DETECTING UNKNOTTED GRAPHS IN 3-SPACE

MARTIN SCHARLEMANN \& ABIGAIL THOMPSON

Introduction

Definition. A finite graph Γ is abstractly planar if it is homeomorphic to a graph lying in S^{2}. A finite graph Γ imbedded in S^{3} is planar if Γ lies on an embedded surface in S^{3} which is homeomorphic to S^{2}.

In this paper we give necessary and sufficient conditions for a finite graph Γ in S^{3} to be planar. (All imbeddings will be tame, e.g., PL or smooth.) This can be viewed as an unknotting theorem in the spirit of Papakyriakopolous [12]: a simple closed curve in S^{3} is unknotted if and only if its complement has free fundamental group.
[12] can be viewed as a solution for Γ having one vertex and one edge. In [6] or [3, §2.3] this is extended: a figure-eight (bouquet of two circles) in S^{3} is planar if and only if its complement has free fundamental group and each circle is unknotted. Gordon [4] generalizes this to all graphs with a single vertex: a bouquet of circles Γ in S^{3} is planar if and only if its complement and that of any subgraph of Γ has free fundamental group. If fact, Gordon shows that this generalization of [6] is a fairly direct consequence of Jaco's handle addition lemma [8]. Far more difficult is Gordon's extension to the case in which Γ has two vertices, and no loops. We will require only the solution of the one-vertex case for our proof.

We will show:
7.5. Theorem. A finite graph $\Gamma \subset S^{3}$ is planar if and only if
(i) Γ is abstractly planar,
(ii) every graph properly contained in Γ is planar, and
(iii) $\pi_{1}\left(S^{3}-\Gamma\right)$ is free.

There is an alternative formulation:
Theorem. A finite graph $\Gamma \subset S^{3}$ is planar if and only if
(a) Γ is abstractly planar and
(b) for every subgraph $\Gamma^{\prime} \subseteq \Gamma, \pi_{1}\left(S^{3}-\Gamma^{\prime}\right)$ is free.

[^0]The equivalence of this formulation follows easily by induction: conditions (a) and (b), if true for Γ, are true for any subgraph of Γ.

Theorem 7.5 has been conjectured by J. Simon [15]. He and Wolcott [16] demonstrated it in two cases (the handcuff and the double-theta-curve) not covered by Gordon's theorem. It is fairly easy to show that no two of the conditions (i), (ii), and (iii) suffice to ensure planarity:
0.1. Example. An embedding of K_{5} in S^{3} satisfying (ii) and (iii) but not (i).

Figure 0.1
0.2. Example. An embedding of a theta-curve satisfying (i) and (iii) but not (ii).

Figure 0.2
0.3. Example [10]. An embedding of a theta-curve satisfying (i) and (ii) but not (iii).

Figure 0.3
We have the following corollary, of independent interest.
7.6. Corollary. There is an algorithm to determine if a graph in S^{3} is planar.

There are two other versions of 7.5 available: Condition 7.5 (iii) can be replaced with the condition that the complement of a regular neighborhood of Γ is a ∂-reducible. This vastly improves the efficiency of the algorithm of 7.6 (see [18] for details). Alternatively, 7.5 (ii) and (iii) can be replaced with the following condition: There is an edge e in Γ not a loop, such that the graph Γ / e obtained by collapsing e and the graph $\Gamma-e$ are both planar (see [14] for some applications).

The bulk of the argument for 7.5 consists of induction lemmas for various types of graphs: e.g., $\S 1$ treats graphs Γ containing "cut" edges, with §2 providing a technical lemma needed in that proof. The main theorem is not proven until $\S 7$, where the proof consists mostly of references to previous cases.

1. Cut edges

1.1. Definitions. Let Γ be a finite graph in S^{3} with vertices $v(\Gamma)$ and edges $e(\Gamma)$. Let $\eta(\Gamma)$ denote a handlebody neighborhood of Γ, with interior ${ }^{\circ} \eta(\Gamma) . \quad \eta(\Gamma)$ is the union of three-cells with disjoint interiors constructed as follows: For each vertex v in Γ let $\eta(v)=B^{3}$ be a threecell neighborhood of v in S^{3}, transverse to the edges of Γ, so that $\eta(v) \cap$ $\Gamma=\operatorname{cone}(\partial \eta(v) \cap \Gamma)$. Let $\eta^{0}(\Gamma)=\bigcup\{\eta(v) \mid v \in \Gamma\}$. For each edge $e \in \Gamma$ let $\eta(e)$ be a three-cell with a product structure $\eta(e)=B^{2} \times I$ such that $\eta(e) \cap \Gamma=e-\eta^{0}(\Gamma)=\{0\} \times I$, and $\eta(e) \cap \eta^{0}(\Gamma)=B^{2} \times\{\partial I\}$. These latter disks are called the attaching disks of $\eta(e)$. Any $B^{2} \times\{$ point $\}$ (or $\partial B^{2} \times\{$ point $\}$) is a meridian disk $\bar{\mu}(e)$ (or circle $\mu(e)$) of $\eta(e)$. Let $\eta^{1}(\Gamma)=\bigcup\{\eta(e) \mid e \in \Gamma\}$. An embedded curve in $\partial \eta(\Gamma)$ is normal if its interior intersects meridian circles only transversally and intersects $\partial \eta^{0}(\Gamma)$ only in arcs essential in $\partial \eta^{0}(\Gamma)-\eta^{1}(\Gamma)$. Any curve in $\partial \eta(\Gamma)$ is isotopic rel ∂ to a normal curve, and this isotopy does not increase the intersection number with any meridian.

A handlebody neighborhood $\eta(\Gamma)$ of Γ provides a handlebody neighborhood for any subgraph Γ^{\prime} of Γ; just take the union of cells associated to vertices or edges in Γ^{\prime}. If Γ lies in a sphere P (so is planar) one can define similarly a handlebody neighborhood $\nu(\Gamma)$ in P, where 0 -handles are disks and 1-handles are homeomorphs of $I \times I$. A standard handlebody neighborhood for $\Gamma \subset P \subset S^{3}$ is a handlebody neighborhood $\eta(\Gamma)$ which is a bicollar $\nu(\Gamma) \times[-1,1]$ of a handlebody neighborhood $\nu(\Gamma)$ in P. In particular, P bisects each handle of a standard handlebody neighborhood and for any vertex v in $\Gamma, P \cap \eta(v)$ is the cone to v of $P \cap \partial \eta(v)$.

For M a compact manifold (typically 0 or 1-dimensional), $|M|$ denotes the number of components of M.
1.2. Definitions. Γ is split if $S^{3}-\Gamma$ is reducible. Γ is decomposable if there is a vertex v such that $\partial \eta(v)-\eta^{1}(\Gamma)$ compresses in $\left.S^{3}-{ }^{\circ} \eta(\Gamma)\right)$.
1.3. Lemma. If Γ is split or decomposable, and every graph properly contained in Γ is planar, then Γ is planar.

Proof. A reducing sphere for $S^{3}-\Gamma$ divides S^{3} into two balls, each of which contains a subgraph of Γ. Each subgraph is planar, so can be
imbedded in a sphere in the ball. Tube together the spheres to get a sphere containing Γ.

A decomposing disk $(D, \partial D) \subset\left(S^{3}-{ }^{\circ} \eta(\Gamma), \partial \eta(v)-\eta^{1}(\Gamma)\right)$ divides $S^{3}-\eta(v)$ into two balls B_{1} and B_{2}. Then $\eta(\Gamma) \cup B_{2}$ and $\eta(\Gamma) \cup B_{1}$ can be viewed as handlebody neighborhoods of subgraphs Γ_{1} and Γ_{2} of Γ, with $\Gamma_{1} \cap \Gamma_{2}=v$. Since Γ_{1} and Γ_{2} are planar, there are disjoint disks D_{1} and D_{2} in $S^{3}-\eta(v)$ containing $\Gamma_{1}-\eta(v)$ and $\Gamma_{2}-\eta(v)$. Piping these together produces a single disk containing $\Gamma-\eta(v)$; coning the boundary of the disk gives a sphere containing Γ.
1.4. Definitions. For e an edge of a graph Γ, let $\Gamma-e$ denote the graph obtained from Γ by removing the interior of e. Let \hat{e} denote the subgraph of Γ which is the union of e and its incident vertex (or vertices). Let Γ / e denote the graph obtained from Γ by identifying \hat{e} to a point, which is then a vertex of Γ / e. If $\Gamma \subset S^{3}$ and e is not a loop, then \hat{e} is a tame arc in S^{3}. Hence $S^{3} / \hat{e} \cong S^{3}$, so the imbedding $\Gamma \subset S^{3}$ gives rise to an imbedding $\Gamma / \hat{e} \subset S^{3}$.

