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RIGIDITY OF HOLOMORPHIC MAPS
BETWEEN COMPACT HERMITIAN

SYMMETRIC SPACES

I-HSUN TSAI

The purpose of this note is to prove the following.
Main Theorem. Let X and Y be two equidimensional irreducible Her-

mitian symmetric spaces of compact type with rank(7) > 2. Then any
holomorphic map f from X to Y is either a constant map or a biholo-
morphism.

We briefly explain the motivation for studying this problem. Mok [3]
studied uniqueness theorems of Hermitian metrics of seminegative cur-
vature on quotients of bounded symmetric domain of rank > 2. An
immediate corollary of this theorem is the assertion that any nonconstant
holomorphic map from M to N, where M denotes a compact quotient
of bounded symmetric domain with rank > 2 and N a Hermitian mani-
fold of seminegative curvature, is in fact an isometric immersion. It is then
natural to ask the analogous question in the case of compact type. How-
ever, due to the fact that in this case the automorphisms in general are
not metric-preserving, we do not have the uniqueness of canonical metrics
and therefore we can only try to prove that / is a holomorphic immersion
instead of an isometric immersion. The correct formulation for the metric
rigidity phenomenon in the case of compact type has been carried out by
Mok [4]. As for the mapping rigidity, if we consider a holomorphic map of
degree 2 from the quadric Qn to Pn and an imbedding form Pn to Q2n ,
then the composite map fails to be an imbedding. To take into account
this remark, we formulate our theorem in the equidimensional case. The
cases of unequal dimensions remain open.

Our ideas for the proof can be sketched as follows. We look at a class of
objects in a Hermitian symmetric space of compact type, i.e., the so-called
characteristic spheres as in [4] or minimal rational curves as in [5]. The
importance of the roles they play in the theory of Hermitian symmetric
spaces has been illustrated before, as can be seen from the articles [4], [5].
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Here, we study the invariant property of these objects under holomorphic
maps. It is this very property that leads to our proof. More precisely, we
prove (Proposition 3.4) that under the assumption of the Main Theorem
the image of each minimal rational curve is still minimal rational. For the
proof of this statement we must first of all show that the image is totally
geodesic with respect to whatever choice of canonical metrics by making
use of a criterion for total geodesy as developed in [4]. Here we need
the assumption that rank(7) > 2. Then from the polysphere theorem
(see [8] for an account of the proof of Proposition 3.4) one can obtain
minimality without too much difficulty. For the rest of the proof we would
then produce a minimal rational curve on which the restriction of the
holomorphic map is unramified (Proposition 4.1). This uses the Douady
space of minimal rational curves and the minimality of their images under
holomorphic maps. Having done this, one can readily deduce the Main
Theorem.

The author would like to express his deep gratitude to Professor Ngaim-
ing Mok for his guidance and many invaluable comments on the first draft
of this paper.

1. Background material

In this section we collect some information on Hermitian symmetric
spaces of compact type, and refer to [2], [3] for further details.

Let (X, h) be an irreducible Hermitian symmetric space of compact
type. The metric h is Kahler and carries semipositive holomorphic bisec-
tional curvature. We call h a canonical metric of X. We know that h is
not unique since the isometry group is a proper subgroup of the automor-
phism group of X. The induced Hermitian metric h* on T*(X) carries
seminegative curvature. Let J( C T{X), which is called the characteristic
bundle of X, be the subset of all unit tangent vectors of type (1,0) re-
alizing the maximum of the holomorphic sectional curvature. The metric
h induces a map Φ from T(X) to Γ*(X),i.e.,

Denote Φ(Jt) by Jf*, and by Jί the image of Jί under the canonical
projection map from T(X) to PT(X), the projectivization of T(X). For
any characteristic vector Q E / , there is an orthogonal decomposition
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Tp(X) = Cα θ Nα θ P α of Tp(X) into the eigenspaces of the Hermi-
tian form Ha(ξ, η) = Raάξη , corresponding to the eigenvalues Raάaά , 0,
I*αάαα> respectively. For any β £ T(X), define N^ = {v\v e Tp(X),
Rgβυϋ = 0}. Then N« is a vector space, as can be seen from the semi-
positivity of R. With this notation, we can give an equivalent definition
of Jt. Namely, Jί = {a e Tp(x)\\\a\\ = 1, dimNα > dimN^ for any
β e Tp{X)} . We write d(X) = dimNα . Then d(X) is independent of the
choice of characteristic vector α. Also we know that d(X) > 1 whenever
X is of rank > 2, and that dim3# = 2 dimX - 1 - d(X).

