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THE LOCAL BEHAVIOUR OF
HOLOMORPHIC CURVES IN

ALMOST COMPLEX 4-MANIFOLDS

DUSA McDUFF

Abstract

In this paper we prove various results about the positivity of intersections
of holomorphic curves in almost complex 4-manifolds which were stated
by Gromov. We also show that the virtual genus of any closed holo-
morphic curve in an almost complex 4-manifold is nonnegative. These
technical results form the basis of the classification of rational and ruled
symplectic 4-manifolds given in [5].

1. Introduction

Let (V, J) be an almost complex manifold, and let (Σ, /0) be a
Riemann surface. A (parametrized) J-holomorphic curve in (V 9 J) is
a map / : Σ —• V which preserves the almost complex structures, i.e.,
df o JQ = J o df. The unparametrized curve Im / is denoted by C. We
will consider both local and global questions. In the former case, C will
be the image of a disc D centered at the origin in the complex plane C,
and in the latter it will be closed, i.e., the image of a compact Riemann
surface Σ without boundary. Throughout, we will assume that (V, J)
and all maps are C°°-smooth, unless there is explicit mention to the con-
trary. Further, we will assume that / is not a multiple covering, i.e., that
/ does not factor as fΌγ, where γ: Σ —• Σ is a JQ-holomorphic self-map
of degree > 1.

Our first aim is to prove the following result, which was stated by Gro-
mov in [3, 2.1.C2 ].

Theorem 1.1. Two closed distinct J-holomorphic curves C and C' in
an almost complex A-manifold (V, J) have only a finite number of inter-
section points. Each such point x contributes a number kχ > 1 to the
algebraic intersection number C Cf. Moreover, kχ - 1 only if the curves
C and C' intersect transversally at x.
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Thus, if C and C' are distinct closed holomorphic curves, C C' = 0
if and only if C and C' are disjoint. Further C C' = 1 if and only
if C and C' meet exactly once transversally, and so at a point which
is nonsingular on both curves. (A point x e C is called nonsingular if
f~l(x) consists of a single point z such that dfzφQ. Otherwise, it is
singular. Further, x is said to be cπϊ/α*/if it is the image of a point z such
that dfz = 0.) In fact, one does not need C and C' to be closed here: it
is enough that they be compact with only interior points of intersection.
Further, when dim V > 4, there is an analogous result for intersections of
a /-holomorphic curve C with an immersed /-holomorphic submanifold
X of ( F , /) of codimension 2 (see [3, 2.1. C'2]).

In the course of proving the above theorem, we establish the following
result.

Proposition 1.2. Every J-holomorphic map f:Σ->V may be C 1 -

approximated by a f-holomorphic immersion f: Σ —• V, where f is

C®-close to J and equals J except in small spherical shells Bχ(ε2)-Bχ(eι)

about each critical point x oflmf.

Our second result is a homological version of the adjunction formula
for holomorphic curves in almost complex 4-manifolds. Let c e H2(V Z)
be the first Chern class of the complex vector bundle (TV, / ) . Then the
virtual genus g(C) of a closed curve C is defined to be the number

If C is an embedded copy of a Riemann surface Σ of genus gΣ, the
equalities

c(C) = cγ{TC) + cχ (uc) = 2-2g + C.C

show that the virtual genus g(C) equals the genus gΣ of Σ. We claim
that the converse holds, namely,

Theorem 1.3. Let C be a J-holomorphic image of the closed Riemann
surface Σ of genus g. Then g(C) is an integer which is greater than or
equal to gΣ, with equality if and only if C is embedded.

This follows easily if C is immersed, and so the crucial step is to show
that each critical point of C increases C C, and hence also g(C). To do
this, we define the local self-intersection number L.Int(/, x) of a critical
point and then prove:

Theorem 1.4. For every critical point x of C, L.Int(/, x) > 0.
The proofs involve extending the results of Nijenhuis and Woolf about

the existence of perturbations of holomorphic curves in almost complex
manifolds. Their results apply to nonsingular curves. In order to deal with
singularities, we follow Gromov [3, 2.4. B{ ] and lift to the branched cover.
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Unfortunately, when / is not integrable, its lift / may only be Lipschitz
smooth. However we have enough control of its Lipschitz constant to be
able to push through Nijenhuis and Woolf s arguments.

One very interesting question which is not touched upon here concerns
the type of the knot formed by the intersection of a /-holomorphic curve
Im / in C with a small 3-sphere centered at a singular point x on Im / ,
where C^ denotes a complex /c-space. If / is integrable, such a knot is
an iterated torus knot. It is not known if more general knots can occur in
the nonintegrable case.

This paper is organized as follows. In §2, we recall some general re-
sults about /-holomorphic curves, and then establish a local normal form
for a singular holomorphic curve in a 4-dimensional manifold V. The
hard work occurs in §3 where we construct desingularizations of singular
curves. We define the local self-intersection number in §4, and prove the
main theorems in §5. I wish to thank R. Piene, D. Arapura, and G. Mess
who helped me understand the classical adjunction formula, Gromov for
discussing the nonintegrable case with me at length, and Oh for making
some useful comments about an earlier version of the paper.

2. General facts about /-holomorphic curves

Let D = D(R0) be the disc of radius RQ about the point 0 e C with
its usual complex structure, and consider a map / from D to an almost
complex manifold (V, /) which takes the origin 0 e D to the point
x G V. Since all questions considered here are local, we may identify
the target space V with Cn . We will always do this in such a way that
x corresponds to the origin (0, ,0) and / pushes forward to an
almost complex structure (also called /) on Cn which equals the standard
structure / 0 at (0, , 0). Such an identification will be called standard.
The points of D will be denoted by z, and the operators d/dz and d/d~z
by d and ~d as usual. We begin by reformulating the equation satisfied
by a /-holomorphic curve.

