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INFINITE ENERGY HARMONIC MAPS AND
DEGENERATION OF HYPERBOLIC SURFACES

IN MODULI SPACE

MICHAEL WOLF

1. Introduction

Let (Af, σ\dz\2) be a closed, compact surface of genus g equipped
with the (hyperbolic) metric σ of constant curvature K = -1. If Jί_ γ

denotes the space of all constant curvature metrics on M, then both the
group of orientation preserving diffeomorphisms Diff1^ and the group of
diffeomorphisms isotopic to the identity Diff0 act by pull-back on Jf_χ

we define the Teichmuller space of genus g, T , to be the quotient space
*/#_ {/ Diff0 and the moduli space of genus g, Jt , to be the quotient space

^ j / D i f ϊ ^ . Then (Af, σ\dz\2) represents a point in the Teichmuller
space T of surfaces of genus g. In [17], Sampson described a parame-

trization for a neighborhood of (M, σ\dz\2) in Tg , in terms of a neigh-

borhood of zero in the vector space QD(σ) of holomorphic quadratic

differentials on (M, σ\dz\2). In [22], we used harmonic maps to derive

an explicit asymptotic series for the hyperbolic metrics near (Af, σ\dz\2)

and, in Theorem 2.2, we shall show that this series converges, thus giving

an explicit description of the real-analytic structure of the moduli space

near an interior point (Af, σ\dz\2).

The moduli space Jίg admits a compactification Jίg , which is a V-

manifold without boundary; we use the notation 3ί for the compactifi-

cation divisor 31 - ^f'g ~ Jt . An element of 31 can be thought of as a

Riemann surface with nodes, a connected complex space where points have

neighborhoods complex isomorphic to either {\z\ < e} (regular points) or

{zw = 0; \z\, \w\ < ε} (nodes) and for which each component of the

complement of the nodes has negative Euler characteristic.

Thus each component of the complement of the nodes admits a com-

plete hyperbolic metric, with a deleted neighborhood of a node being iso-

metric to two copies of a neighborhood of a hyperbolic cusp, given for
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example by the metric ds2 = \z\~2(log\z\)~2\dz\2 on the punctured disk
{0 < \z\ < e} . It is natural to think of noded surfaces arising as elements
of 2g through a pinching process: consider a fixed family of simple closed
curves yx, , γn on M so that each component of the complement of
the curves has negative Euler characteristic, and consider a family of hy-
perbolic metrics σr\dz\2 on M. Suppose that the length /,([?,•]) of the
σr-geodesic representative of each of the free homotopy classes [γ.] of γ.
tends to zero as r tends to infinity. Then a subsequence of the points
in Jίg represented by the σr metrics would converge to a surface with n
nodes. This noded surface would be topologically the result of identifying
each curve γ. to a point, the node. Bers [5] showed that this convergence
was geometric in the sense that there are isometric copies of σr\dzr\

2 on
and a cusped hyperbolic metric σ\dz\2 on M~U{y z } repre-

senting a hyperbolic metric on a noded surface (in the complement of the
nodes) so that σr\dzr\

2 converges to σ\dz\2 on M ~ U{γi} 9 uniformly
on compacta.

Conversely, consider a surface (M, σ\dz\2 pχ, , pn) with hyper-

bolic metric σ\dz\2 and nodes pl9...9pn. A deformation of (Af, σ\dz\2

P\» " > Pn) wiU either keep the number and topological position of the
nodes fixed and vary the remaining complex/hyperbolic structure, or it will
"open" several of the nodes, replacing the neighborhood {zw = 0} on M
with the neighborhood {zw = t9 ε > \t\ > 0} (see [16], [6], [24] for dis-
cussions), or it will do both. The deformed surface will represent a point
in a deformation neighborhood in J[ of the point in 3f represented by

(M, σ\dz\2 pχ, 9pn); indeed, given a (small) deformation neighbor-
hood Jf of the point in 2 represented by (M, σ\dz\2 pχ, , pn), we
can represent each point [p] e JV with a surface obtained by either fixing
the nodes of (M, σ\dz\2;pl9-- 9pn) and varying the remaining com-
plex/hyperbolic structure and/or opening some of the nodes pχ, , pn.

In this paper, we investigate such a neighborhood Jf of a hyperbolic
surface with nodes (or with paired cusps); because J£' is a F-manifold
and our^deformations will be smooth, we work on a smooth deformation
space & which is ramified cover of a subset of Jίg . Our basic method
is to use harmonic maps from such a noded surface to nearby hyperbolic
structures, and then to compare the resulting pull-back metrics using the
analytic formulae resulting from the harmonicity of the map. In [16],
Masur used quasiconformal maps and a cut-and-paste construction along
with techniques of coherent sheaves to give a parametrization of such a
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deformation neighborhood in terms of meromorphic quadratic differen-
tials on (M, σ) with at most second order poles at the nodes; we will
rederive his result using the holomorphic differentials associated to har-
monic maps. We then derive a converging asymptotic series for the hyper-
bolic metrics on the surfaces within the deformation neighborhood; this
improves the previously mentioned result of Bers [5] that the hyperbolic
metrics vary continuously in the deformation neighborhood.

This article is organized as follows. In §2, we fix our notation and derive
our deformation theory for hyperbolic metrics varying in an "internal"
neighborhood of the moduli space Jt . In §3 we derive the necessary
theory of harmonic maps from a noded surface to a surface without nodes.
Specifically we prove

Theorem 3.11. If (M, σ\dz\2, p) is a noded Riemann surface with
metric σ\dz\2 and node p, (N, p\dw\2) is a hyperbolic surface, and γ a
simple closed curve on N, then in each homotopy class of maps w: M ~
p —• N ~ γ which admits a diffeomorphism, there exists a diffeomor-
phism satisfying the Euler-Lagrange equation for a harmonic map, and
mapping M ~ p onto N ~ γN, where γN is the geodesic representative
for the free homotopy class γ in the metric p\dw\2. The quadratic differ-
ential (w* p)2'0 is holomorphic on M ~ p at the node p, the differential
(w* p)2>0 has a second order pole whose leading coefficient equals one-fourth
the square p-length of γN. If u: M ~ p —• N ~ γN is a diffeomorphism
satisfying the Euler-Lagrange equation and having a holomorphic quadratic
differential with a second order pole with real leading coefficient at the node,
then u = w .

Also in §3, we derive the analogous result for maps between noded
surfaces which do not open a node; here we use results of Schoen-Yau
[20] and Lohkamp [15]. In §4, we define the relevant smooth deformation
space & and give a parametrization of a neighborhood of £P of a noded

surface [M, σ\dz\2, pχ, •• , pn) in terms of meromorphic quadratic dif-
ferentials on (Af, σ) and twist parameters coming from Fenchel-Nielsen
theory. Finally in §5, we show

Theorem 5.3. Let JV be a neighborhood in £P , parametrized by a

choice of Fenchel-Nielsen coordinates (/ , θ). Let M be a smooth surface,

possibly with the exception of some nodes. Then if ds2( I , θ) is a family

of hyperbolic metrics on M representing a neighborhood of (10, ΘQ) in

jΓ, then ds2{l , θ) is real analytic in I , θ .
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This is straightforward for J^c Jίg . Bers [5] showed that ds2{l , θ)

is not only real analytic for /. > 0 (for all j), but continuous when l} > 0.

We conclude §5 by giving a somewhat explicit description of the Taylor

series for ds2{ I , θ) in terms of meromorphic quadratic differentials on

the surface {M, σ\dz\2 pλ, , pn) (with nodes px, , pπ) and the

operator (Δσ - 2 ) " 1 : the formal power series needs to be interpreted in

light of there being a nontrivial kernel for Δσ - 2 on a cusped surface

(M,σ\dz\2).

2. Harmonic maps between surfaces
9 9

Let (Λf, σ|rfz| ) and (iV, /?|rfu;| ) be smooth Riemannian surfaces;

we write our metrics σ\dz\2 and p\dw\2 in isothermal coordinates. For

a Lipschitz map w: (M, σ]dz\2) —> (TV, /?|dw|2), we define the holomor-

phic energy at a point to be

and the antiholomorphic energy to be

Then we define the energy density e(w σ, p) by e(w σ, p) = %? + S?,
the Jacobian of the map ^{w \ σ, p) by ^ ( t ^ σ, />) = ̂  -Jΐ?, and the
total energy 2?(ιu σ, p) by

E(w; σ, p) = / e(w\ σ, p)σdzd~
JM

From the last expression we see that the total energy depends upon the
metric of the target surface, but only upon the conformal structure of the
source. The functions %?, J ? , e, and β" depend upon the background
source metric; while we will use several such source metrics, we will always
employ the same symbol %? to mean the holomorphic energy with respect
to the metric in use, relying on the context to avoid confusion. We will
also consistently use σ or σ0 for a source metric, and p or pt for a target
metric.

The Euler-Lagrange equation for the energy functional is

τ{w) = w- + (log p)ww2w- = 0
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the tensor τ(w) is called the tension, and a map which satisfies the equa-
tion τ(w) = 0 is called harmonic. For our purposes a different point of
view is useful: if we pull back the target metric form p\dw\2 by the maps
w , it decomposes as

w* p\dw\ = pwzW~zdz +{p\wz\ +p\wΊ\)dzd~z

pwzwΎdz
—2

(2Λ) = Φdz2
zwΎ

e(w; σ,

= Φdz2 + σ dzdz + Φdz2.

If ,f{w σ, p) does not vanish anywhere on M, then it is easy to show

(see [17]) that w is harmonic <* Φdz2 is a holomorphic quadratic dif-

ferential on (M, σ\dz\2).

Define, on (M, σ\dz\2), the Laplace-Beltrami operator

σ σdzdΊ

and the Gauss curvature,

« ^ _ 2a 2 logσ

Then one derives from the Euler-Lagrange equation the Bochner-type equa-
tion (see [19])

(2.2a) Δ σ l o g ^ = - 2K(p)Jr + 2K{σ)

(2.2b) 2K(σ).

If Â (/)) Ξ - 1 , as it will always be for us, we have the fundamental equa-
tion of study,

(2.2) Δσ logX = 2 ^ - Ά + 2K(σ).

We now review the discussion of [22], which is based on the following
construction. Let M be a closed, boundaryless surface of genus g > 1
and fix a hyperbolic metric σ\dz\2 on it. Then, choose a point in the
Teichmuller space Tg, and represent it by a hyperbolic metric μ\dw\2 .
There exists [7] a unique [11] harmonic diffeomorphism [ 17], [ 19] w(σ ,p):
(M, σ\dz\2) —> (Λf, /?|ί/w|2) in the homotopy class of the identity map
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id: M -• M. By setting Φdz2 = (ιy(σ, /?)*(/?|dit;|2))2'0, we find that we
have a map

Φ:Tg->QD(σ),

where QD(σ) denotes the space of holomorphic quadratic differentials on

(M,σ\dz\2).
Theorem 2.1 [17], [22]. Φ is a homeomorphism onto all of QD(σ).
Thus QD(σ) provides global coordinates for T via the inverse map

Φ " 1 , and (2.2) is uniquely solvable for all parameter values Φ € QD(σ).
If w: (M, σ\dz\2) —• (Af, p\dw\2) is harmonic, then so is the iden-

tity map id: (M,σ\dz\2) —• (Af, t(;*(/?|{a?w|2)). Since Γ consists of
classes of hyperbolic metrics equivalent under the action of the compo-
nent of the identity of the diffeomorphism group, we might as well have

2 2
chosen w*(p\dw\2) to represent e T . So we can assume that

id: (Af, σ\dz\ ) -> (Af, p\dw\ ) is harmonic.

Consider the hyperbolic metrics pt\dwt\
2 determined by the ray tΦ0 in

the coordinate space QD(σ), where Φ o is an element of QD(σ) ~ {0},
and t is a real nonnegative number. We rewrite (2.2) as

/> ,2ι/ι^ ι2

(2.3) = IT(ί) - " 2,

where we denote ^ ( i d ; σ, /?() as

We want to write ^{t) as a series in ί depending on |Φ 0 | 2 /σ 2 and the

source surface (M, σ\dz\2). It is easy to see that ^(0) = 1, and if we

t"+ι\know d/dt\i=0JT(t), , d"/dtn\t=0^(ή , after applying dn+>/dtn

 u=0

to (2.3) we can solve for dn+ι /dt"+ι \t=Q x ^ " ( ί ) . The maximum principle

will force all the odd order derivatives to vanish [22], and we will be left

with a series

(2.4)

= 1 + -2(Δσ - 2)"

- 1
2 -2(Δ - 2 )

- i2 |Φ 0 | :

,"2)

Y4 + O(t6),

where all of the terms are computable. The only nonmultiplicative op-
erator which arises is (Δ - 2)" 1 (which is well defined because Δ is
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negative); it is a global self-adjoint operator which acts as multiplication
by - \ on the constant functions.

Using the explicit expansion ^2^n\t)tn/n\ and (2.1) we expand the

hyperbolic metric pt\dwt\
2 as

pt\dw\ =tΦodz + < 7 < l H

+O(t4)

where O(t4) represents the higher order terms of an explicit series.
We then ask whether this series converges.
Theorem 2.2. βf(t) is real-analytic in t, so that both series (2.4) and

(2.5) converge for \t\ small

Proof On a neighborhood U c C2'a(M) x C of ( ^ = 1, 0) consider

the mapping F(^9 τ ) : C 2 ' α x C - ^ Ca(M) given by
2

Setting X(0) = 1, we see that

F(&{0), 0) = 0

and we can compute that the linearization of F in a neighborhood of
1 = 1, T = 0) is

Thus ί/77^ is clearly invertible, so by the Analytic Implicit Function The-
orem (cf. [ 4, Theorem 3.3.2, p. 134]), there exists one and only one solu-
tion ^ ( τ ) of F{β?{τ), τ) = 0 near ( ^ ( 0 ) , 0) that is a complex analytic
function of τ for |τ| small.

However, we know that the solution %*(t) of (2.3) constructed by The-
orem 2.1 is unique; consequently that %*(t) must agree with the solution

constructed above, when τ = t is purely real. Thus, the solutions
constructed by Theorem 2.1 must be real analytic, since they are the

restriction of a complex analytic function to the real axis of the parameter
domain.

Remarks, (i) The proof depends heavily on the compactness of M,
especially for the invertibility of the operator Aσ - 2 .

(ii) Choose a complex basis Φ j , , Φ 3 ^_ 3 for QD(σ) then if t =

(t{, ' , ^ _ 3 ) e C3g~3, Φ(7) = ΣtjΦj defines local coordinates for
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T . Thus a similar expansion and real analyticity result hold for

defined in terms of Φ( t).

If (Af, \dz\2) represents a hyperbolic metric on a compact surface, then
we find an explicit real analytic expansion of the hyperbolic metric on the
compact surfaces in a neighborhood of (Af, σ\dz\2) in the Teichmϋller
space T , parametered by a neighborhood in the vector space of holomor-

phic quadratic differentials QD(σ) on (M,σ\dz\ ). This is the situation

we want to generalize to the case where (Af, σ\dz\2) is a surface with

nodes, representing a point of 3 .

