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MANIFOLDS NEAR THE BOUNDARY
OF EXISTENCE

KARSTEN GROVE & PETER PETERSEN V

Our primary purpose is to study relationships between bounds on sec-
tional curvature KM, diameter dM, and volume VM, together with their
effects on the topology of closed Riemannian ^-manifolds M. For pur-
poses of illustration, we normalize for the moment all manifolds so that
dM = π . Consequently, min KM < 1 by the Bonnet-Meyers theorem, and
from the Rauch comparison theorem, VM < V(n, minKM, π) , where
V(n,k,D) denotes the volume of a D-ball, B^(p, D) in the «-dimen-
sional simply connected manifold of constant curvature k. We may thus
represent any closed Riemannian /7-manifold as a point in the
(minA:M, F^)-plane (Figure 1, next page).

Any manifold to the right of a vertical line has a priori bounded Betti-
numbers as Gromov proved in [6]. Moreover, in regions bounded to
the left by a vertical line and below by a horizontal line above the axis,
only finitely many homotopy types occur [10]. In fact, at least when n Φ
3,4, such regions contain at most finitely many diffeomorphism types
[15]. Understanding convergence and limit spaces with respect to the
Gromov-Hausdorff distance is an essential tool in the proof of the latter
result.

On the basis of these results, it is natural to examine the topological
properties of manifolds close to the boundary of existence. As already
explained, the existence region is bounded above by the curve V(n, , π),
to the right by the line min KM = 1, and below by the min A^M-axis. Only
two points, (1, V(n, 1, π)) and (1/4, V(n, 1/4, π)), on this boundary
are actually represented by manifolds, namely the sphere and the real
projective space of constant curvature. Moreover, any manifold located
strictly between the vertical lines through these two extremal points is
homeomorphic to Sn [14].
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One of our main results shows, in particular, that only uniform collapse
can occur near the min Λ^-axis. In fact, we have

Theorem A. Let X be an accumulation point of a sequence {Mt} of
closed, connected n-manifolds with KM > k and dM <D. Then

(i) X is a length space with Toponogov curvature Kχ > k and diam-

eter dχ<D,
(ii) dim X = m <n and X has dimension m at every point,

(iii) dim <90 > ra - 1 for any open nondense subset 0^0 in X,
(iv) X is a Cantor manifold.

Note that, in general, any polyhedral compact subset of a Euclidean
space is the Gromov-Hausdorff limit of a sequence of closed Riemannian
manifolds.

At the other extreme, we prove that there is an a priori upper bound for
the volume better than the one given by the Rauch comparison theorem
(see Figure 1).

Theorem B. Let M be a closed, connected n-manifold with KM > k

and dM < D. Then

VM<V(n,k9D)-e(n,k,D),

where e > 0 except when k > 0 and D e {\πj\fk, π\fk}. When

k > 0 and D e (\πl\[k, π/Vk), V{n,k,D) can be replaced by

(Dy/ϊc/π)V{n9k9π/\fk), ε(n,k,D) > 0, and l imsupε > 0 when

D \π/Vk.
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This generalizes and extends a result obtained independently in [21 ] (cf.
Theorem 1.4). It is also related to a generalization of a conjecture due to
Aleksandrov [1].

In left-sided neighborhoods of the extremal points Sn (respectively
RPn ) only manifolds diffeomorphic to Sn (respectively RPn ) occur [17]
(cf. also Remark 3.3). With straightforward modifications of [11] one
proves that any manifold Mn with KM > k, dM < D, and VM suffi-
ciently close to V(n, k, D) has the homotopy type of RPn unless k > 0
and d > \πj\[k. Thus, it is natural to conjecture that manifolds to the
left of the extremal RPn and with near maximal volume look topologically
like RPn.

We point out that the conclusion in Theorem B most likely is valid
with KM > k replaced by RicM > {n - \)k and KM > k! for any
k' < k . This is exemplified by Yamaguchi's generalization of [17] in [22].
Here and in other problems concerning manifolds M with Ricci curvature
bounded from below, an additional assumption on minA^M may seem
merely technical. Keeping [10], [15], and our present paper in mind, we
feel, however, that any min KM bound on a class of manifolds Jί restrict
the geometry and topology of elements in the Gromov-Hausdorff closure
Jί so much that an additional strong geometric assumption, say of RicM ,
frequently will yield the desired rigidity or structure properties (cf. [12]).