Next we discuss a class of objects in X, the so-called "minimal ratio-
nal curves", which are very important for our proof of the theorem. Let
φ: (X, h) —• (P^, Fubini-Study) be the first canonical isometric projec-
tive imbedding of X [7]. Then in P^ any projective line contained in
X represents a generator of H2(X, Z). We call such a line a minimal ra-
tional curve. If F is a biholomorphism of X, then under the imbedding
φ, F acts on X by projective linear transformation. It follows that the
image of any minimal rational curve under F is also minimal rational.
Moreover, for any minimal rational curve L we have P(Γ(L)) c Jί. The
structure of the holomorphic vector bundle T*(X) over L can be seen by
its Grothendieck splitting

where s+rf(ΛΓ)+l = d i m * . From this it follows that dim//°(L, T*(X)\L)
= d(X) and that any nontrivial holomorphic section w of T*(X)\L is
nowhere-vanishing. Also note that for any p e L and a e Tp(L) we have
w(p) e Φ(Nβ).

Let X, Y, and / be as above. Denote by ωx , ωγ the Kahler forms
of X, Y respectively. As a preliminary property of / , we have

Proposition 1.1. The following conditions are equivalent:

(i) / is not constant.

(ii) f(ωγ)ϊ0 in H2(X,Z).
(iii) / is not degenerate, i.e., df has maximal rank at a generic point

of X.

Proof (i) => (ii) Suppose f*(ωγ) = 0. Fix a point q € f{X) and
suppose V = f~\q) φ X. Then V is a proper complex analytic subvari-
ety of X. Take a smooth point p of V. By the irreducibility of Λf there
exists a minimal rational curve L such that p e L and Γp(L) £ Tp(V).

From f*{(ύγ) = 0 in H2(X, Z) we obtain / ^ L ) ω y = 0. This implies
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that f(L) can be nothing but a point. Hence L c V, contradicting that
Tp(L) <£Tp(V). Thus V = X, and / is a constant map.

(ii) =» (iii). Suppose not. Since H2(X, C) ^ C, we have f(ωγ) =

c ω x for some nonzero constant c. Then /\n f*(coγ) = cn (coχ)
n in

i/2"(X, C). It follows from the failure of maximal rank that /\n f*(ωγ) =

0 in H2n(X, C). This implies c = 0.

(iii) =• (i). Obvious.
The same reasoning also shows
Proposition 1.2. Suppose f is not constant. Then f is a finite mor-

phism. Therefore any irreducible component C of f~ι (L) for any minimal
rational curve L is of complex dimension 1, and f(C) = L.

2. Total geodesy of the inverse image

of a generic minimal rational curve

Recall that minimal rational curves are invariant under any biholomor-
phism F, i.e., if L is minimal rational, then so is F(L). Note also that
minimal rational curves are totally geodesic with respect to any canonical
metric. In this section we are going to prove an analogous result as above.
Namely we show that each irreducible component C of the inverse image
of a generic minimal rational curve is still totally geodesic with respect to
any canonical metric. This fact is crucial for our proof of the Main The-
orem. In the next section we will make use of this fact to prove further
that C is actually minimal rational. Having done this, we can prove the
Main Theorem in some cases immediately.

Let (X, h), (Y, g), and / be as above. Suppose that C is an ir-
reducible algebraic curve in X with its image a minimal rational curve
L in Y and that / is local biholomorphic at a smooth point q of C.
Denote by U, V (=/([/)) the corresponding open neighborhoods of q,
f[q) = p 5 respectively. We assert

Proposition 2.1. The curve Cυ = C ΠU is totally geodesic in (X, h).
The assertion is equivalent to showing that f{Cv) = L Π V = Lv is

totally geodesic in Y with respect to the pushed-forward metric (f\u)ίtt(h)9

also denoted by h . To accomplish our proof we now state a method for
proving total geodesy due to Mok.

Proposition 2.2 [4]. Let (M, g) be an irreducible Hermitian symmetric
space of compact type with rank at least two. Let h be a Kάhler metric
defined on some open set W of M. Suppose L is a minimal rational



RIGIDITY OF HOLOMORPHIC MAPS 721

curve. Then Lw is totally geodesic at p with respect to h provided that

Vah
q j(p) = 0 for any a£jίp and any q* e Φ(Nα),

where (hιj) is the induced metric on T*(M)\W, and the covariant deriva-
tives are taken with with respect to g.