3. Harmonic from noded surfaces

Recall that a Ίiemann surface (Af, z Pj , , pn) with nodes p{, ,
/?„ is a connected complex space where Af ~ Uί/7/} *s a (possibly discon-
nected) Riemann surface, all of whose components admit a hyperbolic
metric and for which a neighborhood of a node is complex isomorphic to
{(ζ, w) e C2\ ζw = 0, |C| < ε, \w\ < ε}; here z represents a generic
conformal coordinate. Such a surface lies in the compactification divisor

We are interested in describing the harmonic maps from a Riemann sur-

face with nodes (Af, σ\dz\2 p{, , pn) to a Riemann surface (possibly)

with nodes (N, p\dw\2 qχ, , qm), where m < n , and Af ~ IJίPi} is

homeomorphic to the complement, as in Λ̂  — |J{^}, of some disjoint

simple closed curves.

For simplicity of exposition, we suppose that (Af, σ\dz\2,/?) has a

single node p, i.e., a single pair of hyperbolic cusps; we also begin by

assuming that (N, p\dw\2) has no nodes but has a simple closed geodesic

γ so that Af — p is homeomorphic to TV ~ γ. We will emphasize the

case when the /?-length of y is small.

For now, we will consider (Af, σ\dz\2 \p) as a pinched limit of closed

smooth surfaces (A/, σr\dzr\
2) as described in §1; that we can do this fol-

lows from work of Earle-Marden [6]. We will show that the harmonic

maps wr: (Af, σr\dzr\
2) -+ (N, p\dw\2) converge to a harmonic map

w: (Af, σ\dz\2\p) —• (TV, p\dw\2) as r —• oo. Later we will consider

the effect of having chosen (Af, σ\dz\2 p) as the limit of a different fam-

ily of surfaces.

Even for this problem we must be careful. In particular, it is not true

that if we consider (Af, σr\dzr\
2) as a family of arbitrarily parametrized
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surfaces leaving every compact set in Tg, then the harmonic maps wr:
(Λf, σr\dzr\

2) —> (N, s2) will converge to a nice map w: M -+ N. To
see this, one need only consider the following boundary value problem,
recalling that only the conformal structure of the source metric is impor-
tant for the harmonic map problem. Let Λf be the cylinder [-1, 1] x
[0, 1], where we identify the boundaries [-1, 1] x {0} and [-1, 1] x
{1} and use the natural (x, y) coordinates, and let TV be the cylinder
[-cosh"1 1/ε, cosh"1 1/ε] x [0, 1], with boundary identifications

[-cosh" ε" 1 , cosh"1 ε"1] x {0} = [-cosh"1 ε " 1 , cosh"1 ε"1] x {1},

and natural (u,υ) coordinates.

Then let zr = xr + iyr = rx + iy/r, σr = 1, and ds2 = du2 +

(ε2cosh2 ύ)dv2. The harmonic map wr: (Λf, σr\dzr\
2) —• (N, ds2) which

takes the boundaries {±l}x[0, 1] to {icosh" 1 ε~ι}x[0, 1] with bound-

ary conditions vr(±l, y) = y is given by vr(±l, y) = y and ur(x, y) =

ur(x), where ur{x) satisfies the Euler-Lagrange equation u4 = r4ε2 sinh 2u.

It is not hard to see that if x Φ ± 1 , ur(x) —• 0 as r -» oc. Thus, the

limiting map collapses the interior of the domain onto the core geodesic

{0} x [0, 1] of the range. Later we will consider a better parametrization

of this problem.

Let {M, σ\dz\2 \p) be a hyperbolic surface with a node p , and let (N,

p\dw\2) be a closed surface of genus g without nodes equipped with a

hyperbolic metric p\dw\2. We now construct a harmonic map w: (M,

σ\dz\2),p) —• (TV, /?|ύ?w|2) as the limit of harmonic maps wr: (Afr,

σΓ|rfzy|2) —• (N, /?|ύίtί;|2). To do this, notice that a neighborhood U of p

in M ~ p is isometrically a pair of standard cusps in the Poincare upper

half-plane, i.e., U is two copies of Pa = {0 < x < 1, y > a\{ϋ) x y =

{1} x y} with metric σ\dz\2 = \dz\2/y2; we denote the images of Pa

in Λf ~ p also as Pfl . Let A: (a, oo) —• R be a smooth function with

equals 1 in a neighborhood of a and equals y2 on (a + 1, oc). Equip

Pfl with the metric σQ\dz\2 = λσ\dz\2; this new metric is conformally

equivalent to the original Poincare metric, but is flat on Pa+ι. The met-

ric σo\dz\2 on Pa extends to a metric σo\dz\2 on M ~ p. We then

construct Afr by the following process. We remove the two copies of

Pr from (Λf, σ\dz\2;p), obtaining a (possibly disconnected) manifold

with boundary; this boundary consists of two geodesies bounding flat half-

neighborhoods. It is easy to show from the homogeneity of the flat metrics
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near such geodesies that when any two such half-neighborhoods are iden-

tified along the geodesic, the metric extends smoothly across the seam: the

Riemannian manifold (Mr, σo\dz\2) is defined by identifying the curves

[0, l)x{r} in (M, σo\dz\2;p) - (the two copies of Pr)by (x, r) ~ (x, r)
and extending σo\dz\2 across the geodesic seam [0, l )x{r} . We note that

(i) there exists a canonical conformal embedding ir: (Mr ~ ([0, 1) x {r}),

σo\dz\2) —• (M, σ\dz\2 p), (ii) as representatives of a path in the com-

pactified moduli space of complex structures ^f , (Mr, σo\dz\2) con-

verges to (M, σ\dz\2 p), and (iii) recalling that only the complex struc-

ture of the source is relevant for the construction of harmonic maps,

there exists unique harmonic diffeomorphisms from (Mr, σo\dz\2) to (N,

p\dw\ ) in each homotopy class.

Let Mc

r denote ir(Mr ~ ([0, 1] x {r})). In what follows, we will often

leap from Mr to Mc

r c M and back. We now specify the homotopy class

of maps that will interest us. Consider a diffeomorphism hχ: Mχ —• N for

which hχoi~ι(dMχ) is the geodesic γ on (N, p). Then consider Mχ as

embedded in Mr via i~ι o i{; we can then define a map hr: Mr-> N by

requiring that hr = hχ on Mj and the map hr must satisfy hr(x, y) =

hχ(x, 1) on Mr - MjC Ξ [0, 1) x [1, 2r - 1], projecting the cylinder

M r ~ MjC directly onto the geodesic γ without any twisting.
We have just used the somewhat unnatural but convenient parametri-

zation of Mr ~ Mχ as [0, 1) x [1, 2r - 1] (with identifications) for
the first of many times. The reader should notice that in this param-
etrization, if we describe Pr - Pχ as Pr - Pχ = {(*, y)\x e [1, 0),
1 < y < r} (with identifications), then the two copies of Pr ~ Pχ embed
in Mr ~ Mχ = [0, 1) x [1, 2r - 1] by the two maps (i) (x, y) »-• (x, y)
and (ii) (x, y) *-> (1 - x, 2r - y). Thus, in the second map, Pr - Pχ is
embedded backwards and upside down in [0, 1) x [1, 2r - 1] with ΘPχ

identified setwise with [0, 1) x {1, 2r - 1} .

We may now define wr: (AfΓ, σo\dz\2) —• (TV, /?|dκ;|2) to be the unique
harmonic diffeomorphism homotopic to A .

Proposition 3.1. A subsequence of the maps ws converges to a har-

monic map w: (M9 σ\dz\2;p) —• (TV, p\dw\2), with uniform convergence

on compacta ofM~p.
Proof Let e(ws) denote the energy density e[ws\ σs, p). Then for

a Lipschitz map fs: Ms -+ N which is homotopic to ws: Ms —• Λ ,̂ the
harmonicity of w ensures that

/ e(ws)dA(σ0)< f e(fs)dA(σ0).
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We consider a convenient candidate fs. First we note that Mc

r has two
boundary components; again let γ denote the geodesic on N homotopic
to wr(dMc

{). Let φ be a constant speed parametrization of y so that
φ: [0, 1] —• γ with φ(0) = φ{\). Consequently we can consider the
harmonic maps Dirichlet problem of finding a harmonic map

ar: (Mc

r 8{M
c

r , Θ2M
c

r) -> (N - γ, γ, y)

so that ar = φ on diM
c

r (here we consider φ as defining a map φ: fyA/^ =
[0, 1) x {r} —• γ). The theory of Hamilton [10] tells us that there exists a
unique such map ar, since d(N -γ) is geodesic.

Next, on the pair of cylinders Mc

s - Mc

r with 5 > r , w e define a map
βs_r so that βs_r(x, y) = ίK*) We claim the following lemma.

Lemma 3.2.

if e(ws) dA > if e{βs_r) dA for s > r.
JJMC

S-Mc

r JJMC

S-Mc

r

Proof of Lemma 3.2.

s dy
dxdy

*d_
dXwr

*d

dxdy

dx\ dy

>{s- r) (minimum ^-length of curve homotopic to

ws([0,l)x{y}))2

- fί e(βs_r)dA. q.e.d.
JJMC

S-Mc

r

We now continue with the proof of Proposition 3.1. Set

r(q) if qeMc

r,

5_Γ(9) ΊϊqeMc

s~Mc

r.
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Then, because ws is energy minimizing,

ff e(ws)dA(σ0)+ ff e(ws)dA(σ0)
JjMc

r JJMC

S-Mc

r

= ff e(ws)dA(σ0)

< ff e(fs)dA(σ0)

by Lemma 3.2. So

(3.0) ff e(ws) dA(σ0) < ff e(ar) dA(σQ) = C « ) for all s > r.
J J Mc

r J J mc

r

Standard estimates can now be used to complete the proof of Proposi-
tion 3.1. (See, for example, [18]: from the Eells-Sampson [7] estimate
Aσe(ws) > 2(infKσ)e(sw) valid for a harmonic map ws on {Mc

r , σr),

we derive the estimate (see [7] or [18, p. 336]) valid for q e Mc

r ,

e(ws)(q)<C(Mr) ff ce(ws)dA.
J J Mc

r

f cMc

r

Thus, by (3.0) we conclude that

e(w)(q) < C(M) ff e{a) dA = C(MC) for all s > r.
JJMc

r

This then shows that the right-hand side of the harmonic map equation,

Asws = {\ogp)w (ws)z{ws)Ύ/σ(z), is bounded, giving a CUa estimate on

ws by standard potential theory arguments, which in turn gives a Cα

estimate on the right-hand side. We repeat the process to get a C 2 ' Q

estimate on ws, and then use Ascoli-Arzela to find the convergence of a

subsequence of the {ws} to a harmonic map on Mc

r ).
A diagonal process then gives convergence of another subsequence of

the ws to a harmonic map w on M ~ p, with uniform convergence on
compacta of M ~ p . q.e.d.

Next we consider an example of this convergence: we consider the
asymptotics of maps between cylinders, where the source cylinder "de-
velops a node" and the target cylinder remains fixed. In particular, con-
sider the boundary value problem of harmonically mapping the cylinder
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M = [0, 1] x [1, 2s - 1] (with boundary identifications {0} x [1, 2s - 1] =
{1} x [1, 2s- 1]), to the cylinder N = [Γι esc"1 Z" 1, π/l-Γx esc"1 Z"1] x
[0, 1], with boundary identifications

[Z"1 esc"1 Z"1, π/l - Γιcsc~ιΓι] x {0}

= [Z"1 esc"1 Z"1, π/l - Z"1 esc"1 Z"1] x {1},

where we require w(z) = u(x, y) + iv(x,y) take [0, 1] x {1} to
{Γιcsc~ιΓι}x[0, 1] and [0, l]x{2s- 1} to {π/l - Z"1 esc"1 Z"1} x
[0, 1]. We choose a conformal structure determined by a flat metric \dz\2

on M , and we choose a hyperbolic metric I2 esc2 lu\dw\2 on N, where
the core geodesic {π/2l} x [0, 1] has length Z.

We first observe that both M and N admit an anti-isometric reflection
about the curves [0, 1] x {s} and {π/2l} x [0, 1]. Thus it suffices to solve
the problem corresponding to the one above with M = [0, 1] x [1, s]
and N - [Z"1 esc"1 Z" 1, π/2Z] x [0, 1]. We see that v(x,y) = x and
u(x9 y) = u{y) solve the Euler-Lagrange equation u" = l{coxlu)(u2 - 1).
It is not hard to show that for s sufficiently large, the solution us is
concave, and indeed converges to a solution u to the "noded" problem,
i.e., M = [0, 1] x [1, oo), where we require w(l) = Z"1 cosh"1 Z"1 and

This "noded" problem has the explicit solution

(3.1) u(y) = j sin'1 I

If the boundary curve (u(l)9v) had length λ, the factor (1 - /)/(1 + /)
would be replaced by (y/λ - I)/{y/λ + I).

From an argument like that for Lemma 3.2, we can easily surmise that
the energy of the maps ws constructed for Proposition 3.1 must grow
arbitrarily large. Thus, if we expect a limiting map to be a smooth dif-
feomorphism from M ~ p to N ~ γ as in (3.1), we must expect the
map to have infinite energy. Yet this infinitude will arise only because of
the neighborhood of the node: {M, σ\dz\2 p) has vanishing injectivity
radius, or in the flattened metric, (M, σo\dz\2 p) has infinite area. Thus
we might expect the map in a neighborhood of the node to be a perturba-
tion of (3.1). We aim to prove this by comparing the two maps. We begin
first with

Lemma 3.3. Let (C, p) be a bi-infinite hyperbolic cylinder with core

geodesic γ, i.e., C is isometric to H2/(z t-> λ2z), where H 2 is the upper

half-plane {Im z > 0} endowed with the hyperbolic metric \dz\2/y2. Then
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d2(γ, •) is a convex C2 function on C, and if u: (Ω, g) —• (C, p) is a

harmonic map from a domain Ω into C, then

(3.2) Δ * / > ( w ( z ) ' 7 )

> 2min(l, dp(u(z),y)taήh dp(u(z),γ))e(u(z)9 g, /?).

Proo/ It is well known (e.g. see [14, equation (5.1.1)]) that if / 6

C 2 (C, R), u is harmonic, and {eα} is frame on Ω, then

A f o u =

Now use as a fundamental domain for C in H the region in the up-
per half-plane between \z\ = 1 and \z\ = λ2 then in the orthonormal
coordinates

Id
I ' rύnθdr

peφendicular and
computes
which are peφendicular and tangent to the level sets of d2

p(j, •), one easily

Hess dp(γ9c) = 2 ^ β ^ + 2 ^ ( y ) t a n h rfp(y, )ξ2

From ^ = ^ Σα Wu*eα\\2p ' ( 3 2 ) follows, q.e.d.

Recall the harmonic map w: (M, σ|rfz|2, p) -+ (N, p\dw\2) construct-
ed in Proposition 3.1.

Proposition 3.4. w: (M, σ|dz|2,/?) —> (N, /?|ί/iί;|2) w Λ diffeomor-
phism between M ~ p and N ~ y.

Proof Consider half-collar neighborhoods ^ in Mc

r of the bound-

aries dtM
c

r . Since, from (3.0), fMce{ws)dA(σ0) < C(Mc

r), we know that

f^e(ws)dA(σQ) < C{Mc

r) for s > r. By the Courant-Lebesgue Lemma

(see [14, Lemma 3.1, p. 20]), we conclude that there are curves c c 8J,

so that the /^-lengths of their images lp(ws(csi)) <Kx(r). Consider a cov-

ering space N —• N of N corresponding to the homotopy class [γ] eπ{N

of γ c iV we represent ~N as a quotient of the hyperbolic upper half-

plane by the group generated by an isometry a: z »-> λ2z for some λ.