Lemma 2.1 [6, (3.3)]. The map f: (D, 0) -> (C π , (0, •• , 0)) is /-
holomorphic near {0} if and only if it satisfies an equation of the form

(2.1.1) dfi + aL(f(z))dfm=0

on a possibly smaller disc Dr, where a^ is an n x n matrix of complex

valued functions on Cn which vanishes at ( 0 , ••• , 0 ) and fι: C -> C ,

/ = 1, n, are the component functions off.
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Proof. Consider the complexified tangent bundle TV <s> C and cotan-
gent bundle T* V <g> C, where, to avoid confusion, we have written V in-
stead of Cn . The former space has basis d/dw1, , d/dwn , d/dwι,
••• , d/dwn over C, and the latter has basis dwι, ••• , dwn , rfW1, ••• ,
rfw" , where wι, , it;" are the coordinates on F = Cn . Let JP be the
projection of TV Θ C onto the subspace consisting of vectors which have
type (1,0) with respect to / . Then P = ( Id-//)/2, and we write Pι

m ,
Pι

m, etc., for its components with respect to the above basis. These are
complex valued functions on V which all vanish at the point (0, ,0)
except for the functions Pι. which take the value 1.

The 1-forms on (V9 J) of /-type (1,0) consist of the elements in
Im Pt, where Pt is the transpose of P. Hence this space is spanned by
the forms

+ pLdwm and Pι

mdwm+ P

where /, m = 1, , n . It is well known that / is /-holomorphic if
and only if it pulls the 1-forms of /-type (1,0) back to 1-forms of type
(1,0) on D c C. Hence we require that the 1-forms

and

f{PΊ

m dwm + Pldwm) = 4(/(2)) dfm + 4(/(z)) dfm

have type (1 ,0) . Since the type (0,1) part of the 1-form dg on D is
dg, this is equivalent to the equations

and

Now let P{ be the n x n complex matrix (Pι

m), P2 be (pL), P3 be
(P'J , and P4 be (PL), and let J{, , / 4 (resp. Q{, , Q4) be similar
submatrices for / (resp. Q = (Id+//)/2). Then it is easy to check that
at the point (0, , 0), we have Pχ = Id, and P2 = P3 = P4 = 0. In
particular, there is a disc fl'cΰ such that P{ is invertible at all points
of f(D'). Observe also that, because / is real, 7{ = J4 and 7 2 = / 3 . It
follows easily that

P4=Qι=ld-P{.
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Using the fact that PQ = 0, it is now not hard to show that P3 = -aPι

and P4 = -aP2, where a = Pχ

 ιP2 (see [6, 3.3]). Thus the second set of
equations above follows from the first, and the first is equivalent to

dfi + aL(f(z))dfm = O.

Note that the a^ do vanish at (0, ,0) as claimed. Nijenhuis and
Woolf show by a simple calculation using the above identities that the
matrix (1 - da) is invertible on I m / , and that P{ = (1 - da)~x. Con-
versely, given any a such that (1 -da) is invertible, one can use the above
identities to construct P and hence / .

Corollary 2.2 [2, §1]. Any map f which satisfies (2.1.1) is a solution
of a system of equations of the form

ddf = ψ.(f ,df ,df ,df , df ) forι = l,> 9n,

where ψi = 0 when all its arguments equal zero.
Proof In shorthand notation we may write (2.1.1) as

Thus ddf + addf is a function of / and its first derivatives. By taking
conjugates, we see that d~d f + ad~df is too. Therefore, substituting for
dd f in the first equation, we find (1 - άa)ddf also has this property.
The result now follows by multiplying by (1 - da)"1.

Lemma 2.3. If two J-holomorphic curves f, f': Σ—• (V, J) have the
same oo-jet at a point z of a connected Riemann surface Σ, then f' = f ' .

Proof Since Σ is connected, it is enough to prove this locally. Hence,
by Corollary 2.2, we may assume that / and / ' are solutions of the
following system of equations on D:

ddh* = ψβ™ , dhm , dhm , dϊΓ , d hm) for / = 1, , n,

and that g = f - f' vanishes to infinite order at 0 e D. Because g
and its derivatives are bounded on D, it is easy to check that g satisfies
differential inequalities of the form

(2.3.1) Iddg^zf < Mj2(\gm\2 + \dgm\2 + \dgm\2),
m

for / = 1, , n and all z e D. In this situation, Aronszajn's strong
unique continuation theorem [1, Remark 3] implies that g is identically
zero in D . q.e.d.

We will need the following generalization of this result.

Lemma 2.4. Suppose that the functions d— of Lemma 2.1 vanish at all
points of the axis (u, 0, ,0) and that f is a solution o/ (2.1.1) whose
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component functions fι, i > 2, are infinitely tangent to 0 at z = 0.

Then each fι, i > 2, is identically zero.

Proof. It suffices to show that £ = (0, / 2 , , /") satisfies the dif-

ferential inequalities (2.3.1), since then the result follows from Aronszajn's

theorem. To establish (2.3.1) for gι when z > 2, observe that in the equa-

tion ddf1 = ψi{fm, dfm, dfm, djm, a J m ) of Corollary 2.2 the only

terms in ψ., which involve the function / 1 , also contain a factor dbι or

061', where we have written b\z) = αf(/ !(z), / 2 ( z ) , , /"(z)). But

db* = dti/dw1 dfι/dz + £ dbi/dwm d/m/dz.
m>2

Since dtf/dw1 = 0 o n ( κ , 0 , ••• , 0 ) , i ts v a l u e a t ( Z 1 , / 2 , ••• , / " ) is

b o u n d e d b y c o n s t ( 2 3 w > 2 | / m | ) . T h e r e f o r e , 9 έ z satisfies a n i n e q u a l i t y

\db\z)\2 < MΣ(\fm\2 + \dfm\2 + \dfm\2),
m>2

and the result follows, q.e.d.
We will now specialize to the case n = 2. For convenience, we will use

the coordinates (u, v) on C 2 , where u = ux + iu2, v =vx + iv2.

Lemma 2.5. Any standard identification of V with C 2 may be changed
by a diffeomorphism Ψ of ( C 2 , ( 0 , 0 ) ) to a standard identification such
that J = Jo at all points on the coordinate axes {u = 0} and {v = 0}
which are sufficiently close to ( 0 , 0 ) . Moreover, we may choose Ψ to be
l-tangent to the identity at ( 0 , 0 ) .