Returning to Proposition 2.1 it therefore suffices to prove

Proposition 2.1 '. At any point p e Lv, we have Vjιq ϋ(p) = 0 for

any aeJίp, q* e Φ ( N J , and υ e T*(Y).

Proof First of all we denote by θ , θ 1 , and θ 2 the curvature tensors
of the holomorphic vector bundle T*(Y)\V associated to the metrics g*,
h*, and h* + g*, respectively. We would like to show, at p,

We now deduce VQΛβ ϋ(p) = 0 from (*) using the same argument as in

[3]. Expressing curvature tensors in terms of local coordinates yields, at

P,

d2g22

f
d2h21 . dh2ϋdhul

\1) zz: ~h n

(3) ~ + (z* + h*)

where {z{, z 2 , , zn} is a complex coordinate system at p with respect
to g (i.e., g.j(p) =
in such a way that
to g (i.e., g.j(p) = δfj, rf^-j(p) = 0 for any /, j) and has been chosen

(p) = a, dz2(p) =
dzx

From (1) + (2) - (3) it easily follows that

dh2]

dz{

•(p) = 0 forl<j<n.

Since we have chosen complex geodesic coordinates at p, this implies

Vahq j(p) = 0, proving the desired result.
We proceed to the proof of (*). Being a characteristic vector in Tp{Y),

a is a tangent vector of some minimal rational curve La c Y passing
through p . Also q*, as a vector in Φ(N α ), corresponds to a holomorphic
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section w of T*(Y)\L , i.e., w(p) = q*. The section w has no zero
α

and can generate a holomorphic line subbundle Λ of T*(Y)\L . w itself

becomes a holomorphic section of Λ. We assert
Proposition 2.3. ||ty|| is a constant on LaΠV with respect to any one

of the metrics g*, h*, and g* + h*.
Note that for a holomorphic line bundle over a complex manifold the

curvature is locally given by θ = -v^-TS^logpl^, where s is a local
holomorphic section, and e is some given Hermitian metric on this line
bundle. The claim (*) follows from this and the above proposition since
the curvatures of (T*(Y), g*), (T*(Y), A*), and (T*(Y), g* + h*) are
seminegative, and the curvatures of their subbundles would decrease.

Proof of Proposition 2.3. IMI^ is constant for the following reasons.
We write

ΘΛ = - v ^ a a i o g l M I , . , cx(A) = [θ/(2π)]

for the curvature form and the first Chern form of Λ. Also recall the
formula

deg(Λ)= / cx(A),
JLa

where deg(Λ) counts the number of zeros of any holomorphic section of
Λ. Since w is nowhere-vanishing, we have deg(Λ) = 0. Moreover A,
as a line subbundle of T*(Y), carries seminegative curvature. Hence it
follows that log||u;|| is a harmonic function on La . This implies that
\\w\\ is constant.

Next we consider | |u; | |Λ.. Note that the pushed-forward metric fm(h)
is only defined locally. Thus we consider the pulled-back form f*(w)
instead. We would like to show that | |/*(w)|| is constant with respect to
the original metric h of X. This would give us the desired result. The
arguments are essentially the same as in previous case. First we assume
that the irreducible component C of L is smooth. The 1-form f*(w) is a
holomorphic section of T*(X)\C . It may have zeros a priori. Nonetheless
it can generate a holomorphic line subbundle of T*(X)\C, also denoted by
A, and becomes a holomorphic section of this bundle. Thus deg(Λ) > 0.
On the other hand we know that c{ (A) is seminegative. It follows that
deg(Λ) = 0 and ΘΛ = 0. Therefore | |/*(w)| |, hence ||ιc;||Λ., is constant,
as desired.

Since | |^| |^*+ Λ* = | |^ | |^ + IM| Λ *, we have also shown that ||ty||^ + Λ

is constant.
As for the singular case let ψ: C —• C be a normalization of C and

φ = ί o ψ , where i is the injection map i: C —• X. With this smooth curve
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C we can pull back all the holomorphic objects with associated metrics
defined on C to C using the map φ. By exactly the same argument as
before one can show that \\ψ*(f*(w))\\ ,h , is constant, which will yield
the desired results. Our proof of Proposition 2.1 is now complete.