A vertex v in a connected graph Γ is a cut vertex if Γ is the union of two subgraphs Γ_{0} and Γ_{1}, each containing at least one edge, such that $\Gamma_{0} \cap \Gamma_{1}=v$ [19]. An edge e in a connected graph Γ is a cut edge if e is not a loop and the vertex \hat{e} / e is a cut vertex of Γ / e. Equivalently, e is a cut edge if it is not a loop and $\Gamma-\hat{e}$ is a disconnected topological space. (The graph $\Gamma-e$ may still be connected.)
1.5. Examples. (a) If Γ is a connected graph properly containing a two-cycle (i.e., a bigon), then either edge of the two-cycle is a cut edge.
(b) suppose Γ is a connected graph containing a cut vertex v and at least one other vertex, of valence >1. Then there is an edge e with one end on the cut vertex and the other at another vertex of valence >1. Then e is a cut edge. In particular:
(c) If a connected graph Γ contains a loop and a vertex with valence ≥ 2 other than the base of the loop, then Γ contains a cut edge.
1.6. Proposition. Suppose e is a cut edge in a connected graph $\Gamma \subset S^{3}$ such that
(a) the graph $\bar{\Gamma}=\Gamma / e$ is planar,
(b) every graph properly contained in Γ is planar.

Then Γ is planar.
Proof. Let $v_{ \pm}$be the distinct vertices incident to e. Denote by v_{0} the cut vertex \hat{e} / e, the image of \hat{e} in $\bar{\Gamma}$. Since $\bar{\Gamma}$ is planar, there is a compressing disk for $\partial \eta\left(v_{0}\right)-\bar{\Gamma}$ in $S^{3}-\eta(\bar{\Gamma})$. Hence there is a compressing
disk for $\partial \eta(\hat{e})$ in $S^{3}-\eta(\Gamma)$. Choose D to be such a compressing disk for which ∂D is normal in $\eta(\Gamma)$ and $|\partial D \cap \mu(e)|$ is minimal for every meridian circle $\mu(e)$ of $\eta(e)$.

If $|\partial D \cap \mu(e)|=0$, then ∂D lies entirely in $\partial \eta\left(v_{+}\right)$, say. Then Γ is decomposable, hence planar. So henceforth we will
1.6.1. Assume $|\partial D \cap \mu(e)|>0$.

By assumption, $\Gamma^{\prime}=\Gamma-e$ is planar, so lies in a two-sphere $P \subset$ S^{3}. We may take each $\eta\left(v_{ \pm}\right)$to be a ball which is bisected by P. In particular, $P-\eta\left(v_{+} \cup V_{-}\right)$is an annulus in $S^{3}-\eta\left(v_{+} \cup v_{-}\right)$containing all of $\Gamma^{\prime}-\eta\left(v_{+} \cup v_{-}\right)$. Let W denote the closure of $S^{3}-\eta\left(v_{+} \cup v_{-}\right)$with boundary components the spheres $V_{ \pm}=\partial \eta\left(v_{ \pm}\right)$. Let Γ_{W} denote the one-complex $\Gamma \cap W$, and similarly for Γ_{W}^{\prime} and P_{W}. Note that $D \subset W$, with part of ∂D lying on each of $V_{ \pm}($since $|\partial D \cap \mu(e)|>0)$ and part on $\partial \eta(e)$. The interior of D is disjoint from Γ (not just Γ^{\prime}).

Let Q be a properly imbedded finite union of disks and at most a single annulus in W, in general position with respect to e and D, chosen so that
(a) $\Gamma_{W}^{\prime} \subset Q$,
(b) no component of Q is disjoint from Γ^{\prime}, and
(c) $|D \cap Q|$ is minimal among all Q satisfying (a) and (b).

Note that P_{W}, for example, satisfies (a) and (b).
Claim. If e is disjoint from Q or any disk component of Q, Γ is planar.

Proof of Claim. If Q contains a disk q disjoint from e, push $\Gamma_{W} \cap q$ slightly into the component of $W-q$ not containing e. Since $\partial q \subset V_{+}$, say, q is a decomposing disk Γ at v_{+}and the proof concludes as above. So suppose Q is an annulus and e is disjoint from Q. Let W_{0} be the component of $W-Q$ in which e does not lie. Γ_{W}^{\prime} has at least two components, since e is a cut edge.

If any component Γ_{0} of Γ_{W}^{\prime} is incident to only one of $V_{ \pm}$, say V_{+}, push Γ_{0} slightly into W_{0}. Then a disk with boundary in V_{+}can be imbedded between Γ_{0} and Q, hence between Γ_{0} and the result of Γ. This is a decomposing disk for Γ, so, by $1.3, \Gamma$ is planar.

On the other hand, if every component of Γ_{W}^{\prime} is incident to both of $V_{ \pm}$, then there is a path γ in Γ_{W}^{\prime} from V_{+}to V_{-}. Since Γ is connected, every component of $Q-\Gamma_{W}^{\prime} \subset Q-\gamma$ must be a disk. Since Γ_{W}^{\prime} is disconnected, there is a component Q_{0} of $Q-\Gamma_{W}^{\prime}$ whose boundary ∂Q_{n} intersects more than one component of Γ_{W}^{\prime}. Each arc component of $\partial Q_{0} \cap \Gamma_{W}^{\prime}$ must be a
spanning arc of the annulus Q, since every component of Γ_{W}^{\prime} is incident to both of $V_{ \pm}$. Pushing the interior of one of these arcs slightly into Q_{0} gives a spanning arc α in Q disjoint from Γ_{W}^{\prime}. Now $\gamma \cup e$ is a subgraph of Γ, hence is unknotted. γ is parallel to α in the annulus Q, so $\alpha \cup e$ is unknotted. An unknotting disk can be found disjoint from Q, and provides an isotopy from e to α. After the isotopy, $\Gamma \subset Q$, so Γ is planar. This proves the claim.

Following the claim, it suffices to derive a contradiction if we
1.6.2. Assume that $|e \cap Q|=p>0$, and that e intersects every disk component of Q.

Label the points in $e \cap Q$ by $e_{1}, \cdots e_{p}$ in order from V_{-}to $V_{+} . Q$ can be isotoped so it intersects $\eta(e)$ in meridia, whose boundary circles we similarly denote μ_{1}, \cdots, μ_{p}.
$Q \cap D$ is a one-manifold. If it contained a simple curve, then an innermost such curve c would bound a disk F in D. Consider the union U of a collar neighborhood of Q on the side away from F and a bicollar neighborhood of $F . \partial U$ is the union of a surface parallel to Q and a surface $Q^{\prime} \supset \Gamma_{W}^{\prime}$. If c is essential in Q, then Q^{\prime} is now a union of disks. Discard any disjoint from $\Gamma_{W}^{\prime} . Q^{\prime}$ still satisfies (a) and (b) in our definition of Q, but has at least one fewer component of intersection with D. Since D was chosen to minimize $|Q \cap D|$, this is impossible. If c is inessential in Q, then Q^{\prime} is homeomorphic to Q union a sphere. The sphere is the union of a disk parallel to F and the disk F^{\prime} in Q which c bounds. Since $c \cap \Gamma=\varnothing$ and each component of Γ^{\prime} contains either v_{+}or v_{-}, it follows that $\Gamma^{\prime} \cap F^{\prime}=\varnothing$. Then Γ^{\prime} is disjoint also form the sphere, so discard it. Again we get the contradiction that Q^{\prime} still satisfies (a) and (b), but has at least one fewer component of intersection with D. We conclude that $Q \cap D$ contains no simple closed curves. In particular
1.6.3. $|Q \cap \partial D|=2|Q \cap D|$ must be minimal.

