
J. DIFFERENTIAL GEOMETRY
34(1991) 85-91

NODAL GEOMETRY ON RIEMANNIAN MANIFOLDS

SAGUN CHANILLO & B. MUCKENHOUPT

1. Let Mn be a smooth, compact, and connected Riemannian mani-
fold with no boundary. Let Δ denote the Laplacian on M. Let -Au =
λu, u an eigenfunction with eigenvalue λ, λ > 1. Our main theorems
are:

Theorem 1 (BMO estimate for log |w|). For u, λ as above,

II log 1̂1 IIBMO ^ c ; L " l o B^ ^

where c is independent of λ, and depends only on n and M.
Theorem 2 (Geometry of nodal domains). Let u, λ be as above, let

B c M be any ball and let Ω c B be any of the connected components of
{x eB : u(x) ΦO}. If Ω intersects the middle half of B, then

where c is independent of λ and u.
Similar theorems have been proved by H. Donnelly and C.

Fefferman [1], [2] with Γlogλ replaced by λn{n+2)/4 in Theorem 1 and

λ"2n2~n/2(logλΓ2n replaced by r{nW{n+2))/2 in Theorem 2. Of course,
it is obvious that Theorems 1 and 2 above are not best possible.

Theorem 1 is the key to Theorem 2. We deduce Theorem 2 from Theo-
rem 1 by essentially following the arguments in [2] with appropriate mod-
ifications in view of the better BMO estimate of Theorem 1.

We shall use the symbols c, c0, cx, c2, c3, c 4 , and c to denote
generic constants which are independent of λ.

2. Before commencing the proof of Theorem 1, we recall two facts
from [2]. We state these as Theorem 0.

Theorem 0. Let M, u, λ be as above. Let B(x,δ) denote the ball
centered at x of radius δ. Then
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(A)

(B)

f \u\2<cf \u\2,
JB(x,δ(l+λ~'/2)) JB(x.δ)

1 / 2 1 / 2

\JB(x,δ) J ° \JB{x,δ) )

We now begin the proof of Theorem 1.
Lemma 1. Let u, λ be as before. Then u satisfies the reverse-Holder

inequality,
/ 1 r \ {n-2)lln / Λ r \ 1/2
/ I / , ,2n/(n-2)\ . rτ I 1 / , ,2\

Proo/ By the Poincare-Sobolev inequality, for any ball B,

We now apply Theorem 0(B) to the right side above, to get

2Λ/(H-2)\ i"-2)/2"

By use of Minkowski's inequality, Lemma 1 follows, q.e.d.
Our theorem will follow from the lemma stated below.
Lemma 2. Suppose w > 0,

(2.1)

and

(2.2)

w
JB

w,

i r

1 f n/(n-2)w\Lw

B(x,δ)

11

Then | |logu;| |B M O<c(Λ)A"logλ.

Theorem 1 follows by choosing w = \u\2 .
Our next lemma is a covering lemma of independent interest.
Lemma 3. Fix any δ > 0, with δ < 1/2. Let {Ba}a€l be any fi-

nite collection of balls in Rn . Then one can find a subcollection of balls
B{, B2, - ,BN such that

(a) \jBac[j(l+δ)Bi,

(b)
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Proof. Select a ball B{ with the largest radius from the collection

{Ba}aeI. Having selected Bl9- , Bk_x select Bk so that Bk <jL

U/zΓi1 (1 +δ)Bi and Bk has the largest possible radius out of the balls in the

collection { ^ J ^ U ^ . } ^ 1 Our choice of the subcollection Bχ, , BN

clearly satisfies (a). We now prove (b). Let x0 e fl^i Bt, Af = M{xQ). By

a translation we may suppose x0 = 0. For x e l " , define Tr(x) = x/r,

r > 0. By our selection procedure Tr (Bk) (jL Ljfj/O + ^)Trk(
Bi) > where

r. denotes the radius of 2?z. Now Tr (J? ) is also a ball containing the

origin, and since r. > rk for i < k, we have 7̂ (2?,.) c Γr (B ) , and we

conclude

k-\

1=1

Let z{ denote the center of Tr{Bi). We note that each of the balls Tr(B.)

has radius 1 and 0 e fl^i Γ r (5/) W e w i u s h o w t h a t \zi~ zj\>δ - F o r

if \z. - z.\ < δ, and assuming rf. > r;., we get (1 + δ)Tr(Bt) D Tr(B.), a

violation of (*). Thus the balls B(zi, δ/2) are all disjoint. Furthermore

Tr(Bt) c {x : |JC| < 2} for all / = 1, 2, , Λf. Hence, M(δ/2)n < 2n ,

i.e., M < 4nδ~n , and (b) follows.
Lemma 4. Lei w satisfy the hypothesis of Lemma 2, let B be a fixed

ball, and let E c B such that \E\ > (1 - c2λ"nf\B\. Then

/ w > {c3λ ) / w,

c2 = c2(n, q ) α«rf c3 = C3(Λ , c 0).
Proof The proof of Lemma 4 rests on an induction on k, the inductive

step being accomplished by Lemma 3. We verify Lemma 4 for k = 1.
To do so note that if \E\ > (1 - cλ~n/2)\B\ (for some appropriate choice
of c = c(c{, n)), then fEw > jfBw. To see this, observe \B\E\ <
cλ~n/2\B\. Thus by (2.2),

ff
JB\E

We make the choice c2/nc{ < 1/2 and inserting this choice into the
inequality above we get fB, E w < \ JBw . Thus fE w > \ fB w . If

c2 < c and | ^ | > (1 -c2λ~n)\B\, then \E\ > (1 - cλ~n/2)\B\. There-

fore fEw > \ fBw > c3λ~n^2 JB w , and we are done with the case k = 1.
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So we assume the statements are valid for k - 1. Clearly we can assume
\E\ < (1 - cλ~nβ)\B\ or else there is nothing to prove. For each point of
density x of E we can thus select a ball Bχ c B such that x e Bχ and