Remarks. From the irreducibility of C and the total geodesy of
C\{finite many points} one can see that C can actually be obtained by
exponentiating its tangent space at a smooth point. It is therefore a totally
geodesic submanifold of the symmetric space X, and in particular it is
smooth everywhere.

As a consequence of Proposition 2.1 and the above remarks we have
Corollary 2.4. C is a holomorphically embedded Riemann sphere.
Proof. The Riemann surface C is totally geodesic in (X 9 h), hence a

Hermitian symmetric space. Since its curvature is positive (X has strictly
positive holomorphic sectional curvatures), it must be isomorphic to P 1 .

3. Minimality of the inverse image

of a generic minimal rational curve

Let us adopt the same notation as before. We have seen in §2 that
each irreducible component C of /"" (L) in X for a generic minimal
rational curve L is a totally geodesic Riemann sphere with respect to any
canonical metric of X. In this section we will show that C is actually
minimal rational. Before doing so, we first draw a corollary of Proposition
2.1, which proves the Main Theorem in the case d(X) < d(Y).

Proposition 3.1. Let X, Y be as stated above. Suppose further that
d(X) < d(Y). Then there is no nontrivial holomorphic map from X to
Y.

Proof Suppose not. Let / be a nontrivial holomorphic map. Then
/ is nondegenerate by Proposition 1.1. Fix a point p at which / has
maximal rank. As before we can find C 9 p so that f(C) = L is minimal
rational. For each holomorphic section w of T*(Y)\L we know ΘΛ = 0,
where Λ is the holomorphic line bundle induced by f*{w). Since ΘΛ <
θ < 0, where θ denotes the curvature of T*(Y)\C , we have

θ ,-τ (p) = 0,

where q* = f*(w)(p) and a e Tp(C). This shows that dimNα > d(Y)

since d(Y) = H°{L, T*(Y)\L). In view of the definition of d{X) and the
assumption d(X) < d(Y), the contradiction follows.

The above argument also shows that in the case d(X) = d(Y), a is a
characteristic vector. Since C is totally geodesic, one immediately obtains
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the minimality of C in this case. In order to deal with the general situation
we resort to some general theory of symmetric spaces.

Let us begin with notation and some fundamentals. Suppose M is
a Hermitian symmetric space of compact type, Gc its largest connected
group of holomorphic isometries, and K the isotropy subgroup at some
point p e M. Then M = GJK, and the semisimple Lie algebra #c of
Gc has a Cartan decomposition gc = t + m c . Moreover there is a central
element z e i such that / = ad(z)|m is the complex structure of M.
Denote by G and g the complexified Lie group and Lie algebra of Gc

and gc respectively. Choose a Cartan subalgebra b of t . Write bc for
the complexification of b. Then bc is a Cartan subalgebra of $. Denote
by Δ the bc-root system of g, and by ΔM the set of noncompact roots,

i.e., roots φ with / c m = t n c 0 R C , Let m+ and m~ be the (±\/^Γ)-
eigenspace decomposition of / . Furthermore we can choose an ordering
of Δ such that

+ V ^ Φ Λ — V ^ —Φ

m = 2^, 9 a n d m = / „ g «

Also we can find the unit vector eφ € QΦ , with respect to the Killing metric
B, such that the following hold:

(i) e_φ = e^, where the conjugate is taken with respect to the decom-

position m = m+ Θ m~ .
(ϋ) [eφ, e_φ] = Hφebc, where φ(H) = B(Hφ, H) for H e b.

Recall that a set {φx, φ2, , φr) is called strongly orthogonal if none
of the φ. ± φj is a root for i Φ j . Let us find such a maximal set Π
by using Harish-Chandra's construction. Write V = Σ ^ € π R ^ > τ h e n w e

have the following standard facts.

Lemma 3.2 (cf. [2]). m+ = U ^ * Ad(fc)V.
Lemma 3.3 [6]. All Hφ have the same length for φeU.
Returning to our situation we would like to show
Proposition 3.4. C is a minimal rational curve in X.
Before proceeding further, let us make a few remarks. If the metric

h is fixed, then not every totally geodesic Riemann sphere with respect
to h is minimal. For example, one can have a totally geodesic isometric
embedding /: P 1 x P 1 —• X using the "Polysphere Theorem" (see the
following discussion). Consider the diagonal embedding Δ: P 1 —> P 1 x P 1 .
Then the image of P 1 under / o Δ is still totally geodesic. However it is
not minimal since it is of degree 2.
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For the proof of Proposition 3.4 we start with the following lemma.
Lemma 3.5. Each eφ is a characteristic vector.
Proof. Fix a characteristic vector a of unit length at [K] = p. By

