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SOME NONDIFFEOMORPHIC
HOMEOMORPHIC HOMOGENEOUS

7-MANIFOLDS WITH POSITIVE
SECTIONAL CURVATURE

MATTHIAS KRECK & STEPHAN STOLZ

1. Introduction

One believes that the existence of a metric with positive sectional cur-
vature imposes strong restrictions on the topology of a manifold. If a
manifold admits such a metric, one can ask whether there is a second
smooth structure on this manifold admitting again a metric with positive
sectional curvature. Up to now no such examples were known.

In the case of the 7-sρhere Gromoll and Meyer showed that there is a
metric on an exotic 7-sphere with nonnegative sectional curvature, but it
is still open whether there is a metric with positive sectional curvature [7].

If the manifolds are homogeneous spaces and the metrics are also homo-

geneous, a classification of a certain class of such manifolds up to isometry

is known (compare [2]). In particular there is a family of such homoge-

neous spaces, called Wallach spaces, Nkι = SU(3)//^ /(5'1), parametrized

by integers k, / with kl(k + /) Φ 0. Here ik ι: Sι -• Sι x Sι is the ho-

momorphism defined by z —• (z , z ), and we identify Sι x Sι with a
fixed maximal torus of SU(3). Replacing k by rk and / by rl does not
change the subgroup ik z(5 ), and we will assume throughout the paper
that k and / are coprime. These spaces admit a metric of positive sec-
tional curvature which is SU(3)-invariant [2, Theorem 3.2]. If in addition
k φ 1 mod 3, they also admit an Einstein metric [14] (this restriction
seems unnecessary; compare [4, Theorem 9.101, p. 264]); the metrics
constructed in [2], however, are not Einstein.

Another motivation for our interest in the Wallach spaces is the follow-
ing. In [13] we gave a homeomorphism and diffeomorphism classification
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of a similar family of 7-dimensional homogeneous spaces Mkl which
are quotients of SU(3) x SU(2) x U(l) by a subgroup with Lie algebra
isomorphic to SU(2) x U(l) x U ( l ) . The most surprising discovery was
that these manifolds are sometimes homeomorphic, but not diffeomorphic.
There are speculations that this phenomenon cannot occur for homoge-
neous spaces G/H with G simple and simply connected. The Wallach
spaces provide a test case for this.

The manifold Nk ι is simply connected, and its cohomology ring looks

as follows: H2{NkJ\Z) = Z, H\NkJ\Z) = 0, and H*(NkJ\Z) is a
cyclic group of order N(k, /) = k2 + kl + l2 generated by u2, where u is

a generator of H2(Nk χ, Z) . Thus the cohomology of the Wallach spaces

Nk ι has the same structure as the cohomology of the manifolds Mk ι ,

and the theory developed in [13, §3] can be used to classify the Wallach

spaces, too.
We work in the oriented category, i.e., the manifolds under consid-

eration are oriented manifolds, and diffeomorphisms (resp. homeomor-
phisms) are orientation-preserving. We orient Nk ι by the convention
described in (4.3) below.

Theorem. Assume (k, /) = 1 = (k, 7).

(i) Nkl is homeomorphic to Nk j if and only if N(k, /) = N(k, I)

and kl(k + l) = kϊ(k + ϊ) mod2 3 3 7v', where N = N{k,l) = k2 + kl + l\
(ii) Nk ι is diffeomorphic to Nk j if and only if N(k, I) = N(k, I)

and kl(k +7) = kϊ(k + 7) mod 25 7λ{N) 3 TV, where N = N(k, I) and

1 otherwise.

It turns out that the question whether there are two pairs k, / and k, /
of coprime integers such that the condition for homeomorphism holds,
but the condition for diffeomorphism does not hold, is a difficult one.
A computer calculation by Peter Gilkey revealed that for N < 106 no
such pairs exist. An attempt to prove that this holds in general failed. It
turns out that the above question can be expressed as a question about the
arithmetic of the ring of algebraic integers in the cyclotomic field Q[ω],
where ω = (1 + >/-3)/2 is a primitive sixth root of unity, since k2 +
kl + /2 = N(α) and kl(k + /) = Tr(α3/3λ/z3) for a = k + lω. Here
N(α) = aa is the norm and Tr(α) = a + a is the trace of an element
a e Q[ω]. Using the fact that Z[ω] has unique factorization one obtains:
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Corollary. There are Wallach manifolds which are homeomorphic, but
not diffeomorphic whose fourth cohomology group has order N if and only
if there are primitive elements γ, δ e Z[ω] such that N = N(γ)N(δ) and
23 3 N divides Ίτ(γ3/3y^Ί) Tτ{δ3), but 25 3 lλ N does not, where
λ = 0 if N is divisible by 1 and λ = 1 otherwise.

A computer search for such elements γ, δ by Don Zagier showed:
Corollary. If M and M are homeomorphic Wallach spaces whose

fourth cohomology group has order N < 2955367597, then M is diffeo-
morphic to M. On the other hand, the Wallach spaces N_56m 5 2 2 7 and
N_42652 6 1 2 1 3 are homeomorphic, but not diffeomorphic. The order of their
fourth cohomology is 2955367597.

This is the first example of homeomorphic but not diffeomorphic mani-
folds admitting metrics with positive sectional curvature as well as the first
example of such manifolds which are homogeneous spaces of the form
G/H with G simple and simply connected. Furthermore both manifolds
admit Einstein metrics.

If M and M are homeomorphic but not diffeomorphic manifolds of
the type under consideration, then there exists an exotic 7-sphere Σ such
that the connected sum M#Σ is diffeomorphic to M. This follows from
Theorem 3.1 below (note that in our situation si = s( for / = 2 , 3 ) .
Moreover the exotic sphere Σ is uniquely determined by M and M,
since it is detected by the sχ -invariant. The group of exotic 7-spheres
is isomorphic to Z/28 generated by Σ(2s8), the boundary of the Milnor
manifold M(E%) [10].

In the example mentioned above this exotic sphere is 7 Σ(2?g). Zagier
and later Odlyzko have used large computers to find 23 other examples.
The corresponding exotic spheres in these cases are always divisible by
7 (and all possibilities occur) except in one case where it represents a
generator. The range of N in these examples is between the number above
and approximately 2 1020 . It is open whether there are only finitely many
such pairs. A table containing the first fourteen examples can be found at
the end of §5.