Proof. By [6, Theorem III], there are local Λholomorphic curves, Au

and Av say, through (0, 0) which are tangent to the coordinate axes
{v = 0} and {u = 0} . Since every almost complex structure on a manifold
of real dimension 2 is diffeomorphic to the usual integrable structure, there
is a diffeomorphism Ψ' of C2 which takes (Au, /) and (Aυ, /) into the
coordinate axes with the standard structure Jo . Thus we may choose Ψ'
so that the restriction of Ψ'+(/) to the tangent space of each coordinate
axis equals Jo near (0 ,0) . Clearly, we may assume that Ψ' = I d + 0 ( 2 ) .

Next we adjust Ψr near these axes to a map Ψ such that Ψ^(/) = Jo

in the normal directions too. For the axis {v = 0} , for example, this may
be done by composing ψ' with a map L of the form

L { u l 9 u 2 9 v l 9 v 2 ) = { u { , u 2 , v { , v 2 ) + { a , b , c , d ) v 2 ,

where a, b , c , d are functions of u = (u{, u2). In fact, if (A, B, C , 1 +

D) are the components of the vector Ψ^J(d/dv{) at (w, 0 ) , then we
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may take a = -A/(\ + D), b = -B/(l + Z>), c = - C / ( l + Z>), and
1 + rf = 1/(1 + D) . Observe that because ^ , £ , C, and D vanish at
(0, 0), L = Id+0(2) , so that Ψ = Id+0(2) also.

Proposition 2.6. Let f be a nonconstant J-holomorphic map of (D, 0)
to an almost complex 4-manifold (V, x) which has a critical point at x,
and assume, as always, that f is not a multiple covering. Then there is
a standard identification of V with C 2 , such that the axis {v = 0} is
J-holomorphic and f has the form

where m> k, k does not divide m, and O(m + 1) denotes a function of
z and z which vanishes to order m at z = 0.

Proof Choose any standard identification of V with C 2 , and consider
the Taylor expansion T(f) of / = (/*, f2) in terms of z and z . Since
/ is nonconstant, it follows from Lemma 2.3 that this expansion is not
identically zero. Let k be the order of its first nonzero term. Observe that
k > 1 by hypothesis. Since J = Jo at (0 ,0) , the functions a^ vanish
at (0,0) , and so the coefficients α^-(/(z)) in equation (2.1.1) start with
terms of order k. Hence, by (2.2.1), the term in T(f) of order k is
annihilated by Ί) and so is a function of z alone. Therefore, we may

Jo-
 2

such a way that
change coordinates by a Jo-holomorphic linear transformation of C2 in

/(z) = (z* + O(k + 1), O(r)), where r>k+l.

Now, change coordinates as in Lemma 2.5 so that J = Jo along the

axis {υ = 0} . (Since Ψ = Id+0(2) , this does not change the above form

of / . ) Then the functions P^ and aL vanish at all points (u, 0), and

so the functions a!m{f{z)) vanish to order r- 1 at z = 0. Hence (2.1.1)

implies that all terms in T(f) of order < r are functions of z alone.

Thus

where q(z) is a polynomial in z and b e C. If b Φ 0, we can put /

into the required form (i.e., absorb q and b) by a Jo-holomorphic change

of coordinates on C2 which does not move the axis {v = 0} . Note also

that if r happens to equal pk we can eliminate the term zr in f2 by

the Jo-holomorphic change of coordinates (u, υ) ι-» (w, υ - up), and then

repeat the above argument.
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We claim that there always is a finite number r for which b Φ 0 -1 For
if not, the above process either terminates after a finite number of steps
with T(f) = (zk, 0), or it continues indefinitely. In the latter case, one
can choose the sequence of coordinate changes so that it converges on the
level of jets. Hence there is a coordinate system in which T(f) = (z , 0).
We may also arrange that the axis {v = 0} is /-holomorphic. Thus, in
either case, / is infinitely tangent to the /-holomorphic map / ' defined
by f'(z) = {zk, 0). But then / = / ' by Lemma 2.3, which contradicts
the hypothesis that / is not a multiple covering, q.e.d.

It follows immediately from Proposition 2.6 that a map / : (Z>, 0) —•
(C 2, 0), which has an expansion in which k and m are mutually prime,
is an embedding on a deleted neighbourhood D1 - {0} of {0}, where
D' C D. We will see in Lemma 5.3 below that this holds for all / , but
for now will recall a partial result from [4]. Note that it, as well as its
corollary, holds in all dimensions.

Lemma 2.7 [4, 4.4]. All critical points of a J-holomorphic map f: D —•
V are isolated. Further, if C and C' are distinct connected J-holomorphic
curves, then every accumulation point in the intersection C Γ\Cf is critical
on both curves.

Proof. When n = 2 the first statement follows immediately from
Proposition 2.6. Since all that we used is the fact that the first nonzero
term in the Taylor expansion for / involves z only (and not z), the
proof works in all dimensions.

To prove the second statement, assume that x e CnC' is a nonsingular
point of C', and let / = ( Z 1 , / 2 , ••• , fn) (resp. / ' ) parametrize
C (resp. C'). Choose coordinates so that f\z) = (z, 0, ••• ,0) and
J = Jo on the axis (z, 0, , 0). Since the first nonzero terms in the
Taylor expansions of the / ι involve only z, it is easy to see that if one
of the fι, for 2 < / < n, has a nonzero Taylor expansion at {0}, x
must be an isolated point of I m / n I m / ' . On the other hand, if these
Taylor expansions all vanish, it follows immediately from Lemma 2.4 that
the / \ / > 2, all vanish. But then C = C' locally (and hence globally)
contrary to hypothesis.

Corollary 2.8. Given any J-holomorphic map f : (D, 0) -> (Cn , 0),
there is a neighbourhood D1 c D of {0} and a sequence of points

1 The author wishes to thank H. Hofer for pointing out a mistake in her original proof of
this fact. This mistake also occurred in Lemma 4.4(iii) of [4]: a correct version of the latter
argument appears in Lemma 2.7.
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X = {Xj: j > 1} converging to {0} such that f\Df - {0} is an immersion,

and f\Df - X U {0} is an embedding.

3. Desingularizing holomorphic curves

We begin by showing that any /-holomorphic map can be C1-approxi-
mated by a /-holomorphic immersion. Recall that D(R) denotes the disc
of radius R.