Lemma 3.3 we can write without loss of generality

Φ Φ
Φen

Now the holomorphic bisectional curvature generated by eφ, e is given
by

for any two roots φ, ψ. In particular Rφφψφ = 0 for two distinct roots
φ, ψ in Π. It follows from the seminegativity of R in the dual Nakano
sense that Rφψuϋ = 0 for all u, v in m+ . Therefore we have

Raάaά

Φen

By the maximality of Raάaά this implies a = a, eφ for some φ e Π.
Hence eφ is a characteristic vector. Since

\K' e-Ψ^2 = i i^n 2 = ii^n2 ( b y L e m m a 3 3)
for any other root ψ e Π, Rψψψψ is also maximal. Hence our lemma is
proved.

We proceed to prove Proposition 3.4. Without loss of generality we can
assume that K is the isotropy subgroup of some point p e C and that
Tp(C) c V. It therefore suffices to show

Proposition 3.4 ' . Tp(C) =C-eφ for some φeΠ.
Proof Throughout the proof we fix a canonical metric Λ of I . Take

a nonzero vector v e T (C). Write

v = 5 c^e, = Y cwew,
Z—4 Φ Φ Z—4 Ψ ψ '

φen ψeπ0

where Π o is the subset of Π such that cψ Φ 0 for ψ e Π o . Since C is
totally geodesic, the complexified tangent space is a Lie triple system (cf.
[2]), i.e.,

ux,u2,u3e E implies [ux, [u2, u3]] e E,

where E = T (C)θT (C). Let uχ = u2 = v , u3 = v . We compute, using
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[eφ, e_φ] = Hφ and [eφ, e±ψ] = 0 for ψ Φ φ,

[v, [v, v]] = I 2 ^ cφeφ,

By our choice of hφ one has

This is independent of φ by Lemma 3.3. Hence we must have

cΦ'eΦ'cΦ'eΦ i s Proportional to Σcφ-eφ

Φen0 φen0

or equivalently

(**) \cφ\
2 = \cψ\

2 forany ^ , 0 i n Π o .

This holds for any totally geodesic Riemann sphere with tangent sphere
contained in V. Suppose that the cardinality of Πo is at least 2. We
would like to reach a contradiction. Let us proceed as follows. If φ e Π o ,
we define a Lie subalgebra by

The sum

βiΠoi = Σ
Φen0

is also a Lie subalgebra as can be seen from the strong orthogonality of
Π o . Let the group G[Π0] be the corresponding Lie subgroup of G for
g[Π0]. Then we have obtained the "Polysphere Theorem". More precisely
the orbit G[Π0](p) = S is a totally geodesic complex submanifold, and
is a product of the [Πo] Riemann sphere (see [8] for further details).
Moreover we have an isomorphism of the local direct product:

G[Π0] » J ] G[φ],
Φen0

One can also see that (/[ΠQ] cannot act on S as an isometry group. Pick
an element γ e G[φ{] near the identity of G such that γ{p) = p and
that it is not an isometry on S, i.e., \\y+(eφ )|| Φ \eφ | | . Let Γ be the
element (γ, 1, , 1) € G[Π0]. Since C is totally geodesic with respect
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to any canonical metric, in particular Γ*(A), Γ(C) is also totally geodesic
in (X, h). However by (*) we can write the tangent of Γ(C) at p as

y*(v)= Σ cΦmΓΛeφ)
Φen0

where \Cφ\ Φ \cφ\ and c = c for ψ φ φχ. This contradicts (**).

Hence |Π 0 | = 1, as desired.
The following corollary gives a proof of the Main Theorem in the case

d(X)>d{Y).
Corollary 3.6. With one more condition of d{X) > d(Y) in the Main

Theorem there is no nontrivial holomorphic map from X to Y.
Proof Otherwise given the map / , at the point p with ran

dim X we have, by the above proposition,

Hence dimJt(X) > dim Jt[Y). However due to the condition d(X) >
d{Y) together with the formula (see §1) timJt{X) = lάimX - d(X),
this is impossible.

4. Proof of the Main Theorem

In this section we would like to give a complete proof of the Main
Theorem. A key step is to prove

Proposition 4.1. Adopt the same notation as before. Then there exists a
minimal rational curve L in X such that the restriction f\L is a biholo-
morphism.