Two manifolds of type Nk ι = S\J(3)/ikJ(Sι) are obviously diffeo-

morphic if the corresponding subgroups ik t{Sx) are conjugate in SU(3).

The example below shows that the converse is not true. We note that the

subgroups ik [(Sι) and i~k j(Sι) are conjugate in SU(3) if and only if the

complex numbers a = k + ϊω and a = k + lω are in the same orbit of the

action of the Weyl group W of SU(3). Here we identify the Lie algebra

of the maximal torus SU(3) with the complex numbers. The generators
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of W act on C by complex conjugation resp. multiplication by a third
root of unity.

Example. The Subgroups L4638661, 582656^) a n d /-2594149, 5052965^)

are not conjugate in SU(3), but the corresponding quotient manifolds are
diffeomorphic.

The interest in this example comes from the following problem.
Problem (Wu-yi Hsiang [9, Problem 1, p. 160]). Let G be a given

simple, compact connected Lie group and H a nontrivial subgroup of G,
M = G/H. Is it true that the only nontrivial differentiable G-action on
the manifold M is the transitive one?

In the example above we can use the diffeomorphism between the quo-
tient manifolds to carry the standard SU(3)-action on N _ 4 6 3 8 6 6 1 5 8 2 6 5 6

over to the manifold N _ 2 5 9 4 1 4 9 5052965 * ^his n e w a c ^ o n *s n ° t equiv-
alently diffeomorphic to the standard SU(3)-action on N _ 2 5 9 4 1 4 9 5 0 5 2 9 65
since the corresponding isotropy subgroups are not conjugate.

Corollary. There exists an embedding of H = Sι into G = SU(3),
such that G/H admits at least two nonconjugate nontrivial G-actions.

The structure of the paper is as follows. In §2 we recall the definition
of the diffeomorphism (resp. homeomorphism) invariants st e Q/Z (resp.
S e Q/Z), / = 1, 2, 3, from [13]. We use the opportunity to correct our
previous definition of s2(M), which is not a homeomorphism invariant
if M is spin and the order of H4(M', Z) is even (see Remark 2.6). This
mistake however does not affect the main results [13], since none of the
manifolds Mk ι considered there has both a spin structure and a fourth
cohomology group of even order.

In §3 we show that the diffeomorphism (resp. homeomorphism) type of
a closed smooth (resp. topological) 1-connected 7-manifold with a certain
cohomology structure is determined by the invariants si (resp. J ), / =
1 , 2 , 3 . This result may be of independent interest.

For comparison, in [13] we classified smooth manifolds of this type up
to diffeomorphism (resp. homeomorphism) using the si (resp. s() and
additional invariants like the linking form and the first Pontrjagin class.
These additional invariants turned out to be superflous as they can be
expressed in terms of the st which led to a better version of Proposition
9.1 of [12] since [13] was published.

In §4 we compute the invariants st (resp. st) for the Wallach spaces.
In §5 we do the number theory leading to the theorem above and explain
the number theoretic condition leading to homeomorphic, but not diffeo-
morphic Wallach spaces.
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2. The invariants

In this section we recall the definition of the diffeomorphism (resp.
homeomorphism) invariants st(M) e Q/Z (resp. s((M) e Q/Z) of [13].
These are invariants for manifolds M of the following type which in
particular includes all Wallach spaces (see §4).

2.1. M is a 1-connected smooth (resp. topological) closed 7-manifold
with H2(M Z) ^ Z, H3(M Z) = 0, and HA{M Z) a finite cyclic group
generated by u2, where u is a generator of H2(M\ Z) .

More generally there are invariants s((M, u) e Q/Z (resp. st(M, ύ) e
Q/Z) for pairs (M, u), where Af is a 7-manifold with H4(M; Q) = 0,
and u is an element of H2(M\ Z) such that w2(M) = 0 (spin case)
or w2(M) - u mod 2 (nonspin case). It turns out that these invariants
do not change if we replace u by -u. If M is a manifold of the type
(2.1), and u is a generator of H2(M\ Z), then ^(M) = st(M, u) (resp.

The invariants st(M, w) (resp. s (M, w)) are defined as certain charac-
teristic numbers of a pair (W, z) whose boundary is (M, M) , i.e., W is
a smooth (resp. topological) 8-manifold with d W = M, and z is an ele-
ment of H2(W \ Z) restricting to w on the boundary such that IU 2 (W) = 0
in the spin case and w2(W) = z mod 2 in the nonspin case. Alternatively,
the invariants s( can be defined analytically as in [13].

The following result is proved in §6.
Proposition 2.2. Let M be a closed smooth {resp. topological) Ί-dimen-

sional manifold with an element u e H2[M\ Z) such that w2(M) = 0
(spin case) or w2(M) = wmod2 (nonspin case). Then (M, ύ) is the
boundary of a pair (W, z) in the sense explained above.

Remark 2.3. In [13] we mentioned, but did not prove, that such a zero
bordism (W, z) always exists. This was sufficient for the purposes of [13]
since the manifolds Mk ι considered there are sphere bundles, and the
corresponding disk bundles turn out to provide the required zero bordism.
The Wallach manifolds are sphere bundles, too. Unfortunately, they are
spin manifolds, whereas the corresponding disk bundles are not, and hence
the disk bundles do not qualify as zero bordisms in the above sense. Our
main motivation behind proving that every pair (M, ύ) bounds is that
we need this result for the proof of the classification Theorem 3.1 (even if
we restrict the statement of the theorem to Wallach spaces!)

Let (W, z) be a pair as in the above proposition with H4(d W Q) = 0.
For such pairs (W, z) we define characteristic numbers St(W, z) e Q,
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/ = 1, 2, 3, as follows:

S{(W,z):=(ed/2A(W),[W,dW]),

S2(W, z) := (ch(λ(z) - I)ed/2A(W),[W, dW]),

S3(W, z) := <ch(A2(z) - \)edllA{W),[W9 dW]).