Proposition 3.1. Let f: D(R0) —• C 2 be a J-holomorphic map of the
form

f(z) = (zk,zm) + O(m+l).

Then ifR>0 is sufficiently small, there is a constant C > 0 such that

for every ε e C - {0} with \ε\ < 0.1 there is a J-holomorphic immersion

fε:D{R)-^C2 of the form

such that \\fe - / | | c i < C\ε\ on D{R).

Nijenhuis and Woolf proved a similar result when k = 1. In order to

reduce to their case, we lift / over the branched covering map ψ: C2 —• C2

given by (u, υ) •-• (uk, ι;). The lifted curve will be /-holomorphic, where

/ is the pullback of / by ψ, and our first task is to study 7 . In order

that this have nice properties, we must choose our coordinates on C2 so

that / = / 0 at all points of the branching axis {u = 0} , which is possible

by Lemma 2.5. As in Lemma 2.5 we will identify C2 with R4 using

coordinates (ux 9u2,vl9 υ2), where u = u{ + iu2 and v = vx + iv2, and

we will write B4(R) for the ball with center ( 0 , 0 ) in C 2 of radius R.

Lemma 3.2. Suppose that J = Jo at all points of the axes {u = 0} and

{v = 0}. Then the pullback J = dψ~ι o / o dψ of J by ψ is Lipschitz

continuous, and also equals JQ at all points of the axes {u = 0} and {v =

0}. Further, the partial derivatives dJ/dvq are continuous everywhere,

and, for all R > 0, the mixed partials d2J/dupdυq are uniformly bounded

in B4{R) - {u = 0}.

Proof Denote kuk~x by a + ib so that a and b are homogeneous
polynomials of degree k-\ in ux, u2. Then

fa -b 0 0\
b a 0 0
0 0 1 0

Vo o o \)
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and

dψ' \ψ{u,υ)

fa/k2\u\2k-2 -b/k2\u\2k-2 0 0

b/k2\u\2k~2 a/k2\u\2k-2 0 0
0 0 1 0
0 0 0 \)

Let us write / = Jo + A, where ^ is a 4 x 4 matrix whose entries
A • are functions in the u , vq. Since A = 0 on the coordinate axes
{w = 0} , {v = 0} , each term in the Taylor expansion of Atj about (0, 0)

is divisible by some up and some vq . Hence, if Atj(u, v) = A..(u , v),

the A{ • are smooth functions and each term in their Taylor expansions

has order > k in the up and order > 1 in the vq .

Now write J = Jo + B, so that B = dψ~ι oAodψ. Then, for example,

r> / \ 7 /i 2ι ι2Λ:-2 L 7 /; 2, ,2ik-2

Bl3(u, v) = aAl3/k \u\ -bA23/k\u\ ,
if w / 0 . Because α and 6 are homogeneous polynomials in u{, w2

of degree /: - 1, and because of the above remarks about the Atj, we

may extend Bn to a Lipschitz continuous function by setting it equal to 0

when u = 0. Further, the partials dBl3/dvq and d2Bl3/dupdυq clearly

have the desired properties. One can treat the other terms B{. similarly.

(In fact, the terms with / = 1 or 2 and 7 = 3 or 4 are the worst.) q.e.d.

Now consider the lift / of / over ψ which has the formula

f(z) = (f\z), / 2 (z)) = (z(l + h(z)), zm + O(m + 1)).

Here 1 + h{z) is the kxh root of a function of the form 1 + O(m + \)jzk

and so, because m > k, is at least C^-smooth. (Recall that O(m + 1)

denotes a function of z and Ί of order > m + 1, and so its quotient by

zk need not be C°° .)

Lemma 3.3. There is a C2-smooth change of coordinates Φ on C2

vvΛ/c/z is the identity on the axis {u = 0} and is such that Φo/(z) = (z, 0).

Further, we may suppose that Φ J / ) = JQ along the axis {u = 0} <z«d

{Ϊ; = 0} and that the partial derivatives of Φ+(J) have the same properties

as those of J.

Proof Take Φ'(u9v) = ({fl)'l(u)9 v - f2 o (fι)~\u)) Then Φ7

satisfies all conditions in the first sentence of the lemma. Let / ' = Φ^(/).

Since Φ' is 1-tangent to the identity map Id on the axis {u = 0}, it is

clear that / ' = Jo along this axis. Further, because the map Z H ( Z , 0 )

is /'-holomorphic, / ' = Jo on the tangent bundle of {v = 0}, and so

we only need to alter Φ' in the directions normal to this axis. Since
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m > k > 2, the function f2 o (fλ)~\u) is 0(3). Therefore, if we define
L as in Lemma 2.5, the functions A, B, C, and D are 0(2) so that
L = J d + 0 ( 3 ) . Hence Φ = Id+0(3) which implies that the partials of
Φ+{J) have the required properties, q.e.d.

Let J = Φ^(J). We are interested in solutions / of the equations

(3.3.1) dfi + aL(f(z))dΓ = O, Ϊ = 1 , 2 ,

where αi- are the appropriate functions for / defined as in Lemma 2.1.
The crucial step in the proof of Proposition 3.1 is the following estimate.
Consider the norms || || and || ||' defined on functions g: D(R) —• C2

by

(3.3.2) ||ff|| = | ; | + L(g) and \\g\\' = mnx{\\dg\\,

where \g\ = sup{\gι (z)\, \g2(z)\: z e D(R)}, and L(g) is the Lipschitz

constant of g. (Note: || || is slightly different from the corresponding

norm in [6].) Further, given R > 0 and ε e C, let Lε denote the space

of maps g: (D(R), 0) -> (C 2, (0, 0)) of the form

where g is Lipschitz with Lipschitz constant < |e | . We will suppose that
R < 1 and that |e| < 0.1 so that I m ^ c 54(2) for all g eLε.

Lemma 3.4. There is a constant K which is independent of ε and R
such that

\\aL(g(z))\\ < K\ε\R

for i, m= 1,2, all g e Lε, and all ε eC for which \ε\ < 0.1.