A point in $\partial D \cap Q$ either lies in $\partial_{ \pm} Q=\partial Q \cap V_{ \pm}$or on one of the meridian circles μ_{i}. Consider an outermost arc α of $\partial D \cap Q$ in $D . \alpha$ cuts off from D a disk F such that interior (F) is disjoint from Q and $\partial F=\alpha \cup \beta$, for β some subarc of ∂D. The ends of α either both lie in $\partial_{ \pm} Q$, or one end lies in $\partial_{ \pm} Q$ and one end on a μ_{i}, or both ends lie on the μ_{i}. Consider each possibility in turn:

If both ends of α lie in ∂Q, then β must not intersect any of the meridia of $\eta(e)$, so we may assume β lies entirely in V_{+}, say. Consider the union U of a collar neighborhood of Q on the side away from F and a bicollar neighborhood of $F . \partial U$ is the union of a surface parallel to Q
and a surface $Q^{\prime} \supset \Gamma_{W}^{\prime}$. Discard any component of Q^{\prime} which is disjoint from $\Gamma_{W}^{\prime} . Q^{\prime}$ still satisfies (a) and (b) in our definition of Q, but has at least one fewer component of intersection with D. This contradicts (c).

Suppose α has one end on V_{+}say, and other end on a meridian μ_{i}. The arc β is then an arc, disjoint from all other meridian, running between μ_{i} and $\partial Q \subset V_{+}$. Hence $i=p$. The arc β it self consists of two arcs, β_{e} running from μ_{p} to the end of $\eta(e)$ in V_{+}and β_{+}running from $\eta(e)$ to ∂Q in V_{+}. The arc β_{e} and the subarc of e lying between e_{p} and V_{+}are parallel in $\eta(e)$; attach to F the rectangle in $\eta(e)$ lying between them, replacing β_{e} in ∂F with the parallel section of e. As above, consider the union U of a collar neighborhood of Q on the side away from F and a bicollar neighborhood of $F . \partial U$ is the union of a surface parallel to Q and a surface $Q^{\prime} \supset \Gamma_{W}^{\prime}$ (in fact $U \cong Q \times I$). But e no longer intersects Q^{\prime} at e_{p}. This eliminates $\left|\partial D \cap \mu\left(e_{p}\right)\right|$ points of intersection of ∂D with $Q . \partial D$ intersects Q^{\prime} in at most $|\partial D \cap \mu(e)|-1$ points near the end of e in V_{+}, since $Q^{\prime} \cap \beta_{+}=\varnothing$, and no longer intersects Q^{\prime} at the end of α in V_{+}. Hence $\left|Q^{\prime} \cap \partial D\right| \leq|Q \cap \partial D|-2$, contradicting 1.6.3.
We conclude that α has one end on μ_{i} and the other end on μ_{j} for some $1 \leq i, j \leq p$. The arc β is disjoint from the meridia and connects μ_{i} to μ_{j}. Hence $|i-j| \leq 1$. If $i=j \pm 1$, then proceed much as above: Attach to F a rectangle in $\eta(e)$ lying between β and the subarc of e lying between e_{i} and e_{j}. Consider the union U of a collar neighborhood of Q on the side away from F and a bicollar neighborhood of $F . \partial U$ is the union of a surface parallel to Q and a surface $Q^{\prime} \supset \Gamma_{W}^{\prime}$ (again, $U \cong Q \times I)$. But e does not intersect Q^{\prime} at e_{i} or e_{j}, so $|Q \cap \partial D|$ has been reduced by at least $2|\partial D \cap \mu(e)|$, contradicting 1.6.3. Hence $i=j$. If $i \neq 1$ or p, then β must lie entirely between μ_{i} and $\mu_{i \pm 1}$ on $\partial \eta(e)$, and so be inessential in that annulus. Then ∂D is not in normal form (alternatively, an isotopy of ∂D near β reduces $|Q \cap \partial D|$ by 2 , violating 1.6.3).

Hence $i=j=1$ (or p). Moreover, the argument shows that β must contain a subarc lying in V_{-}(or V_{+}). This subarc must be essential in $V_{-}-\eta(\Gamma)$, hence in $V_{-}-\partial Q$, since ∂D is normal in $\partial \eta(\Gamma)$. Therefore ∂Q must have more than one component on V_{-}; in particular
1.6.4. Q contains disk components.
[Note that the contradiction is now complete if Γ is a graph in which all edges have one end incident to each of $V_{ \pm}$.]

Let $\Lambda \subset D$ be the set of arcs $D \cap Q$. An end of such an arc either lies in $\partial_{ \pm} Q=\partial Q \cap V_{ \pm}$or it lies in some μ_{i}. To any end of an arc of Λ lying
in μ_{i} assign the label $i, 1 \leq i \leq p$, and to an end lying in $\partial_{ \pm} Q$ assign the label \pm. We have seen that
1.6.5. Any outermost arc in D has both ends labelled 1 or both ends labelled p.
1.6.6. Claim. For every label $i, 1 \leq i \leq p$, there is a component of Λ which has both ends labelled i.

Proof. This is the main point of $\S 2$; we defer the proof to Lemma 2.3.
The arcs $\Lambda=D \cap Q$, when viewed in Q, are the edges of a graph Λ^{\prime} in Q whose edges are disjoint from Γ^{\prime} and whose vertices are $\left\{v_{+}, v_{-}\right\} \cup$ $\left\{e_{1}, \cdots, e_{p}\right\}$. The latter p-vertices $\left\{e_{1}, \cdots, e_{p}\right\}=e \cap Q$ are called ε vertices. An arc in Λ with ends labelled i and j corresponds in Λ^{\prime} to an edge running from e_{i} to e_{j}. We have from 1.6.6 that every ε-vertex is the base of a loop in $\Lambda^{\prime} \subset Q$.

Let q be a disk component of Q (one exists by 1.6.4). By 1.6.2 there are ε-vertices on q. Choose an innermost loop in q based at an ε-vertex e_{i}. The interior of the loop is disjoint from Γ^{\prime} since Γ is connected and from e since any ε-vertex is the base of a loop. Hence the interior of the loop is an empty disk E. The union of D and E along the arc of Λ forming the loop has a regular neighborhood whose boundary consists of three disks, one parallel to D and the others D^{\prime} and $D^{\prime \prime}$ each having boundaries intersecting the meridian of $\eta(e)$ at e_{i} in fewer points than did D. At least one of D^{\prime} or $D^{\prime \prime}$ must be a compressing disk for $\partial \eta(\hat{e})$ in $S^{3}-\eta(\Gamma)$ since D was. This contradicts our choice of D.

2. Outermost forks

2.1. Definitions [13]. Let T be a finite tree. An outermost vertex of T is a vertex of valence one. A fork is a vertex of valence ≥ 3. If T has forks, let F be the collection of forks of T, and remove from T all components of $T-F$ which contains an outermost vertex of T. An outermost vertex of the resulting tree (possibly just a vertex) is called an outermost fork of T. If ν is an outermost fork, then all but at most one component of $T-\nu$ contains no forks. Call each of these components a tine of T. By a tine of T we mean either a tine of an outermost fork, or all of T if T is linear and an end of T is specified. Define the distance between two vertices in T to be the number of edges in the path between them. Define the distance from a vertex v to an edge ε to be the distance from v to the nearest end of ε. Hence if ε is incident to v, the distance is zero.

Figure 2.1
Suppose the tree T is imbedded in a disk. If ν is an outermost fork, then two tines are adjacent if a small circle around ν in the plane contains an arc intersecting only those two components of $T-\nu$.

Now let Q and D be as in $\S 1$ and consider the tree T in D constructed from $\Lambda=Q \cap D$ as follows. For vertices of T take a single point ν in the interior of each component of $D-\Lambda$. Connect with edges those vertices representing components of $D-\Lambda$ which have a common component of Λ in their closures. To each $\lambda \in \Lambda$ there then corresponds a dual edge in T (see Figure 2.1).

Let Φ be a tine of T. The outermost edge of T is dual to an outermost arc of Γ in D, which has both ends labelled either both 1 or both p. In the former case, say, Φ is a 1-tine, in the latter, a p-tine.

We have the following:
2.2. Lemma. Let Φ be a 1 -tine (resp. p-tine) of Φ. Then the component of Λ dual to the edge ε in Φ a distance $d<p$ from the end of Φ has both ends labelled $d+1$ (resp. $p-d$).