The paper is organized in three sections and one appendix. In § 1 we
present a general volume comparison theorem which is used in the proof
of Theorem B as well as to simplify the proof of Main Lemma 1.3 in [10]
(cf. 1.5). §2 is devoted to the study of limit spaces X of manifolds with a
lower curvature bound k, and an upper diameter bound D. In particular,
it is shown that the Toponogov triangle comparison theorem is valid in X,
and for any p € X we exhibit exponential maps from star-shaped subsets
in T2n

k(p, D) onto X. This is used in the proofs of Theorems A and B.
The latter is given in §3. The appendix is concerned with a generalization
of the Arzela-Ascoli theorem to families of maps between different spaces.
This is used in our construction of exponential maps in §2.

For basic results and notion from Riemannian geometry and dimension
theory which will be used freely, we refer to [2], [9], and [16].

1. Volume comparison

In this section we will extend the volume comparison theorems in [11]
and [3] for non-star-shaped sets. Among immediate applications we give



382 K. GROVE & P. PETERSEN V

an estimate for the maximal volume of manifolds M with KM > 1 and

dM>\-
Let M be a compact, connected ^-dimensional Riemannian manifold

with KM > k and dM < D (if k > 0 we assume D < njKM), and fix a
point p G M. Similarly, let M be the simply connected ^-dimensional
space form of curvature k, and fix p G M . For any subset β c Λf
denote by ΓpQ = \J Tpq, # G β the set of all minimal geodesies from
p to all points q G β parameterized on [0,1]. The corresponding set
of initial velocity vectors will be denoted by tpQ c TpM. Identifying
TpM with Γ-M, we let β = exp-(ΓpQ) c M . Then by construction,

Lemma 1.1. With the notation above, consider functions F, G: Qx
[0, oc) —• [0, oc) and via exp^oexp^1 corresponding functions T, G: Qx
[0, oo) —• [0, oo), where G(q, •) is nondecreasing for all q G β . Then for
any R< D, ίλe jete

H = {xeB(p,R)\F(q,d(x,p)) < G{q9d(x9 q))9 q G β } ,

αre related by vol H <volH.

Proof Let ?; G f ^ i.e., cv(ί) = exp (ίv), ί G [0, 1] is a minimal

geodesic from p to x = exp (v) G //. Using our identification Γ^M =

T-M, and let x = exp-(ί ) . Then for q - exp-(w) and ζ? = exp^w),

f f

rf(3c, P)) = F(q, rf(3c, p)) = F(q, d(x, p))

< G(q,d(x, q)) < G(q9d(x9 q)) = G(q9 d(x9 q)).

The second inequality follows from the Toponogov distance comparison
theorem and the assumption on G(q, •). This proves that f ^ c t-jj and

thus H c exppoeχpIι(H). In particular, vol(if) < vol(exp/?oexp^1(^))
< vol//, where the last inequality follows from the Rauch comparison
theorem.

Examples 1.2. (a) H = B(p,R), the i?-ball centered at p, when
F(q,t) = t, and G(q, t) = R for all (q, t) G Q x [0, oo).

(b) H = M-B(Q, R), the complement of the /?-tube around Q, when
F{q9 t) = R and G{q, t) = t for all (#, ί ) € β x [ 0 , o o ) (cf. [11]).

(c) H = {x e M\d(x,p) < d(x, Q)}, the half-space containing p
determined by {p} and Q, when F(q, t) = G(q, ί) = t for all (q, t) €
β x [ 0 , o o ] .
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(d) With F , G as in (c) we get in particular using 1.1,

vol(B(Pι, R) U B(p2, R)) < vol(Bn

k(pχ, R) U ^ ( p 2 , R)),

where
Remark 1.3. If we weaken the curvature assumption KM > k in 1.1

to RicM > (n - \)k and KM > k' for some k1 < k, we obtain a sim-

ilar volume comparison. The only difference is that one replaces G by

G(q, t) = ~G(q, c ί) for a suitable constant c > 0 depending only on D,
/c, and k1. Observe that this change does not affect H in 1.2(a), which
is then exactly Bishop's volume comparison theorem.

We will use 1.1 in full generality to prove Theorem B of the introduction
(cf. §3). Here we give two applications of the half-space version 1.2(c).

Theorem 1.4. Suppose M satisfies KM > k > 0 and dM > \π/\/k.
Then VM < (dM Vk/π)wolSn(l/y/k) < V(n,k,dM).