Proof Let a(z) denote one of the functions fl^ (z). By Lemma 3.3

and the definition of the oί— given in Lemma 2.1, a vanishes when u = 0

or v = 0 and its partial derivatives \da/dυq\ and \d2a/dupdvq\ are

uniformly bounded in B4(2) - {u = 0}, say by cχ. Since da/dup = 0
when v = 0 (and u Φ 0), we find that

(3.4.1) \da/dup{u,v)\<cx\v\, i fw^O.

Hence \a(u, υ)\ < cx\u\\v\. Similarly, because the functions \da/dυq\ are

continuous in B4(2) and equal 0 when u = 0, and because \d2a/dupdυq\

< Cj, we have

(3.4.2) \da/dvq(u,v)\<cx\u\.
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Since |e| < 0.1, the image lmg of an element of Lε clearly lies in the
cone Λ = {(u, υ): \υ\ < 4|e| \u\} and so, by the above, \a\ < 4|ε|c1i? on
Img. Further,

L(a(g)) = sap{\a{g(z)) - a(g(z))\/\z -z'\:z,z'e D(R)}

< sap{\a{g\z), g\z)) - a{g\z), g\z))\/\z - z'\]

+ s u p { | α ( * V ) , g\z))\ - \a{g\z), g\z))\l\z - z\}.

Without loss of generality, we may suppose that \g2(z)\ < \g2(z')\, so that
the point (gι(zr), g2{z)) does belong to the cone Λ. Then we may apply
(3.4.1) and (3.4.2) to deduce that

L{a{g)) < cx L(gι) sup \g\z)\ + cχ L(g2) sup \g\z)\

< ^ ( 1 + |β|) - 4|e|Λ -h ̂

Hence \\a{g)\\ = \a\ + L{g) < K\ε\R provided that K>Ίcχ. q.e.d.
Following [6, (5.2)], we now replace (3.3.1) by the equivalent system of

integral equations

(3.4.3) /Wr-Γ[4(/(z))d7m],

where S and T are the integral operators of [6, §6]; these are defined for
functions h: C -> C and have the property that ~ΘSh = 0 and ~dTh = h .
We are looking for solutions which have a specified tangent at 0. To find
them, let

ωi(f,g) = -T[a!fP[(g(z))dfm],

where g: D -• C 2 is a Lipschitz funct ion such t h a t g(0) = ( 0 , 0 ) ; a n d
set
(3.4.4)

θι(f,g)(z) = ωι(f,g)(z)-ωι(fig)(0)-z dωι(f,g)(0)9 / = 0 , l .

Observe that θ ' ( / , g)(0) = 0. Then we look for solutions of the equation

(3.4.5) / = z ( l , β ) + θ ( / , / ) with /(0) = (0,0),

where θ = ( θ 1 , θ 2 ) . By construction, any solution of (3.4.5) is J-
holomorphic and is tangent to z( l , ε) at z = 0. If ε = 0, we know
from Lemma 3.3 that the map z •-> (z, 0) is a solution, and our aim is to
perturb it. If / were C 1 , one could do this using the results of [6], but
because / is merely Lipschitz one has to work a little harder.

Proposition 3.5. Let J be any Lipschitz continuous almost complex
structure on C2 which is such that the estimate of Lemma 3.4 holds. If
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R > 0 is sufficiently small, then there is a solution fε of (3.4.5) in Lε for
every ε with \ε\ < 0.1.

Granted this, it is easy to prove Proposition 3.1.

(3.6) Proof of Proposition 3.1. Define fε = ψoφ~ι ofε, where Φ is as

in Lemma 3.3. Then fε is 7-holomorphic and therefore C°° . Its Taylor

expansion clearly has the form (zk, εz)+ higher order terms. Further, the

existence of the constant C (which depends on Φ) is immediate from the

definition of L. It remains to show that f is an immersion. Observe

first that fε is C 1 since / is Lipschitz. Further the derivative of its first

component never vanishes, so that it is an embedding. Clearly the only

intersection of Φ " 1 ofε with the branching axis u = 0 occurs when z = 0,

and hence at a point where the second component of Φ " 1 ofε has nonzero

derivative. It follows easily that ψ o φ " 1 o fε is an immersion.
(3.7) Proof of Proposition 3.5. As in [6, (5.3)], Proposition 3.5 is proved

in two steps. We first show that if R is sufficiently small, for every g e L
there is a unique solution / = ψ{g) in Lε of the equation

f=z{l,ε) + θ{f,g).

Then we show that the map ψ is a continuous mapping from Lε to itself.
But Lε is a compact convex subset of the locally convex topological linear
space Λ of all Lipschitz maps from D(R) to C 2 . Hence by the Schauder-
Tychonoff fixed point theorem, ψ has a fixed point, which is the desired
solution of (3.4.5). Although many of the details of this argument are the
same as those in [6], we repeat them here for the sake of clarity.

Let B = BR be the space of maps (D{R), 0) -» (C 2, (0, 0)) whose
first derivatives are Lipschitz, with norm || ||' as defined in (3.3.2),and
let A = {/ e B : | |/ | | ' < 3}. By [6, (6.1.2), (6.1.4)], the integral operator
T of (3.4.3) satisfies the inequality

e

for some constant c{ and any Lipschitz function h defined on D(R).
Further, we clearly have \\ah\\ < \\a\\ \\h\\. Hence, by definition (3.4.4) and
Lemma 3.4,

2
< ^KlεlRWdfW < c2\ε\R\\f\\'

for g e Lε, where c2 = AcχK. (The 4 appears here as 2-2, one factor of 2
coming from the fact that m has two possible values, and the other coming
from the two terms of θ . ) Thus, because θ is linear in its first factor,
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for each g e Lε, the operator θg: A -> B defined by θg(f) = θ ( / , #)
satisfies the conditions of the following version of the contraction mapping
principle.

Lemma 3.8 (see [6, Lemma 2.5a]). Let ψ e B be such that \\ ψ\\f < 3/2,
and suppose that θ: A -» B is a map such that

and
||0(Ω)||'<Λ:2JΪ forallΩ,Ω' eA,

where the constants K{, K2 are independent of R. Choose Ωx e A,
and define ΩN recursively by ΩN+ι = ψ + Θ(ΩN). Then, for sufficiently
small R, the following holds: ΩN e A for all N, and the sequence {ΩN}
converges to a limit Ωe A which satisfies

(*) Ω = ^ + 0(Ω).

