL JL\Ci

Let /? := dim(L). Since hi = J( , l ) , and the Ricci curvature is nonneg-
ative, it follows from comparison theory that Ah( < (n - l)/hi. Further,
there are constants c such that h. — ci-^h uniformly on compact sets as
/ -> 00 . By Stokes' theorem, / c{Ag = 0. We now have

--<- in-l) [ f.
JL\q "i
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Let / —• oo in this inequality. Since the ISs leave compact sets, it
follows that ht —• oo uniformly on compact sets. We therefore have 0 <
- / hAg + 0 or / hAg < 0, as desired.

4. Systems of weakly subharmonic functions

Let L be a Riemannian manifold. A function h e C(L) is said to be
weakly subharmonic if f hAg > 0 for all g e C™(L) satisfying g > 0.

Let (M, ^ , 3ί) be a Riemannian foliated measure space with finite
total measure.

Definition 4.1. A discrete section of (M, &, 3%) is a set S C M such
that

(i) [S]^r has positive measure; and
(ii) for all m e M, S Π [ra]^ has no accumulation points in the Rie-

mannian manifold [m]^. (We allow S Π [m]^ to be empty for some
values of m.)

A compatible system for S is a collection, {/z5: [s]^~ —• R}5€ίS-, of weakly
subharmonic functions satisfying

(i) (s, s') e ίf\S implies hs> — hs is a constant function; and
(ii) ( ί , w ) π hs(m): (S x M) π^ —> R is measurable; the measure on

(S x Af) Π & is defined by

μn(5χ{m}) | r f/ ι(m),

where | | denotes cardinality, and μ denotes the measure on M.
Definition 4.2. If ψ: M -> R is measurable and leafwise C°° , then

we say that ^ has compact support if there exists an atlas si and a locally
finite partition of unity {</j.}/ subordinate to J / such that ftψ = 0 for all
but finitely many /. In this case, we say that si and {yj.}/ are adapted
to ψ.

Let w: T xgD ^ M be a foliation chart. Let S be a discrete section
and let {hs}seS be a compatible system. For all t e Γ, let ^ ΰ - ^ R be
defined by

where 5 is any element of S Π [t]^ . (The result is independent of s .) In
the case where S Π [ί]^ = 0 , we define ht = 0 on Z>. We call {/*J,€Γ

the transfer of {hs}seS to T.
Let {C, € C™(D)}teT be a system of functions which is transversally

measurable in the sense that (t9 d) *-> ζt(d): Γ x f l - > R is measurable.
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Define ζ: M -> R by ζ(u(t, d)) = ζt(d) and by ζ = 0 on Af\κ(Γ x D).
We call £ the transfer of {ζt}teT to M.

Definition 4.3. Let s/ = {T., M : Γ. X^ D -+ Af}. be an atlas, and
{./]•},. a partition of unity adapted to a nonnegative valued, leafwise C°°
function ψ: M —> R of compact support. Let S be a discrete section and
let h := {A5}seS be a compatible system of weakly subharmonic functions.
For all i and all teT., define y//: D -• R by

We then define

L
where {h\}t is the transfer of A to T .

This is independent of si , {fi}i adapted to ψ. The proof of this
independence follows the same lines as the proof that integration on man-
ifolds is well defined, so we omit the tedious details. However, three points
are worth noting. The first is that it is necessary in the proof to justify
interchanging Σj with / Γ and with J ( / ) ^. Interchanging with f.D u
follows from ordinary calculus on manifolds since the sums involved are
finite and the functions are continuous with compact support. Interchang-
ing with fτ follows from the general fact that if the α .'s are nonnegative
measurable functions, then Σj ί aj~ S Σ , aj Thus, if the {hs}s£S were
not weakly subharmonic, / hAψ might not be well defined.

The second part is that care is required, since these integrals cannot be
transferred down to the measure space; the integrands may not be inte-
grable functions in M. On overlaps, it is necessary to transfer the leafwise
integrals across first; then use the holonomy invariance of the transverse
measures.