Proof. For convenience, we let k = 1. For any pair of points p, q e
M, VM = \o\Hχ + vol//2 , where H{ = {x e M\d(x, p) < d(x, q)} and
H2 = {x e M\d(x, p) > d(x, <̂ )} . Assume p is a critical point for q , i.e.,
the unit vectors in the directions f determine a weak |-net in 5 ( 1 ) c
TpM (cf. [6], [14]). From the appendix of [10] we conclude ^
vol{x G n ^ ^ 2 ^

where d(p, qx) = d(p, q2) = d(p, q) and p , qχ, ^ 2 lie on the same
great circle. In case d(p, q) = dM, p and q are critical points for each
other, whence v o l ^ < {(dM)/(2π)) vol5 π ( l), / = 1, 2. q.e.d.

A different proof of this theorem has been given independently in [21].
The idea of estimating the volume of half spaces also simplifies the proof

of Main Lemma 1.3 in [10], and yields more explicit and better a priori
constants. We will use the notation from [10] without further comments.

Lemma 1.5. Let M be a closed connected Riemannian n-manifold
with kM > k, dM < D, and VM > v > 0. For any a > 0 with a <
v \V{n, k, D)~ι, there is an r > 0 such that d(p, q) > r whenever
p, q e M are points where the directions of the set of minimal geodesies
between p and q form (f + a)-nets in Sp(l) and Sq(l).

Proof Fix a > 0 so that f V(n, k, D) < \v . Assume without loss of
generality that the directions of a finite set of minimal geodesies between
p and q form (f + α)-nets in 5^(1) C TpM and 5^(1) c TqM. Again
VM •= vol Hχ + vol H2, where H.9 / = 1, 2, are the half spaces determined
by p and q. Thus VM <ΎO\ΉX +VO\Ή2, where Ήχ are corresponding
half spaces in a D-ball ϊ?£(/?, D) in constant curvature. As in the proof
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of 1.4 we use [10, Appendix] to get the estimate

volF z . < vol{x G Bn

k(p, D)\d(x, p) < d(x, {qχ, q2})},

where d(p, qχ) = d(p, q2) = d(p, q) and now the triangle (qx,p, q2)

has angle (π - 2a) at p . Therefore, vol/7 < ^ , / = 1, 2, for d(p, q)

sufficiently small.

2. Limits of manifolds curved from below

The primary objective of this section is to begin an investigation of
spaces X in the Gromov-Hausdorff closure of the class Jί{n, k, D) con-
sisting of closed connected Riemannian n -manifolds M, with KM > k,
dM <D. Such X are in particular length spaces (cf. [8]).

Throughout this and the next section, when X = lim M{, M. e
J({n, k, D), we fix a metrix on X]\iMi so that M. converges to X
inside this space in the classical Hausdorff sense (cf. [7]).

Lemma 2.1. Let X = limΛf^ , Mt e J({n, k, D). Consider two nor-
mal minimal geodesies c{: [-/, / ] —• X, c2: [0, / ] -* X with cx(0) =
c2(0) = m. If c{, c2 are uniform limits of normal minimal geodesies
c\, c\ in Mr then c: [ - / , / ] —• X defined by c | [ _ / 0 ] = cι\[_/ 0]f

c\[Q /] = c2 is minimal only if c2 = c{ \[0 /].

Proof Suppose c{(t0) Φ c2(tQ) for some tQ e ( 0 , / ) . For / large,

all c\: [-t0, tQ] -• Mn c\\ [0, tQ] -+ Λff. are defined and minimal. Let

cj, c\ be normal minimal geodesies in Mt from cι

2(0) to c[(—10), and to

C[(t0) respectively. Since limc^O) = limc^O) = m , we have limL(Cj) =

= tQ. By the Toponogov triangle comparison theorem, therefore,

fl; = 7Γ, where θi = £ (ϋj(O), c[(0)). Since lim d(c[(t0), c2(t0)) =
d(c{(t0), c2(tQ)) > 0, we conclude again, using the triangle comparison

theorem, that £ (^(0), c\(0)) > a, for some α > 0 and all large /'.

Combining these facts we find β < π such that £ (-^(0) , ^(0))) <

β for / sufficiently large. The Toponogov distance comparison theorem

then implies d(c\(-tQ), cι

2(t0)) < d for some d < 2tQ and / large. In

particular, d{cλ(-t0), c2(tQ)) < 2t0 . q.e.d.
This lemma should be viewed as a uniqueness property for limits of

minimal geodesies, they cannot "branch." This will play a crucial role in
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understanding the geometry and topology of X. As a first example of this,
we show that all minimal geodesies in X are limits of minimal geodesies
in Mt.