Here d = 0 in the spin case, d = z in the nonspin case, λ(z) is

the complex line bundle over W with first Chern class z, ch is the

Chern character, A(W) is the ^ί-polynomial of ίF,and [W, dW] is the

fundamental class of W. The interpretation of the right-hand sides

is the following. The cohomology classes ch(λ(z) - \)ed^A(W) and

ch(λ2(z) - I)ed/2A(W) are linear combinations of p2, z2pχ, and z 4 ,

where pλ is the first Pontrjagin class of W. These classes can be re-

garded as elements of H*(W, d W Q) and can thus be evaluated on the

fundamental class [W,dW] since p{ and z 2 pull back from classes

in H4(W, dW\ Q). The class edf2A{W) can be expressed as a ratio-

nal linear combination of p\, z2p{, z 4 , and the L-polynomial L{W) -

MΊPi -P2\) - W e interpret (L(W)9[W9dW]) as the signature of W.

For explicit calculations and future reference it is convenient to have

the explicit formulas expressing St(W9 z) in terms of p\, z 2 ^ , z 4 , and

the signature of W. Here we abuse notation by writing p2 instead of

i

(2.4) Spin case: Sx{W9z)= - -1— s ign(W) + -^— p\,

Nonspin case: SX{W, z) = j — sign(PF) + ——p{

1 2 , 1 4

' 2 7 326 3 ' 27 3

) z P ι + ^ \

To obtain an invariant of d W we need to know the values of S{ for
closed manifolds.
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Proposition 2.5. Let S(W, z) = {SX(W, z),S2(W, z)9S3{W9 z)) e

Q 3 . Then

{S( W, z)IW is a closed smooth manifold, w2( W) = 0} = Z Θ Z Θ Z,

{S{W, z)\W is a closed smooth manifold, w2(W) = z mod 2}

= ZθZΘZ,

{S{W, z)|W w Λ c/αra/ topological manifold, w2(W) = 0}

, z)| W w α c/α?α/ topological manifold, w2(W) = z mod 2}

In the difFerentiable case the result was proved in [13, Lemma 3.2]. We
defer the somewhat technical proof in the topological case to §6.

The proposition shows that for smooth manifolds S^ W, z) mod Z de-
pends only on the boundary of {W, z), and we define s.(M, u) € Q/Z
as S((W9 z) mod Z if (M, w) is the boundary of (W, z) . For the topo-
logical case it is convenient to define numbers S^W, z) eQ as follows:
'SjiW, z) = 2i'Sx{W9z)9 S2{W9z) = 2-S2(W,z) i f w2(W) = 0 ,
S2{W, z) = 5 2 ( ^ , z) if τι;2(ΪΓ) = z mod 2, and S^(W9 z) = S3(W9 z).
Then again the above proposition shows that we get invariants s^M, ύ) e
Q/Z, where M is a topological manifold, by defining s((M, ύ) =
S.(W9 z) mod Z if (Af, «) is the boundary of (W, z).

Remark 2.6. As mentioned in the introduction, the invariant s2(M)
as defined in [13] is not a topological invariant if M is spin and the
order of H4(M', Z) is even. The mistake occurs in the remark on p.
375, where we argue that if M, TV are two manifolds of the type (2.1)
which are homeomorphic, then there is a homotopy sphere Σ such that
the connected sum M#Σ. is diffeomorphic to N. The reason we give is
H3(M Z/2) = {0} , which is not true if H4(M Z) is even. However, the
statement is still true if M is nonspin. This follows from the classification
result (3.1) below, and the fact that s2{M) as defined in [13] agrees with
the topological invariant s2{M) defined above in the nonspin case.

In the case of the Wallach manifolds this difficulty does not arise since
HA(M\ Z) is odd for those manifolds. Still it seemed worthwhile to in-
clude Proposition 2.5 in this paper (whose proof constitutes the bulk of the
technical §6) since we need it to prove the general classification Theorem
3.1 which fills the gap in [13] and may be of independent interest.

For the Wallach spaces we have not been able to find an explicit bordism
(W, z) with the required properties. Here the following observation is
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useful. Let M be a smooth 7-manifold together with an element u e
H2(M;Z) as above. Assume that W is a smooth 8-manifold with dW =
M, and there are classes z, c e H2(W \ Z) such that z^M = u, c^M = 0,
and w2(W) = c mod 2 in the spin case and w2(W) = z + c mod 2 in the
nonspin case. Define characteristic numbers

(2.7) SX(W9 z,c) = (e{c+d)/2A(W), [W, dW]),

S 2 (W, z , c) = <ch(λ(z) - l)e{c+d)/2A(W), [W, ΘW])9

S3(W, z,c) = (ch(λ2(z) - l)e{c+d)/2A(W),[W, dW]),
where d = 0 in the spin case, and d = z in the nonspin case. The
integrality of these characteristic numbers for closed manifolds [8, Theo-
rem 26.1.1] implies that S.(W, z, c) mod Z depends only on (M9 u), in
particular st(M, u) = St{W, z, c) mod Z.

3. The classification result

In this section we give a diffeomorphism (resp. homeomorphism) clas-
sification of smooth (resp. topological) manifolds M of the type (2.1), i.e.,
M is a 1-connected closed 7-manifold with H2(M\ Z) = Z, H3{M', Z) =
0, and H4(M; Z) is a finite cyclic group generated by u2, where w is a
generator of H2(M; Z) .

Theorem 3.1. Let M and M1 be two smooth (topological) manifolds
of type (2.1) such that \H\M\ Z)| = \H\M' Z)| wA/cA are foί/z spin or
both nonspin. In the topological case assume furthermore that the Kirby-
Siebenmann smoothing obstruction is trivial for both or nontrivial for both.
Then M is diffeomorphic (homeomorphic) to M1 if and only if s((M) =
s^M') (resp. j.(Λ/) = s^M1)) for i = 1, 2, 3.

The proof of this theorem is based on the following result which is
proved using a slightly different language in [12].

Proposition 3.2 [12, Theorem 9.1]. Let M and Mf be two smooth
(topological) manifolds as in Theorem 3.1. Then M is diffeomorphic
(homeomorphic) to M1 if and only if there is a smooth (topological) bor-
dism W between M and N and a class z e H2(W \ Z) such that the rel-
ative characteristic numbers (p\(W),[W,dW]), (z2p{(W),[W,dW])f

(z4 ,[W, d W]), and the signature of W vanish.