The third point is that, by Stokes' theorem, for any i and any t e Tn

S(D g') Δψ\ = 0, so that the value of /(Z) g^ h\Aψ\ = 0 is unaffected if we

change h\ by a constant.
To set up the next lemma, let u: T x D -> M be a fixed foliation

chart again, let {ζt £ C^(D)}teT be transversally measurable, and let
A := {As}s€S be a compatible system of weakly subharmonic functions for
some discrete section S. Let ζ: M -> R be the transfer of {ζt}teT to
M , a n d {ht}t£T the transfer of {hs}seS to T.

Lemma 4.4. Assume that ζt > 0 for all t e T. If there is a single
compact subset of D containing the support of every ζt, then ζ has compact
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support and

(1) ί hAζ= f \ ί htAζ]dt.
JM JT \J{D,gt) J

Proof. Let {fj}i=ι 2 ^ e subordinate to some atlas J / = {Γ/? ut:
Tt xgD-+ M}t. Let To := T and uo:=u.

Let D' C D be a closed ball of radius < 1 about 0 containing the
support of every ζt. Let D" CD be an open ball of radius < 1 about 0
containing D1. Let s: D -> R be a C°° function satisfying s\Df = 1 and
s\(D\D/f) = 0.

Let /0*: M - . R be defined by fi(uQ(t, d)) = s(d) and by /0* = 0
on M\uQ(TxD). For z = 1,2, •• , define JT:M^R by /;*(m) =

*; 0

Now we see that {^*}/=0 i ... is subordinate to the atlas {Tt, wz: 7|. x^

D -+ M} / = 0 j _ and that f*ζ = 0 for all / > 0. Thus, ζ has compact

support and

ί hAζ= ί ί /z°ΔC,
JM JT0 [J(D,g?)

dt,

where {h®}teτ is the transfer of {hs}seS to Γo. This is the same as
equation (1).

Lemma 4.5. Let ψ: M —> [0, oo) be leafwise C°° with compact sup-
port, and let h be a compatible system of weakly subharmonic functions
over some discrete section. Then JM hAψ > 0.

Proof. In the notation of Definition 4.3, for all i and all t e J^ , h\ is

weakly subharmonic on (D, gι

t) and ψ\ > 0, and therefore:

hι

tAψL

t > 0.

The result follows on integrating over Ti with respect to t and then sum-
ming over /. q.e.d.

If S is a discrete section, then a subset Sf C S will be said to be
null (resp. conull) if [S*']^ (resp. [5\5'/]^r) is of measure zero. Thus the
phrase "a.e. s e S " is well defined. The main theorem of this section is a
foliation analogue of [10, Proposition 2, p. 667]:

Theorem 4.6. Let h := {hs}seS be a compatible system ofLipschitz-l,
weakly subharmonic functions on (M, & 9 &). Then hs is harmonic for
a.e. s eS.

Proof Assume for a contradiction not. Restricting S to a nonnull
subset, we may assume that h is not harmonic for all s € S.
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Let u: T xgD -> M be a foliation chart, and let {ht e C°°{D)}teτ

be the transfer of {ΛS}J€JS to Γ. With a careful choice of T and u,
no ht will be harmonic. Then, by regularity theory, no ht will be weakly
harmonic. However, every ht is weakly subharmonic and Lipschitz-1, by
Lemma 3.5.

Let C™(Dγ denote the set of all nonnegative, compactly supported,
C°° function on D in the usual C°° topology. Let ζχ, ζ2, e C™(D)+

be a countable dense subset. For every t e T, let kt be the smallest
positive integer such that

Let ζt := ζk/maxζk for all t e T. Restricting T, we may assume that

there is a single compact subset ΰ ' c ΰ containing the support of every

Let mτ denote the measure on T. By definition of a flow box (Defini-
tion 1.3), mτ(T) < oo. Let ζ be the transfer of {ζt}teT to M. Then, by
Lemma 4.4, ζ has compact support and JM hΔζ < fτ 1 dt = mτ(T) < oo .