Then ~N is geometrically a bi-infinite cylinder with core geodesic γ, and

γ projects to γ c N. The harmonic map ws, then restricted to the cylin-

der (Ms ~ Mr

c) u 8^, lifts to a map ws: (Afs - Mr

c) U^^Tί. Because

Jttii>y)<K2(r) f o r tfz e ΐ ϋ 5 ( ς / . )

for ^ G w^djAff), <%(# , 7) < K3(r), an estimate which is independent
of s.
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We now want to apply Lemma 3.3 to the harmonic map Ws: (Ms ~
Mc

r , σ0) —• (N, p) to conclude that wχ(diM^ι) can be made arbitrarily
close to γ by choosing s and R sufficiently large. We first notice that
the lemma implies that d2(ws(z), γ) is subharmonic and consequently

d2(ws(z) ,y) < K3(r) for all z e Ms. Next we need a crude estimate on
e(ws(z) σ0, p). The maximum principle applied to equation (2.2) shows
that for maps between closed hyperbolic surfaces, &{ws σ, p) > 1 thus
e(ws σ0, p) = (σ/σo)e{ws σ, /?) > cr/σ0 = I/A so that (̂ϊZλ, σ0, /?) >
1/j;2 in the coordinates on Pr ~ Ps. Identify Ms ~ Mr

c with [0, 1) x
[r, 2^ - r ] . We want to compare d2

p{ws{z), y), which satisfies inequality

(3.2) on Ms - Mc

r = [0, 1) x [r, 2s - r ] , with a function rfs(z) = ^ ( y ) ,
a function of y only, defined on the domain [0, 1) x [r, 2s - r] which
satisfies the ordinary differential equation

(3.3) < W ( v ^ ^ ) { ; ^ _ j )

with boundary conditions ds(r) = ds(2s - r) = A^3(r)2. To compare

d2

p(ws(z), y) with ds{z) on Ms~ Mc

r =[0, 1) x [r, 2s-r], we notice that

our estimates on i/2(W5(z), 7) imply that d2(ws(z), γ) = ds(z) < 0 on

d(Ms - Mr

c) = [0, 1) x {r, 2s-r} thus, if there is a point z e Ms ~ M°r at

which d2(ws(z), γ)-ds(z) is positive, it is an interior point of Ms ~ Mc

r .

Therefore at a positive interior maximum z0 of d2(ws(z) ,γ)-ds(z),
we must have

A[d2

p(ws(z)9γ)-ds{z)]<0;

however, by comparing the right-hand sides of (3.2) and (3.3), we find that

if d2

p(ws(z0), 7) > ds(z0), then A[d2

p(ws( ), 7) - </,(•)] > 0 at z0 . Hence

d2

p(ws(z)) < ds(z) for zeMs~Mc

r.

We are left to investigate the ordinary differential equation (3.3) and its

solution ds(z)\ we claim that for all ε, there is an i?0 and an So depend-

ing on Ro, so that for R> Ro and s > SQ , we have ds(R) < ε. As a con-

sequence of the claim we would then have that supz€(9M dp(ws(z), 7) <

ε . Moreover, because d2(ws(z), 7) is subharmonic, we would also con-

clude that s u p z € ^ d2

p(ws{z),γ)<e.
To establish the claim, we first show that for all ε > 0, there is an

So so that for s > So, ds(s) < ε. To see this, we observe that the
solution d (y) of (3.3) is symmetric about y = s, with d's(s) = 0 and
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ds{y) > ds(s). Thus, if for all s, ds(s) > ε for some ε > 0, then on the
interval [s, 2s - r], ds(y) would satisfy

ds(y)>ε, ds(2s - r) = lψf,

</>) = 0, </>) > [ε 1 / 2tanh(ε 1 / 2)]/(25-y) 2 .

By integrating the last inequality twice we reach a contradiction, showing
that for a given ε > 0, when 5 is sufficiently large we will have ds(s) > ε.
Finally choose ε > 0 and RQ so that dΛ (RQ) < ε. We observe that the
strong maximum principle implies that if s2>sx, then ds (y) < ds (y).

Thus for all s > RQ, ds(RQ) < ε, concluding the proof of the claim.
Next we argue that the limiting map w is a diffeomorphism. Since the

Jacobian of the maps ws satisfies f{ws) > 0, we conclude that f{w) >
0. We follow an argument of Schoen-Yau [19, Proposition-2.2]. Suppose
f(w)(q) = 0, where q e A ζ .

We saw earlier that %*{ws\ σ0, p){q) > l/λ(z(q)) > 0, and conse-
quently βf(w\ σQ, p)(q) > l/λ(z(q)). But since ^(w)(q) = 0, we also
have that J?(w σ0, p)(q) = βf{w σ0, p)(q) > 0. Next we use the equa-
tion

(3.4) ΔσQ log ζ = -AK{p)S = +Af,

which is also derived in [19], and we consider a neighborhood V around
q where both ^f(w) and βf(w) are both strictly positive. In this neigh-
borhood, we have that

(£-ή< c2log J.

Setting k = \og(%Ί&), we see that (3.4) yields Aσ k < c2k in V. Thus

Lemma 6; of [12] gives

(3.5) / / k(ζ)dξdη<c3k(O),
JJ\ζ\<R

where ζ = ξ + iη is a flat σ0-isothermal coordinate system around q.
Since k(0) = log(J^(w)(q)/£?(w)(q)) = 0 by hypothesis, and / > 0
in V implies that k > 0 in V 9 we see from (3.5) that k = 0 in a
neighborhood of q.

Thus if af{w) has zeros, ^{w) must be identically zero. This we
rule out from the previous geometric argument. We choose R and 5 0

as before so that supz€a Λ / d2(ws(z), γ) < ε (here we can work on TV
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instead of the cover N since we are in a small neighborhood of y and
the covering map is a local homeomorphism). Then

if jr(ws)dA(σ0)>A(N)-c(ε),

where c(ε) is a small constant depending only on ε . Thus it is impossible
that J?{w) = \im</{ws) vanishes identically on MR (or on M), and so
w has positive Jacobian everywhere. Since on each MR , w is the limit of
diffeomorphisms with Jacobian uniformly bounded away from zero, w is
a diffeomorphism of MR , with TV ~ w(MR) isotopic to a neighborhood of
the geodesic y. Moreover, because we can force ws(dMR) to be arbitrarily
close to y by choosing R and S sufficiently large, we know that we can
force w(dMR) to be arbitrarily close to y by choosing R sufficiently
large. Thus w takes M ~ p onto N ~ y.

Finally, suppose that there were a point q so that w(q) € y. Now a
neighborhood of the node p has two components C2 and C2 in M ~ p ,
and we might as well assume that q eCx . But then a small neighborhood
O of q is cut into two components by the pre-image of γ , say Oχ and O2 .
But then there are points qχ and q2 in Oj and O2, respectively, that are
mapped to different components of a neighborhood of γ in N ~ y further
we suppose that dN(w(qi), y) = e > 0. However, our estimates show that
we can find a neighborhood 1/ of the node that does not include qi and
such that UΓ\Cχ is mapped locally homeomorphically and incompressibly
into an ε/2 neighborhood of y. So w(UΓ\C{) contains a curve homotopic
to y in TV and within /^-distance of ε/2 from y. This curve, though,
would intersect the image of any small arc in O which connected qx and
q2. This would contradict w being a diffeomorphism, so we conclude
that w is a diffeomorphism between M ~ p and N ~ γ . q.e.d.

Next we derive some properties of the diffeomorphism w. We first
want to show that w is asymptotic to the map u(z) = u(y) of (3.1). First
we need a lemma like Lemma 3.3, but before we can state it, we need
some preparations.

Consider two harmonic maps ux, u2\ Ω —• N of class C°(Ω, N) n
C 2(Ω, N), where Ω is a domain and w.(Ω) c BR(p) is a ball of /?-radius
i? in TV which is disjoint from the cut locus of p . Define

Q(z) is smooth and well defined because of cut-locus restrictions on the
images of Ω under ur Suppose that dp(ux(z), u2{z)) Φ 0. Then let ea
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be a tangent vector of Ω at z , and let

Tzn(uuea) = (uuea, grad dp(u2(z), \{z)))p

and

Nor(uuea) = uuea - Tan(κuέ>α)(grad d(u2{z), ) | W i ( z ) ),

with a similar definition for u2^ea. Here Tanu^ea is a number, and
Nor w ^ is a vector. If d (ux(z), w2(

z)) = 0 > t h e n s e t T a n w/ *α = 0 a n d

Nor w u e α = 0 this case will be of little importance to us. Let {ea(z)} be
an orthogonal frame at z.

Lemma 3.5 (see [13]). Using the hypotheses and the notation as above,
Q satisfies

( 3 . 6 ) Δ β ( z ) < (Q(z) + 1) f έ f έ O
\ ι=l

α=l

Proof. This is a simple extension to negative curvature of the result in
[13] that [d (ux(z), w2(z))]2 is subharmonic under the above hypothesis
with N nonpositively curved. (See [14, Theorem 5.1, pp. 54-60]). q.e.d.

Remark. The right side of (3.6) is nonnegative, but could vanish, if, for
instance, ui mapped Ω into a geodesic segment, the two maps being a con-
stant distance apart; in that case, both ||Norw/il(eQ||2 and Y?i=x Tanw/ιl(eα

vanish because u^ea is entirely along the geodesic connecting Mf.(z), with
equivalent parametrizations.

We now begin our comparison of w to the map u(z) in the domain
M ~ M\. Let r - 1 and consider the set of cylinders Ms — M\,
parametrized as usual by [0, 1) x [1, 2s - 1] with the usual identifica-
tions. The map w takes M ~ M\ into a neighborhood U of γ c N,
and we choose coordinates on U so that

U = [(esc"1 Γ 1 )// , π// - (esc"1 Γ1)//] x [0, 1)

with metric p = I2 esc2 lu(du2 + di;2) with the horizontal boundary lines
identified; here γ is {π/2l} x [0, 1).

Consider a map fs: Ms -^ N so that (i) ^ is homotopic to ws, and

(ii) fs(Ms~Aίΐ)cU with

/ ( * , 1) = (esc" 1 l'ι/l9x), /' (x, 2s - 1) = (TΓ// - (esc" 1 Γ 1 ) / / , x ) ,
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and before, us(u) converges to u(y) as defined by (3.1). Let / : M ~
p —• N ~ γ be the limit of the maps fs: Mc

s -» N as s -+ oo. So the
maps fs between surfaces extend the harmonic maps (us(y), x) between
cylinders.

We want to compare ws and fs on Ms ~ M\ to do this, we need to
use a technique of Schoen and Yau [20] that will adapt Lemma 3.5 to the
situation where the domain is not simply connected.

Let Fs: (Ms ~ M[) x [0, 1) -»TV be a homotopy between Fs(z ,0) = w

and Fs(z, 1) = fs. We lift Fs to Fs: (Ms ~ M\)~ x [0, 1] -> U and

obtain liftings ws = Fs(z,0) and fs = Fs(z, 1). We notice that, be-

cause of the explicit description of fs, we have that if A/* is a partic-

ular representative for Ms ~ A/f in (Ms ~ M[)~ , then for any pair

of points z*, z j e ¥ * , d~(fs(z*), j^(zj)) < /:0, independent of 5.

Now, on U x U, πχU acts by isometries and coshd~χ~ - 1 is a C 2

function. Moreover, since for a e itx(Ms ~ A/^), there is an a e πxU

with ^ ( ^ ( z ) ) = aws(z) and fs(a(z)) = α ^ ( z ) , we see that if we define

gs = (ws, f s ) : (M5 — Mc

χ)~ —> UxU, then ^ is harmonic and so induces

a harmonic map gs: Ms — Mf —• (t/ x U)/(πxU). Then we extend our

construction of Lemma 3.5 to the nonsimply connected Ms ~ M\: the

function Qc - cosh d.γ. γnl( τn og -I is C 2 on A/_ ~ M,c and satisfies

inequality (3.6) in place of Q.

We want to bound the boundary conditions of Qs on Ms ~ M[. De-
note by d{M[ and 92MjC the two boundary components of dM[, and
recall that ws{dMc

χ) converges. Then from our choice of homotopy class
of ws, we see that for fixed z{ e (Ms ~ AfjC)~ above z t E 9j AfjC and fixed
z2 G (Ms~ M[)~ above z2 e d2M[, we have ^( i&^i j ) , ws(z2)) < k{,
where k{ is independent of 5. Thus, since the same is certainly true
by construction for fs, the lift of fs determined by Fs, we see that for
z e (Ms - M')~ above z e dM\, d~(ws(z), fs(z)) < k2 where k2 is
independent of s. We conclude that β s is bounded on dMc

χ by k3,
independently of s. Since the right-hand side of (3.6) is nonnegative, we
find that Qs is bounded on all Ms ~ M\, independently of s.

For each s, M5

C ~ M\ is a pair of cylinders; we now want to lift all
of the pairs of cylinders {Mc

s ~ M[\s > 1} as well as M ~ p ~ A/jC in
a consistent way so that we may obtain well-defined limiting maps w,
/ : (M ~ /? ~ ^ c ) " —• C/ which cover ιu, f:M~p~ M\ —• t/,
and which satisfy tf^(u>, /) < k2. So define covers (M5

C ~ A/^)" and
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(Af ~ p ~ M[y of Mc

s ~ Λ/f and Af ~ p ~ M\, respectively, and

lifts ws, fs: (Mc

s ~ M[)~ -+ U of ws, fs: Mc

s ~ M[ ^ U so that :

(i) (Mc

s ~ M^)~ embeds in (Af ~ p ~ Af[)~ , (ii) for a pair of fixed

points i j and z2 above zx e dχM
c

χ and z2 e ĉ AfJ", respectively, and s,

^ ( ^ ( Z j ) , ws,{zx)) + ̂ ( ώ 5 ( z 2 ) , t<v(z2)) < fc2,

(iii) as before, d~(fs(z), fs(zQ)) < k0 on any particular representative

Mc

s ~ M\ in (Afs

c - M\Y , for all 5 > 1, and (iv) for z above z e Mc

r ~

M[ and for 5 > 1, d~(fs(z), u>5((z)) < fc2, independently of s.

The last condition may be imposed because of the estimate d~ ~ Γ7og

< /c2, independently of 5. We then let s —> oo and take subsequences as

before to obtain limits w , / : (Af — p ~ Af^)^ —• U of ws, fs: (Mc

s ~

M^y —• C/ these maps ώ , / : (Af — p ~ Af^)" —• C/" cover tϋ , / : (Af ~

p ~ Aff) -• U. Furthermore, the map g = (w, f): (M ~ p ~ Aff j ~ -*

UxU induces a map ^ : (Af ~ p — Af̂ ) —• C/ x ί//π1 [/, and our estimate

Qs < k3, together with the estimates from (ii) and (iii) of our construction,

implies that Q = d~χ~, v o g satisfies β < fc4 on Af ~ p — Af̂  .