Lemma 2,2. Let X — \\vaMi, Mt G J£{n, k, D) and p = limpi and
p E X, p( G Mr Then any minimal geodesic in X emanating from p is
the limit {after possibly passing to a subsequence) of minimal geodesies in
Mi emanating from p . .

Proof Let c: [0, 1] —• X be any minimal geodesic in X with c(0) =

p and say c(l) = q, d{p, q) - L(c) = / . For every m , there is an

/ = i(m), and points p ° , , p™ e Mt so that d(p\, c(j/m)) < 2~m ,

j = 0, , m, and p? = p, , p z

m = ήf.. Let γ.: [0, 1] -• Af. be a piecewise

minimal geodesic in M( from p z via the p / ' s t o ^.. Clearly lim L(y.) = /

and γt converges to c uniformly.

Fix 0 < s < t < 1 arbitrarily. First choose minimal geodesies cι

s: [0, s] —•

Mt, ?s: [s, I]-+ M{ from y.(0) to y Cs), and from y.(.s) to y . ( l ) . We

may assume (after again possibly passing to a subsequence) that cι

s, cι

s

converges to minimal geodesies cs: [0,s] —• X, cs:[s,l] -^ X with

cs(0) = c(0), cs(s) = cs(s) = c(s), and cs(l) = c ( l ) . In particular,

L(cι

s) + J^(^) —• L(c). From the Toponogov comparison theorem we first

conclude that £ (—cι

s(s), , ζ(^)) —• π and then that the unique (pos-

sibly nonminimal) geodesic extension cι

s: [s, 1] —• M. of cι

s: [0, 51] —• Af.

converges uniformly to c5 = limc^. Thus, there is a minimal geodesic

cs: [0, 1] —• X from c(0) through c(s) to c(l) which is the limit of

geodesies cι

s: [0, 1] —• Λf. that are minimal when restricted to [0,5].

Observe that by similarly extending cι

s: [s, 1] —• Mt backwards to a pos-

sibly nonminimal geodesic cι

s: [0, 1] —>• Mι,9 we obtain c5 = cs where

c5 = limc^. Now repeat the argument with s replaced by t. We will now

show that the minimal geodesic ct: [0, 1] -+ X obtained this way satis-

fies ct\[Os] = cs\[Os]. Since ct\[Ot] and cs\[Os] are both limits of minimal

geodesies, we only need to show ct(s) = cs(s) according to Lemma 2.1. For

this, let cι

st: [s, t] -+ M{ be a minimal geodesic from γ.(s) to γ^t). The

arguments above applied to cι

st and c[ yield limcj(^) = lim^ f(5) = c(s).

On the other hand, we already know that ct(s) = limc^^) = limcj(j).
For each m, using the above construction (m - 1) times, we obtain

a minimal geodesic c m : [0, 1] —• X for which cm(j/m) = c(j/m), 7 =
0, , m, and c w is the limit of geodesies emanating from p( in Mi,
each of which is minimal when restricted to [0, (m - l)/m]. A standard
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diagonal argument now implies that c is a limit of minimal geodesies in
Mt emanating at p.. q.e.d.

Note that if c is a minimal geodesic in X from p = limpi to q =
lim q., p., qt e Mt, then in general c is not the limit of minimal geodesies
cz in M. from p. to q.. In particular, geodesic triangles in X are gener-
ally not limits of geodesic triangles in M..

Now let (p,cl9 c2) be a hinge in X at p e X, i.e., cf.: [0, 1] -• ΛΓ are

minimal geodesies in X emanating from p with lengths L(cf ) = /i9 i =

1, 2 . By Lemma 2.2, (p, q , c2) is the limit of geodesic hinges (p., cj, cι

2)

in Af.. In particular, d(c{{\), c2{\)) = Mm d{c[{l), c2(l)). Using the

Toponogov triangle comparison theorem, we find for each (p., c[, cι

2) a

hinge ( P p c j , ^ ) in M 2 with rf(c|(l), ^(1)) = ^ ( 1 ) , ?2(l)). More-

over, for any fixed s, t e [0, 1], we have d{c\{s), ^ ( 0 ) > d{c\{s), ^ ( 0 )

for all /. Clearly we may assume that (pi, c[, cι

2) converges to a hinge

(p, ^ , c2) in M 2 with L(ϋ.) = L(c.), / = 1, 2 ,_and ^ ( 1 ) , c2(l)) =
J(Cj(l), c 2 (l)). Furthermore, d(c{{s), c2{ή) > d{c{{s), c2{ή) for any s,
t e [0, 1 ] . In this sense, the Toponogov comparison theorem is valid in
X. Therefore we say that X has Toponogov curvature > k (cf. Theorem
A(i)). For the local version of this, cf., e.g., [20].