We apply the covering lemma, Lemma 3, to the Bχs with the choice

δ = λ~ι/2, and also assume without loss of generality that the Bx are

finitely many. Define E{ = ({jf=\(ι + Λ~1/2)5/) Π 5 . Then Ex c B, and
to complete the induction we will show that

(2.3) \E\<{\-c2λ-n)\Eχ\,

(2.4) ί w> cΛ~nβ ί w.
JE JE1

We prove (2.3) first. Now,

By the covering lemma, Lemma 3, the expression above is bounded below

by

(2.5) \E\ + 4-nλ-n

By our selection, \B.\E\ = Cλ~n/2\B.\, thus (2.5) is bounded below by

Set c4~n(l + λ~ι/2)~n = c2, and note c2 < c. From the expression above
we deduce

and (2.3) follows.
We now prove (2.4). By (2.1),

- , - „ , , W '

But (1 - cA"Λ / 2)|5 z | = | £ Ί Ί 5 Z . | , thus fBw < 2fBnEw. Therefore, by

Lemma 3,

Ό Σ JB« s 2c0 Σ fBnE - s *i S.w Σ ̂  ί 2 • "V"'2 /
We select C3"1 = 2 4 % and (2.4) follows, q.e.d.
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We now prove Lemma 2. It will be enough to assume \B\~ι JBw = I,
and to show for t > 0

\{x e B : w~\x) > t}\ < j^i

which is equivalent to showing

|{JC G B : w(x) < t}\ < fλ{logλ)\B\.

Let us denote by E the set {x e B : w(x) < t]. Select /c0 such that

|E| - (1 - c2λ~np\B\. Thus fc0 - cλn\og(\B\l\E\), and so by Lemma 4

and the normalization \B\~X fB w = 1, we get,

\B\= ί w< {c3λ
n/2)k° f w< (c3λ

n/2)kot\E\.
y^ JE

Hence,
/2 < t(\B\/\E\)cλ"logλ,

and it follows easily that \E\ < t

c λ ^ λ ^ \β\. q.e.d.
We now prove Theorem 2. We will be brief and only indicate those

points in our argument which differ substantially from the argument pre-
sented in [2]. Before commencing we note an equivalent formulation of
Theorem 1:

Theorem ϊ. Let u, λ be as before and let E c B. Then

The lemma stated below is proved in [2] (Lemma 2 there).

Lemma 5. Suppose Ω is a component of {x G B(x0, δ), u(x) > 0}

and assume xoeΩ and 0 < δ < λ~ι/2. Suppose further \Ω\/\B(x0, δ)\ <

ηn < \η^ < \. Then there is a positive number r0 satisfying

(a) o < r o < ^ -

\B(xo,ro)\

(c) sup \u\ < [-£ 1 sup |w|,
ΩnB(xo,rQ) ^0/ B(xo,δ)

where c4 depends on the "bounded geometry" estimates.
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We also need the estimate below which is Theorem 1 in [1].
Lemma 6. Let u, λ be as above. Then

sup \u\ < (c— J sup \u\, 0 <r <r.
B(x,r) V T J B{Xir>)

Lemma 6 may be deduced from Theorem 0(A) above by an iteration
and a use of the mean value inequalities for u.

Proof of Theorem 2. By Theorem l ' ,

rΔ\ \

0 , ro)\J

) sup

V

The estimate above follows by assuming | Ω | / | 5 ( J C 0 ; S)\ < ηn and then
using Lemma 5(b). We shall arrive at a contradiction for a suitable choice
of η, and thus for this choice of η we will have | Ω | / | 5 ( J C 0 , δ)\ > ηn

which will prove Theorem 2. Using Lemma 5(c) we get

(cη0 ) sup \u\<{cη0 ) ^ sup |u | .

Thus,

sup \u\<(cη-"f^λ(lf)Cjη sup |«|.
B(^0,r0) \OS B(x0,δ)

Applying Lemma 6 to the left side above yields

sup « < c - {cη0 ) 1-^) sup \u\
B(xo,δ) \ roj \d/ B(x0,δ)

< Icj) (cη0 ) sup \u\.
V °J B(xo,δ)

Therefore {crϋlδ)c*lη-cV~\cη-nf"Xotλ > 1.

Let us assume that our choice of η is such that cjη - c\fλ > 0. So
using Lemma 5 (a) we see easily

1 < [c-) (c«0 ) .

We now choose η = η^ and η0 = cλ~n(logλ)~ι. This choice forces

cjη - cVλ > 0 and also yields

1 < (cη )c4/'/-ί:v/A-c«riog/i
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This is a contradiction as cη0 < 1 for small c. Thus, |Ω|/|2?(JC 0, δ)\ >

ηn = cλ~2n{\ogλ)~2n . We now get rid of the restriction δ < λ~ι/2. Sup-

pose B c M is any ball with radius r > λ~ι/2. Assume x0 e Ω be-

longs also to the middle half of B . We apply our previous conclusion to

ΩnB(xo,λ~ι/2) to get

|Ω Π B\ > |Ω Π B(x0, λ" 1 / 2 ) | > cλ-2n\\ogλ)'2n\B(x0, A" 1 / 2)|

= cλ (Iog2)

But ^ < c0 as the manifold is compact and we hence arrive at

\ΩΠB\ > cλ~2n2~n/2(logλ)~2n\B\.
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