Further, this is the only solution of (*) in A.
It follows, provided R is sufficiently small, that the equation / =

z( l , ε) + θg(f) has a unique solution ψ(g) in A for each g e Lε.
Further, because L(θg(f)) < \\θg(f)\\' < 3c2\ε\R, the solution ψ(g) will
be in Lε provided 3c2i? < 1.

It remains to prove that ψ is continuous as a map of Lε to itself with
the supremum norm | | . To this end, suppose that / = ψ(g) and that
{gn} is a sequence in L£ such that \g - gn\ -• 0. Let fn = ψ(gn).
Because {fn} belongs to the set Lε which is compact with respect to | | ,
by passing to a subsequence we may suppose that fn-> f' e Lε. Clearly,
it will suffice to show that f' = f. Using the remarks preceding (3.7.1)
and the fact that θ is linear in its first argument, one easily sees that

11/. - 4iι# < ιιβ(/B - 4 , gn)\\' + IIΘ(/M , 8 n ) - θ(/ M , gjw'

since / e A. Hence the sequence {fn} is Cauchy with respect to the norm

|| |f . Since the space C 1 >ι(D(R)) of functions whose first derivatives are

Lipschitz is complete with respect to || | | ' , the sequence {fn} has a limit

in C 1 ' {(D(R)) which must be / ' . Further / ' = z( l , ε) + θg(f'). Thus

because of the uniqueness proved above, f' = f as required, q.e.d.
Proposition 3.5 is enough to prove Theorem 1.1 and Proposition 1.2.

However, in order to prove Theorems 1.3 and 1.4, we need to find a partial
desingularization of our singular curve / .
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Proposition 3.9. Let f: D(R0) -> C2 be a J-holomorphic map of the

form

If R > 0 is sufficiently small, then there is a constant C > 0 such that for

every ε e C-{0} with \ε\ < 0.1 there is a J-holomorphic map fε: D(R) —•

C2 of the form

such that \\fε - f\\cι < C\e\ on D(R). Further, fε is an immersion on
D(R)-{0}.

Proof This is essentially the same as the proof of Proposition 3.1 ex-
cept that we use two branched covering maps. As before, we first lift /
over the branched covering ψu: C

2 —> C2 given by (u, v) ι-> (uk, υ) and
change coordinates by the map Φ of Lemma 3.3 so that the lifted map /
is just z κ ( z , 0 ) . We then lift over the branched covering ψv: C2 -> C2

given by (u, υ) •-» (u, υ2). If we denote the lift of / over ψv by 7 , it
is easy to check that / = Jo + C, where C is a matrix of functions which
have the form

2k—2 2

P(ul9u2)σ{υl9υ2)/\u\ \v\ ,
where p and σ are sums of homogeneous polynomials of degrees at least

2k - 1 and 3 respectively. Hence the mixed partials d2J/dupdvq are

uniformly bounded and continuous in B4(R) - {u or v = 0}. Further,

the derivatives dl/dup are bounded and continuous in B4(R) - {u = 0}

and vanish when υ = 0, and similarly for d7/dvq . Thus the estimate

of Lemma 3.4 holds for J. Therefore, by Proposition 3.5, there is an

embedded 7-holomorphic curve fε tangent to z ι-> (z, εz). Composing

this with ψuoφ~ι oψv gives us the desired curve fε.
Note 3.10. Clearly, by replacing ψυ by the map {u,v) *-> (w, vp),

one can construct for any p < r a perturbation of / of the form

fΛz) = (zk + 0{k + 1), εpzp + O(p + 1)).

4. The local self-intersection number

In this section we define the local self-intersection number and explain
its elementary properties. Roughly speaking, if / : D —• V is an em-
bedding except at 0, this invariant counts the algebraic number of self-
intersection points of an immersion / ' which is a C1-small perturbation
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of / . In order to make this definition precise, one must specify how the
perturbation behaves near dD. We will do this by extending everything
over S2, but other approaches are possible.

Let E —• D be a rank-2 complex bundle whose restriction to dD con-
tains a line bundle Lo with a given trivialization τ 0 . Then, for each
trivialization τ: L —• dD x C of the quotient line bundle L = E/LQ over
dD, let E{τ) be the rank-2 complex bundle over S2 obtained by gluing
D2xC2 to E using the trivializations τ 0 and τ . Let χ(τ) be the integral
of the first Chern class cx(E(τ)) over S2. Clearly, χ(τ) depends on τ . In
fact, if τ and τ are two such trivializations, then τ = ψoτ for some map
ψ: dD -> C - {0} , and, if Λ is the degree of ψ where <9Z> is oriented as
the boundary of D, then it is easy to check that χ{τ) = χ(τ) + deg ψ.

Consider the special case when E = f*(TV), where the map f\D->V
is a /-holomorphic immersion near <9Z>. Then we may take LQ to be the
pullback of the complex line bundle tangent to C = I m / along dC. Thus
Lo has a natural identification with the restriction to d D of the tangent
bundle TD, and we choose τ 0 so that it extends to a trivialization of
TS2 over S2 - Int(D). Hence a trivialization τ of the normal bundle vc

of C along <9C determines the integer /(τ) as above.
Suppose further that all the singular points of / lie in the interior of

D, i.e., that there is a neighbourhood A of dD such that / embeds
f~\f(A)) onto f(A). Then the trivialization τ also allows us to define
the τ-self-intersection number Int(C, τ) as the number of intersections
of C with Im ft, for small t, where ft is a generic perturbation of /
which moves d C in the direction of τ . Alternatively, glue D2 x C to a
neighbourhood of dC in F , so that the section D2 x {0} extends C and
so that the fibers xxC for x e dD2 match up with the trivialized bundle
vc over 9 C. This gives an almost complex manifold Nτ which contains
a holomorphic image Γ = C U ΰ 2 x {0} of S2, and clearly Int(C, τ) is
just the self-intersection number Γ Γ of Γ in NΓ. Again, given two
trivializations τ and τ , one can check that Int(C, τ) = Int(C, τ) + n .