We intend to get a better estimate, but we first obtain a consequence

of our normalizations of homotopy classes of fs and ws. We claim that

given a particular representative Af* of (Af — p ~ M[) in (Af ~ /? ~

, for any pair of points z*, z^ e M*, we have estimate d~(w(z*),

J)) < k5. This is an important point, for it says, informally, that the

map w does not have any infinite 'twist', or equivalently, that the maps

ws: M2 —• N twist back and forth only a bounded amount. To see that

claim, recall that we chose lifts fs of fs so that d~(fs(z*), J^(ZQ)) < k0

for all 5, hence d~{j\z*), /(zj)) < kQ . Since we have just shown that

d~(f(z*), ώ(z)) < /c5, the estimate follows.

To get a better estimate than Q < k4, we need to choose a better
comparison map than the / we have been using; notice that there is an
Sι family of choices of boundary values for the comparison maps (3.1)
to assume. We choose the correct boundary values in the following way.

Let C be a flat cylinder of length 1 obtained by our usual identifica-

tions of [0, 1) x [0, 1], let jι

s (/ = 1, 2) be the conformal identification

j ' s : C -+ Mc

s+ι ~ Mc

s into the two components of Mc

s+λ ~ Mc

s , and let

ζι

s: C —• N be the composition w ojι

s. Then define a cover C = Rx [0, 1]

of C and lifts ]ι

s = C -+ (M - p - M[)~ so that U Λ ( { 0 } X [0, 1]) is



INFINITE ENERGY HARMONIC MAPS 507

connected in (M ~ p ~ Mχy . Thus ζi

s = woji

s = C-+U is a lift of £],

and we observe from our argument of Proposition 3.4 that by choosing

s large, we can force ζι

s to map arbitrarily closely to the lift γ of the

core geodesic γ. Now, as before, choose a particular representative M*

for (M ~ p ~ Mχ) in (M ~ p ~ A/Ίc)~, and suppose z*, zj G M*

by our construction of the lift fs: C —> (Λf ~ p — AfjC)~, we see that

( j ^ ) " 1 ^ * ) has compact closure. Since d~(w(z*), W(ZQ)) < k5, we see

that ^ ( ^ ( ( J ] ) " 1 ^ * ) 9 ζl

s(Uι

s)~l ZQ)) is bounded independently of s. This,

together with (i) the bounded geometry of U and C, and (ii) the relative

compactness of (jι

s)~~x(M*), then implies that e(ζι

s \dz\2, p) is bounded

independently of s (cf. [14, Theorem 6.1, p. 72]). Consequently, by the

equivariance of ζι

s, e(ζι

s \dz\2, /?) is bounded independently of s.
Thus by the same bootstrap argument as at the end of the proof of

Proposition 3.1, a subsequence ζι

s of the harmonic maps ζι

s converges

in C 2 α to a harmonic map ζι : (C, \dz\2) -> y, here using that γ is
the intersection of all arbitrary small neighborhoods of γ. Since the maps
{ζι

s } are homeomorphisms of C, the limiting map ζι must be a degree
one map onto γ but the only such harmonic maps are the collapse maps
βχ constructed for Lemma 3.2 out of constant speed parametrizations
φ: [0, 1) —• γ of γ. Thus the limiting (as sk —• oo) image w{diM

c

s ) of

the σ0-geodesic dMc

s is a constant speed parametrization φ: Sι -• γ and

(3.7) l im^ti ^ Λ ζ ) σo,p) = e(β2 σ0, p) = i/^7) 2 .

We notice that there is an S 1 family of such parametrizations.

Moreover, suppose that ζs converges to βx(φ) (here temporarily drop-

ping the superscripts from ζι

s, so that we work in only one component ^

of M — p ~ M [ , and indicating the dependence of βλ on the parame-

trization φ: S —• 7), but a different subsequence C5 converges to βx(ψ),

where φ and v/ are different parametrizations; we claim that this leads

to a contradiction. Let sk < sι < sκ be points in the subsequences corre-

sponding to φ , ψ, and φ respectively, and suppose first that each point

is sufficiently large so that ζs , ζs , and ζs are much closer to β{(φ),

j?1(^/),and βx(φ) in C 1 than p is to ^ .
We also make another assumption, possibly requiring the passage to a

further subsequence, to rid ourselves of a technical complication. Notice
that on gj Π (Mc

s + j - M5

C), which we parametrize by [0, 1) x [sk, sκ -h 1 ],
our first assumption guarantees that it is possible to join w(x, sk) and
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w(x, sκ + 1) by a path δ that is much smaller than the injectivity ra-
dius of TV; our second assumption is that w({x} x [sk, sκ + 1]) U δ is
homotopically trivial, i.e., that it has winding number zero with respect to
γ. We are permitted to make this assumption because we have shown
that d~(w(z*), W(ZQ)) < k5 for a representative M* of M ~ p ~
Mχ in (M ~ p ~ A/[)~ and z*, z^ G M*: the winding number of
w({x} x [sk, sκ + l])U δ with respect to γ lies in a finite list. Our as-
sumptions, then, contradict the harmonicity of w , since w restricted to
^j ΓWs

c

 + 1 ~ Afs

c must minimize energy among maps u with the boundary
conditions

(3.8) u\d M ~W\dM — Ψ a n < ^ U\d M =W\dM — Ψ i

where dχMr = &{ndMr. Thus, if w(dxMs) = ^ , an easy computation

shows that we could lower the energy of w on ^ Π M°s +χ ~ Mc

s by

replacing the map there by a map which is very near βs +χ_s (φ). Hence
1 K k

ζs is C ' α close to ^(ί?) for all s sufficiently large, without passage to
a subsequence.

Suppose that on each component %'i of M — /? ~ M [ , the maps ζ] =

^07] limit on βx(φi) as 5 —• oc. Then choose / so that the compositions

f o jι

s also limit on β^φ^ as 5 —• 00. Thus on both components of

M — p ~ M\, we have

lim dϋ(w(z),f(z)) = 0.

We can now compare w and our new map / in the region M ~ p ~

Mχ . As before, we let F: (M ~ p ~ MjC) x [0, 1] -» ί7 be a homotopy

between tu and / , and we lift F to F:(M ~p~ Mχ)~ x [0, 1] -> &,

obtaining lifts Ϊ2) = F ( z , 0) and / = F(z, 1). Then the map g =

(w, f): (M ~ p ~ Mχ)~ -^ U x U is harmonic and induces a harmonic

map g: [M ~p ~ Mc

χ) ^ UxU/πχU . Thus β = coshrf-χ- og-1 is

C2 on M ~ p -~ Mχ , and we have already shown that Q < k4 . Moreover,
we have chosen / so that on both components of M ~ /? ~ Aft

c, we have

lim ^ ( w ( z ) , / ( z ) ) = 0.

We then conclude that limz_^/7 zeMr^p^Mc Q(z) = 0.

We have concluded that in each component of M ~ p ~ Λ/t

c, the

harmonic map w converges to j8j(p) in C2'a (for some ?̂: -S1 —• γ)
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as y —• oo here we adopt the notation that φ represents a pair of maps
φ{\ Sι —• γ, one in each component of M ~ p ~ M\. This next result
provides all of the technical estimates which we will need later.

Recall from the first paragraph of §2 the definitions

φ)\σ^ p) = {p{βχ{φ))lσ0{z)\{βχ(φ))z\\

e{βι{φ);σQ9p)=X' + &9 and / = #-&.

We now define the Beltrami differential v(w σ0, p) for a map

w:(M,σo\dz\2)^(M,p\dw\2)

by u(w σ0, p)(z) = w~(z)/wz(z). Thus v(w σ0, p) is a tensor depend-
ing on the choice of coordinates for its argument, and
\v(w\ σQ, p)\2 is a function, defined independently of coordinates. We
compute that

fiβ^φ), σ0, p)=&(βι(9);σ09p) = lp(γ)2/4,

e(β{(φ) ;σQ,p) = lp(γ)2/2, ^(β{(φ);σ09 p) = 0.

Further, with respect to the coordinates z and w which we have been
using on M ~ p ~ M\ = [0, 1] x [1, oo)} and U, we compute

We conclude

Lemma 3.6. For the harmonic diffeomorphism w: (M, σQ\dz\2 p) ->

(N,p\dw\2), \v(w)(z)\2-+I, e(w σo,p)-+tlp(γ)2 andS(w9σ0,p)

—>0 in Cι'a as y —^ oo (z -> p) . Furthermore, in the coordinates defined

above for M ~ p ~ Mΐ and U c {N, p\dw\2), u(w)(z) — 1 /Λ C l ϊ β ,
(25 y —• 00 .

Remark. The above shows that the harmonic map w: (M, σ o |dz | 2 p)
-> (N ~ γ, p\dw\2) is actually the solution to a "Dirichlet problem" or
"pair of Dirichlet problems" (depending on whether γ does not separate
or separates N , respectively), where by the "Dirichlet problem" we mean
the problem of finding a harmonic w: M ~ p —> N ~ γ, so that, in the
natural coordinates, limz_+oo yed.McW(x, y) = <Pj(x), where φ. are two
appropriate constant speed parametrizations of γ.

Now there is an action of R on the Teichmuller space Tg corresponding
to cutting TV along Γ and reidentifying the two boundary components of
N ~ γ by a constant speed map ψθ : γ —• y clearly, there is a family of
such identifications, Nθ , parametrized by the distance to the left between
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p and φ(p). There is a natural isometric map j θ : (N ~ γ, p) —• (TV19 ~

y, /?β) which does not extend continuously to 7 unless θ = 0. (Because

of the homogeneity of the constant curvature metric in a neighborhood

of y, the constant - 1 curvature metric p on N ~ γ extends to a new

constant curvature metric pθ on the reidentified Nθ .)

We see that (Nθ ~ γ, />*) and (N ~ γ, p) are isometric, and (ΛΓ*, />*)

and (N, /?) differ only in the identification of the boundary components

ofN~γ. Thus since w: (M, σo |ί/z|2, p) —• (TV, /?) actually has image in

.V ~ 7, we see that we can create a new harmonic map wθ: (M, cro|rfz|2 p)

—• (Nθ, /?̂ ) by setting wθ = j θ o w .

Recall that a neighborhood ί7 of the node p in (M, σ|rfz|2;p) is
complex isomorphic to {(z, w) e C2\zw = 0, z(p) = 0 = w(p)}. In
particular, U ~ p has two components, C/j and ί/2, so that on Uχ we
have a local uniformizing coordinate z with z(p) = 0. Let Φ be a
meromorphic quadratic differential on U, with a second order pole at p .
The differential Φ then admits the expansion in coordinates

Φ = Φ(z)dz = (a_2z~ +a_χz~ +ao + a{z-\—)dz

on Uχ in this case, we note that the coefficient a_2 is independent of
coordinates, and so it makes sense to speak of a_2 as the leading coefficient
of Φ at p.

Proposition 3.7. For the harmonic diffeomorphism w: (M, σo\dz\2; p)

-• (JV, ρ\dw\2), the quadratic differential (w*p)2>0 is holomorphic on

M ~ p and meromorphic on (M, σ\dz\2;p) with a second order pole

at the node p. The leading coefficient of (w*p)2'0 at p is positive and

real and equals \lp{y)2 = (w*p)2'0.

Proof By Proposition 3.4, the Jacobian f{w) > 0 on M ~ p . Then,

by our discussion following equation (2.1), Φ(z)dz2 = (w*p)2y0 is holo-

morphic on M ~ p. To investigate the behavior of Φ(z) dz2 near the

node p , we recall the Bochner-type equation (2.2a),

(3.9) Δ σ o 0

Suppose first that γ separates N into two surfaces with genera g{ and
g2, where g{ + g2 = g then p separates M into two surfaces of genus
gλ and g2. We first integrate the left-hand side of (3.9) over the domains
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Mc

s and then let s —• oc . First, we find that

[f A logJTdA(σ0)

= ίί e\log(*rσ0)dA(σ0)- if A logσ0dA(σQ)
J J Ms J J Ms

= J V log(Xσ0) n ds(σ0) + 2 jj K(σ0) dA(σ0)

(since 2K{σQ) =-A^ log σ0)

(3.10) = / VlogΦ • nds(σ0)-[ VlogF nds(σn)
JdM< JdMc

s

+ ίί K(σo)dA(σo) (using Φ(z) = σo(z)^(z)F(z))

= 2πZs- ί Vlogΰ nds(σ0)+ 2 [[ K(σo)dA(σo),
JdMc

s JJMC

S

where Z s represents the number of zeros of Φ in M°s , counted with mul-
tiplicity. Lemma 3.6 shows that the second term of (3.10) vanishes as
s —• oc. On the other hand, using that dN(f(z), w(z)) —• 0 for the har-
monic map / : (M ~ Mc

r, σo\dz\2) -» (̂ V, p\dw\2) of a neighborhood of
the nodes into a neighborhood of γ, we see that when we integrate the
first term on the right-hand side of (3.9) we get

(3.11)

= 2π(Z{ -P{+Z2-P2 + 4) + o{s),

where Zz and P/. represent the number of zeros and poles, counted with
multiplicity, of a meromorphic quadratic differential on a compact surface
of genus g . We next note that for s sufficiently large, Φ has all its zeros
in Mc

s . This follows because Φ = σo(z)^(z)Ί7(z) and, in the natural
coordinates, σQ(z) = 1 near p while, by the proof of Proposition 3.7,
&(z)—> \lp(y)2 and|i/(z)| -+ 1 as y -+ oo. Therefore for s sufficiently
large, Zχ + Z 2 = Zs. So, if we choose s sufficiently large, and compare
(3.9), (3.10), and (3.11), we conclude that P{ + P2 = 4.

Consider the map w restricted to a neighborhood
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near the node; we notice that w and w o / , where / is the involution

I: z <-> ζ, and C 1 close, up to a rotation. Thus Φ(z) = p(w(z))wzw~:

must have pole orders Pj = <P2 >
 a n c * therefore has second order poles at

P.
We see that the leading coefficient of (w* p)2'0 is real because the lead-

ing coefficient of {f*p)2'° is real, where / is the cylinder map, and
\\w - f\\cι -H. 0 as y -* oc (z -+p).

To compute the leading coefficient of (w*p)2'0, we use that on the

flattened cylinders ((Af ~ p) ~ Mc

s , σo|a?z|2), the leading coefficient is

a_Ί = lim Φ(v) = lim a^V.
L y—κx> y—>ΌO υ

But since v —• 1 (with respect to the usual coordinates) and %*+%?j\vf -
e -+ ι

p(y)2/2 by Lemma 3.6, we find that a_2 = \lp{y)2 .

The quadratic differentials (w*p)2'0 and (wθ*pθ)2'0 agree because on
M ~ p,

θ* θ , .θ ,* .θ x * .θ* . *

W p ={J ow) J*p) = W J JΘ*P = W p\

equivalently, on the complement of the core geodesic, (N ~ γ, p) and

(N ~γ9 p ) differ only by an isometry.
The proof for γ not dividing N is similar.
Remark. The essence of the above proof is that w and the cylinder

map / a r e C 1 close near p , and that the holomorphic quadratic differ-
ential for / has second order poles at p. However, we find the use of
(2.2a) as a sort of index formula more enlightening.

We derive one final property of the harmonic map w . We prove

Proposition 3.8. The harmonic map w: (M, σo\d z\ p) —• (N, p\dw\ )

is asymptotic to the map f: (M — p ~ M\, σQ\dz\2) —• (TV, /?|du>|2) w/ίλ

appropriate boundary values in the sense that dN(f(z), w(z)) = 0(e~ci"N)y)

as y —• CXD .