Our proof of Proposition 4.1 needs the use of the Douady space of mini-
mal rational curves. Let us start with a description of it. Let 2J denote the
Douady space for the set of minimal rational curves in X (cf. [1]). Then
it is a compact complex space. It is also homogeneous since the induced
biholomorphism group by that of X acts on S transitively. Hence it is a
compact complex manifold. One relation between Jl and 3 can be seen
as follows. We first of all identify L with L = {(x, PTχ{L))\x G i } c / ,
where L is minimal rational. By the total geodesy of L one knows that
Zj φ L2 if LχΦ L2. Since any given point in J[(X) is contained in one
and only one lifting curve, one can define a holomorphic map from Jί to

where p = (x, a) and [Lχ J represents as a point in 3 the minimal
rational curve Lχ passing through x in the direction of a. In conclusion,
we have dim^# = d i m ^ + 1.
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Return to Proposition 4.1. If / has maximal rank everywhere, there is
nothing to prove. So assume that

(i) the ramification divisor R is not empty;
(ii) f\L is ramified somewhere for every minimal rational curve L.

Define a subset B of 3 x R by

B = {([L], x)\[L] e3f, x e L such that f\L is ramified at x}.

Then B is a complex analytic subvariety of 3f x R. Let π{ and π2

be the projections from B to 31 and i? respectively. By (i) we have
πx(B)—3f. We also have the following lemma, which will be used in the
proof of Proposition 4.1.

Lemma 4.2. In the notation above one has

(i) dimπ2(Λ) = dimΛΓ-1,

(ii) πχ(π2

ι{x)) = {[L]\x e L) for every x e π2(B).

Proof. Fix a point [L] in 2 . Then π~[x([L\) Φ 0 consists of finite
many points since / is a finite map. By counting dimension one has

dimB = dim.S' + dim(generic fiber) = di

It is also clear that dim^# x > d i m π ^ ^ x ) . Therefore we have

^ x ) > dim B - dimπ 2(5) > dim B - dimi?

= d i m ^ - ( d i m X - 1) = d i m ^ f - d i

χ >

Hence we have equalities everywhere. In particular dimi? = dimπ 2(5)

and d i m π ^ Λ Q = d i m ^ . Our lemma follows.
We can now give the proof of Proposition 4.1.
Proof of Proposition 4.1. By (i) of the preceding lemma there exists a

point x e R Π π2(B) such that x is a smooth point of R. By (ii) of the
same lemma f\L is ramified at x for every L passing through x. Hence
we have

df{x){υ) = 0 for every L and υ £ Tχ{L).

But 1WX = \JL3χPTχ(L) and (Jtx) = the linear span of Jtx = Tχ{X) by
the irreducibility of X. Therefore we have

df(χ){υ) = 0 ΐoranyveTχ(X).

Fix a minimal rational curve L passing through x. We have known
f(L) is also minimal rational. Since Y is of rank at least 2, there ex-
ists a nontrivial holomorphic section w of T*(Y)\f{L). Pulling back w
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one obtains a holomorphic section f*(w) of T*(X)\L. Since T*(X) is
seminegative, f*(w) can be either nowhere-vanishing or trivial. As we
have just seen that df(x) = 0, f*(w) is therefore trivial. This shows,
from the nondegeneracy of / , that

LcR and TX(L) c Tχ(R).

The above holds for every L 3 x. Hence Jtx c TX(R). This contradicts
that (Jt) = TX(X) because x is a smooth point of R and dimi? =
dimX - 1. The contradiction results from the assumption that f\L is
ramified somewhere for every minimal rational curve L. We have thus
proved Proposition 4.1.

We can now finish the proof of the Main Theorem.
Proof of the Main Theorem. By Proposition 4.1, / induces an iso-

morphism f^H2(X, Z) = H2{Y, Z). Since any minimal rational curve
generates H2(X, Z) and its image under / is also minimal rational, we
conclude that J\L is biholomorphic for every minimal rational curve L.
Fix a point p in X and a minimal rational curve L containing f(p) = q .
Then C- f~ι{L) is minimal rational. Since f\c is biholomorphic as just
seen, one has df(Tp(C)) = Tq(L). Therefore df(Tp(X)) contains Jtq.
By the irreducibility of Y, / thus has maximal rank at p. This shows
that / is a covering map. Since Y is simply connected, / is actually a
biholomorphism, completing the proof of the Main Theorem.
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