Definition 4.1. Let / : D —• V be a map which is /-holomorphic near
<9Z) and is such that all its singular points lie in the interior of D. We
define the self-intersection number Int(/) of / to be ^[Int(C, τ) - χ(τ)]
- 1. By the above, this does not depend on the choice of τ . Further, if /
is a /-holomorphic map on D such that f\Df - {0} is an embedding for
some disc Df such that {0} 6 D' C D, we define the local self-intersection
number L.Int(/, 0) to be equal to Int(/|Z>'). Clearly, this is indepen-
dent of the choice of D1. (We will see in Lemma 5.3 below that every
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/-holomorphic / satisfies this hypothesis, but for the moment all we know
is stated in Corollary 2.8.)

Lemma 4.2. (i) If f is a J-holomorphic immersion with only interior
transverse double points, then Int(/) is defined and equals the number of
double points of f.

(ii) Let Jt be a continuous family of almost complex structures on V
and let ft: D —• V be a continuous family of maps all of whose singu-
lar points lie inside D and which are Jt-holomorphic near dD. Then
Int(/0) = Int(/ 1).

Proof (i) Note that χ(τ) may also be defined in terms of the manifold
Nτ: in fact χ(τ) is just the integral of cx(TN) over Γ. The result now
follows because, for any holomorphically immersed curve Γ,

where m is the number of self-intersection points of Γ. (Recall that every
transverse intersection of two /-holomorphic curves is positively oriented,
and so has multiplicity +1.)

(ii) This is obvious.
Lemma 4.3. Consider a J-holomorphic map f:D-*V whose sin-

gularities all lie in the interior of D, and a J-holomorphic immersion

f'\ D -> V. If f' is sufficiently C1-close to f, then the singularities of

f' all lie in the interior of D and

In particular, Int(/) is a nonnegative integer.
Proof Let / be an embedding on the annulus Aλ = {z : λ < \z\ < 1}

in D = {z : \z\ < 1}, and put any metric on V. If x, y e V are
sufficiently close, let p(x,y) be the unique shortest geodesic such that
p(x, y)(0) = x and p(x, y)(l) = y . If / ' is sufficiently enclose to / ,
then the formula

gt(z) = p(f'(z)9f(z)9t)

defines a family of embeddings gt of A into V such that go = f' and

gχ = / . We now patch f'\D - A to f\dD to get a map F: D -> V as
foίlc'ΛS. Let β be an increasing function of [λ, 1] onto [0, 1], which is
constant near each endpoint. Then define

(f'(z) X\z\<λ9

[Z) \8fi(M)(z) if\z\>λ.

Then | | F - / | | c i < c\\f'-f\\c\ , so that F\A will be an embedding provided

that H/' - f\\c\ is sufficiently small. Thus F is an immersion of D.



160 DUSAMcDUFF

We claim further that we may assume that the only double points of F
are those of / ' (which must therefore involve only the points of D - A).
To see this, note that by choice of β , F = / ' outside some annulus A{ =
{z : μ < \z\ < 1}, where μ > 1/2. Choose v > 0 so that the sets f(D-A)
and f(A{) are at least a distance v apart, and then assume that | | / ' - / | | c i
is so small that d(f'(z), f(z)) < CM/3 , for all z. Then, by construction,
d(F(z), f(z)) < CM/3 , for all z, so that the sets f'(D - A) = F(D - A)
and F(Aι) are disjoint.

Now, consider the homotopy Ft from f to F defined by

Ft(z) = p(f(z),F(z),t).

We may clearly assume that each Ft restricts to an embedding of A.
Moreover, this homotopy is constant along dD and since it moves no point
more than a distance v/3, it follows as above that all the singular points
of Ft lie inside D. Finally, observe that because Ft\A is an embedding,
there is a family of almost complex structures Jt such that Ft\A is Jt~
holomorphic. Hence Int(/) = ln\{Fx) by Lemma 4.2. But, clearly

lrύ(Fχ) = ln\(Fχ\D - A) = Int(f'\D - A) = Int(/ ') .

Corollary 4.4. If : D -» V is a J-holomorphic map which is an em-

bedding except at 0, then, provided that / ' is sufficiently C]-close to f,

L.Int(/,0) = '

5. Proof of the theorems of §1

(5 Λ) Proof of Theorem 1.1. Let C and C' be distinct /-holomorphic
curves which intersect at the point x e V. If x is an isolated point of
intersection, then it makes sense to talk about the contribution of x to
the intersection number C C' \ for this is just the number of intersection
points of Έ with Nf (counted with multiplicities), where iV and Nr

are little compact neighbourhoods of x in C and C' respectively which
intersect only at x, and where Λf is a small perturbation of iV which
meets Nf transversally.

We will first show that, if x is isolated, its contribution kχ to C- C' is
positive, and is > 1 unless it is a transverse intersection point. In fact, it is
clear that if the curves do intersect transversally at x, then kχ = +1 since
the orientation provided by / is compatible with that on V. Therefore,
we only have to consider what happens at singular points or points of
tangency. Since the question is local, the only singularities which concern
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us are the critical points, i.e., the points where df = 0. Observe also that,
by Proposition 2.5, every /-holomorphic curve does have a tangent space
even at a critical point; in fact, in the coordinates of Proposition 2.6, it is
given by {v — 0} . Therefore we may consider cases as follows.

Case (i). C' is nonsingular at x, and C is not tangent to C'. In
this case, we may identify (V, x) with (C 2, (0, 0)) as in Lemma 2.5 in
such a way that J = Jo at (0,0), C' is the curve Z H ( 0 , Z ) , and C is
tangent to the axis {υ = 0} . Thus, C may be parametrized near x by a
map / : D -» C2 of the form

where r > k. Let ft{z) = t{zk, 0) + (1 - t)f(z) for 0 < t < 1. By re-
stricting D, we may assume that, for each t e [0, 1], the only intersection
point of Im ft with C' occurs when z = 0. Thus the multiplicity of x
in C - C' equals that of the intersection of Im fχ with C', which is k .

Case (ii). Cr is nonsingular at x, and C is tangent to C'. As in
Proposition 2.6, we may choose coordinates so that C' is the axis {u = 0},
and C is parametrized by a map z *-+ (zr, zk) + O(r + 1), where r > k.
Thus the multiplicity is r. Note that, even if C is nonsingular, r > 1.