Proof of Theorem 3.1. Assume st(M) = st(M') (resp. st(M) = s^M'))
for / = 1 , 2 , 3 . Our goal is to show that M and M' are diffeomor-
phic (resp. homeomorphic) by constructing a bordism (W, z) with van-
ishing characteristic numbers and vanishing signature. Proposition 2.2
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shows that we can find a bordism (W, z) between M and Mf. It fol-

lows from formulas (2.4) that {p\(W)[W, dW]), (z2pι(W), [W, dW]),

(z4 ,[W, d W]), and the signature of W vanish if and only if the invari-

ants S^W, z) vanish for / = 1, 2, 3 and sign(W) = 0.

We have S^W, z) = st{M) - s^M') = OmodZ (resp. St(W, z) =

s^M) - st(M) = 0 mod Z) for / = 1, 2, 3 . Proposition 2.5 shows that

there is a pair {W1, z') where fΓ; is a closed smooth (resp. topological)

manifold such that St(W', z) = -S^W, z), / = 1, 2, 3 . Replacing W

by the disjoint union of W and W1 we obtain a new bordism between

M and M1 with 5- = 0 for / = 1, 2, 3. Finally adding a suitable

number of copies of the quaternionic projective plane HP 2 we obtain a

bordism with vanishing signature. Note that adding HP 2 does not change

the characteristic numbers Si since ^ ( H P 2 , 0) = 0 for i = 1, 2, 3 .

4. Computation of the invariants

Recall that Nk ι is the homogeneous space SU(3)//£ /(S1), where ik ι:

Sι -+T = Sι xSι is defined by z ^ (zk, zι), and we identify T with a
fixed maximal torus of SU(3). As explained in the introduction we assume
that k and / are coprime, and we pick integers m, n such that km +
ln = \. The homotopy sequence of the fibration SU(3) -> S U ^ / z ^ O S 1 )
shows that Λ^ z is 1-connected since SU(3) is.

We compute the cohomology of Λ^ ι using the fiber bundle

(4.1) NkJ = Sυ(3)/ikJ(S{) JU SU(3)/Γ.

This bundle is in fact a principal S^bundle if we let Sx act on

SU(3)//fc [{S1) by restricting the obvious Γ-action to the image of i_n m :

Sι -+ T. The cohomology of SU(3)/Γ looks as follows [5, Theorem 31.1]:

i/*(SU(3)/Γ; Z) = Z[w , x , j;]/(symmetric polynomials)

= Z[x, y]/{x2 + xy + y 2 , x2y + xy 2 ),

where the generators w, x, y have degree 2. This isomorphism can be

made more explicit by defining X J G //2(SU(3)/Γ; Z) as follows.

We pick a generator i e Hι(Sι Z) such that for a principal S^-bundle

E -+ B the image of i under the transgression τ: Hι(Sι Z) -+ //2(2? Z)

agrees with the first Chern class cγ(L) of the corresponding complex line
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bundle L. Let pr : T = Sι x Sι -> Sι be the projection of the zth

factor, and define x (resp. y) to be the image of pr* i (resp. pr*, i) E

H2(T\ Z) under the transgression τ: Hι{T\ Z) -> # 2 (SU(3)/Γ; Z) of

the fiber bundle T -> SU(3) -> SU(3)/Γ.

Let L be
bundle (4.1).

Let L be the complex line bundle corresponding to the principal Sι-

Lemma 4.2. cλ{L) = -Ix + kye 7/2(SU(3)/Γ; Z).
λ

/ Restricting to a fiber the free 5*^action on SU(3)/ik j(Sι) de-

scribed above induces a homeomorphism ^ : -S1 —> T/ik ^S1). More

explicitly, g is the composition of i_n m: Sι —• Γ and the projection

map pr: Γ -> T/ikl{Sx). Its inverse A: T/ikl(Sι) -> 5 1 is given by

[Zj, z2] -• z " ^ . It follows that pr* A*z = /pr* z + /cpr*. i .
Consider the following commutative diagram whose rows are fibre bun-

dles:
T > SU(3) > SU(3)/Γ

T/ik/iS1) • Sυ(3)/ikJ(Sι) • SU(3)/Γ

Using the naturality of the transgression we obtain cx{L) = τ(h*ι)
τ(pr* h*ι) - T(-/pr^ i + kpτ*2 ή = -Ix + ky. q.e.d.

The Gysin sequence

///+2(SU(3)/Γ;Z)

//''+1(SU(3)/Γ;Z)^

H2(Nkj ,Z) = Z, generated by u = p*z,

where z = mx + «y,

H4(Nkt,;Z) = Z/N{k, I) generated by u ,

where N(k ,l) = k2 + kl + I2.

Our next goal is to compute the invariants Sj(Nk j). Denote by Wk ι

the disk bundle of L. Then Wk ι is a zero bordism for Nk t , and the

class z e H2{Wkl; Z) restricts to w e ^ ( Λ ^ ,; Z) (we identify the
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cohomology of Wkι with the cohomology of SU(3)/Γ using the map
induced by the inclusion of the zero section).

(4.3) Orientation conventions. We choose an orientation for SU(3)/Γ
(resp. Wk ι) by the following requirement for the corresponding funda-
mental classes:

(Λ,[SU(3)/Γ]> = 1 and ( ί U , [Wkj9 dWkβ = (s, [SU(3)/Γ])

for any s e //6(SU(3)/Γ; Z). Here U e H2(WkJ, dWkJ\ Z) is the
Thorn class of L. For Nk ι = d Wk ι we pick the orientation induced by
the orientation of Wk ι .

The tangent bundle of SU(3)/Γ is stably trivial. Hence the tangent
bundle of Wk { is stably isomorphic to L, and the tangent bundle of

SUPVS 1 is stably trivial. Thus w2{WkJ) = cλ{L) mod 2 and pχ{Wk z) =

c\(L). In particular the manifold W = Wk ι and the classes z = mx + ny

and c = cx(L) have the properties required in (2.7) and hence si(Mk z , ύ)

= St(W, z, c) m o d Z . Substituting c2 for pχ we get the following ex-

pressions for S((W9 z, c) (where c4 is short for (c 4, [W, dW]), etc.):

S{(W, z,c) = - ^ A *

z + cz + ^cz.