Fix an atlas sf := {Tt, ut: Ttx D —• M} / = 0 ! which a subordinate
locally finite partition of unity {^}ί=0 t such that TQ = T and uo = u
and such that / 0 = l on w o (Γ o xD') . This can be done as in the proof
of Lemma 4.4.

For every m € M, let dm denote the distance function in the Rieman-
nian manifold [m]^. If m e [m]^ and S c M, then we denote the
infimum of distances from m to points of Sr\[m]^ by dm(m , 5 ) , with
the convention that this infimum equals oo if S Π [m]^ = 0 .

Let ε > 0 be arbitrary. Let K, N e R be sufficiently large that there
exists a subset Γ ' c Γ satisfying

(i) fu{T"xD>) hΔζ < ε , where Tff := Γ ^ '

(ii) f^m) = 0 if d m (m, w(Γr x £>')) < 4/ε and i > N\ and
(iii) |vyj(m)| < # if </m(m, w(Γ' x Z)')) < 4/ε and I <i<N.

Let φ: Λf -• R be a measurable, leafwise C°° function satisfying
(iv) φ(m) = 0 if rf(m, w(Γ' x £>')) > 4/ε
(v) 0 = 1 on w(Γ; x D ' ) ; and

(vi) IVφ\ < ε on M.
This can be done by making 0 a smoothing of a gradually decaying func-
tion of the leafwise distance from the set u{Tf x D1) (see [1, proof of
Lemma 4.2]). By (ii) and (iv), φ has compact support, and s/ , {fi}i are
adapted to φ.
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Let ζ': M -+ R be the transfer of {ζ,}t€T> to M. Then, by (v), φ>ζ'

on M. So, by Lemma 4.5, fM hA(φ -ζ)>0. Thus, by (i),

[ f hAζ} - ε < ί hAζ' < f hAφ.
UM J JM JM

Let fl(d) := J\(Ui(t, d)), φ\{d) := ^ ( ί , rf)), and ^ := (φ\) (//).

Let {hι

t}teτ be the transfer of {hs}seS to 7 .̂. Then, by Lemma 3.3 and

Definition 4.3,

JM

i JτiJQ\

where Qr' c D is the set of points where h\ is differentiate. Let Q
denote the set of points of leafwise differentiability of h. Then Vh
is a well-defined vector field on Q, and we may transfer the integrals
down to (M, &, 31). Since everything in sight is bounded (including
|Vλ| I Q, since every hs isLipschitz-1), and since Σ,-^ = 1 and Σ , vyj =
0 on Λf, we may interchange summation and integration and obtain

Thus

for all ε > 0. Since JM hAζ > 0 and μ(Q) = μ(M) < oo, this is a
contradiction.

5. The main theorem

By [5] or [4, Theorem 8.17, p. 148], any complete Riemannian manifold

L of nonnegative Ricci curvature can be written L = Lχ x l 2 , where Lχ

contains no lines, and L2 is a flat Euclidean space. Let dιL be the

image of ΘL{ under the map dLχ —• dL induced from the projection

map L —> L{ . Then dιL is a closed subset of dL. We call dxL the

anti-Euclidean boundary of L. By Lemma 3.2, no element of dxL is C 1 .
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For any compact metric space K, we denote the space of probability
measures on K by M(K) it is given the weak- * topology.

We can now prove the main theorem of this paper.
Theorem 5.1. Let (M, &, 31) be a Riemannian foliated measure space

with finite total measure such that a.e. leaf is complete and has nonnegative
Ricci curvature. Then a.e. leaf can be written as the product of a compact
Riemannian manifold and a flat Euclidean space.

Proof. Assume for a contradiction not. Then there exists a discrete
section S c M such that dx[s]^ Φ 0 for all s e S. Let Ts be the
tangent space of the Riemannian manifold [s]^ at the point s. Let Ks

denote the image of dι([s]^) under the injection C^s]^) —> CΦ(TS)
induced by the (surjective) exponential map Ts —> [s]^-. Then Ks is a
compact subset of C^(Ts) for all s e S.