Proof. Let F be the cell corresponding to the end of the 1-tine containing ε, and λ be the component of Λ dual to ε. According to the remarks preceding 1.6.4, $\partial F=\alpha \cup \beta$, where β is an arc running from e_{1} to V_{-}, around V_{-}, and back up to $e_{1} . \alpha$ has both ends labelled 1 . Now the arc λ divides D into two disks; let D^{\prime} be the one which contains F. ∂D^{\prime} is the union of λ, β, and two other arcs β^{\prime} and $\beta^{\prime \prime}$, each of which runs from an end of β at e_{1} to an end of λ (see Figure 2.2, next page). Since $|\partial D \cap Q|$ has been minimized (1.6.3), both β^{\prime} and $\beta^{\prime \prime}$ must run straight up $\partial \eta(e)$, crossing in order e_{2}, e_{3}, \cdots. By assumption, the path from the end of Φ to ε contains $d+1 \leq p$ edges, if we include ε. Hence each of β^{\prime} and $\beta^{\prime \prime}$ begin at e_{1} and end at e_{d+1}, so both ends of λ are labelled $d+1$.
2.3. Lemma. For every label $i, 1 \leq i \leq p$, there is a component of Λ which has both ends labelled i.

Figure 2.2

Figure 2.3
Proof. If some tine has length $\geq p$ (e.g., T itself if T is linear), then 2.2 shows the outermost p edges of T correspond in Λ to arcs with both ends having the same label, and with all labels from 1 to p included.

If all tines have length $<p$, then T is not linear. Consider two adjacent tines Φ and Φ^{\prime} of an outermost fork ν, and suppose they both have lengths d and $d^{\prime}<p$. Let F_{ν} be the component of $D-\Lambda$ corresponding to ν. The edges of Φ and Φ^{\prime} incident to ν correspond to subarcs λ and λ^{\prime} of ∂F which are component of Λ; we know from 2.2 that both ends of $\lambda\left(\lambda^{\prime}\right)$ have the same label $l\left(l^{\prime}\right)$ (see Figure 2.3).

We know from above that $l=d$ or $p-d+1$, and similarly for l^{\prime}. Since the tines are adjacent, there is a component β of $\partial F \cap \partial D$ running from an end of λ to an end of λ^{\prime}. Hence (with no loss of generality) $l^{\prime}=l+1$, and β runs along $\partial \eta(\varepsilon)$ from e_{l} to e_{l+1}. This means that Φ must be a 1 -tine, Φ^{\prime} must be a p-tine, $d=l$, and $d^{\prime}=p-l$. Then the d edges in Φ (resp. Φ^{\prime}) are dual to arcs in Λ each having the same label on both ends, with labels running from 1 to d (resp. $d+1$ to p).

This completes the proof of Lemma 2.3, hence of the proofs of Claim 1.6.6 and Proposition 1.6.

3. The tetrahedral graph

We begin with a familiar observation from "tangle theory" [2].
3.1. Lemma. Suppose $\gamma \subset S^{3}$ is the unlink of two components, $S \subset$ S^{3} is a two-sphere dividing S^{3} into two three-balls $B_{ \pm}$, and γ intersects each of $B_{ \pm}$in an unknotted pair of arcs. Then there is a unique essential simple closed curve in $S-\gamma$ which bounds a disk in $B_{+}-\gamma$. It also bounds a disk in $B_{-}-\gamma$.

Proof. This is best seen by considering the two-fold branched cover $S^{1} \times S^{2}$ of γ. The link γ lifts to $\tilde{\gamma}$, a pair of curves each of which is an equator of sphere fiber. S lifts to a Heegaard splitting F of $S^{1} \times S^{2}$ into solid tori $T_{ \pm}=S^{1} \times D_{ \pm}^{2}$. A proper disk D in B_{+}is essential if and only if D separates the strands of $\gamma \cap B_{+}$. Such a disk lifts to a meridian of T_{+}disjoint from $\tilde{\gamma}$. The same is true for disks in B_{-}. But a curve in F bounds a meridian of T_{+}disjoint from $\tilde{\gamma}$ if and only if it bounds a meridian of T_{-}disjoint from $\tilde{\gamma}$.
3.2. Corollary. Let S be a two-sphere in S^{3} dividing S^{3} into two balls $B_{ \pm}$. Suppose τ is an unknotted pair of arcs in B_{+}. Then, up to isotopy rel end points, there is a unique imbedded pair of curves σ in S such that $\partial \sigma=\partial \tau$ and $\sigma \cup \tau$ is the unlink of two components.

Proof. Since τ is unknotted, it is isotopic rel end points to some pair of curves σ in S; then $\sigma \cup \tau$ is clearly the unlink. Suppose σ^{\prime} is another pair of curves in S such that $\partial \sigma^{\prime}=\partial \tau$ and $\sigma^{\prime} \cup \tau$ is the unlink of two components. There is a simple closed curve $c\left(c^{\prime}\right)$ in S separating the pair of curves $\sigma\left(\sigma^{\prime}\right)$. Push σ slightly into B_{-}and apply 3.1: the curve c bounds an essential disk in $B_{-}-\sigma$, hence c bounds an essential disk in $B_{+}-\tau$. Similarly c^{\prime} bounds an essential disk in $B_{+}-\tau$. But a standard innermost disk, outermost arc argument shows that such a disk is unique up to isotopy in B_{+}rel τ. Hence c and c^{\prime} are isotopic rel $\partial \tau$. But then $c=c^{\prime}$ divides S into two disks, each of them containing a single arc of σ and σ^{\prime}. Since in a disk any two imbedded arcs with the same end points are isotopic rel $\partial, \sigma^{\prime}$ is isotopic to σ rel $\partial \sigma$ (via an isotopy disjoint from $c=c^{\prime}$).
3.3. Theorem. Let $\Gamma \subset S^{3}$ be homeomorphic to the one-skeleton of a tetrahedron, and let e be an edge of Γ. If Γ / e and $\Gamma-e$ are planar, so is Γ.

Proof. Let $\bar{\Gamma}=\Gamma / e$ and $\Gamma^{\prime}=\Gamma-e$. Denote the end vertices of e by w_{l} and w_{r}. Let f be the edge of Γ which is disjoint from e, with end vertices $v_{ \pm}$. Denote by $\varepsilon_{l \pm}\left(\varepsilon_{r \pm}\right)$ the four other edges, with ends

Figure 3.1

Figure 3.2
respectively at $w_{l}\left(w_{r}\right)$ and $v_{ \pm}$(see Figure 3.1).
Recall that \hat{e} denotes the subgraph $\left\{e \cup w_{l} \cup w_{r}\right\}$ of Γ. Choose an imbedding of Γ^{\prime} in the sphere P and a standard handlebody neighborhood $\eta\left(\Gamma^{\prime}\right)$ of Γ^{\prime} in $S^{3} . \quad \eta\left(\Gamma^{\prime}\right) \cap P$ is a three punctured sphere and $\partial \eta\left(\Gamma^{\prime}\right) \cap P$ consists of three simple closed curves. Let ∂_{l} (resp. γ_{r}) be the curve which runs along $\partial \eta(f)$ and $\partial \eta\left(\varepsilon_{l \pm}\right)$ (resp. $\partial \eta\left(\varepsilon_{r \pm}\right)$) and let γ be the unlink $\gamma_{l} \cup \gamma_{r}$ (see Figure 3.2). The disks on which $\eta(e)$ is attached to $\eta\left(\Gamma^{\prime}\right)$ can be taken to be disjoint from the curves γ_{l} and γ_{r}, so henceforth we will regard γ as lying in $\partial \eta(\Gamma)$.