Remark. We recall that y = exp dσ((x, y), (JC, 1)) so that, as maps
between hyperbolic surfaces, w and / are rapidly asymptotic.

Proof. We prove the proposition in one component ^ = [0, 1 ] x [ 1, oc)

of M — p — Mc

χ. Let p : [0, 1] —• y denote the limit in the obvi-

ous coordinates of the map w{dMc

s n ^ ) , and let β(φ): (&, σo\dz\2) —•

(TV, y0|di<;|2) denote the map described in coordinates on ^ as β(φ)(x, y)

= φ(x).
With / defined by (3.1) with boundary values φ , it is easy to compute

that dN(f(z), β{φ){z)) = O(e~2ly), where / = lp(γ). We want to show
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Recall the definition of v = v(w)(z) as v = w2/wz with respect to the
coordinates z on M and w on N. We know from Lemma 3.6 that in
our coordinates, v —• 1 as y —• oc. Our plan is to estimate the rate at
which v approaches its limit.

Recall the holomorphic quadratic differential Φ = (w*p)2'0 of Propo-
sition 3.7. We rewrite (2.2a) as

Δ log(l/|i/|) = 2(|Φ|/σ0)sinhlog(l/|i/|)
(3.12) ° 2

>(//y)

since |Φ|/σ0 -• lp(γ)2/4 as y -> oc. Now, by Lemma 3.6, log(l/|i/|) -* 0

as y —> oo, so we can find an s so that log(l/|i/|) < K on M ~ p ~ Mc

s .

Thus on M ~ p ~ M-sc, we may apply the maximum principle to (3.12)

to conclude that log(l/|i/|) < kχe~{l/2)y . Therefore 1 - |i/| < k2e~{l/2)y for

We next want to control the argument of 1 - v. For this we notice
that ^ is conformally a punctured disk, on which Φ is holomorphic with
a second order pole at the puncture (node) p, with leading coefficient
\l (γ)2 . Thus, working in the coordinates ^ = [0, 1] x [1, oo), we express

Φ(z)dz2 as Φ(z) = (lp(γf/4 + O(e'2πy))dz2. Now Φ = σo^ΰ, so we
conclude that relative to the coordinates we have chosen on &, Im v =
0(e~2πy) and

(3.13) i-v = o(e

for / < 4τr since 1 - \v\2 = <9(<Γ(//2)r).
Next we compute that |1 - v\ = \(wz - wY)/wz\ = \w \/\wz\ and since,

in our coordinates for ^ , wz —• 1 as y -> oo, we conclude that |tι; | =

. So pick z0 = (x0 ,yo)e& ~ Mc

s , and let Γ denote the path
Γ = {(x0, y)\y0 < y < oo} in C by our construction of β(φ), we have
that l im^ O O Z € Γ iϋ(z) = i?(^)(z0). Therefore

w*dy

ΛOO

< / c
p

dw
dy

the second inequality coming from our choice of coordinates for U D y.
We conclude that dN(w(z), β(z)) = O(e~c{N)y) and thus that*

dN(w(z),f(z)) = O(e-ciN)y). q.e.d.
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We now discuss the uniqueness of w: (M, σo\dz\2 p) —• (N, p\dw\2).
We prove

Proposition 3.9. If u and w are homotopic harmonic dijfeomorphisms
on M ~ p from (Af, σo\dz\2;p) to (N, p\dw\2) whose quadratic dif-
ferentials have second order poles at the nodes with positive real leading
coefficients, then u = w .

Proof We begin by showing that u and w share important properties
in the neighborhood of p for convenience we work in only one component
ί? of a deleted neighborhood of p in M ~ p. Now, for 5 sufficiently
large, Φ(w) = a_2(u) + O(e~27ry) there in the standard coordinates. So, in
the obvious notation,

if e(u)dA(σo)= ff f{μ)dA^)

+ 2 ff J?(u)dA(σ0)

< Area(N) + 2 ff &{w) dA(σ0)

(because u is a diffeomorphism)

< Area(Λ0 + 2 ff &(u)/\v(u)\ dA(σ0)
J J&ΠMs+ι~Ms

(because \v(u)\ < 1)

= A{N) + 2 ff \Φ(u)\dxdy
J J&Γ)Ms+ι~Ms

(by equality of integrands)
< K (depending only on a_2 but not on s).

Again using the argument following (3.0), we find that e(u) < k{ on ^ ~

Mc

s . Since we also have |Φ(w)|/σ0 < β?(u), we conclude that 0 < c\ <
c 0

< kχ on <g - Mc

s. Consequently, \u(u)\ = \Φ(u)\/(σo^(u)) is
bounded from above and away from zero in ^ ~ Mc

s . We repeat our
argument of Proposition 3.8, first rewriting (2.2a) so that \v(u)\ satisfies

Δσologl/|i/(M)| = 2(|Φ(M)|/cτ0)sinhlogl/|i/(«)| > 2cf log 1/|I/(M)|.

The maximum principle again shows that logl/|z/(w)| < ke~Cχy on Ψ ~
M°s in our usual coordinates and so (1 - |^(M)|) < k2e~Cχy on ^ ~ Mc

s .
We use this to compute the /^-lengths of the images under u of some

curves in &Γ\MC

S . Choose z0 = xo+iyo e ^C\MC

S = [0, l]x[s, CXD) . Then,
since [0, 1] x {y0} is a closed curve, / («([0, 1] x {y0})) < kQ . Moreover,
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ifΓ0 = {x}x[y0, oo), we may use that up = 2Re(Φ(u)dz2)+σe{u)dzdΊ
to see that

ds_

-L

k2 sup^1 / 2 Γ e~c>y dy + k2 Γ e~4πy dy
Γ o h* Jy0

< k4 ( s i n c e β ? ( u ) < k x ) ,

where /c4 depends only on z 0 . We conclude that any two points in
may be connected by a curve Γ with S?p(u{T)) < 2(k0 + k4).

Now lift u to ύ: {M ~ p)~ -+ C/, and suppose that z and z0 € M*,
a particular representative of M ~ p in (Af ~ p )" . Then we argue
as we did for Lemma 3.6 that since fi(z) is only a bounded distance
from fi(z0), and tD(z) is only a bounded distance away from w(zQ),
we have d~{ύ{x, j?), ι&(Jc, y)) < K. Thus we can argue we did as for
Proposition 3.8 to find that ύ is rapidly asymptotic to a map / of the
form (3.1) for some choice of parametrization φ(u): Sι —• γ in particular,
dfi(ύ, w) —> const in C1 as j> -> oc and Λ_2 = lΛy)2/4.

Finally, we build and project (ύ, w) as before to form the function

g: M - p -+ (TV ~ γ)~ x (N - yj^/π!(7

and the function β = coshd^N^γ^x(^N^γ^ o g - I. Since we have Q —>

const in C 1 as y —• oo, ||VQ\\σ —• 0 as y —• oo and so

0< if QAQdA(σ0)

as 5 —> oc. We conclude that β is a constant, and so

is a constant. Thus the left-hand side of inequality (3.6) must vanish. But
if β were not identically zero, we would require N o r i ί ) ^ = N o r ώ ^ =
0, so that both w^ex and w^e2 lay along the geodesic from w(z) to
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ύ(z), and w could not be a diffeomorphism. So we see that Q = 0 on
M and u = w.

Remark. Our arguments can be easily generalized to create harmonic
diffeomorphisms from (M, σ\dz\2;p) to (N, /?|dκ;|2) defined on M ~p
whose quadratic differentials have nonreal leading coefficients. We con-
sider limits of harmonic maps w*: (M5, σs\dz\2) —• (iV, /?|dw|2) where
tu* is in the homotopy class of maps obtained by first acting on Ms by
G(s) = as fractional Dehn twists and then composing with the orig-
inal map ws. Energy estimates which are only slightly more compli-
cated than those following Lemma 3.2 show that ιu* converges on Mr.
The resulting limiting map w*': (M, σ\dz\2 p) —> (N, p\dw\2) will have
φ # = ((w#*/?)2'0) meromorphic with a second order pole at p . The lead-
ing coefficient of Φ will have argument a and w will be asymptotic
to an appropriately twisted explicit solution similar to (3.1). As in Propo-
sition 3.9, such a map will be determined by the leading coefficient of its
quadratic differential.

Alternatively, define a metric g by

g = w*(p\dw\ ) = Φodz + σe(w)dzd~z+ ΦodΎ ,

and then set

ga = e ιaΦ0 dz + σe{w) dz d~z + e~ / αΦ0 dz

for 0 < a < π/2. Thus ga defines a hyperbolic metric on a surface
with geodesic boundary of length / (γ) cosα, where γ is the core geodesic

on (N, p\dw\2)). Furthermore the identity map id: (Af, σ\dz\2\p) -^

(M, ga) is harmonic (^( id) > 0 and (id*g α ) 2 ' 0 is holomorphic) and

the leading coefficient of (id* ga)
2'° = e2ιalp(γ)2/4. By applying a similar

procedure to the harmonic map from (M, σ\dz\ p) to an appropriately

chosen hyperbolic metric with geodesic core length I (γ) secα, it is possi-

ble to find the unique harmonic map wa: (M, σ\dz\2, p) —• (N, p\dw\2)

so that the second order pole of (it;*/?)2'0 has leading coefficient with

argument a.
Recall the maps wθ: (M, σQ\dz\2 p) —• (Nθ , pθ) described after

Lemma 3.6.
Corollary 3.10. The map wθ:(M, σo\dz\2 p) -> (Nθ, ρθ) is the unique

harmonic diffeomorphism with positive real leading coefficients for its second
order pole in its homotopy class.
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Remark 1. Recall the 'twisted' surfaces and metrics (Nθ, pθ) described

in the remarks following Lemma 3.6; consider a metric pθ on N (not Nθ )

so that (N, pθ) represents the same point in T as (Nθ, pθ). Then,

as points in Tg, limθ_^ι ^γ)(N, p ) and (N, pQ) are distinct. Conse-

quently, if R were compact Riemann surface of genus g and uθ: R —•

(N, pθ) were the unique harmonic map in a homotopy class of maps, then

lim(9_^2π uθ Φ u0. The problem is that u0 and lim(9_ /̂ ( y ) wθ represents

different homotopy classes of maps from R to (N, pQ). On the other

hand, unlike the {uθ} , for the maps {wθ} referred to in Corollary 3.10,

limθ_^ι / v wθ = w0. Here lim^_>/ , * u^ and w0 are in the same homo-

topy class of maps, since the image of wθ omits γ, and thus Proposition

3.9 applies. In conclusion, while both {wθ} and {uθ} can be thought of

as mapping into (but not onto) N, we can attribute the difference in the

results lim(9_^/ ( y ) uθ Φ uQ and lim^_ /̂ ( , wθ = wQ to the difference in the

homotopy types of the image: nλ(N — y) Φ πxN.

Remark 2. In the remark after Proposition 3.9, we required g(s) —• c»

as 5 -• oc, so that d~(w*, i&5) —• oo, otherwise our arguments would

show that both could be approximated by the same maps fs and would

then converge to the same map w. Now when we constructed the har-

monic map w: (M, σo\dz\2\p) -• (N, p) prior to Proposition 3.1, we

did so as the limits of harmonic maps ws: (Ms, σs\dzs\
2) —• (N, p\dw\2).

Proposition 3.9 and the remark following it now show that if we had con-

structed w: (Af, σ\dz\2; p) —• (iV, />|dfw|2) as the limit of maps ws:

(A^jOylrffjl2)—>(N,p) in the proper homotopy classes with (A/^σJrfiJ2)

limiting on (Λ/, σ\dz\2 /?) in Teichmuller space, and (M, σ|rfi|2 /?) is

a surface with nodes conformally equivalent to (M, σ|rfz|2, p), then we

must have had w = w .
This concludes the proof of Theorem 3.11, which was stated in the

Introduction, q.e.d.
Since we are interested in constructing a deformation theory near a

noded surface (M, σ\dz\2 p), we need to understand the behavior of
maps w: (M, σ\dz\2\p{, ••• ,p n ) -+ (Af, p\dw\2 \ pχ, ••• , p ), where
the maps send each node p. to itself. These maps can be considered as
maps between cusped hyperbolic surfaces of finite total energy. In this
regard we have the following result of Jochen Lohkamp, the uniqueness
statement of which is contained in [20].

Theorem 3.12 [15]. In each homotopy class of maps containing a dif-
feomorphism w: (Af, σ\dz\2\p{, , pn) — (Af, p\dw\2 \ pχ, ••• , p π ) ,
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taking p{ to Pj, there exists a unique harmonic diffeomorphism of finite
total energy.

Remark. In this situation, we can have nonuniqueness if we drop the
requirement that all the maps have finite total energy. Indeed, consider
the problem of mapping ([0, 1) x [1, oo), \dz\2/y2) to itself, where we
identify {0} x {y} and {1} x {y} to obtain a half-infinite cylinder, with
the boundary conditions on the map w being w(x, 1) = (x, 1) and
l i m ^ ^ w(.x, y) = oo. The harmonic map w(x, y) = u(x) + iv(y) =

x+iv(y) satisfies v{y)v"{y)-vι(y)1+\ = 0 and has one solution v(y) =y
of finite energy and a one parameter family

vc(y) = (l/Vc) s inh[^(y - 1) + sinh"1 yfc\

of infinite energy solutions.
Proposition 3.13. The quadratic differential (w*p)2'0 of the map of fi-

nite total energy w: (M, σ\dz\2 pl9...9 pn) -> (M, p\dw\2 pl9...9 pn)

is holomorphic with poles of at most first order at the punctures {pj}. Even

if the quadratic differential is regular at p , but not identically zero, then

the holomorphic energy %?{w σ 0 , p) = (p(w)/σo(z))\wz\
2 is still singu-

lar at p., where σo\dz\2 is a nonsingular, nonvanishing Euclidean met-

ric in a neighborhood of p. If the quadratic differential vanishes every-

where, then %f{w\ σQ9 p) = {p(w)σ(z))\wz\
2 = 1 for the hyperbolic met-

ric σ\dz\2 otherwise, %?{w\ σ 0 , p) = (p(w)/σ(z))\wz\
2 is bounded on

(M, σ\dz\2 px, " , pn) from above, bounded below by 1, and has nodal

limit limz^p{p{w)/σ{z))\wz\
2 = 1.

Proof In a neighborhood of a puncture p, we consider a neighborhood

U of p uniformized by the disk {0 < \z\ < 1} , and we let σo(z) = 1 in

U so that the domain metric is flat. Let Φ = (w*p)2'0 , and let ^ ( z ) be

the holomorphic energy density (p(w)/σo(z))\wz\
2. Now, since </Q(W) =

^ - \Φ\2/{σ2^0) > 0, (2.2a) shows that AJ% > 2K(σ0) = 0 in U (this is

the estimate of Eells-Sampson [7]). So

where BR(q) is a ball of σo-radius R around q e U. Thus for q near
p, R can be chosen to be j | z ( # ) | . Using that |Φ| < σ 0 ^ , we find

\z(q)2Φ(q)\ < (4/π)E(w), and therefore Φ has at worst a second order
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pole at p since w has finite total energy. On the other hand,

ί \Φ{z)\/σJz)dzdΊ< ( 2fcσ«
Ju Ju

so Φ can have pole of at most first order at p .
Recall that if Φ does not vanish identically in U. then Φ has a trajec-

tory structure on U with the horizontal trajectories (the curves Φ(z) dz2 >
0) corresponding to the directions of maximal stretch, where well-defined,
of the differential dw. In particular, there is a horizontal arc γ of Φ
in U which terminates at p, and we choose coordinates (x, y) on U
so that γ = {(x, 0)|0 < x < ε} while σ0 = 1. Then, using again that
|Φ| < c r 0 ^ we can compute the /?-length of w(γ) to be

lp(w(γ)) =

However, since w maps U ~ p to a neighborhood of a hyperbolic punc-
ture, lp(w(σ)) must be infinite, so that ^ cannot be regular at p .