The characteristic numbers involving c are already computed since
j * U = c, where j : W ^ {W, dW) is the natural map:

c 4 = <c 3 U, [W, dW]) = (c\ [SU(3)/Γ]) = 3kl(k + I),

c3z2 = (cz2, [SU(3)/Γ]) = km2 - 2kmn - limn + In2,

cz3 = (z 3 , [SU(3)/Γ]) = 3mn(m - n).

To compute z 4 we note that z 2 = (ax + 6y) ,u c, where

_ km2 + /m2 - 2A:mAz - In2 , _ km2 -kn2 + 2lmn-In2

-(k2 + kl + l2) ' "" ~{k2 + kl + l2)

Then

z 4 = (z2(αx + ̂ )>[SU(3)/Γ]>

- 6km2n2 - 6/m2»2 + 4/m3« + In4
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Combining these calculations we obtain
Lemma 4.4. Assume (k, /) = 1, and let ra, n be integers such that

km + In = 1 and m or n is divisible by 4. Then

ίAT χ -kl(k + l) ίAT χ -P + NS ίAT λ 4P + NS
sι(Nk,ι)= 2s7 > si(Nk,ι)= 233N » s*(Nk,ι) + —ΰΓ-'

where N = k2+kl+l2, P = km4+4kmn3-6km2n2-6m2n2+4lrn3n+ln4,
and S = &m2 - 2λ:ra« - 2/mn + In2.

Remark. The condition that m or n is divisible by 4 guarantees that
thesummand cz3/223 = mn(m-n)/22 in the formula for S2(Wk / ? z, c)
is an integer.

5. Solving the equations

In this section we study the numerical conditions on k\ I, k, ϊ given
by the system of equations sz (Λ^ ;) = s^N^ j) (resp. ^(Λ^ 7) = -̂(Λ^ 7 )),
1 = 1 , 2 , 3 .

Let T., / = 1, 2, 3, be the numerator in the expression for st in the

lemma above, and denote by N, P, R, S, fi the quantities obtained by

replacing k,l,m,n by k, /, m, h in the expressions for N ,P ,R,S ,Tt.

Lemma 5.1. Assume (k, /) = 1 = (k, ϊ) and N = N. Then:

(i) T2 = f2 mod 23 3 N w equivalent to T{ = Tχ mod 23 3 N,
3( i i ) s ^ N k , ι ) = ~sANkj) f°r ί = l , 2 , 3 # r i =

(iii) s^N^^s^j) for / = 1, 2, 3 (^η = ή mod

1 otherwise.

Proof. There are three main ingredients in the proof.
1. The observation that we can choose the numbers m, n such that

km + /« = 1 at our convenience since ^(Λ^ 7) e Q/Z is independent of
this choice. In particular, if k is prime to some number, we can choose
n to be divisible by it.

2. The observation that the values of N, Tt e Z and ^(Λ^ ;) e Q/Z,
/ = 1, 2, 3 , do not change if we permute k and / remember that m and
n should be permuted simultaneously in order to preserve the condition
km + In = 1. Hence, since k and / are coprime, we can always assume
that k is not divisible by a given prime by making the above substitution
if necessary.

3. The equality T = k(k2 - N).
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Ad (i). N = k2 + kl + I2 is coprime to k, since (k, /) = 1. Then
we may choose n to be divisible by TV. Hence m k = 1 mod TV, Tχ =
fc(£2 -N) = k3 mod TV, and T2 = -P + NS = -P = -km4 = - m 3 mod
TV. It follows that Γ2 = f2 mod TV iff Γj = 7\ mod TV.

For the 2-primary analysis we note that TV is always odd, and we as-
sume without loss of generality that n is divisible by 2 3 . Then m k =
1 mod 23 and hence m = k mod 2 3 . It follows that T2 = -P + NS =
-km4 + km2N = -m(m2 - TV) = -k(k2 - TV) = -Tχ mod 2 3 .

For the 3-primary analysis we assume without loss of generality that
n is divisible by 32 . Then m k = 1 mod 32 and hence m = k mod 3
and m3 = k3 mod 3 2 . It follows that T2 = -P + NS = -km4 + km2N =
-m3 + mN = -/c3 + /cTV = - Γ j , where this congruence is modulo 32 , if
TV is divisible by 3 , and modulo 3 otherwise. Since TV is never divisible
by 32 (see Lemma 5.2(i) below), these statements imply part (i) of the
lemma.

Ad (ii). It follows from part (i) that Tx = Tχ mod 23 3 TV is equivalent

to s2(NkJ) = s2(Nkj), and it is clear that T{ = f{ mod 23 3 TV implies

s{(Nk 7) = s^Nfr j). Thus it suffices to show that T2 = f2 mod 23 3 TV

implies Γ3 = f3 mod 2 3 TV. This follows from the congruences Γ3 =

Γ3 + 3NS = -4P + 4NS = 4Γ2 mod 3 TVS and 5 = km2 = m=l mod 2

(here we assume without loss of generality n even).
Ad (iii). The equation (̂TV^ ;) = sχ{N~k j) is equivalent to T{ =

T{ mod 25 7 and hence (iii) follows from (ii) since TV is odd.
Part (ii) (resp. part (iii)) of the above lemma then finishes the proof

of the classification theorem of the introduction. It remains to construct
examples of Wallach spaces which are homeomorphic but not diffeomor-
phic.

As mentioned in the introduction it is most convenient to think of the
Wallach spaces as being parametrized by elements of a — k + lω € Z[ω],
where ω = (1 + >/-3)/2 is a primitive sixth root of unity. We note
that (k, /) = 1 if and only if a is a primitive element, and recall that
k2 + kl + l2 = N(α) and kl(k + l) = Tr(o;3/3\/z3). Thus our classification
result can be expressed nicely in terms of a . In particular finding Wallach
manifolds which are homeomorphic but not diffeomorphic is equivalent
to finding primitive elements a, a e Z[ω] with N(α) = TV(α') such that
Tr(a3/3v / : :3) is congruent to Tr(α / 3/3i/Γ3) modulo 23 3 N(α), but not
modulo 25 7A(7V) 3 N(α). As a first step we want to determine for a given
number TV all primitives a e Z[ω] such that N(α) = TV.
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Lemma 5.2. Let a be a primitive element of Z[ω], and let N(α) =
p\x pe

s

5 be the prime decomposition of N(α). Then the following hold:

(i) p. = 1 mod 3 or pt = 3 and in the latter case the exponent e{ is
at most one.