Consider now the planar graph $\bar{\Gamma}$. There vertices of $\bar{\Gamma}$ are $v_{ \pm}$and a third vertex $W_{0}=\hat{e} / e$. The edges of $\bar{\Gamma}$ are $f, \varepsilon_{l \pm}$, and $\varepsilon_{r \pm}$. Choose an imbedding of Γ in a sphere P and a standard handlebody neighborhood $\eta(\bar{\Gamma})$ of $\bar{\Gamma}$ in S^{3}. Since $\bar{\Gamma}=\Gamma / e$, the three-manifolds $\eta(\bar{\Gamma})$ and $\eta(\bar{\Gamma})$ are isotopic in S^{3}, for $\eta(\Gamma)$ is a handlebody neighborhood of $\eta(\bar{\Gamma})$ if we set $\eta(\hat{e})=\eta\left(w_{0}\right)$. Then identify corresponding handles in $\eta(\Gamma-\hat{e})$ and $\eta\left(\bar{\Gamma}-w_{0}\right)$. In particular, $\eta(\Gamma)=\eta(\bar{\Gamma})$ and so we can regard γ as lying on $\eta(\bar{\Gamma})$.
$\eta(\bar{\Gamma}) \cap P$ is a four-punctured sphere, and $\partial \eta(\bar{\Gamma}) \cap P$ consists of four simple closed curves. Let $\bar{\gamma}_{l}$ (resp. $\bar{\gamma}_{r}$) be the curve which runs along $\partial \eta(f)$ and $\partial \eta\left(\varepsilon_{l \pm}\right)$ (resp. $\partial \eta\left(\varepsilon_{r \pm}\right)$), and let $\bar{\gamma}=\bar{\gamma}_{l} \cup \bar{\gamma}_{r}$, also the unlink (see Figure 3.3). The curves $\bar{\gamma}$ and γ both intersect the four-punctured

Figure 3.3
sphere $\partial \eta(\bar{\Gamma})-\eta\left(w_{0}\right)$ in two arcs, one running between the attaching disks of each of $\eta\left(\varepsilon_{r \pm}\right)$ on $\eta\left(w_{0}\right)$ and the other running between the attaching disks of each of $\eta\left(\varepsilon_{l \pm}\right)$ on $\eta\left(w_{0}\right)$. Each component of γ and of $\bar{\gamma}$ also intersects a meridian $\mu(f)$ of $\eta(f)$ in exactly one point. Hence γ and $\bar{\gamma}$ differ in $\partial \eta(\bar{\Gamma})-\eta\left(w_{0}\right)$ by at most some twists around $\mu(f)$ and some twists around the attaching disks. The latter twists can be pushed into $\eta\left(w_{0}\right)$ and so off of $\partial \eta(\bar{\Gamma})-\eta\left(w_{0}\right)$. Now consider the choice of imbedding of $\bar{\Gamma}$ in the sphere P : Each bigon of $\bar{\Gamma}$ with one end at w_{0} and other end at $v_{ \pm}$may be rotated about w_{0} and $v_{ \pm}$. The effect is to alter $\bar{\gamma}$ by a twist around $\mu(f)$. It follows that the imbedding of $\bar{\Gamma}$ in P can be chosen so that $\gamma=\bar{\gamma}$ on $\partial \eta(\bar{\Gamma})-\eta\left(w_{0}\right)$ and the from 3.2 that also $\gamma \cap \partial \eta\left(w_{0}\right)$ is isotopic in $\partial \eta\left(w_{0}\right)$ to $\bar{\gamma} \cap \partial \eta\left(w_{0}\right)$ rel end points. (Note that this last isotopy absorbs a difference in twists around the attaching disks of $\eta\left(\varepsilon_{l \pm}\right)$ and $\eta\left(\varepsilon_{r \pm}\right)$ in $\partial \eta\left(w_{0}\right)$ because the isotopy may sweep across these attaching disks. In particular, this isotopy does not necessarily lie entirely on $\partial \eta(\bar{\Gamma})$.)

Return now to $\eta\left(\Gamma^{\prime}\right)$ and $\eta(\Gamma)$. A graph G^{\prime} isotopic to Γ^{\prime} can be recovered from the unlink $\gamma \subset \eta(\Gamma)$ as follows: Remove the arc $\gamma_{r} \cap \partial \eta(f)$ and attach arcs which connect the points of intersection of γ_{r} and γ_{l} in each of the two attaching disks of $\eta(f)$ at $\eta\left(v_{ \pm}\right)$. A graph G isotopic to Γ can then be recovered from G^{\prime} by attaching an unknotted arc in the ball $\eta(\hat{e})$ with one end on each of $\gamma_{l} \cap \partial \eta(\hat{e})$ and $\gamma_{r} \cap \partial \eta(\hat{e})$.

Let us view how this construction appears in $\eta(\bar{\Gamma})$, using the facts that $\gamma=\bar{\gamma}$ outside of $\eta\left(w_{0}\right)=\eta(\hat{\boldsymbol{e}})$, and that the pair of arcs $\gamma \cap \partial \eta\left(w_{0}\right)$ is isotopic in $\partial \eta\left(w_{0}\right)$ to $\bar{\gamma} \cap \partial \eta\left(w_{0}\right)$ rel end points. First note that $\eta(f)$ intersects P in a rectangle $I \times I$, with $\partial I \times I$ corresponding to $\eta(f) \cap$ $\bar{\gamma}=\eta(f) \cap \gamma$ and with $I \times \partial I$ corresponding to two arcs, one in each of the attaching disks of $\eta(f)$, connecting the points of intersection of $\bar{\gamma}_{l}$ and $\bar{\gamma}_{r}$ in each of the attaching disks. Thus a graph G isotopic to
Γ can be obtained from $\bar{\gamma}$ by replaced the arc $\{1\} \times I$ with $I \times \partial I$ in $I \times I=\eta(f) \cap P$, and attaching an unknotted arc in $\eta\left(w_{0}\right)$ connecting the two arc components of $\bar{\gamma} \cap \eta\left(w_{0}\right.$. But $\bar{\gamma} \cap \eta\left(w_{0}\right)$ consists of two arcs in the boundary of the disk $P \cap \eta\left(w_{0}\right)$, so they can be connected by an unknotted arc α in the disk $P \cap \eta\left(v_{0}\right)$. Since $G=\bar{\gamma} \cup \alpha \subset P, \Gamma$ is planar.
3.4. Remark. The argument above, while apparently God-given for the proof of the tetrahedral graph, in fact generalizes. Indeed, our original proof of 7.5 consisted of two parts: Graphs with cut edges were covered much as in $\S 1$. Graphs without cut edges, but with ≥ 4 vertices, were covered by a generalization of Lemma 2.1 above to braids of many strands. This generalization, in turn, can be proven from 7.5. Details appear in [14].

4. Special three-cycles

4.1. Definition. Let Γ be a graph in S^{3} and σ a cycle in Γ. If there is an imbedded disk D is S^{3} for which $D \cap \Gamma=\partial D=\sigma$ we say σ is flat. D is called a flattening disk for σ.
4.2. Definition. An imbedded three-cycle σ in a graph Γ is special if at least one of its vertices (called the apex) has valence $=3$. The edge not incident to the apex is called the base of the three-cycle.
4.3. Lemma. Suppose Γ is a graph in S^{3} containing a special threecycle σ with base e. If $\Gamma-e$ is planar and σ is flat, then Γ is planar.

Proof. Let $\eta\left(\Gamma^{\prime}\right)$ be a standard handlebody neighborhood for the graph $\Gamma^{\prime}=\Gamma-e$ imbedded in a sphere P. Let v denote the apex of σ, $w_{ \pm}$the other two vertices, and $f_{ \pm}$the edges of σ with ends on v and w_{+}respectively. Let $(D, \partial D) \subset\left(S^{3}, \sigma\right)$ be a flattening disk for σ, so $D \cap \Gamma=\partial D=\sigma$. We can isotope D near ∂D so that $\gamma=D \cap \eta\left(\Gamma^{\prime}\right)$ is a normal curve running from $e \cap \partial \eta\left(w_{+}\right)$to $e \cap \partial \eta\left(w_{-}\right)$.