By volume comparison with Euclidean space, every Riemannian man-
ifold of nonnegative Ricci curvature has polynomial growth. It follows
that &" is amenable and, consequently, that SF\S is as well. By [6], there
exists a Z-action on S whose orbits are a.e. the equivalence classes of

The tangent bundle of & is measurably trivial, so, by the von Neumann

selection theorem, we may choose a measurable system μs e M(KS). We

may apply a standard averaging argument to the Z-action and assume: for

a.e. (s, s') e S^\S9 vs = vs,, where vs e M{dι[s]^) is the preimage of

μs under the bijection dι([s]^-) —> Ks.

For all seS9 let hs e C([s]^) be defined by

(h\l

s)dus(h).

By Lemma 3.5, every element of every d [s]^- is Lipschitz-1 and weakly
superharmonic. So {-hs}seS is a compatible system of Lipschitz-1, weakly
subharmonic functions. By Theorem 4.6, hs is harmonic for a.e. s eS.

A continuous convex combination of weakly superharmonic functions
(e.g., any hs) cannot be harmonic unless a.e. function is. So us must be
concentrated on harmonic function classes for a.e. s e S. But, by Lemma
3.2, no element of any dι[s]#- is even C 1 , much less harmonic. So we
arrive at a contradiction, q.e.d.

In the preceding proof, it was necessary to introduce the tangent bundle
to & because that space has a natural measure-theoretic structure on it
(see [11, p. 42, 1.11]). It would be interesting to know if there is some
natural a priori way to put a measure-theoretic structure on the disjoint
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union L U s ^ M this would simplify and clarify the proof, as G. Stuck
has pointed out.

Corollary 5.2. Let & be a foliation of a compact manifold with a
holonomy-invariant measure that is finite on compact subsets of transversals.
Assume that almost every leaf (with respect to this measure) is a complete
Riemannian manifold of nonnegative Ricci curvature. Then almost every
leaf of y is the Riemannian product of a compact manifold and a flat
Euclidean space.

Proof. Under the assumptions of the corollary, the local product of a
holonomy-invariant transverse measure and Riemannian volume along the
leaves define a structure of foliated measure space with finite total measure
(Definition 1.5).

Corollary 5.3. Let N be a complete manifold of nonnegative Ricci cur-
vature. Suppose N admits a properly discontinuous action by isometries of
a discrete countable group Γ which has 'finite covolumέ in the following
sense: there exists an open subset U c N with finite volume whose trans-
lates {γU\γ G Γ} cover N. Then N splits isometrίcally as a product of a
compact manifold and a flat Euclidean space.

Proof We follow [12, p. 1010]. Any countable discrete group Γ has
a measure preserving action on a finite measure space (take Xχ - {0, 1}Γ

with the product measure Π Γ ^ ' where μ(0) = μ(l) = 1/2, and let
(/ . }/)(/) = f(γγ~ι) for γ G Γ, / G Xχ). This action is free on a
conull invariant set if Γ is infinite (the case of finite Γ is trivial, since
then N itself is of finite volume, hence compact); we discard this null set
to get a finite measure space X on which Γ acts freely. Consider the
diagonal action of Γ on X x TV:

The quotient space (X x N)/Γ = M has a natural structure of foliated
measure space with finite total volume: to each p e U associate a neigh-
borhood Dp , a finite subgroup Γ^ of Γ such that γDpΠDp Φ 0 => γ G Γ^ ,
and a measurable subset T of X whose translates under Γ are dis-
joint and cover X. We may take a countable subcollection Γz x D. of
{Tp x Dp}peU whose union has finite total (product) measure and whose
translates under Γ are disjoint and cover X x N. We may use the Tt x Di

as flow boxes in M since they map injectively under the quotient projec-
tion; the action of Γ on X being free, each leaf of the resulting foliation
is isometric to N. The corollary now follows immediately from the main
theorem.
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6. Almost periodic metrics

Fix a positive integer d. Let Eχ, , Ed be the standard framing

of the unit tangent bundle TRd . We will be using the theory of almost

periodic functions and of the Bohr compactification (see [3]).