Proposition 2.3. Let X = limM^ Mt e jr(n,k,D), and D <
n/KM, when k > 0. Then the following hold:

(i) For any p e X there exist closed subsets C(p) cTϊn

k{p, D) together
with surjective distance nonincreasing maps expp: C(p) —• X. Moreover,
C(p)(C(p) n B£(π/y/k) when k > 0) is star-shaped around p and expp

maps geodesic segments emanating from p to minimal geodesies in X
emanating at p . Conversely any minimal geodesic emanating from p is
the image under exp of a geodesic segment emanating from p.

(ii) X has dimension < n. In fact, the Hausdorff dimension of X is
< n since mn(X) < mn(Bn

k(D)) < oo.
(iii) If dimΛf = n, every C(p) has nonempty interior.

Proof (i) Fix p e X and a sequence {p.}, pt e Mt with limp,. = p .

Consider the sequence expp : C^p^ —• Mi of exponential maps, where

C{pi) c TpMi is the tangent cut locus of pt together with its interior. En-

dow the open Z>-ball in T M{ with a Riemannian metric of constant cur-

vature k . Viewing C{pi) as a metric subspace of B"k(p, D) the map expp

is distance nonincreasing according to the Toponogov distance compari-

son theorem. Since the space of closed subsets of a compact metric space

is compact with respect to the classical Hausdorff metric, we may assume,
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FIGURE 2

by possibly passing to a subsequence, that {C(/?,)} converges to a closed
subset C(p) cΈk(p,D). Furthermore, an Arzela-Ascoli type argument
(cf. appendix) shows that after again possibly passing to a subsequence,
the maps exp^ : C{pt) —• M. converge to a map expp: C(p) —> X, i.e., for
every υ e C(p) and sequence {v^ , vJ. € C{pi) with l im^ = v , we have
limexp (vf.) = exp (v). By construction C(p) is star-shaped around p

(expect in case k > 0 and -p e C(p), where only C(p)f)B(p, π/y/k) is
star-shaped), and expp: C(p) —• X is surjective and distance nonincreas-
ing. Also, since each expn is a radial isometry, so is expn (restricted to

C{p)ΠB(p, π/y/ϊc) when k > 0). The converse is now a consequence of
2.2.

(ii) This follows immediately from [16] since exp^: C(p) —• X is sur-
jective and distance nonincreasing.

(iii) If άivaX = n, then also dim C(p) = n, since exp^ is surjective
and distance nonincreasing. In particular C(p) has nonempty interior
[16]. q.e.d.

The exponential maps constructed above are by no means unique.
Examples 2.2. (a) Clearly the suspension X = C+ U C_ , where C±

are flat Euclidean cones (Figure 2), is the limit of Riemannian manifolds
M. = (S2, g.) with KM > 0, dM < D, and VM > v . At the points

p e X we have the cut locus pictures (Figure 3, next page), where ^
of the local cut locus picture of the left identifies opposite sides. At the
point q e X one gets Figure 4 (next page).

(b) Shortening the meridian circles by the factor Γ{ provides a se-
quence M{ - (S2, g.) of Riemannian manifolds with KM > 0, dM < D,
and lim Mt = X is an interval. For an endpoint p of the interval, the
typical C(p) is also an interval, but as in (a) it is also possible for it to be
a 2-disc.