Let N be the three-holed sphere in $\eta\left(\Gamma^{\prime}\right)$ constructed by attaching the annuli $\partial \eta\left(f_{ \pm}\right)-\eta^{0}\left(\Gamma^{\prime}\right)$ to the three-holed sphere $\partial \eta(v)-\eta^{1}\left(\Gamma^{\prime}\right)$. The normal curve γ consists of three arcs: $\gamma_{0}=\gamma \cap N$ and the two arcs $\gamma_{ \pm}=$ $\gamma \cap\left[\partial \eta\left(w_{ \pm}\right)-\eta\left(f_{ \pm}\right)\right]$. Since; $\eta\left(\Gamma^{\prime}\right)$ is a standard handlebody neighborhood of $\Gamma^{\prime}, P \cap N$ also contains a proper arc $\bar{\gamma}_{0}$ running from $\partial N \cap \eta\left(w_{+}\right)$to $\partial N \cap \eta\left(w_{+}\right)$. Since N is a three-holed sphere, we may isotope γ_{0} (perhaps changing $\gamma_{ \pm}$by some twists about the attaching disks of $\eta\left(f_{ \pm}\right)$to $\left.\eta\left(w_{ \pm}\right)\right)$ so that $\gamma_{0}=\bar{\gamma}_{0}$. We can now view the disk $D^{\prime}=D-\eta\left(\Gamma^{\prime}\right)$ as giving an isotopy from the arc $e-\eta\left(w_{ \pm}\right)$to the arc $\bar{\gamma}_{0}$. During the course of this isotopy the end points $e \cap \partial\left(w_{ \pm}\right)$move along $\gamma_{ \pm}$to the end points of $\bar{\gamma}_{0}$.

This motion of the end points can be coned in $\eta\left(w_{ \pm}\right)$, extending it to an isotopy from e to the union of $\bar{\gamma}_{0}$ and the arcs in $\eta\left(w_{ \pm}\right)$obtained by coning the end of γ_{0}. The latter lies in P, so, after the isotopy, $\Gamma \subset P$.
4.4. Proposition. Suppose Γ is a graph in S^{3} containing a special three-cycle σ with base e. Suppose f is an edge of Γ such that f is not a loop and is not incident to σ. If Γ / f and $\Gamma-e$ are planar, then so is Γ.

Proof. Let P be a two-sphere containing $\bar{\Gamma}=\Gamma / f$. The image of σ remains a three-cycle $\bar{\sigma}$ in $\bar{\Gamma}$, which divides P into two disks. Push the interior of one of them slightly off of P. Since f and its end points are disjoint from σ, the preimage of the disk before f is shrunk remains a disk D with boundary σ, whose interior is disjoint from Γ. This shows that σ is flat. Apply 4.3.

5. Two-separable graphs

5.1. Definitions [19]. If Γ is connected and has a cut vertex we say Γ is one-separable. If Γ is connected but not one-separable it is twoconnected. A pair of vertices $v_{ \pm}$in a two-connected graph Γ is twoseparating if Γ is the union of two subgraphs Γ_{0} and Γ_{1}, each containing at least two edges, such that $\Gamma_{0} \cap \Gamma_{1}=\left\{v_{+}, v_{-}\right\}$. If Γ is one-connected and has a two-separating pair of vertices, Γ is two-separable. A twoconnected graph which is not two-separable is called three-connected.
5.2. Definition. Let M be a three-manifold with boundary, and let $(\alpha, \partial \alpha) \subset(M, \partial M)$ be a properly imbedded arc in M. A flange φ from α is an imbedding $\varphi: I \times I \rightarrow M$ such that $\varphi^{-1}(\alpha)=I \times\{0\}$ and $\varphi^{-1}(\partial M)=\partial I \times I$.
5.3. Lemma. The image of any two flanges from the same arc in M are isotopic in M rel α, via an isotopy fixed outside a neighborhood of the images.

Proof. Suppose φ and ψ are two flanges based at α. By a small isotopy of ψ whose support lies near α we can make $\psi=\varphi$ on a neighborhood of $I \times\{0\}$. Let $f_{t}: I \times I \rightarrow I \times I$ be the map $f_{t}(u, v)=(u, t v)$, and let $\varphi_{t}: I \times I \rightarrow S^{3} \quad\left(\psi_{t}: I \times I \rightarrow S^{3}\right)$ be the map $\varphi_{t}=\varphi f_{t}$ (resp. $\psi_{t}=\psi f_{t}$), which is an imbedding as long as $t>0$. then for $\varepsilon>0$ sufficiently small, $\varphi_{\varepsilon}=\psi_{\varepsilon}$. The required isotopy is then obtained by following the isotopy $\psi_{t}, 1 \geq t \geq \varepsilon$, by $\varphi_{s}, \varepsilon \leq s \leq 1$. q.e.d.

Suppose $\left\{v_{ \pm}\right\}$are a two-separating pair of vertices in a two-connected graph Γ. Let Γ_{0} and γ_{1} be the subgraphs of the two-separation. Suppose

Figure 5.1
Γ_{1} contains an edge f with distinct end vertices, neither of which are $v_{ \pm}$, and suppose Γ_{0} contains an edge e for which $\Gamma_{0}-e$ is connected.
5.4. Lemma. If Γ / f and $\Gamma-e$ are planar, so is Γ.

Proof. The idea will be to show that there is an arc in Γ_{0} such that all of Γ_{0} lies inside a flange on that arc.

Let $\bar{\Gamma}=\Gamma / f, \bar{\Gamma}_{1}=\Gamma_{1} / f$, and P be a two-sphere that coritains $\Gamma \supset$ Γ_{0}. Since Γ is two-connected, Γ_{0} and Γ_{1} are connected. Since Γ_{1} is connected, $\bar{\Gamma}_{1}-v_{ \pm}$lies entirely in one component of $P-\Gamma_{0}$ whose boundary contains both $v_{ \pm}$. Since Γ_{0} is connected, that component is a disk D. Though $\partial D \subset \Gamma_{0}$ may not be an imbedded circuit, it follows from the two-connectivity of Γ that ∂D is the union of two imbedded $\operatorname{arcs} \alpha$ and β in Γ_{0}, each running from v_{+}to v_{-}. One of them, α say, does not contain e, since $\Gamma_{0}-e$ is connected. Remove from D a collar of β disjoint from $\bar{\Gamma}_{1}$, so that D is an imbedded disk in P, $\bar{\Gamma}_{1}-\left\{v_{ \pm}\right\} \subset \operatorname{interior}(D)$, and $\alpha \subset \partial D$. The other disk D^{\prime} (see Figure 5.1) which ∂D bounds in the sphere P then has the following properties:
(a) $\Gamma_{0} \subset D^{\prime}$,
(b) $D^{\prime} \cap \bar{\Gamma}_{1}=\left\{v_{ \pm}\right\}$, and
(c) $\alpha \subset \partial D^{\prime}$.

Let $\Gamma^{\prime}=\Gamma_{1} \cup \alpha$. Since $\Gamma^{\prime} \subset \Gamma-e, \Gamma^{\prime}$ is planar, so lies in a sphere Q. Let $\eta\left(\Gamma_{1}\right)$ be a standard handlebody neighborhood of $\Gamma_{1} \subset Q$ and $W=S^{3}-{ }^{\circ} \eta\left(\Gamma_{1}\right)$. A neighborhood of the arc $\alpha \cap W$ in Q contains a flange F on $\alpha \cap W . D^{\prime} \cap W$ is also a flange on $\alpha \cap W$ and contains $\Gamma_{0} \cap W$. Both flanges F and D^{\prime} intersect $\partial W=\partial \eta\left(\Gamma^{\prime}\right)$ on arcs lying in $\partial \eta\left(v_{ \pm}\right)$. By 5.3, D^{\prime} can be isotoped rel α onto F, forcing $\Gamma_{0} \cap W$ onto Q as well. Coning the isotopy of the points $\Gamma_{0} \cap \partial \eta\left(v_{ \pm}\right)$to $v_{ \pm}$extends the isotopy to $\Gamma_{0}-W=\Gamma_{0} \cap \eta\left(\Gamma_{1}\right)$, after which $\Gamma \subset Q$.

6. Three-connected graphs

6.1. Definition. Let $\Omega_{n}, n \geq 3$, be the wheel with n spokes. Its vertices are the central vertex w and vertices $\left\{w_{1}, \cdots, w_{n}\right\}$ lying in order on a cycle C_{n}. Its edges are those of C_{n} together with the n spokes, each incident to w and one of the w_{i}. Denote by $\sigma_{i}, i \in \mathbf{Z}_{n}$, the circuit $w-w_{i}-w_{i+1}$ in Ω_{n}. Note each σ_{i} is a special three-cycle, with at least two apexes w_{i} and w_{i+1}.
6.2. Lemma. Let Γ be the graph obtained by adjoining to $\Omega_{n}, n \geq 3$, an edge e with (perhaps new) distinct end vertices $v_{ \pm} \subset C_{n}$. Either Γ contains a two-cycle or Γ contains a special three-cycle σ and an edge f not incident to σ.