If Φ = 0, then w*p = σ(p/σ)\wz\
2 = σ^\dz\2 so that w is a con-

formal diffeomorphism, hence an isometry of the finite value hyperbolic
surfaces (M, σ\dz\2) and (M, /?|fl?κ;|2). We conclude %? = 1.

Finally, suppose that Φ ̂  0. We wish to show, for the hyperbolic met-

ric σ\dz\2 on ( M ; p 1 5 . , pn), that ^ ( z ) = (p(w(z))/σ(z))\wz(z)\2 is

bounded from above and below by 1, and that limz <^(z) = 1. First we

notice that a proof of the existence of the map w could be accomplished in

a similar way as the proof of Proposition 3.1: we could consider maps be-

tween compact hyperbolic manifolds ws: (Ms, σs\dz\2) -* (Af, ps\dws\
2)

so that E{ws\ σs, ps) < K, letting σs\dz\2 -• σ\dz\2 and ps\dwf -•

/?|ύfίi;|2 (using the result of Bers in [5] that the metrics converge uniformly

on compacta) to show that the maps converged in C α(Afr) for every r.

Then we would have

*s = (/^K)Λ^))K*|2 - (P(w)/σ(z))\wz\
2 = JT

inC*~1 |Q(Af r) for every r, and we could prove that %*>\ on (M,σ\dz\2\

px, , /7Π), by showing that ^ > 1 on (Af5, σs\dz\2). The last, how-

ever, follows easily from the maximum principle on the compact Ms ap-

plied to (2.2b), Δσ log^r = 2 ^ - 2 |Φ| 2 /σ 5

2 ^) - 2, where we use that

K(σ) = K(p) = - 1 (see [22, Lemma 5.1]).
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To get a bound in the other direction, we want to apply the Schwarz
lemma for harmonic maps of Goldberg and HarΈl [9]. (We would like
to thank Jϋrgen Jost for suggesting this.) It states that e(w) < 2K2A/B,
where Ricci(σ|ί/z| ) > —A, the Gauss curvature of p\dw\ is bounded
away from zero by -B, and w is a A^-quasiconformal harmonic map. Re-
calling the definition of the Beltrami differential v = wγ/wz, ΛΓ-quasicon-
formality means that supM(l + M)/(l - \v\) < K < oc.

Let Ut be a small neighborhood of a node p. then (Ui ~ pt, σ\dz\2)

can be isometrically embedded in two copies of (0< |£| < 1, |£|~2(log |£|)~ 2

x\dζ\~2). Consider one of these copies and compute that in Ui, because

Φ has a pole of at most first order,

- IT
 = ° (ϊfi •

In particular, |z/| —• 0 as £ -+ P, Since it; is a diffeomorphism, we
may conclude that βf(\ - |i/|2) = / > c on the compact complement of
the neighborhoods Ui of the nodes, so that \v\ is bounded away from 1
outside of neighborhoods of nodes as well. Thus w is AΓ-quasiconformal,
and we may apply the Schwarz lemma of [9] to conclude that %? < 2K2 .

(We remark in passing that the maps of Theorem 3.11 are not K-
quasiconformal for any K since \v\ -> 1 as ζ -> p for those maps.)

We want to show that &(ζ) -^ 1 as £ -> p . . We note first that

< O(|£Γ2 |£|4(log|£|)4) = O(|£|2(log|C|)4).

Thus we can rewrite (2.2b) in Ui as

(3.14) Aσ XogβT = 2{βT - 1) - 2 | Φ | 2 / ( σ 2 ^ ) > 21og^ - C(|£|2(log|£|)4).

The map z = -/logζ sends (0 < \z\ < a, |£Γ2(log|£Γ2)|rf£|2) isomet-

rically onto D = ({0 < x < 1, y > logύΓ1}, y~2\dz\2) with the usual

identification. Relative to the flat metric \dz\2 on D, inequality (3.14)

becomes
V2(β2 4- ^y2(d2 + d2) l o g ^ > 2 log^F - Cy4e~4πy

so that

(d2 + d2) l o g ^ > 4 l o g ^ - Cy2e~4πy.y y2

Then log^ 7 is dominated on [0, 1) x [b, b+L] by a solution of f(x, y) =

(x,v(y))9 where υ(y) satisfies v"(y) - 2y~2v{y) = -Cy2e~4πy

with boundary conditions v{a) = υ(b + L) = s u p M l o g ^ = log2A:2 . One

thus easily computes the solution to this equation and observes that
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v{y) < (const depending on b, K)y~ι. We conclude that \o%β? —• 0

as z —yp7 so that %f —• 1 as z —•p..

4. Coordinates for a deformation neighborhood of a noded surface

Our aim is to generalize Theorem 2.1 to the case where (Af, σ|ί/z|2

px, • , pΛ) is a surface with nodes. Let w(p): (Af, σ|dz| 2 p j , , pn)

—• (Af, pldwf p. , ••• , p. ) be the unique harmonic map, diffeomor-

phic on Af ~ {p{, , pn}, which fixes p. , be in the homotopy class

of the identity map on Af ~ {p{, , pm} , and have positive real lead-

ing coefficients at any second order poles of its quadratic differential; its

existence, uniqueness, and properties are guaranteed by an easy combina-

tion of the proof of Theorem 3.11, Theorem 3.12, and Proposition 3.13.

The quadratic differential Φ(p) = (w(p)*)2'0 is holomorphic on (Af ~

{P\ > * > Pn} > o\dz\2) with pole possible at the nodes {p{, , pn) . Our

goal is to parametrize the neighborhood JV by these quadratic differentials

and some auxiliary parameters {τ;} e {Sι)n .

We begin with some preparations. We first construct the space & on

which we shall work. Recall that if p. is a node on Af, then a neigh-

borhood of p{ is complex isomorphic to [/. = {(z/? wt) e C2|z/i(;/ = 0,

z(pi) = 0 = w{pi), |z.| < ε, |iϋ.| < δ} . We can create a closed Riemann

surface of genus g, say Af- , t = (t{9 - , tn) near 0 , by the following

process: we first remove the neighborhood {\zt\ < | ^ | , |ιu.| < |^|} from

each Ut to form an open Riemann surface Af-, and then identify q0

and q in Af- if qQ and q lie in the domain of zt and wi, respec-

tively, with z^q^w^q) = ti. Now consider the curves γ. on Af- given

in coordinates by γ. = {\zt\ = \wt\ = y/\t^\}. (Note that, if on Af- , we

collapse the curves γ( to points, we obtain a space topologically equiva-

lent to (Af, σ\dz\2 Pi, , Pn).) Let T. denote a Dehn twist around

γt, and let Γ = Γ(pχ, , pn) denote the group of homotopy classes of

diffeomoφhisms generated by the homotopy classes of Tχ, , TN . The

group Γ is a subgroup of the mapping class group Γ^ of Af-, and is

Abelian because the curves γ. are disjoint. Moreover Γ acts freely on the

Teichmuller space Tg , and so the quotient space & = &g{Pχ, , pn)

is a smooth (3^ - 3) dimensional complex manifold.

The manifold 3° is not compact, and we next describe a family of Rie-
mann surfaces which represent a family of points leaving all of the com-
pact sets of 2P . There are two such descriptions. First we may choose

o
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3g-3-n linearly independent Beltrami differentials ul9 ••• , i/3 3 — Λ on

( M , σ\dz\2 p{, , pn) supported on a compact subset of M ~[)Ui9

and then a vector ( 7 , 7 ) = (s{, , s3g_g_n , ^ , , ίπ) near the origin

of C 3 ^ " 3 . Next consider the Beltrami differential Σsiui on M - , and let

M denote the Riemann surface which is the quasiconformal defor-
(s,t)

mation of M - determined by the Beltrami differential Σsiuι• ί M—\

is smooth if \tt\ Φ 0 for every z = 1, , n . In this way the coordinates

{(s{, , s3g_3_n ,tl9 > , ί j l ^ ^ 0} parametrize an open set in &g : a

family Λ/ - - leaves every compact set in & if some of the / tend to

zero.

Alternatively, choose curves [ y n + 1 ] , ••• , [73«_3] on the smooth sur-

face Mt so that Mt ~ {γγ, >•- J B J Λ + P ^3^-3} i s a collection of pairs

of pants. Next supposing that (Mt, σt\dzt\
2) represents [σt] e T , let

(ΊK) = /ff((ΪJΊ]). . V 3 ^ = V [ W ) a n d ( W . . VsK))
represent the Fenchel-Nielsen length and gluing coordinates, respectively,

for [σt] (see [1]) with respect to yx,...9 ϊ^g-3 - ^ o t e ^ a t ^ e s e t { ^ P J

Pn}
 u

 {^AI+1 > '" > ^3^-3} ^s a P a ^ Γ °f P a n t s decomposition for the noded

surface ( M , σ\dz\2 p{, , pn), some pants of which are degenerate

(i.e., have cusps instead of a geodesic boundary of positive length), and let

/,(σ) = 0, - . . , / » = 0, / B + 1 (α) = / σ ([7 n + 1 ]) , - , / 3,_ 3(σ) = lβ([Y3g_3])

and θ π + 1 ( σ ) , ••• , cr3^_3(σ) represent the Fenchel-Nielsen length and glu-

ing coordinates for the noded surface (M, σ | d z | 2 ;pl9 - , pn) with re-

spect to {pl9- , p Λ } U {yrt+1, , 73^_3} here θ{{σ), , βπ(σ) are

undefined. Bers [5] showed that if (M, σjrfzj 2) were a family of smooth

hyperbolic Riemann surfaces without nodes with Fenchel-Nielsen coordi-

nates (l(σt), θ(σt)) tending towards (/ (σt), θ(σt)), then the hyperbolic

metrics at\dzt\
2 could be chosen to converge to σ\dz\2, uniformly on

compacta. So let 3Sg = 3§g{px, , pn) denote the set of noded Riemann

surfaces (M, a\dz^\ p. , . . . , / ? . ) with nodes at a subset {p. ,...,p. }
j\ jm j\ jm

of {pχ, , pn] and equipped with hyperbolic metrics σ'\dzf\2 we form

the space &g = 96

g U&g with a topology given by convergence of Fenchel-

Nielsen coordinates. We could equivalently describe the topology on &

by declaring that the correspondence M —•("?, t) e C3g~3, (7, t)

near the origin, is a neighborhood chart centered at (M, σ\dz\2 ;p{,..., pn)
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and that similar coordinates are neighborhood charts at other elements of
Sg (see [6]).

The point is that Fenchel-Nielsen coordinates provide a nice description
of a neighborhood JV of our original nodedRiemann surface (M, σ\dz\2;

px, , pn) e £P . In particular, we can describe such a neighborhood
Jf c 3P as consisting of those hyperbolic surfaces (M, p\dw\2 pχ, ,
P: ) whose nodes are a subset of {p,, , p\ and whose Fenchel-Nielsen

Jm i n

coordinates satisfy (a) /.(/>) < ε, / = 1, , n (b) 0.(/>) undefined for
1 < / < n and / € {7\ , , jm} (c) 0 < 0.(/>) < In when 1 < i < n and
i ί O p , 4 1 ; and (d) |0,.(/>) - ^(σ) | < a for * + 1 < / < 3^ - 3.
Here, because we work in the quotient space 3ΰ

g = Tg/Γ, we identify
points whose twist angles at the curves yχ, , yn (when defined) differ
by 2π. _ _

In this way, yV n£P is the product of n punctured disks, one for each

node p{, with 6g - 6 - 2n intervals, one for each curve in {yΛ+1, ,

y w J Note that Jt9 = 3°J(TJT) and that 0°Q is a branched cover

of ^ . Let π\&g-+ JKg be the covering map, let b e 3§g , let JV be a

neighborhood of & in cί3 , and let TV = π(yΓ ~ ^ ) be an open set in

^ . Then JV is a branched cover of the closure of Jf in ^ # ^ .

Let / b e a neighborhood of (Af, σ\dz\2 ;p{, --- 9 pn) in &>g, and

equip J ^ with the Fenchel-Nielsen coordinates (/ , θ), 0 < 0/ < 2π

when defined, as described above. Let τ = exp iθ.. For (M, /?|ί/tί;|2 p. ,

• , Pj ) representing [p] e JP , let QD_2 n(σ) = QD_2(σ) denote the

(6g - 6 - ή)-dimensional real vector space of quadratic differentials which

are holomorphic on (M ~ {p{, , pn] , σ\dz\2), have poles of at most

second order at pχ, , pn , and are such that the leading coefficients αι_2

(of any second order pole at p.) satisfy αι_2 G R + . Here we implicitly
assume that the leading coefficient at a node of a meromorphic differential
has the same value when evaluated from the perspective of either compo-
nent of a punctured neighborhood of the node.

Let Qn{σ) = QD_2 n x (S] )n/ - denote the product of the above vector

space with n copies of Sι, labelled SJ (one for each node p{), modulo
an equivalence relation:

( Φ , T , , . t j - ί Φ . c , , • • - , : „ )

if for each /, either α_2 = 0 or τ ; = C;
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We define a map Φ: J^-> Qn(σ) by Φ([p]) = ((w(p)*p)2'°, τγ(p),
•••,τn(p)).

Theorem 4.1. Φ is a homeomorphism onto a neighborhood of 0 in

Qn(°)

Proof. First we prove injectivity. Suppose Φ = Φj = Φ 2 e QD_2 n(σ),

and consider the functions %fχ and %?2 , where ^ = {pi{wi)lσ{z))\(wi)z\ ,

a n d w t : ( M , σ \ d z \ 2 p χ , ••• , p n ) - > ( Λ / , p ^ d w f p j ^ ••• , p ; j i s t h e

harmonic map corresponding to Φ z . Now, if Φ has a pole of second

order at p , then

^ J J / Φ J ) ] |
^ |Φ2 |/(σ|i/2 |) Ii/J

and since, by Lemma 3.6, |ZΛ| -+ 1 as z -• p . , we see that
as z —• p 7 . If Φ has a pole of first order or is regular at, p., then by
Proposition 3.13, we have that ^ —• 1 as z —> p . , so that ^ / ^ -> 1 as
z ^ Pj. By taking the difference of two copies of (2.2b), we obtain

(4.1) Δ l o g ^ / ^ - 2 = 2[1 + | Φ | 2 / ( ^

Now, if %?XIM?2 were not identically unity, there would be an interior
maximum for ^ / ^ , which, after possibly reversing the roles of ^ and
^ , we can take to be greater than one. Thus the left-hand side of (4.1)
would be nonpositive and the right-hand side positive. So J ^ = %?2. Thus
w2 o w~ι is an isometry between wt(M - {pχ, , pn}) since

If Φ has a first order pole at p., then w^p.) = p y , and iϋ2 o w~λ ex-

tends to an isometry in a neighborhood of p . Since w2 o K;" 1 is an

isometry off of M ~ {p{, , pn} , the Fenchel-Nielsen coordinates cor-

responding to γn+ι, , y3g_3 agree. Now, if Φ has a second order pole

at Pj, and Φ{ - Φ 2 , then the leading coefficients aj_2 of Φ t and Φ 2

agree. Moreover, in the usual coordinates for a component of a neigh-

borhood of M ~ p7-, /Λ(iι;.([0, 1) x {y})) -• 2yaL2

 a s ^ "^ °° a n d

^^([0, 1) x {y}) tends to a constant speed parametrization of the p -

geodesic representative y;(/?z) of [y ;]. Thus, the Fenchel-Nielsen length

coordinates for pχ and p2 corresponding to [y.] agree, and the glu-

ing angles agree because Tj(pχ) = Tj(p2). Hence /?j and /?2 have the

same Fenchel-Nielsen coordinates, and represent the same point in 3P .
(Indeed, because ^ ( [ 0 , 1] x {y}) asymptotically parametrizes ϊjiPf) by
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arclength, under an identification of (Af, p\dw\2;p. , ••• ,p. ) across

γjiP;) prescribed by Tj(p{) = τ -(/>2), the maps w2 o w" 1 extend across
the geodesic 7j(p{).