Case (iii). Both curves are singular, but they do not have the same tan-
gent. In this case, we may choose them to be tangent to the coordinate
axes so that they have parametrizations

Z H ( 0 ( r ) 5 / + 0 ( H l ) ) and z ^ ( / + O(p + 1), O(q))9

where r > k and q > p. As before, these maps may be homotoped
to the maps Z H ( 0 , z ) and z »-> (zp, 0) without creating any new
intersections. Thus the multiplicity is kp .

Case (iv). The curves are singular and have the same tangent. Param-
etrize a neighbourhood of x in C and C' by maps / and f':(D,0)-+
(V, x) which are embeddings on ΰ - {0}, and choose R > 0 so that
/ may be approximated by the immersion fe: D(R) c D —• V as in
Proposition 3.1. Since x is an isolated point of intersection, we may
assume that the curves lm(f\D(R)) and \m(f'\D(R)) meet only at x. If
|e| > 0 is sufficiently small, kχ is clearly given by the intersection number
CεC', where Cε = Im fε. Since Cε is immersed and goes through the
singular point x of C' it follows from (i) and (ii) above that the point
x contributes > 2 to Ce C'. Further, by (i) and (ii), any other points
of intersection of Ce with C' contribute a positive number to Cε C'.
Hence C. C' > 2 as required.
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Now suppose that there is an intersection point x which is not isolated.
By Lemma 2.7, the curves must be singular there, and clearly they must
also be tangent to each other. Suppose that C C1 = n . Choose the number
R in (iv) above to be so small that C and C' have > n intersections
outside the neighbourhoods f(D(R)) and ff(D(R)). Then let C be the
closed immersed curve obtained by joining C - f(D(R)) to fε(D(Rf))
as in Lemma 4.3, where Rf is slightly smaller than R. Clearly, we may
assume that the only intersection points of C with C1 occur at points of
C which are /-holomorphic, i.e., either in C-f(D(R)) or in fε(D(R')).
Then, by Lemma 2.7, there are only finitely many such points, and by the
results above

CCf >[C- f{D(R))] C' >n = CC'.

But C - C' = C - C' because C is homotopic to C. Therefore, this
situation cannot occur.

(5.2) Proof of Proposition 1.2. Perturb / in a neighbourhood Bχ(ε)
of each of its critical points x to a /-holomorphic immersion fε χ.
Then obtain / ' by patching these maps fεχtofby the technique of
Lemma 4.3. Clearly / ' is /-holomorphic except in the spherical shells
Bχ(ε2)-Bχ(ε{) where the patching takes place. It also is an immersion by
construction, q.e.d.

Let us now consider self-intersections. First we must control the singu-
larities of a single curve.

Lemma 5.3. A J-holomorphic curve f:D-+V has only finitely many
points of self-intersection. In particular, if f has a critical point at {0}, /
restricts to an embedding on some deleted neighbourhood Df - {0} of {0}.

Proof By Theorem 1.1, it suffices to show that there cannot be distinct
sequences {z } , {z[} in D which converge to 0 and are such that f(z ) =
f{z'i) for all /. If these exist, let D" be a neighbourhood of {0} which
does not contain zi or z\ for / = 1 to k + 1, where k = Int(/) < oc.
By Proposition 3.1, there is R > 0 such that we may approximate / on
D(R) as closely as we want in the C1-topology. Therefore, if we choose
R{ < R2 so that D(R2) c D" and so that none of the z., z. lie in the
annulus D(R2) - D(R{), we may patch f\D - D(R2) to an immersion fε

of D(R{). Then, by arguing as in the last paragraph of (5.1), we find:

k = Int(/) > k + 1 + Int(fe\D(Rx)) > k + 1 ,

since intifJDiR^) > 0. A contradiction, q.e.d.
It follows that the local self-intersection number L.Int(/, 0) can be

defined as in Definition 4.1 for all / . We now prove Theorem 1.4 which
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states that, if / has a critical point at {0}, L.Int (/, 0) > 0. As in (5.1),
we can deal with some cases without using the results of §3.

Lemma 5.4. Suppose that f has the form

where r > k > 1, and k and r are mutually prime. Then L.Int(/, 0) =
(k - l)(r - 1). In particular, for any f which has a singularity of prime
order k, L.Int(/, 0) > 1.

Proof If k and r are mutually prime, the map f' defined by f"{z) =
(zk, zr) is an embedding except at z = 0. Further, by restricting / and
f" to a suitably small disc D(R), one can apply the arguments of (4.3)
and (4.4). Hence

L.Int(/, 0) = Int(/"|Z)(i?)) = L . I n t ( / \ 0).

Clearly, L.Int(/", 0) = Int(# ε), where gε(z) = (zk + βz, zr) for small
ε. The result now follows because gε has (k - \){r - 1) transverse self-
intersections when £ ^ 0 .

(5.5) Proof of Theorem 1.4. Put / in the normal form of Proposition
2.6:

/(z) = ( z \ z Γ ) + 0 ( r + l ) ,

where k < r, and k does not divide r. If k and r are mutually prime,
we may apply Lemma 5.4. Otherwise, for every ε e C with |ε| < 0.1,
let fε: D(R) —• V be the partial desingularization of / whose existence
is asserted by Proposition 3.9. By Corollary 4.4, we have

where |ε| is sufficiently small. Further, Lemma 5.5 applies to fe and
implies that L. Int(/ ε, 0) > 1. (In fact, L. Int(/ ε, 0) = k - 1 if k is
odd and is > k - 1 otherwise. Note that our hypotheses on the pair k,
r imply that k itself is at least 4.) But because fε is an immersion on
D(R) - {0}, it follows from Lemma 4.2(i) that

Hence L.Int(/,0) > 0 as required. (In fact, we have shown that

(5.6) Proof of Theorem 1.3. If C is immersed, this follows as in
Lemma 4.2(i). Otherwise, we may replace a neighbourhood of each singu-
lar point x of C by the image Im/ ε χ of an immersion fε χ: D ^ V as
in (5.2). Then Int(/ε J = L.Int(/, 0) so that fεχ is not an embedding.
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Thus, C is homotopic to an immersed /'-holomorphic curve C' which
is not embedded. Hence g(C) > gΣ.
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