Proof. Let $\bar{C}_{n} \subset \Gamma$ be $C_{n} \cup\left\{v_{ \pm}\right\}$. The vertices w_{i} and w_{i+1} in σ_{i} are adjacent in C_{n}. If $\left\{w_{i}, w_{i+1}\right\}=\left\{v_{+}, v_{-}\right\}$for some $i \in \mathbf{Z}_{n}$, then Γ contains a two-cycle. If not, then at least one apex of each σ_{i} persists as a valence three vertex in Γ. It follows that each σ_{i} remains a special three-cycle in Γ unless $v_{ \pm}$is in the interior of the edge of σ_{i} on C_{n}. Hence at least $n-2 \geq 1$ of the σ_{1} remain as special three-cycles in Γ. Also, since $n \geq 3$, there must be at least four vertices in \bar{C}_{n} or Γ would contains a two-cycle. Hence in \bar{C}_{n} there is an edge disjoint from one of the remaining special three-cycles.
6.3. Definition. A graph is strict if it has no loops or two-cycles and every vertex is of valence ≥ 3.
6.4. Lemma. Suppose Γ is a three-connected strict graph lying in a sphere P, and F is a face of Γ in P. Either there is an edge of Γ not incident to ∂F or Γ is a wheel $\Omega_{n}, n \geq 3$, whose circuit $C_{n}=\partial F$.

Proof. Since Γ is strict it contains at least one vertex not in ∂F. Suppose Γ contains exactly one vertex w not in ∂F. Since Γ is strict, every edge incident to w is incident to a vertex in ∂F and every edge incident to ∂F but not in ∂F is incident to w. Hence Γ is a wheel Ω_{n} with $n=$ valence $(w) \geq 3$ and circuit ∂F.

Suppose Γ contains more than one vertex not in ∂F. Let F^{\prime} be a face of Γ whose boundary contains vertices w and w^{\prime} not in ∂F. If any edge of Γ is not incident to ∂F we are done. If every edge is incident to ∂F, then there is an arc α properly imbedded in F^{\prime}, separating w from w^{\prime}, whose boundary lies on vertices w_{i} and w_{j} of ∂F. There is also an arc β in F with $\partial \beta=\partial \alpha$. Then the circle $\alpha \cup \beta$ shows that w_{i} and w_{j} two-separate Γ, contradicting the hypothesis that Γ is three-connected.
6.5. Proposition. Let $\Gamma \subset S^{3}$ be a three-connected strict graph contained in a sphere $P \subset S^{3}$. Let F be a face of Γ in P. Suppose $\bar{F} \subset S^{3}$
is a disk such that $\partial \bar{F}=\bar{F} \cap \Gamma=\partial F$. Then there is a sphere $\bar{P} \subset S^{3}$ so that $\Gamma \subset \bar{P}$ and $\bar{F} \subset \bar{P}$ is a face of Γ in \bar{P}.

Proof. Applying general position and isotopies which taper as they approach Γ, we can assume that P intersects the interior of \bar{F} in a properly imbedded one-manifold Λ, and that the closure in \bar{F} of any arc component of Λ is either an imbedded properly imbedded arc in \bar{F} with ends at vertices of ∂F, or a circle containing a vertex of ∂F. Let $\bar{\Lambda}$ denote this closure of $\bar{\Lambda}$ in F, and call the circles of $\bar{\Lambda}$ which contains a vertex of ∂F loops.

We will induct on $|\Lambda|$. If $|\Lambda|=0$ so $\bar{F} \cap P=\varnothing$, just replace F with \bar{F}, yielding a new sphere \bar{P}. So we suppose $\bar{F} \cap P \neq \varnothing$.

Suppose first that there were a simple closed curve in Λ, and let D be a disk in \bar{F} cut off by an innermost such curve. Since Γ is connected, ∂D also bounds a disk D^{\prime} in $P-\Gamma$. Replace D^{\prime} by a slight push-off of D to eliminate ∂D (and perhaps more) from Λ, reducing $|\Lambda|$. So henceforth assume Λ consists of arcs. Then $\bar{\lambda}$ consists of arcs and loops.

In each case below, we will replace some disk in P with a slight pushoff of a disk in \bar{F}, obtaining a new two-sphere P^{\prime} containing Γ and intersecting \bar{F} in at least one fewer component.

An arc of Λ outermost in \bar{F} cuts off a disk D in \bar{F} such that the interior of D is disjoint from P. Among all such outermost arcs, choose α to be one for which ∂D contains as few edges in ∂F as possible.

Case 1: α is not a loop. The ends of α are two vertices w_{1} and w_{2} of $\partial F .\left\{w_{1}, w_{2}\right\}$ separates ∂F into two arcs d_{1} and d_{2} with $\partial D=\alpha \cup d_{1}$, say, and d_{1} having no more edges than d_{2}. If $\alpha \subset F$, then α also cuts F into two disks, one of which also has boundary $\alpha \cup d_{1}$. Replace that disk in F with a copy of D, then push F slightly rel ∂F to eliminate α (and perhaps more) from Λ.

If $\alpha \subset P-F$, then consider a slight push-off β of d_{1} onto $F . \alpha \cup \beta$ is a simple closed curve in P intersecting Γ in the vertices $w_{1} \cup w_{2}$ and containing edges of Γ on both sides. Since Γ is three-connected, one side must contain precisely one edge. Hence α lies in a face F^{\prime} of Γ adjacent to F and $F^{\prime} \cap F$ is a single edge, either d_{1} or d_{2}. If $F^{\prime} \cap F=d_{1}$ proceed as above using F^{\prime} instead of F. If $F^{\prime} \cap F=d_{2}$, then d_{1} can have no more than one edge. But then ∂F would have no more than two-edges, contradicting the assumption that Γ is strict.

Case 2: α is a loop. The ends of α lie on a vertex w in ∂F. Let D be the disk in \bar{F} bounded by the loop $\alpha \cup w$.

If $\alpha \subset F$, then $\alpha \cup w$ also bounds a disk D^{\prime} in F. Replace D^{\prime} with
D, then push F slightly rel ∂F. This eliminates α (and perhaps more) from Λ.

If $\alpha \subset P-F$, then the interior of the loop α in P must be disjoint from Γ, since Γ is two-connected. Hence $\alpha \cup w$ also bounds a disk D^{\prime} in a face F^{\prime}. Proceed as above, using F^{\prime} instead of F.

7. Criteria for planarity

7.1. Lemma. Let Γ be a finite graph in S^{3} with handlebody neighborhood $\eta(\Gamma)$. Then $\pi_{1}\left(S^{3}-\Gamma\right)$ is free if and only if $S^{3}-{ }^{\circ} \eta(\Gamma)$ is a connected sum of handlebodies, one for each component of Γ.

Proof. Stallings theorem [17] shows that a submanifold of S^{3} with free fundamental group is either the solid torus, or a connected sum, or a boundary connected sum of other submanifolds of S^{3} with free fundamental group. By induction, such a manifold must then be a connected sum of handlebodies. Each handlebody summand has connected boundary.
7.2. Lemma. Let Γ be a finite graph in S^{3} such that $\pi_{1}\left(S^{3}-\Gamma\right)$ is free and every graph properly contained in Γ is planar. If Γ is not connected, it is planar.

Proof. Let $\eta(\Gamma)$ be a handlebody neighborhood of Γ. Since Γ is not connected, $S^{3}-\eta(\Gamma)$ has more than one boundary component, and so is a connected sum. In particular, Γ is split, and so by 1.3 is planar. q.e.d.

We are now ready to prove the main theorem. We will need the following theorem, due to Barnette and Grünbaum [1, Theorem 1]. If e is an edge in a strict graph Γ, let $\Gamma \sim e$ denote the graph obtained from $\Gamma-e$ by amalgamating any newly-created valence two vertices at the ends of e.
7.3. Theorem. Suppose Γ is a three-connected strict graph other than the tetrahedral graph. There is an edge e in Γ such that $\Gamma \sim e$ is also a three-connected strict graph.