Remark 2.3. The statement (ii) in 2.3 remains true if the lower sec-
tional curvature bound is replaced by a lower bound for the Ricci curvature
(cf. [18]).
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FIGURE 3

FIGURE 4

We are now ready to complete the:
Proof of Theorem A. (ii). Suppose dimX = w , but X has dimension

< m - 1 at some point p G X. By definition there is a neighborhood U
of p such that dim d < m - 2 and dim X - V = m . Consider the set
ΓpX of minimal geodesies emanating from p. Define the relation R in
(X - V) x d U by xRy if and only if y e d U lies on a geodesic in Γ .
This relation is closed and continuous; i.e., for every closed set F c X—U,
the set {y e dU\x e F, xRy} is closed, and for every open set G c dU,
the set {x G X - ί/|y e G, xRy} is open. From the proof of Theorem
VI.7 in §4 of [16], we conclude the existence of a point y e dU so that
dim{x G X - U\xRy} > 2. Since geodesies are 1-dimensional, there
are clearly distinct minimal geodesies cx: [0, 1] —> X, c2:[0, I] -+ X
with c{(0) = c2(0) =p, c{(/{) = y = c ? ( / 2 ) , and q ( l ) φ c2(l). This

contradicts 2.1 (2.2), and hence X has dimension m at all points.

(iii) Next, let O be a nonempty open subset of Λf with O Φ X. From
the above, the open set X - O is m-dimensional. If p G 0 , we can
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let O play the role of U from above, and the argument there then gives
dimdθ> m-\.

(iv) X = Xχ u X2 , Xι• Φ X closed nonempty. To show that X is a
Cantor manifold, we must verify that dimΛ^ Γ)X2> m- I. Now Oλ =
X - X2 is open, nonempty, and Ox c Xx Φ X. By (ii) dim Ox > m - 1
and since dθ{ c XιΓ)X2, this completes the proof.

Remark 2.4. The proof above shows that any locally compact inner
metric space X with Toponogov curvature > k satisfies (ii) to (iv) of
Theorem A. We expect the structure of such spaces to be much more
restrictive, however. In particular, the only 1-dimensional examples are
circles and intervals. Theorem A also holds for limit spaces of complete
open manifolds in the pointed Gromov-Hausdorff Topology.

Although the Toponogov triangle comparison theorem is true for limit
spaces in our class, the following example indicates restrictions on its use
to non-Riemannian spaces (see however [13]).

Example 2.5. (cf. also [23]) Let M be a closed Riemannian manifold,
and G a compact group of isometries on M. The orbit space X = M/G
has an induced length metric (also called inner metric) with curvature
bounded from below by min KM in the sense of Toponogov. Note that
X is the limit of orbifolds M/Gi, where Gt —• G are finite subgroups of
G. In particular, the suspension £^CPM = Sln+1 /Sx carries a length space

structure with curvature > 1 and diameter π. Observe that dx < π for
any length space X, which satisfies Toponogov's comparison theorem with
Kχ > 1. The above example therefore shows that the Toponogov maximal
diameter theorem fails in a non-Riemannian setting. Furthermore, when
n = 0, [0, π] = X CP 0 = S2/Sι = l i m ^ / Z , By smoothing out the two

1 2singularities on S1 jrLi, we get a sequence Mi = (S2, g.) of Riemannian
manifolds with KM > 1, VM -• 0, although dM -> π.

3. Nonexistence of voluminous manifolds
In this section we will investigate the possible existence of manifolds

Mn with KM > k , dM < D, and almost maximal volume V(n, k, D).
To this end, suppose {M.} is a sequence of closed, connected Rieman-

nian ^-manifolds with KM > k, dM < D, and VM -• V(n ,k,D). By
the Gromov precompactness theorem [7], we may assume that Mt con-
verges in the Gromov-Hausdorff metric to a space X. We proceed to show
that X is a Riemannian ^-manifold with constant curvature k, dχ = D,
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and Vχ = V(n, k, D). The only manifolds of this kind are the sphere
and the real projective space of constant curvature k > 0. The proof of
the first part of Theorem B will then be complete.

Lemma 3.1. For p e X any C(p) = Bn

k(p, D), expp: Bk(p, D) -> X

is injective, and expp :~Bn

k(p, f ) -> ~B(p, \D) is a bijective isometry.

Proof. As in the proof of 2.3, choose pt e M{ so that p. —> p and

C{pt) -> C(p) inside l £ ( p , Z)). Now since VM < volC(p ) <V(n,k,D)

and F M -• K(n, k, Z>), we conclude that ϊ*£(p, £)) - C(p) does not have

interior points, and therefore it is empty.
The two statements about the exponential map are analogous applica-

tions of 1.1 (cf. also [11]). We therefore confine our attention to the latter.
As expp: C(p)n'Bn

k(pi R) -• ~B{p, R) is already surjective and distance
nonincreasing for any R < D, it suffices to show that it does not decrease
any distances. Thus assume there are u, υ e Bn

k(p, \D) with

u, exρ p v) <d(u,υ)-δ

for some δ > 0. Select u{, vt e C{pt) n Bn

k(p, £/)) so that w = lim ut,

Ϊ; = lim?;^.. For / sufficiently large, d(expp u{, exppv>j < d(ui, vt) - δ .