Definition 6.1. Let g be a metric on R^ . Let g.. := g(E., E ) for all

i, j . We say that g is almost periodic if every g.j is an almost periodic

function on the locally compact abelian group (Rd, + ) . We say that g

is almost periodic to order m if, for all k = 1, , m , every fcth order

partial of every g\. (i.e., every ^ . 7 z , in the usual notation) is almost

periodic.

Let || || denote the usual norm on R^ . Let eχ, , ed denote the

standard basis of R .

Definition 6.2. For all C > 0, let BQ denote the collection of all

bilinear forms ft R ^ x R ^ R such that

c
for all υ e Rd. We identify Bc as a subset of Rdxd by identifying b
with the matrix [b(ei, ej)]iJ=ι ... ^ .

Definition 6.3. A Riemannian metric g on R^ is quasi-flat if, for

some C > 0 and, all p e R^ , we have gp £ Bc .

We are interested in studying metrics on R^ which are quasi-flat and

almost periodic. Examples include metrics on the torus T^ lifted to R .

A broader class of examples arises as follows. Inject R^ ^ T^+1 :=

Rd+ι/Zd+ι by some homomorphism. Fix C > 0 and choose a smooth

map ~g\ Ίd+ι ^ Rdxd such that ^(T^+ 1) c Bc. Then the composite

Rd «-> Ύd+ι —• 2?c defines a quasi-flat metric which is almost periodic to

all orders. It is the content of Theorem 6.5 that there are not nearly so

many examples in the presence of curvature assumptions.

Lemma 6.4. Let g be a metric on Rd which is quasi-flat and almost

periodic to order m. Then there exist

(A) a compact metrizablegroup (A, +)

(B) an injective homomorphism i: Rd -> A with dense image;

(C) a constant C > 0 and

(D) a continuous function ~g: A —> R

such that
(1) ^ ) _ C 5 C ;
(2) g = goi;
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(3) for any a e A, the function

is m-times continuously differentiable.

Proof Let {Aχ, -f) denote the Bohr compactification of (Rd,+).

That is, Aχ is a compact Abelian group containing a copy of R , and

every almost periodic function on R has unique extension to Aχ (see

[3]). Except for the metrizability requirement on A in condition (A), we

could set A = Aχ .

Let iχ: R^ «-> Aχ be the Bohr injection. Let ~gx: Aχ -> Rdxd be the
unique extension of g. Then g = ~gχ o iχ and, by continuity, ~gx{Aχ) c
Bc.

Let C{Aχ, R^Xί/) be the topological space of continuous functions Aχ -»

R^Xί/ with the sup-norm topology. Then Aχ acts on C(Aχ ,R
dxd) by

= f(b-a). Let 5 := Stab, (*), A2 := AJS, and let π:

be the natural homomorphism. Let /2 := πo iχ. Except for the fact that /2

may not be injective, we could set A = A2 . The map ^ factors through

π , i.e., there exists a ^ 2 : ̂ 42 —• Rdxd such that ^j = ~g2 o π .
Claim. ^42 is metrizable. Since ^42 is compact, it suffices to exhibit

a continuous injection of A2 into a metrizable topological space. The

map a ^ a ~gχ: Aχ -* C(^4j, R^x^) factors to a continuous injection
rfίd^^

χ χ j

Λ2 ^ C(Aχ, R r f x f l ί). Let C(Rd, R "̂"̂ ) denote the space of all continuous

functions R^ —• Rdxd endowed with the topology of uniform convergence

on compact sets. Since iχ has dense image, we have a continuous injection

C(R , R

The composite A2 ^ C{Aχ, R "̂"̂ ) ^ C(Rd ,Rdxd) injects A2 into a
metrizable space, proving the claim.

Let i3: Rd -> Ίd+ι := Rd+X/Zd+ι be some injective homomorphism,

i:Rd -> A2x T^^1 be defined by i(p) := (i'2(p), /3(p)), and A be the

closure of i(Rd) in Λ2 x Ίd+ι. Let prj: A —• ^42 denote projection onto

the first coordinate. Define ~g := ~g2 o pτχ.
Conditions (1) and (2) in Lemma 6.4 follow from the construction of

~g. Since / has dense image, condition (3) follows from the fact that g
is almost periodic to order m .