We will also need the following special case of a theorem due to Mason [11]:
7.4. Theorem. Suppose that Γ_{1} and Γ_{2} are planar graphs in S^{3}. Any homeomorphism $g: \Gamma_{1} \rightarrow \Gamma_{2}$ extends to a homeomorphism $H: S^{3} \rightarrow S^{3}$ isotopic to the identity.

If follows that if $\Gamma \subset S^{3}$ is planar and $g: \Gamma \rightarrow S^{2}$ is any imbedding of Γ in the two-sphere, then there is a sphere $P \subset S^{3}$ such that Γ lies in P just as it lies in S^{2}. That is, there is a homeomorphism $h: S^{2} \rightarrow P$ so that $h g: \Gamma \rightarrow P \subset S^{3}$ is the inclusion.
7.5. Theorem. A finite graph $\Gamma \subset S^{3}$ is planar if and only if
(i) Γ is abstractly planar,
(ii) every graph properly contained in Γ is planar, and
(iii) $\pi_{1}\left(S^{3}-\Gamma\right)$ is free.

Proof. Clearly, if Γ is planar it satisfies (i)-(iii); the interest is in the other direction. So we will assume Γ satisfies (i)-(iii) and try to show it is planar. Nothing is lost by assuming every vertex of Γ has valence ≥ 3.

The proof will be by induction on the number of vertices. In particular, we can assume that if f is an edge in Γ which is not a loop, then the graph $\Gamma / f \subset S^{3}$ is planar.

Following 7.2 assume that Γ is connected. The case in which Γ has a single vertex is [4, Theorem 1], so we will assume Γ has more than one vertex. By 1.6 we can assume Γ has no cut edge. Hence, by 1.5 we can assume Γ is strict and two-connected.

Suppose Γ is two-separable, with two-separating vertices $\left\{v_{ \pm}\right\}$. Let Γ_{0} and Γ_{1} be the connected subgraphs of the two-separation. Consider first Γ_{1}. Since Γ contains no two-cycles, at most one edge of Γ_{1} is incident to both $v_{ \pm}$. Since Γ_{1} contains more than one edge, it must contains at least one $v \neq v_{ \pm}$. Since Γ contains no two-cycles, at most two edges incident to v have their other end on $v_{ \pm}$. Since v has valence ≥ 3, some edge f incident to v is not incident to $v_{ \pm}$. Now consider $\Gamma_{0} . \Gamma_{0}$ contains more than one edge, so it has at least one other vertex v, of valence ≥ 3 since Γ is strict. Thus, Γ_{0} is not a tree, for it can have at most two ends, $v_{ \pm}$. Since Γ_{0} is not a tree, it contains an edge e with $\Gamma-e$ connected. Then by 5.4Γ is planar.

If Γ is not two-separable it is a three-connected strict graph. If it is the tetrahedral graph, then by 3.3 it is planar. If it is not tetrahedral, then by 7.3 there is an edge e in Γ such that $\Gamma \sim e$ is also a three-connected strict graph.

If $\Gamma \sim e$ is a wheel, then by 6.2Γ contains a special three-cycle σ and an edge not incident to σ. Then by 4.4Γ is planar. So assume $\Gamma \sim e$ is not a wheel.
Γ is abstractly planar, so imbed Γ in a sphere Q. By hypothesis, $\Gamma^{\prime}=\Gamma-e$ is also planar, and by Mason's theorem (7.4) we can assume that $\Gamma^{\prime}=\Gamma-e$ lies in a sphere $P \subset S^{3}$ exactly as Γ lies in Q. In particular, the ends of e lie on the boundary of some face F of P. Since $\Gamma \sim e$ is not a wheel, there is, by 6.4, an edge f of Γ not incident to ∂F. Let $\bar{\Gamma}=\Gamma / f$. By hypothesis, $\bar{\Gamma}$ lies in a sphere $\bar{P} \subset S^{3}$. By 7.4, we can assume that $\bar{\Gamma}$ lies in \bar{P} exactly as Γ / f lies in Q. In particular, e lies in a face \bar{F} of $\bar{\Gamma}$ in \bar{P} with $\partial \bar{F}=\partial F$. Since f is not incident
to $\partial F, \bar{F}$ persists when we "unshrink" f. That is, \bar{F} is a disk in S^{3} such that $\partial \bar{F}=\bar{F} \cap \Gamma=\partial F$. Then by 6.5 applied to Γ^{\prime} and \bar{F}, there is a sphere $P^{\prime \prime} \subset S^{3}$ containing Γ^{\prime} and \bar{F}. But $e \subset \bar{F}$, so $\Gamma \subset P^{\prime \prime}$.
7.6. Corollary. There is an algorithm to determine if a graph $\Gamma \subset S^{3}$ is planar.

Proof. Kuratowski's theorem provides an algorithm to determine abstract planarity. In fact, abstract planarity of graphs can be determined in linear time [7].

It suffices to have, then, an algorithm to determine if the fundamental group of the complement of graph Γ is free. According to 7.1 this is equivalent to showing $S^{3}-{ }^{\circ} \eta(\Gamma)$ is the connected sum of handlebodies, one for each component of Γ. Haken's original algorithm [5] can be used to determine if a three-manifold contains a two-sphere separating its boundary components. This reduces the problem to the case in which Γ is connected. Then $M=S^{3}-{ }^{\circ} \eta(\Gamma)$ is irreducible. A variant of Haken's algorithm suffices to determine if an irreducible three-manifold is ∂-reducible, and gives a ∂-reducing disk (cf. [9, 4.1]). Cut M open along a ∂-reducing disk, if one exists. Continue this process until M does not have a ∂-reducing disk. If ∂M is then a union of spheres, $S^{3}-{ }^{\circ} \eta(\Gamma)$ was a handlebody. If not, then a nonspherical component of ∂M was an incompressible closed surface in $S^{3}-{ }^{\circ} \eta(\Gamma)$, so $S^{3}-{ }^{\circ} \eta(\Gamma)$ was not a handlebody.

References

[1] D. Barnette \& B. Grünbaum, On Steinitz's theorem concerning convex 3-polytopes, in The Many Facets of Graph Theory, Lecture Notes in Math., Vol. 110, Springer, Berlin, 27-40.
[2] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, Oxford, 1969, 329358.
[3] M. Culler, C. Gordon, J. Luecke \& P. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987) 237-300.
[4] C. Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987) 285-299.
[5] W. Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkiet in irreduzible 3Mannigfaltigkeiten, Math. Z. 76 (1961) 427-467.
[6] J. Hempel \& L. Roeling, Free factors of handlebody groups, preprint.
[7] J. Hopcroft \& R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach. 21 (1974) 549-568.
[8] W. Jaco, Adding a 2-handle to a 3-manifold: An application to Property R, Proc. Amer. Math. Soc. 92 (1987) 288-292.
[9] W. Jaco \& U. Oertel, An algorithm to decide if a 3-manifold is a Haken manifold, Topology 23 (1984) 195-209.
[10] S. Kinoshita, On elementary ideals of polyhedra in the 3-sphere, Pacific J. Math. 42 (1972) 89-98.
[11] W. K. Mason, Homeomorphic continuous curves in 2-space are isotopic in 3-space, Trans. Amer. Math. Soc. 142 (1969) 269-290.
[12] C. D. Papakyriokopolous, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) (1957) 1-26.
[13] M. Scharlemann, Outermost forks and a theorem of Jaco, Contemporary Math., Vol. 44, Amer. Math. Soc., Providence, RI, 1985, 189-193.
[14] __, Planar graphs, family trees, and braids, preprint, Bochum, 1989.
[15] J. Simon, Molecular graphs as topological objects in space, J. Comput. Chem. 8 (1987) 718-726.
[16] J. Simon \& K. Wolcott, Minimally knotted graphs in S^{3}, preprint.
[17] J. Stallings, A topological proof of Grushko's theorem on free products, Math. Z. 90 (1965) 1-8.
[18] A. Thompson, A polynomial for graphs in a 3-manifold preprint, 1989.
[19] W. T. Tutte, Graph theory, Encyclopedia of Mathematics and its Applications, Vol. 21, Addison-Wesley, Reading, MA, 1984.

University of California, Santa Barbara University of California, Davis

[^0]: Received August 3, 1990. The first author was supported in part by a grant from the $\mathrm{Na}-$ tional Science Foundation. The second author is a National Science Foundation Postdoctoral Fellow.