We are left to show the continuity of Φ. Let K be a compact set of

M, disjoint from neighborhoods of the nodes. Let pk be a family of

metrics representing {[pk]} C J^ with pk -+ pQ; suppose pQ represents

[p0] G / . On K, a subsequence of the metric tensors {pk} converges to

pQ uniformly (for pQ e Jt , this follows from [5]). Moreover, because

maps of cusped surfaces have finite total energy, by the constructions

of Theorem 3.11 for infinite energy maps, a corresponding subsequence

of the harmonic maps wk: (Af, σ\dz\2 p{, ••• , pn) -+ (Af, pk\dwk\
2)

have total energy on K uniformly bounded, say E(wk)\κ < C{. Thus

since K has bounded geometry, from the argument after (3.0) we get our

new standard estimate e(wk)(p) < C2 for p e K, and, as usual, conver-

gence of a subsequence of wk in C 2 ' a , uniformly on K, to a limit har-

monic map w^: (M, σ\dz\2 pχ, , pπ) —• (M, /?0). By using a com-

pact exhaustion of M and a diagonal argument we construct a harmonic

map u ^ : (Af, σ\dz\2\p{, ••• ,p π ) -• ( M , y 9 0 | ^ | 2 ) . Our uniqueness

results then show that w^ must equal w0: (Af, σ\dz\2', p{, - , pΛ) —•

(Af, /?0 |Λu0 |
2). In particular, convergence of wk to iί;0 in C 1 guarantees

that the Φ^ = (wk * pk)
2'° converges to Φo = (wQ * φo)

2'° .
Remark 1. One might be disappointed by Theorem 4.1, which states

that Qn(σ) provides coordinates for JV. Certainly one might have hoped
that the coordinates for JV would be given by a space which did not
require a seemingly ad hoc addition of (Sι)n and a subsequent identifi-
cation. Yet we claim that Theorem 4.1 is, in a sense, optimal: from a
coordinate description of a manifold, one should expect a description of
the tangent and cotangent bundles, and here Qn(σ) gives rise to a bundle

which is isomorphic to T&> . On the other hand, the space QDτtg{σ) of
holomorphic quadratic differentials with second order poles whose leading
coefficients agree at the nodes, while perhaps appearing to be a better hope
for coordinates for JV, gives rise naturally to a bundle over & that is

topologically distinct from T^g and Γ * ^ .

We sketch very imprecisely the reasons for this, beginning with the de-

scription of the cotangent bundle of Jt due to Masur [16] and elabo-

rated upon by Wolpert [25]. The following discussion is local in 3d , and
_____ o

so descends to a neighborhood of an element of 3fg c Jίg as long as
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[(M, σ\dz\2 pχ, • , pn)] is not an element of the branching locus of the

covering π: JV —• π{/V) c Λίl. Since the (complex) coordinates for JV

are sx, , s3^_3, ^ , > O > a ̂ o c a^ description in JV of the cotangent

bundle of & is given by dsx, , ds3g_3_n , dtx, --, dtn. Of course,

one would prefer a more intrinsic description: the cotangent space to &

at an unnoded surface (Af, /?) is given by QD(p), the tangent space by

equivalence classes of the space of Beltrami differentials Belt(/?), and we

would like such a description valid for Jf. To this end (suppose for con-

venience that n = 1), Masur explicitly computes d/dt\t^Q as a Beltrami

differential on an annulus {zw = t \t\ < \z\ < 1, |;| < \w\ < 1} and finds

that
d _ 1 1 zdz

dt ~ 2t\og\t\Ίdz'

The factor (log U|)~X is present because of our choice of coordinates

for the annulus but the factor of t~ι involves the geometry of T*&> .

Now if we suppose that the cotangent covector dt = f(t, z)φ , where φ =

a(z){dz/z)2 is a regular quadratic differential on the surface Λ/- , then

we can compute f(t, z) by using the explicit pairing between Beltrami

differentials and quadratic differentials: {y, φ) = $Mvφ . This yields (as

z z

and we find that we may suppose f(t9 z) = t + 0(\z\) and a(z) = 1 +
0(\z\). Thus we can represent dt — tφ , where φεQDτt%(M"- ). From

this we see that QD cannot represent T*έF : on the overlap & n

JV, the identity transition function between QDΐt%\j? and QDτeg\^ does

not involve the factor t required by Masur's computation, and so the

isomorphism between (λDreg and T*^0 on & r\J\f cannot extend to an

isomorphism on &
One explanation for the factor ί in Masur's formula dt — tφ,

φεQD (M- ), is similar to an explanation of why the harmonic map

coordinates for Jf involve {Sι)n : if we change coordinates for JV
for (7, t, 7) to ( 7 , | ί | , arg/) and use Masur's formula dt = tφ , we find
that d\t\ = \t\Reφ and rf(argί) = I m ^ . Thus these differentials have
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expressions that are independent of the argument arg t, in the same way

that the harmonic maps to (Nθ, pθ) are independent of θ .

Finally, we claim that Qn(σ) naturally gives rise to a bundle Q^ which

is naturally dual to T*& and so represents T3° . Suppose again that

n = 1, and let QD_2n(σ) have a real basis Φo , ψχ, , Ψ6g_s, where

Φo has a second order pole at the node p and ord ψ. > -1. Then in Jf,

we have the coordinates (Φ = /Φo + ΣaiΨi, τ) we describe Q% over JV

as the trivial bundle spanned over J^~ 38g by (d/dl, d/dan d/dτ).

Such a description easily patches together for neighborhoods of & ~
o

&v, so we are left to consider a subneighborhood of N n ^σ defined by

{ε < I < ε} , where we need to provide an intrinsic description of Qn | -

as well as overlap transition functions from Qn \j? to T& \^ . Now

T&^g> is given by formula (2.5) as (2^ r e gl^ > s o w e o n lY n e e d t 0 identify

d/dl, <9/<9α/?and 9/9τ with quadratic differentials on pε^ .

This we accomplish via standard Teichmϋller theory: let v{p[l , α , τ ) )
be the Beltrami differential for the harmonic map w(p(l, α, .τ)):
(Λf, σ|afz|2;/?) —• (Af, /?(/, α, τ)). Then Ahlfors provides a natural
way [2, formula (1.12)], to represent (d/dl){ι/(p(l,a,τ))) and
(d/da )(u(p(l9 ~a , gτ))) as elements of Belt(/?(/, α , τ)) we will denote
these elements as v^(d/dl) and v^(d/da(), respectively. Ahlfors provides
another natural way to represent v^d/dl) and v^d/da^ as elements of
QD(p(l, α , τ)) we denote those elements as Φ^d/dl) and Φ^d/da^ ,
respectively.

The important point about this process is that because the harmonic
maps are independent of τ , the differentials v^d/dl) and v+{d/da.)
will be independent of τ . It is not hard to represent d/dτ as a Beltrami
differential v^{β jdτ) e Belt(/?(/, α , τ)) which is also nearly independent
of τ ; once again we may represent vjφjdτ) as a quadratic differential
Φ.(d/dτ)εQD(p(l,a,τ)). _

We now show that ζ)ζ is naturally dual to T*& . From our construc-
tion, it is not difficult tojsee that it suffices to find a nondegenerate pairing
between (?J and T*^ on {ε2 < I < ε} that extends to a nondegen-

erate pairing on J^. To this end, let ψεT*^ and ΦεQ^ be holomor-
phic quadratic differentials on the same base surface ρε^g and define

p M

Next, we need to relate the (\t\, arg t) coordinates that we used to define

* ^ and the (/, θ) coordinates that we used to define Q^.
o
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In a future article, we will show that for |ί| small, the change of coordi-

nate Jacobian d(\t\, axgt)/d(l, θ) is nearly diagonal on JVΐ\3Pg , i.e., that

the off-diagonal terms are of lower order than the diagonal terms. We are

now in a position to use our formulas d\t\ = \t\ Re φ and d(arg t) = Im φ ,

where φ was independent of t, and, of course, independent of τ .

So, finally, consider for example

j = ί \t\KεφΦm(d/dl)/p2dA(p).
J M

Each entry in the integrand is nearly independent of τ . Since a similar
argument also applies to (d\t\, Φ+(d/dτ)) and ( , d/da^ , and by con-
struction (rf|*|, Φ^d/dτ)) and (d(axgt),Φ+(d/dl)) are comparatively

small, we conclude that the inner product ( , •) between Q% and T*&g

(while itself unbounded on ϊP ) can be normalized to admit a nondegen-

erate extension to all of &>g . Thus Qτ

n is dual to T*&g .

Remark 2. The situation of Proposition 3.13 contrasts with that of

Theorem 2.1. Let w be a harmonic map w: (Af, σ|rfz|2;p) —• (M,

p\dw\2). If (w*p)2'0 has a pole at p, then (Af, /?|ί/^|2) is a cusped sur-

face or a surface with geodesic boundary of positive length. On the other

hand, if (w*p)2'0 is regular at p, then, letting σo\dz\2 be a nonsingular,

nonzero metric in a neighborhood of p, ^JJ(z) = (/?(w)/σo(z))|u7z|
2 is

either regular or singular.

If (Af, />|<iκ;|2) is compact and boundaryless, ^ ( z ) is regular at /?

(Theorem 2.1 and [22]), and if (Af, p\dw\2) is cusped, ^ ( z ) is singular

at p . This suggest a picture of the degeneration of a surface of genus g

in terms of solutions to (2.2b) on a surface (Af, σ\dz\2, p ) : holomorphic

quadratic differentials with poles of order two correspond to points in & ,

obtained by opening the node p those with poles of order one to points

of 38 those which are regular but whose solution ^JJ(z) to (2.2b) is

singular with respect to σo\dz\ correspond to points on 38 and those

which are regular but whose solution ^J(z) to (2.2b) is regular with respect

to σQ\dz\2 correspond either to a point in ^g_x or to a pair of surfaces,

one an element of ^#σ , the other an element of -#„_„ .
S\ S S\

5. Real analyticity of the hyperbolic metrics

We next consider the dependence of the hyperbolic metrics p e JV
upon their coordinates Φ(p) e Qn{o). In view of the representation (2.1),
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it is enough to understand the dependence of ^(Φ(p)) = βf{w{p) σ, p)
upon the coordinates Φ(p) e Qn(σ)- We note that we can unambigu-
ously write &(Φ{p)) as %f(Φ) for Φ e QD_2n{σ) since ^(Φ(p{)) =

&(Φ(p2)) as long as {w(px)*p{)
2'0 = (w{ρ2)*p2)

2'0, independent of
the coordinates (τ.) used to parametrize the identification of w(p)(M ~
{P\, ''' > Pn}) across the geodesic boundaries.

Choose Φ o E QD_2 n(σ) with Φ o φ 0.
Let βo\t) = βf(tΦQ). Note that here the parameter t is real and posi-

tive; also it is different from the variable of Masur which we used in §4 as
a complex variable for JV. In analogy with Theorem 2.2, we prove

Theorem 5.1. &(t) is real analytic in \ft.
Proof. We argue as in the proof of Theorem 2.2, with some tech-

nical modifications necessary because of the noncompactness of M ~
{P\> -' 9 Pn) ^ the vanishing of the injectivity radius of (M ~ {px, ,
pn), σ\dz\2) as z —• pi, and the existence of a nontrivial kernel for Δ σ - 2 .

We restrict ourselves to the case where (M, σ\dz\ p) has a cusp only at
p , the general case following from a suitable infusion of notation.

As usual, our principal tool is the explicit solution (3.1) of the case when

the domain (P, σ\dz\2) is a half-infinite cylinder, the target (N, p\dw\2)

is a hyperbolic cylinder with geodesic boundary of hyperbolic length /,

and / solves the harmonic mapping problem with appropriate boundary

conditions. Here we will choose each component of (P ~ p, σ\dz\2) to

be isometrically Pa = ([0, 1) x (a, oc), y~2\dz\2), where a > 1. In that

case, (/*/?)2'° = \l2 dz2 and the holomorphic energy

1 r I 1 4-Pιχί~y),/(\ -l\l(\ + / " Ί

(5.1)

One sees that for fixed y, A(/) is real analytic in / (for / small), and
a straightforward computation confirms that, for fixed y9 h(l) -» 1 as
/ -• 0. Moreover, h(l) satisfies (2.2) on the cylinder, i.e,,

(5.2)

With these facts in mind, we construct an approximation Jf(ή to
using appropriate functions h(l) in the cusps. Let a_2 denote the leading
coefficient of the second order pole of Φ o at the node p, where we set
a_2 = 0 if Φ o has a pole of first order or is regular at p . We consider a
neighborhood U about the node p so that U is isometrically two copies
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of Pa for some a. We then define 3ΐ(t) in U to be h(2(a_2γ
/2), where

by A(0) we mean the function which is identically unity. We then extend
JΠj) over the rest of M so that it is nonzero, C°° in z, and real analytic
in yjt\ we also require that Jf(0) = 1. (One way to do this is to choose
ε so that Pa_ε isometrically embeds in (Af, σ\dz\2), set ^"(ί) to be

identically one in M ~ |J{image(Pα_ε)} and then extend ê Γ(f) smoothly
across the annuli [j{Pa_ε ~ Pfl}..)

We consider the functions g(t) = ^(t)/Jf(t) and &{t) = log g(t).
The two subcases are when Φ o has a second order pole at p and when it
does not.

Suppose that a_2 Φ 0. Then from (5.2), 3f{t) satisfies

(5.3) Δlog J f ( 0 = 13ΠJ) - 2t2(a_2)
2/(σ23r(ή) - 2 + a(t),

where a(t) is the error coming from extending 3£{t) over Λf ~ C/ we
see that α(ί) is supported in the complement of U. From (2.2) and (5.3)
it follows that

bS{f) = Δlogg(ί) = Δlog^( ί) - ΔlogJΓ(ί)

2 / ( l ol. ~a-2)

- t o .