Theorem 6.5. Let g be a metric on R^ which is quasi-isometric to the
usual flat metric and almost periodic to order two. Assume that either the



NONNEGATIVELY CURVED LEAVES IN FOLIATIONS 699

sectional curvatures of g are all nonpositive or the Ricci curvatures of g
are all nonnegative. Then g is flat.

Proof Let g, {A, + ) , C, i, and J be as in Lemma 6.4. Both R^ and
A are Abelian, hence unimodular. Consequently, the cosets of i(Rd) in A
yield a foliation by smooth manifolds with transverse invariant measure
μ such that: the Haar measure on A is equal to the integral of Haar
along the cosets (i.e., leaves) against μ. Thus, the foliation has transverse
invariant measure of finite total volume since A is compact.

For each a e A, the differential of the map p ι-+ i(p)+a: Rd -> i(Rd)+a

transports the standard framing of ΓR^ to a framing of the tangent bundle
of the leaf through a. This gives a well-defined global framing of the
tangent bundle of the foliation.

The function ~g: A —> Bc , together with this framing, defines a leafwise
C Riemannian metric which is (uniformly) leafwise quasi-flat, and hence
complete. We now replace Haar measure along the cosets by the volume
form coming from this metric. We replace Haar on A by the integral of
these new leafwise measures against μ . (The transverse measure μ is not
altered.) By uniform quasi-flatness, A remains a finite measure space and
every open set still has positive measure. That is, conull sets are dense.

Let R..kι: R^ —• R be the coordinates of the curvature tensor of g, and

Rrkl: A —>R be the coordinates of the leafwise curvature with respect to

the global framing of the tangent bundle to the foliation. Then Rijkl =

Rijkι o /. Every Rijkl is continuous on A, so it suffices to show that

R = 0 a.e. on A . That is, it suffices to show that a.e. leaf is flat.
If the sectional curvatures of g are nonpositive, then we are done by

[12, Theorem 1, p. 1011].
If the Ricci curvatures of g are nonnegative, then, by Theorem 5.1,

almost every leaf is isometric to a compact manifold cross a flat Euclidean
space. However, every leaf is homeomorphic to R and thus has vanishing
homology groups. Consequently, this compact factor must be a point and
so a.e. leaf is flat.

References

[1] S. Adams, Superharmonic functions on foliations, preprint, 1989.
[2] W. Ballman, M. Gromov & V. Schroder, Manifolds of nonpositive curvature, Birkhauser,

Boston, 1985.
[3] H. Bohr, Almost periodic functions, Chelsea, New York, 1947.
[4] J. Cheeger & D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holland,

Amsterdam, 1975.



700 S. R. ADAMS & A. FREIRE

[5] J. Cheeger & D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci cur-
vature, J. Differential Geometry 6 (1971) 119-128.

[6] A. Connes, J. Feldman & B. Weiss, An amenable equivalence relation is generated by a
single transformation, Ergodic Theory Dynamical Systems 1 (1981) 431-450.

[7] M. Gromov, Hyperbolic manifolds, groups and actions, Riemann Surfaces and Related
Topics, Stony Brook Conference, Annals of Math. Studies, No. 97, Princeton Uni-
versity Press, Princeton, NJ, 1981.

[8] J. Plante, Foliations with measure-preserving holonomy, Ann. of Math. (2) 102 (1975)
327-361.

[9] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Springer, New
York, 1983.

[10] S.-T. Yau, Some function theoretic properties of complete Riemannian manifolds and
their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659-670.

[11] R. Zimmer, Ergodic theory, semisimple Lie groups and foliations by manifolds of negative
curvature, Inst. Hautes Etudes Sci. Publ. Math. 55 (1982) 37-62.

[12] , Curvature of leaves in amenable foliations, Amer. J. Math. 105 (1983) 1011-1022.

STANFORD UNIVERSITY