(ii) a = ε P\ι P*s, where ε is a unit in Z[ω] and P. is one
of the two factors of the decomposition of pt in Z[ω], which are distinct
for p. φ 3. In particular, the number of primitive elements a such that
N(α') = N(α) is 6 2n , where n is the number of prime divisors of N(α)
which are congruent to 1 mod 3 (there are six units in Z[ω]).

Proof It is well known that Z[ω] has unique factorization. Moreover
the primes in Z[ω] consist of (a) the square root of - 3 , (b) the prime
numbers p e Z with p = 2 mod 3, and (c) the factors P,7 of a prime
decomposition p = P ~P of a prime number p e Z with p = 1 mod 3.
L e t a = Pe

χ

{ P*s be the prime decomposition of a. It cannot contain
any primes of type (b) since then a would not be primitive. The same
argument shows that the exponent of Λ/^3 is at most 1, and that P and
P cannot occur both in the prime decomposition. This proves (ii). Part
(i) follows from N(α) = N ^ ) * 1 N(P/* = p\' pe/ and part
(ii). q.e.d.

Let a, a G Z[ω] be primitive elements with the same norm. Then part
(ii) of the above lemma shows that there are y, δ e Z[ω], and a unit ε,
such that a = γδ and a = εγδ . A short computation shows

if ε3 = 1 (resp. Tr(y 3)Tr(ί 3/3 v

/ i :3) if ε3 = - 1 ) . Hence we conclude
Corollary 5.3. There are Wallach manifolds which are homeomorphic,

but not diffeomorphic whose fourth cohomology group has order N if and
only if there are primitive elements γ, δ e Z[ω] such that N = N(y) N(<?)
and 23-3N divides Tr(y3/3y/=3)Trtf3), but 25-3 7λ N does not, where
λ = 0 if N is divisible by 1 and λ = 1 otherwise.

A computer calculation by D. Zagier which was extended later by An-
drew Odlyzko showed that primitive elements γ and δ , such that 2 -3-N
divides Tr(y3/3>/^3) Ύτ(δ3), are very rare. They found 30 examples—the
first 14 of which are given by the following table, where N = N(y)N(<J)
and T =



HOMEOMORPHIC HOMOGENEOUS 7-MANIFOLDS 479

y

127+186ω

473 + 1240ω

741+ 964ω

196 + 237ω

39+1646ω

1279+ 1529ω

335 + 687ω

436+ 1205ω

2019 + 2921ω

2735 + 4017ω

508 + 3008ω

3165+ 12719ω

997 + 2721ω

553+ 10062ω

δ

-226+151ω

-135 + 131ω

-433 + 253ω

-2393 + 2053ω

-2134+ 1503ω

-1727+1136ω

-5330 + 4153ω

-3831 + 3749ω

-4833 + 4312ω

-3855 + 2789ω

-10484+ 7877ω

-2827+ 1567ω

-12906+11735ω

-5735 + 3817ω

N

2955367597

41559275149

311251714249

709194540873

10005549097453

13703457081769

19153920223641

31145131821643

390688534767037

411358875444559

966599827776793

1275987636279889

1697970197114737

2738819764243641

T

23-3-N

2 9 - 3 1

2 - 5 - 1 1 - 4 3

5 - 7 - 11 13

3 3 911

2 - 5 2 79

2 3 2 5 1 1 - 6 1

2 3 - 3 4 - 5 29

2 - 5 2 1 3 - 193

5 2 1 7 - 2 3 - 5 9

2 4 - 5 - 11 1 3 - 3 7

5 2 1 3 - 1 7 - 5 3

5 - 7 - 1 1 - 1 3 - 2 3

1 1 - 4 1 - 2 0 1 1

2 2 - 3 4 - 5 7 - 11

Γ / 2 3

m o d 2 8

21

14

7

7

14

14

0

14

11

0

7

21

7

0

Remarks, (i) Let M (resp. M) be the Wallach manifolds correspond-

ing to yδ (resp. yδ). If 23 3 iV divides T, then M, M are homeomor-

phic, and hence M is diffeomorphic to M#sΣ(E%), where sΣ(Es) is the

connected sum of s copies of the Milnor sphere Σ(ES). Evaluating the

s{-invariant we obtain sχ(M) = s{(M#sΣ(Es)) = sχ(M) + s s{(Σ(Es)). If

M is the Wallach manifold corresponding to α = k + lω, we find using

the fact that ^ ( Σ ^ ) ) = - ^ (see proof of Lemma 6.6) and sx(M) =

-kl(k + /)/(25 7) = - 3 C I

28

•7
modZ.

So s = Γ/23 mod 28, and its value is given by the last column of the
above table.

(ii) The subgroups of SU(3) corresponding to yδ (resp. yδ ) are never

conjugate, but in those cases where Γ/23 = 0 mod 28 the corresponding
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homogeneous spaces are diffeomorphic. The example mentioned in the
introduction corresponds to line 7 of the above table.

6. Proofs of Propositions 2.2 and 2.5

Propositions 2.2 and 2.5 can both be rephrased as statements about cer-
tain bordism groups. We need some notation. If a is a vector bundle over
some space X, we denote by Ωs^m(X; a) the bordism group of triples
(W, / , ω), where W is a smooth ^-manifold, / : W —• X is a map, and
ω is a spin structure on v(W) - / * α ; here v(W) is the stable normal
bundle of W. If a is trivial, we use the notation Ωs^m(X) instead of
Ω*pin(X; α), and if X is a point, we write Ω*pin . Let Ω^opSpin(ΛΓ; a) be
the bordism group defined analogously using topological instead of smooth
manifolds.

We note that if X is complex projective space CP°°, then a map
/ : W —• CP°° can be interpreted as a cohomology class z e H2( W Z),
and there is a spin structure on v{W) — f*a if and only if w2{W) = 0 (if
a is the trivial bundle), resp. w2{W) = z mod 2 (if α is the Hopf bundle
H). Suppressing ω in the notation we write [W, z] e Ω^pin(CP°° a)
(resp. [W,z]e Ω^opSpin(CP°° a)) for the element represented by such
a pair (W, z). Note that the spin structure ω is uniquely determined if
H\W\ Z/2) = 0. Using this language Propositions 2.2 and 2.5 can be
rephrased as follows.