Now define Q. = {exp^ u., exp^ .̂} c Mz., F.(ί, ί) = ^(w,., υ() < \D,

and G^q, t) = t for (?', ί) e Q. x [0, oc). By Lemma 1.1 (cf. 1.2(b), (d))

we have

vol(Mz. - B(expp u{, \d[μi, υ.)) U 5(expΛ i ; . ^

<V(n,k,D)-2V(n,k,{d(ui,vi)),

and

^ M., \d{ui, v.)) U ^(exp^ υ., ^rf(M., v,.)

< volί^ίfl,., \d{Ui, υt)) U ̂ ( β , .

where d{ui, ϋ() = d(ui, vt) - δ . Hence

VM{ <V(n,k,D)- vo\{Bn

k{uι, irf(iι., v.)) n

and therefore,

limVM <V(n,k,D)-V(n,k

This contradicts F M —• V(n, k, D). q.e.d.
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It follows directly from 3.1 that X is a Riemannian ^-manifold of
constant curvature k, and injectivity radius=diameter=D. Thus, vol X —
V(n,k,D). q.e.d.

To complete the proof of Theorem B, suppose X = limΛ/ where
KM{ > !> dMt = De[π/2,π], VM{ -> f V(n, 1, π), and Mι,φ RPn.
Let pQ, pχ e X be points with d(po,p{) - dχ = D and consider
H/ = { c G X\d{x9p/) < d(x, p/+ι)}, indices mod 2, together with
the set C = {x e X\d(x, p / ) = π/2, / = 0, 1} which is convex by the
Toponogov comparison theorem. Clearly X = HouH{ and C is a subset
of E = HOΠH{ = {xeX\d(x,pQ) = d(x,p{)} = dH,, / = 0, 1. We
proceed to show that X - C is a smooth manifold of constant curvature 1.
In fact each H^-C, / = 0, 1 is intrinsically isometric to the convex set
H(p, D) - S;-2 , where H(p, D) = {x e Sn(l)\d(x, p) < d(x, {q, r})} ,
Sn

p~
2 = H{p, D)Γ\{x e Sn(l)\d(x,p) = π/2}, and p, q, r all lie on

the same great circle with d(p,q) = d(p,T) = D (cf. also the proof of
Theorem 1.4).

Lemma 3.2. For any C^p^) c B"(jPf , D) there are unique H^p^, D)

c C(p^) swcA ί/ẑ ί expp : H(p/9 D) - S"~2 —• X are injective locally
isometric embeddings, / = 0, 1. ΓΛ/s /n /wr« w only possibly in the trivial
case, D = π.

Proof. Choose p^ e Mt so that limp^ = p,, / = 0, 1. For each

i, M{ = Hipί) U H(p[), FMί = K ^ + K^j,, and VH{p>) < VH{-D) by

1.1 (cf. 1.2(c)). Since F ^ - 2VH{- D), we conclude F ^ ^ - F ^ - D ) ,

/ = 0, 1. In particular, using the appendix of [10], we may assume that

Γ/>»+1

 c Γ ^ c o n v e r S e s t 0 s o m e Tp,{q,,τ» ' w i t h P/ , 9/ , V e C ^ ) c

^ ( P / , β ) c Sn(l) as described above, / = 0, 1. Let / / ( ^ , D) be the

corresponding convex sets defined above. Now since VH^ > —• VH^ D)

we conclude, as in the proof of 3.1, that H(p/, D) - C(p/, D) have

no interior points, i.e., H(p/,D) c C(p/9D)9 I = 0 , 1 . Moreover

expp : Tί(pι, D) —• //(/?/) is surjective since expp : C^p/) —• -Y is surjec-

tive/ / = 0, 1.
Now let D"rx = {x e H(p/, D)\d(x,p/) = dix.q,)} and similarly

define D " " 1 , / = 0, 1. Then 5£~2 = Z^" 1 n S ? " 1 and expp(5^"2) =

(Sp~2) = C. Assume that q,, r/ = 0, 1, are chosen so that

p l O P , ( Z ) Γ 1 ) = : ^ c E > a n d p o Γ ^ K
ErcE. With this notation, £ = Eχ UEr = H0Γ)H{ and C - EqnEr.Ύo
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show that exρp restricted to int(H(p/, D) is an injective local isometry
is in essence identical to the argument given in 3.1. The only difference
is that we use 1.1 in versions (1.2) (b) and (c) combined, i.e., we estimate
the volume of complements of balls in half spaces.