In the proof of Theorem 2.2, we analyzed (2.2) for βf(t) for the present
theorem, we will analyze (5.4) for &(t). As in Theorem 2.2, we will show
that S?(t) is analytic in y/t by the use of the Analytic Implicit Function
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Theorem. To this end we consider the Banach space

3S = C2'a(M ~U)n{u: ya\u\co, y > | c « , ya\y2Aσu\co,

ya\y \u\Ca bounded on ί/}

with norm

\u\# = M ^ . α ^ ^ + sup/> | c o + s\xρya\u\Ca

0 v ' zeu °
Here we have identified the neighborhood of the cusp with its isometric
copy as a strip of the upper half-plane, and we have computed C° and
Ca norms with respect to the Euclidean (σ0) structure of that strip (we
then explicitly display the factors of y that appear). Similarly we define

g? = Ca(M ~ U) Π {/: ya\f\co, ya\f\Q bounded on U }

with norm

= \U

C°(M~U)
z€U

We then consider the map

defined by

+ sup/Vlco + supyα|/|Cα.
z€U eU

1 + "2

σ25ίr{tγ

Since ^ ( 0 ) = 1, we see that F(0, 0) = 0; since 3£{t) is analytic in
y/t, we see that F is an analytic operator in yft. Before proceeding,
we observe that in Pa = [0, 1) x [α, oo), in view of the definition (5.1),
the conformal invariant σK(t) satisfies 0 < C" 1 < σK(t) < C < oo
and ya\σK(t)\c*,U) < C for t > 0; also, using the conformal map z =

(-i/2π)logw from the punctured disk {0 < |tϋ| < e~2πa} to Pa we see

that | Φ 0 | 2 - a2_2 = O(e~2πy). Finally we recall that a(ή is supported off

Pa'
By considering separately the cases t = 0 and t > 0, we see that F is

a bounded operator.
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Next we consider the map of Banach spaces dF#(3?(0) ,0):&->&
given by dF#(&(0)90)[ψ] = tiσψ - 2ψ. We need to show that
dF#{S?{0)90)[ψ] is invertible. So let fe& and let Ur denote UnMc

r.
We first build a solution ψ to Aσψ - 2ψ = f by considering solutions
ψr, to the problem Aσψr - 2ψr = f in M ~ Ur with boundary conditions
Ψr\d{M~ur) = 0 By the maximum principle, \ψr\c^M^Ur) < j\f\c°(M~ur)
Thus, for rQ fixed, and for s > rQ, standard elliptic theory [8], Theorem
6.6 gives

< C(r0)

Thus, we get convergence in C 2 ' α of Ψs\iM^u \, as s —• oo, to a solution
j

ψ of Δψ-2ψ = f\ also | ^ | c o ( M ) < i l / | c o ( Λ / ) .
We next estimate \ψ\# 9 which we defined as a sum of five terms.
First we claim that

(5.5) | | ) |
u u

as y -> oo. Since y α | / | < C, we know that if ψ+ satisfies Δ σ ^ + - 2 ^ +

= -Cy~a on Pfl - P^ with ^ 1 ^ ^ ^ ) = i l/ l c o ( M ) > ^ , then by the

maximum principle, ψ+ > ψ .

On the other hand, as b —• cx>, the solution to the above converges to

< = Cy~a/(2 - a2 - a) + j Γ 1 ( i | / | c o ( ί / ) - C/(2 - a2 - a)) .

Similarly,

Ψ > Ψl = -Cy~a/(2 -a2-a)+ y-\Λ\f\c«{U) + C/(2 - a1 - ga)),

the limit as b —> oo of solutions ^_ satisfying Δσψ_ - 2ψ_ = Cy~a

with y j ^ p ^ ) = -\\f\c\u) < Ψ- S o y°ΊH < max(y α |^ + | ,y α |^_ |)

< ίΓ(α) s\xvvy
a\f\ and the claim follows.

Next we estimate ya\ψ\c«,u) To do this we consider the equation

Aσψ = 2ψ + f as an equation on the flat cylinder ({/, σo|ύfz|2 = \dz\2)

this means that we write the equation as Aσ ψ = y~2(2ψ + / ) . So on

the flat cylinder (Ur ~ (7Γ+1, |ί/z|2) of modulus 1 (independent of r), we
have the trivial estimate [8, Problem 4.8]
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so that

( 5 6 ) < ς ( / V | c o + 2ya~2\ψ\co + / " 2

< C 3 s u p / | / | .

For the third and fourth terms of \ψ\a , we notice that

\y2\ψ\C\M)

moreover, y>2A,oVlc°(ji/) < 2yα|
Finally,

yA |j;2Δσo^|Cα = ya\2ψ

Equations (5.5)—(5.8) allow us to conclude that \ψ\a < C5\f\# so that

\\dF{S?(0),0Γι\\<C5.

Since F and dF(3?(0), 0)" 1 are bounded maps, the Analytic Implicit
Function Theorem (again [4, Theorem 3.3.2, p. 134]) implies that there
exists a family of solutions &(y/t) of F(&(y/t), y/t) = 0, and that &(y/t)
is complex analytic in y/t 9 for \\β\ sufficiently small. Since 3?(y/t) G 3§ ,
yCL\3?(\β)\ is bounded in U, so that &(\β) —• 0 as z —• p . A maximum
principle argument shows that S?(yβ) is then the unique solution to (5.4)
that vanishes into the cusp. Thus, since \o%%'(t)-\o%3lr(t) satisfies (5.4)
and &(t) = 5?(t)e^{t), we conclude that &(t) is also real analytic in
y/t. This concludes the proof of the theorem for the case of Φ o having a
second order pole at p .

The proof in the case where Φ o has at worst a first order pole at p is
analogous and easier, once we set K(t) = 1 and notice that, in this case
Φ o itself, as a function on U, decays exponentially in y . q.e.d.

Consider a hyperbolic metric pt representing a point [pt] in JV with

Φ([pt]) = (tΦ0, τ), for some choice of τ . We want to give an explicit

series development for w(pt)*pt in y/t, as in formula (2.5). Using that

(w(pt)*pt)
2'°tΦ0dz2, we see from formula (2.1) that it is enough to give

an explicit series development for
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We formally expand (2.2b) as

to obtain
sensical

- 2

= Σ^{n)(0)(V~t)n/n\ in terms of the apparently non-

= (Δ -

- (Δ -

6 ^ ( 1 ) ( 0 ) 4 - 4 8 | Φ 0 | 2 / σ 2 ] ;

)~'here we have the problem that on a surface with k nodes, ( Δ - 2) has a

Ik -dimensional kernel, one dimension for each cusp. Let a^}2 denote the

leading coefficient cf Φ o at p. set I. = 2yjta{i\ and / = (l{, , ln).
To fix the appropriate value of the kernels, we observe

Corollary 5.2. For every m>0,

lim
d
dΓ

Λ \ d

1=0
= 0,

where by z —• p., we mean y —> oo as in the standard model U of the

cusps around p..

Proof Suppose p. = p and compute

in U. Now ^(/) was constructed in the proof of Theorem 5.1 from the

Analytic Implicit Function Theorem, whose proof is by the construction

of a majorant series; thus, for 3?(/) = X)^ ( m )(0)/m/m! converging for

/ < ε, we have the estimate | |^ ( w ) (0) | |^ , < Cε~mm\. So for each m , we

conclude that )>Ί^ ( m )(O)| co ( c / ) < Cε~mm\ so that l i m ^ ^ | ^ ( m ) (0) | = 0.

One finishes the proof by showing inductively that

is sufficient to prove limy_o o(ί/w/c?/m)(<r(/) - h(ί)) = 0 since A(0) =
= 1. q.e.d.
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Recall the spaces QD_2n{σ) and Qn(σ) which were defined prior to
Theorem 4.1. We can now prove Theorem 5.3, which was stated in the
Introduction.

Proof of Theorem 5.3. Let (AT, σ\dz\2 pχ, , pk) be a surface with

k < n nodes which represents a point [σ] in & , and let Jί c & be a

neighborhood of [σ] equipped with Fenchel-Nielsen coordinates (/ , θ) e
R 6^" 6. Because all of the length coordinates are finite, we can assume that
the Fenchel-Nielsen coordinates were chosen with respect to a pair of pants
decomposition {yx, - , 73^_3} that included the nodes, say, γ. =p. for

1 < i < k. A point [p( I , θ)] in JV represented by Fenchel-Nielsen

coordinates (/ , θ) determines: (i) a harmonic map w(l , θ): (M -

U{P;}, σ\dz\2 pχ, , pk) -> (M, p(ί, 0)), (ii) an element (Φ(7, ~θ),

τ ^ ^ ) , . . . , τk(θk)) e Qk(σ), and (ii) a function ^ ( 7 , ? ) =-T(Φ(7, 0))
as in the opening of this section.

We first claim that Φ( / , θ), regarded as a map of a neighborhood of

the coordinate space R6^"6 to QD_2 k(σ), is real analytic in / , θ . This

requires some preparations. Choose a real basis {Φ1, ,Φk, Φ^ + 1 , • ,

Φβg-β-k} °f Q^-2 k(σ) w ^ ^ e P Γ 0 P e r t y that, for 1 < i < k, Φz has

a second order pole at pi with leading coefficient equal to one, and is

otherwise regular or has at worst first order poles at the other nodes, and

is the only basis element which has a second order pole at pi. Thus, for

j > k, JM \Φj\dxdy < oc, and the set {Φ^+1, , Φ6^_6_^} forms a

basis for the subspace Lι(QD(σ)) c QD_2 k(σ) of integrable holomor-

phic quadratic differentials on (M, σ\dz\2 pχ, , pk).

We claim that we may write Φ( / , θ) in terms of this basis as

- > _ > * 6g-6-k ^ _^

(5.9) φ ( l , θ ) = ̂ 2 ( l j / 4 ) Φ i + ^ t j ( l 9 θ ) Φ j 9

i=\ j=k+\

where the coefficient of Φz for 1 < i < k is the Fenchel-Nielsen coordi-
nate corresponding to the node pt. To see this, we first write

ds2(l, 0) = tι;(7, Θ)V(7, fl)

(5.10) = φ ( 7 ,

+ |Φ(

The right-hand side of (5.10) represents a hyperbolic metric cut along some

|Φ(7, ~θ)\2/^(l, ~θ))dzdz + φ(ϊ, ~θ)d-z2.
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simple closed geodesies γ. (corresponding to pt) of length I., and The-

orem 3.11 asserts that the leading coefficient of Φ ( / , θ) at p. is /?/4.

This justifies the form of (5.9); when we are referring to Φ ( / , θ) or

&( I , θ) as functions of the coordinates lχ, , lk , tk=ι, , t6g_6_2k ,

we will write Φ( / , θ) as Φ(/j, Jk,~t) and ^ ( / , (9) as

To show that Φ( / , θ) is analytic in (/ , θ), we first check that (/ , θ)

is analytic in (^ , , lk, 0 and 7 and also that

(5.11)
, Θ3g_3)

is invertible.

Consider again (5.10): by (5.9), Φ( / , θ) is constructed to be analytic

in (/j, , lk , t), and Theorem 5.1 shows that ^ ( / , θ) is analytic in

(/1? .. ,lk,7). Thus, w{Ί ,~θ)*p{l ,~θ) i sanalyticin (/j, ••• , / Λ , 7 ) .

Since the quantities / f c + 1 , , / 3 ^_ 3 , θ f c + 1 , , Θ3g_3 can be

computed from the right-hand side of (5.10), we see that lk+ι, - ,

I3g_3 are analytic in {l{, , lk, 7 ) . Since (^ , ,lk,θl9' , θk)

are trivially analytic in (l{, , lk, τx, -•• , τk), ( / , 9 ) is analytic in

(/!,-•• , /fc, 0 and "τ .
That the matrix (5.11) is invertible will follow once we show that

(i)

(ii) ^ ' • ^ • ^ • U is invertible,
d V ^ + i ? ••• , ^ - 6 - f c )

( i iA) ^TT1^ h^T i s diagonal.

First we claim that, for j > k and / < k, we have dljdt^ = 0 .

To see this, consider a length function /f.: ./f —• R, i < k, and a fam-

ily of metrics rf^2(iy) defined by (5.10) and (5.9) by setting Φ ( / , θ) =

tjφj e Lι(QD(σ)). Then from Theorem 4.1 and Proposition 3.13 one

can compute that ds2(tj) defines a family of noded surfaces with I. — 0 ,

k
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Moreover, we notice that if we choose Φ(/ , 0) = Σyfjk+Γ** Φ in

(5.9) so that E t = i ( ^ 2 / 4 ) φ

z = 0, the corresponding metrics ds2(l , 0)

represent a neighborhood in JV n 3S this follows from the proof of

Theorem 4.1. We check that d%?( I , ~θ)/dtj\σ = 0 for all j so that

has entries depending only on the holomorphic (2.0) parts of ds2( I , 0 ) .
Then since, for the Teichmϋller space of a punctured surface, the gradi-
ents of the Fenchel-Nielsen coordinates can be represented as a basis of
Lι(QD(σ)) [23], we conclude that (5.12) is invertible.

Finally we observe that for a , / < k , we have dla/dli\σ = δf . While

this follows from the construction of (5.9) and (5.10), one could also eas-

ily check that la = 0(1 ̂ δf by first using Corollary 5.2 to directly com-

pute the Taylor series of ds2(l , 0 ) , and then observing that because

K(ds2(l , θ)) = - 1 , the function la is determined by the length and
geodesic curvature of a simple curve homotopic to pi. This concludes the
proof that (5.11) is invertible.

Now since (lχ, , I3g_3, θk+ι, , Θ3g_3) are analytic in l{, , lk ,

tM , , V 6 _ £ and (5.11) is invertible, /,, • , lk , ίfc+1, , / ^ ^

are analytic in l{, -• , I3g_3, 0^+1, , Θ3g_3. Since Φ( / , 0)

is analytic in (lχ, , /̂  , ίΛ+1, , t6g_6_k), we conclude that Φ( / , 0)

is analytic in (/ , 0 ) . By Theorem 5.1, β?( I , 0) is analytic in / t, ,

K> *fc+i > " " ' hg-6-k> hence in (/ , 0 ) . Finally, consider formula

(5.10). Since Φ(l,~θ) and &(ΐ,Ί)) are analytic in ( 7 , ^ ) , so is

w(/>( / , 0)))*/>( / , 0 ) , proving the theorem, q.e.d.

We end by describing the Taylor series in (/ , 0) of the real analytic

family ds2( / , 0 ) . If we consider the basis Φ{, , Φ6 6_k E QD02 k

as basic data, then from (5.9) and (5.10) it follows that we need only

describe the expansion for %*( I , 0 ) . This we gave prior to Corollary
5.2; we recall that Corollary 5.2 implied that we could fix the values of

(Δ - 2)" 1 appearing in the series for J%*( I , 0) by comparison with the
function h(l).
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Corollary 5.4. The family of metrics ds2(l , θ) admits an explicit real

analytic expansion in terms ofΦ(l,θ) and the operator (Δ- 2 ) " 1 , where
the singular terms at the node p. coming from ker(Δ - 2) can be deter-
mined by comparison with the asymptotics of the expansion for h(lj). In

particular, if (M, σ\dz\2 p) is a hyperbolic surface with one node p, and
Φ o is a holomorphic quadratic differential with leading coefficient = 1,
then

ds\l) = \l2ΦQdz2 + σ(l + \k{z)l2 + O(l3))dzd~z + \l2ΦQdY2

is the expansion of for a family of hyperbolic metrics with core geodesic

of length /; here (Δ - 2)k{z) = 0 and k(z) - y2 is bounded in y as

oo.
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