Lemma 6.1. If a is the trivial bundle or a Hopf bundle, then

Ω*pin(CP°° α) = 0 and Ω ^ ^ C P 0 0 α) = 0.

Lemma 6.2. L ^ S: Ω3°pSpin(CP°° α) -> Q 3 te tf^ homomorphism
mapping [W, z ] to /te characteristic n u m b e r s ( S { ( W , z ) , £ 2 ( W , z ) ,
S3(JΓ, z)) E Q 3. ΓΛ̂ /2 ίΛe i m ^ of S is ^ Z θ | Z θ Z // a is the
trivial bundle and it is ^ Z θ Z e Z if a = H.

For the proofs of 6.1 and 6.2 it is crucial that these bordism groups
can be interpreted as stable homotopy groups as follows. Denote by BO
(resp. B Top) the classifying space for vectorbundles (resp. topological
microbundles) and by BO(4) (resp. 5Top(4)) its 3-connected cover,
which classifies vectorbundles (resp. microbundles) with spin structure
(note that BO{4) = £Spin and £Top(4) = 5TopSpin). Let MO[4]
(resp. Λ/Top[4]) be the Thorn spectrum corresponding to the universal
bundle over BO(4) (resp. BΎop(4)) and let Ma be the Thorn spectrum
of a. The convention concerning Thorn spectra we use is that the Thorn
class is always in dimension zero.
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Then the Pontrjagin Thorn construction (and topological transversality

[6]) leads to isomorphisms Ωs*in(X;a) £ πmM0[4] Λ Ma and

Ω τops P in ( Z ; α ) ^ ^MTop[4] Λ Ma. This implies the existence of the

Atiyah Hirzebruch spectral sequences (short: AHSS):

Hs(Ma Ω^opSpin) =• Ωj+°f pin(X a).

The groups Ω^pin are well known [1].

ΩsPin z Z/2 Z/2 0 Z 0 0 0 Z θ Z

The groups Ω^o p S p m are certainly known to the experts in the above
range but we have not been able to find a reference in this literature.

Lemma 6.4. The groups Q^o p S p m are given by the following table, where
T denotes a torsion group.

n 0 1 2 3 4 5 6 7

τopspin
Ωn

Moreover, the natural map Ω^pin -• Ω^o p S p m is an isomorphism in dimen-
sions 0 , 1 , 2 and multiplication by 2 in dimension 4.

Proof. The statement about π8Λ/Top[4] follows from the fact that
Λ/O[4] -+ M Top[4] is a rational equivalence. Let BPL be the classi-
fying space for piecewise linear bundles, BPL(4) its 3-connected cover
and MPL[4] the corresponding Thorn spectrum. Then the natural map
BO -> BPL is a 7-equivalence [11], and hence induces an isomorphism
πnM0[4] -> πnMPL[4] for n < 7, and a surjection for n = 7. The
fiber of the natural map BPL -• B Top has trivial homotopy groups ex-
cept for the third homotopy group which is isomorphic to Z/2 [11, Essay
V, Theorem 5.5]. This implies the existence of a fibration BPL(4) -»
5Top(4) -+ tf(Z/2,4), where K(Z/2,4) is the Eilenberg-Mac Lane
space with π4K(Z/2, 4) = Z/2. It follows from the associated Serre
spectral sequence that up to and including dimension 7 the cofiber of
MPL[4] -> Λ/Top[4] is the Eilenberg-Mac Lane spectrum Σ4KZ/2, i.e.,
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its homotopy groups vanish except π4 which is isomorphic to Z/2. We
look at the portion

0 -> π4MPL[4] -+ π4MTop[4] -> π4Σ
4KZ/2 -> 0

of the exact homotopy sequence of this cofibration. The group π4MPL[4]
= π4MO[4] = Ω 4

p i n is isomorphic to Z by mapping a spin 4-manifold
to its signature divided by 16. According to Freedman there is a closed
topological spin 4-manifold with signature 8 [6, Theorem 1.7]. Hence
the above sequence is nonsplit and π4MTop[4] = Ωj o p S p i n is isomorphic
to Z, the isomorphism being given by the signature divided by 8 . q.e.d.

Proof of Lemma 6.1. We use the AHSS (6.3) to compute

Ωspin^c poo. ^ f o r a = t r i v i a l bundle and a =Hopf bundle. Since the
cohomology of CP°° and hence the homology of Ma are concentrated
in even dimensions, the only nontrivial group in the i^-term contributing
to Ω?pin(CP°° α) is H6(Ma Ω*pin) = H6(Ma Z/2) = Z/2. This term,
however, does not survive to the iϊ^-term for the following reason.

If a is the trivial bundle, then Sq2: H6{Ma Z/2) -> H*{Ma Z/2) is
nontrivial, and therefore the differential

d2: Hs(Ma Ω*pin) - Z - H6(Ma Ω*p i n) = Z/2

is surjective since the first ^-invariant of MO[4] is given by Sq2.

If a = H, then Sq2: H4(Ma Z/2) -> H6(Ma Z/2) is nontrivial, and

therefore the differential d2: H6(Ma;Ω^in) Ξ Z/2 ^ H4{Ma\ Ωf i n ) =

Z/2 is an isomorphism since the ^-invariant of MO[4] which relates

Ωj p i n = πχM0[4] = Z/2 and Ωf i n = π2MO[4] = Z/2 is also Sq2.

The same argument shows Ω ^ ^ ^ C P 0 0 α) = 0. q.e.d.
For the proof of Lemma 6.2 we need some lemmas.

Lemma 6.5. There is an element W4 e H4(B Top(4) Z) such that

2W4 = pχ and W4 = u>4mod2, where pχ e H4(B Top(4) Z) is the

first Pontrjagin class, and w4 e H4(B Top(4) Z/2) is the fourth Stiefel-

Whitney class.
Proof The fibration K(Z/2, 3) -• BPL -• B Top mentioned in the

proof of 6.4 and the fact that πnBPL = πnBO for n < 7 gives a short
exact sequence

0 -+ π4BO -+ π4B Top -* Z/2 -> 0.