In the remaining part of the proof we need to use both exponential
maps simultaneously. Suppose, e.g., expp (u) = expp (v) = x e E - C

and choose w so that expp (w) = x. Pick a positive ε < min{ jd(u, v),

d(u, S]'1), d(v, S£o~
2), d(w, Sn

p~
2)} . A limit argument based on 1.1

will now yield l iπiF^ < 2VHi- D) - \VBn^9 i.e., expp restricted to

dfHφf , D) - S^~2 is injective. The same modification of the argument

in 3.1 now also implies that these restrictions are local isometries.

With the notation introduced above, therefore, A = ^ p^ :
^ intZJj" 1 , B = exp"1 oexp^: int/)"" 1 -> intDn

r~
{ are bi-

jective local, and hence global isometries. Now consider the isometry
F = B oR- oAoR- : mXDn~λ -> mXDn~ι, where R- , / = 0, 1

P\ Po ro ro P/

are the obvious rotations in 5^(1) which fixes 5^~2. Then for any

u € S;-2 = dDn~ι = dDn~x, clearly y = exp^u) = CXP |,O(F(M)) by

continuity, and y = expp (R- (A(u)) = expp (R- (A(f(u))). Note that

£ {Dn~X, Dn~x) > π/2, since D > π/2, i.e., balls in H{p/, Z)) centered

at points in S?~2 = dDn~ι Π dDn~x have volume > i th the volume of
P/ 4/ r/ ~ 4

balls in Sn(l). Another limit argument then shows that F = id or if
D = π/2 possibly F = -id. In the latter case we get an induced surjec-
tive map RPn = H(pQ, π/2) U H(pι, π/2)/ — • X. This is impossible
since each Mt Φ RPn is homeomorphic to Sn [5] and hence X has the
homotopy type of Sn [19]. In all cases therefore, F = id. Thus for
any u e Dn~x and ύ e Dn~x, the opposite point relative to pQ, we have
expp (u) = Qxpp (A(u)) and exp^ (δ) = exp^ (A(u)). Now choose u so

that, e.g., f = rf(κ, p0) = rf(i/, 5^o"
2) > § , if D < π. Then the f-balls

in H(p/ , D) centered at u, w, Λ(M) , ^4(M) are disjoint. A limit volume
argument as before, then implies d(expp (u), expp (δ)) > δ > D which
contradicts dχ < D.

Remark 3.3. We observe now that when X is the real projective space
of constant curvature k > 0, then M. is homeomorphic to X for /
sufficiently large, at least in dimensions > 5. In [19] maps j \ \ X -+ Mi

with diam(yj) = supjdiamy)" 1 ^)^ e X} ^ 0 as / —• oc are exhibited.



MANIFOLDS NEAR THE BOUNDARY OF EXISTENCE 393

Since M. and X are manifolds of dimension > 5, a result of Ferry [4]
implies that the maps f. are homotopic to homeomorphisms for large /.

Appendix: A Generalization of the Arzela-Ascoli Theorem

Let {Xj}, {Yj} be sequences of compact metric spaces. A sequence
{f.} of maps f.: X. -+ Yi is said to be equicontinuous if for any ε > 0,
there is a δ > 0 such that f.{B(xnδ)) c Bif^x^ε) for all x. e Xn

and i = 1, 2 , 3 , .
Suppose X, Y are compact metric spaces and X = lim ^ , y = lim Yj.

with respect to the Gromov-Hausdorff metric. Extend the metrics on X,
X{ to a metric on X ]} X. so that X. -» X inside X \J X. in the classical
Hausdorff sense, and similarly for Y, Y. (cf. [7]). We say that ft: ^ -* y;
converges to / : X —> y provided /)(x;) -> /(x) whenever x —• x . With
this terminology we have:

Theorem. For any equicontinuous sequence of maps {ft}: {X(} -* {Yt}
one can extract a convergent subsequence, converging to a continuous map
f:X->Y.

With the necessary changes, this is demonstrated as the classical theorem
(cf. also [7] in the case where all maps are isometries).
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