This sequence splits since if / : S4 —• BO is a generator then (f*w4,

[54]) Φ 0 showing that the compositions S4 -• 5 0 -> 5 Top cannot be
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divisible by 2. Hence H\B Top(4) Z) = H4(BO(4) Z) = Z and it is
easily checked that W4 = p{/2 is a generator.

To prove that W4 mod 2 and w4 agree in H4(B Ύop(4) Z/2) = Z/2θ
Z/2 we observe that there is a unique nontrivial element in this cohomol-
ogy group which is annihilated by Sq1. Obviously W4 mod 2 is such an
element since it is the reduction of an integral class. The calculation

(Sq1 w4) U = Sq1 (w4 U) = Sq1 Sq4 U = Sq5 U

= Sq 4 Sq 1 U + Sq 2 Sq 3 U = 0

in H*(M Top[4] Z/2), where U denotes the Thorn class, shows that also
w4 has this property.

Lemma 6.6. The image of the composition of the natural map Ω^o p S p i n

- Ω^p S p i n(CP°° a) and Sx: Ω^p S p i n(CP°° a) -+ Q is ±Z.
Proof If W is an 8-dimensional topological spin manifold, then de-

note by W4(W) the pull back of the class W4 via the classifying map of
the tangent bundle W —• 5Top(4). The previous lemma shows that the
mod2 reduction of W4(W) agrees with the Stiefel-Whitney class w4(W)
which is equal to the Wu class v4(W) since the lower Stiefel-Whitney
classes of W vanish. Hence (WΛ(W)x, [W]) = ( c 2, [W]) mod 2 for all
classes x e H\\V Z) . It follows that sign(PΓ) = {W4(W)2, [W]) mod 8 .
This is a generalization of the well-known fact that the signature of an even
form is divisible by 8 . Thus

To show that ^ Z is contained in the image of the composition consider

the 8-dimensional Milnor manifold M8(E%) which is the smooth paral-

lelizable manifold of signature 8 whose boundary generates the group of

7-dimensional homotopy spheres. Let N be the closed topological mani-

fold M\ES) UZ)8. Then sign(N) = 8 and

SΛ(N, 0) = -^-Ί sign(Λ0 + -λ-p\ = - 1 .

Proof of Lemma 6.2. We proceed inductively using the skeletal

filtration of ΩgθpSpin(CP°° α ) . Recall that the 5th filtration group

; a) consists of the elements represented by triples (Λf, /, ω),
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where / factors through the ^-skeleton of X, and that the filtration
quotients Fsωt+s/Fs_{Ωt+s are isomorphic to the group E™t in the
is^-term of the Atiyah-Hirzebruch spectral sequence. We write Fs for
Fsn]°pSpin(CP°° α ) .

The previous lemma shows that the image of S{ restricted to Fo is
2gZ. The images of S2 and S3 restricted to Fo are trivial since S2 and
5*3 are linear combinations of the characteristic numbers z2p{ and z4

which vanish for elements in Fo . Hence the image of S restricted to FQ

is 2sZθ{0}Θ{0}.

The AHSS shows that the next interesting filtration group is F4 with
filtration quotient FJF3 = £ ~ 4 = E2

44 = H4(Ma; Ωjo p S p i n) £ Z . To
compute S for a generator of this filtration quotient we consider the spin
case and the nonspin case separately.

In the nonspin case, i.e., if a is the Hopf bundle, a generator is rep-
resented by the triple (CP2 x M(ES), z), where M(ES) is the Freedman
manifold, i.e., a topological 4-manifold with signature 8, and z is a
generator of i/ 2 (CP 2 ; Z) . A calculation shows 5(CP2 x M(E%), z) =
(0, - 1 , - 3 ) , and hence the image of S restricted to F4 is contained in

In the spin case we argue more indirectly by comparing with the smooth

case. Let Xχ, X2 e ΩgPin(CP°°) be the elements represented by S2 x S2 x

S2 x S2 with z = Σ,4i=\xi> w h e r e *, generates H2(S2\ Z) (resp. by a

degree 2 hypersurface in CP5 with z = restriction of the generator of

// 2(CP 5 Z)), and let X be the linear combination X = Xχ - 12 X2.

This linear combination is chosen such that the characteristic number

z vanishes showing that X has filtration < 7. The vanishing of the

groups E™x, E™2, and £^°3 in the JS^-term of the AHSS converg-

ing to ΩgPin(CP°°) implies that X has filtration < 4. It follows from

the proof of Lemma 3.2 in [13] that Ωf i n(CP0 0)/F3ΩgP i n(CP0 0) = Z 2 is

generated by X{ and X2, and hence X generates the filtration quotient

F4a*pin(CP°°)/F3Ωf in(CP°°) = E™4 s Z .

Let Y be an element of Ω3°pSpin(CP°°) which represents a generator of
the corresponding filtration for that group. Then X = ±2 Y + Z , where
Z is an element of lower filtration since the map on the l^-term

//4(CP°° Ω f n ) = Z —> #4(CP°° Ω4°
pSpin) = Z

is multiplication by 2. The characteristic numbers S2 and S3 vanish for

Z , and hence S((Y) = ±%Si(X) = j 5 l (^/) = j mod Z (resp. 0 mod Z)
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for i = 2 (resp. / = 3) [13, p. 382]. Lemma 6.6 implies SX(Y) e ^ Z
since in the spin case SX(W9 z) = S^W.O). Thus, the image of S

restricted to F4 is contained in ^ ^

The elements of all higher filtration quotients can be represented by

smooth manifolds since the natural map Ω^pm -+ Q j o p S p m induces an

isomorphism between the groups E™t in the is^-term of the AHSS con-

verging to ΩjopSpin(CP°° α) and the corresponding groups in the AHSS

converging to Ω^pin(CP°° α) for t < 3. We know that the image of S

restricted to ΩgPin(CP°° α) is Z 3 , and hence the image of S is contained

in ^ Z θ ± Z θ Z (resp. ^ Z θ Z θ Z ) if a is the trivial bundle (resp. Hopf

bundle).

On the other hand, ^ Z θ Z θ Z is contained in the image of S since

0 {0} 0 {0} (resp. Z 3 ) is the image of S restricted to Fo (resp.

. ^ y Moreover, in the spin case ^ Z θ ^ Z θ Z is in the image

of S since S2(Y) = \ mod Z with Y as above.
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