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1. Introduction

Let X be a compact surface with a Riemannian metric of negative
curvature. An π-tuple point on X is a point through which a single
geodesic passes at least n times in different directions. The geodesic is
not required to be closed. Our purposes are to describe the loci of triple
and quadruple points and to show that the quadruple points are dense on
X and the tangents at quadruple points can be made near to four given
directions. The proof of this last fact is based on the theory of Anosov
flows [1].

There is an elementary, intuitive way of studying geodesic triple points.
We present it in §2 and §3 for the case of constant curvature. The quadru-
ple points for variable curvature are studied in §4.

2. Hyperbolic surfaces

Consider a surface X of constant curvature minus one. Its universal
cover is the hyperbolic plane H 2 .

Three different lines in H 2 are lifts of the same geodesic on X if and
only if there exist deck transformations A and B, each mapping one of
the pair of lines onto the third. Such lines will pass through a common
point ψ, if and only if their projection on X has a triple point at the
image of ψ this corresponds to Aψ, Bψ, and ψ being colinear.

There is a single degenerate configuration which occurs if ψ lies on the
axis of A, B or A~ιB. In this case ψ projects to a single intersection
and the line in H 2 projects to a closed geodesic.

It is therefore natural, given two hyperbolic isometries A and B, say
noncommuting and without fixed points in H 2 , to study the locus ZA B

of points ψ for which A(ψ), B(ψ), and ψ are colinear. Upon intro-
ducing coordinates, ZΛ B can be described as the solution set to a cubic
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equation. In particular, ZA B is the union of certain smooth curves. Due
to symmetry, it is immediate that

The aforementioned degeneracy occurs where ZA B intersects an axis of

A , B or A~ιB . Whether these intersections exist depends on the elements
A and B they will in any case consist of a finite set of points.

It is not surprising to find that ZA B is made αp of three disjoint com-
ponents:

ZA,B = CA,BUCA-l,A-lBUCB-lA,B~l>

each of which is a smooth curve connecting the attractive fixed points
of the associated transformations. To see this, let us first consider two
"large" hyperbolic motions, A and B, with distinct fixed points on the
circle at infinity. For any point ψ, which is not too "close" to either of
the repulsive fixed points, the images A{ψ) and B(ψ) will be "close" to
the respective attractive fixed points. Thus, if such a point ψ belongs to
ZA B,'\X must be close to the line between the attractive fixed points of A

and B . Thus, when A, B, and A~ιB are large, we can easily recognize
the three components of ZA B. To verify the description of ZA B in
general, we continuously deform A and B and use a lemma, proved in
§3, which shows that the three components cannot become tangent nor
(self-) intersecting in H 2 .

The group of deck transformations for a hyperbolic surface X is a
Fuchsian group Γ. The pairs of attractive fixed points of elements in Γ
are dense among all pairs of limit points for Γ. Also, by taking powers,
each pair of attractive fixed points belongs to a pair of arbitrarily large
transformations. The above reasoning, therefore, shows that the curves
CA B of triple points for Γ are dense in the subset of H 2 , which is the
hyperbolic convex hull of the limit set of Γ. Thus, on X geodesic triple
points occur densely along smooth curves in the projection of this convex
hull. In particular, if X is compact, or more generally, if the limit set of
Γ is the entire circle at infinity, then the triple points are dense on all of
X.

By considering points of intersection ψ e C4 B n Cc A-\ for suit-
ably chosen transformations A , B , and C, one can show that quadruple
points are dense. Choose C so that topological considerations force ZΛ B

to intersect Zc A-\\ for example, if the axes of A and B are disjoint, as
in Figure 2, one chooses the element C so that the attractive fixed point
of C is separated from the fixed points of A by the fixed points of B.
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It is then apparent that the curve Cc A-ι , which joins the repulsive fixed
point of A to the attractive fixed point of C, must cross CA B, called
the point of intersection ψ . The points ψ, Aψ , Bψ , and ACψ will be
colinear and, except when ψ lies on an axis, will project to a quadruple
point. By using the density in Sx of the attractive fixed points of a discrete
cofinite group and the fact that when two elements, A and B, have very
large translation lengths, CA B is very close to the line connecting their
attractive fixed points, one easily proves the density of quadruple points
on the quotient surface.

In the constant curvature case we have shown that the locus of triple
points is a union of real analytic varieties and the locus of quadruple points
lies in the intersections of components of these varieties. In the smooth
category one expects a similar description: triple points form continua
while quadruple points are isolated though dense.

3. Computations

In order to make the above more precise we first remark that the set
ZA B is the zero locus of a smooth function defined in H by:

A(X) - [signed area of the triangle with vertices (X, AX, BX)].

The important properties of ZA B will follow from the fact that dΔφ 0

on ZA B and its behavior near c ^ H 2 . Since the fixed points of A, B

and A~ιB are pairwise disjoint, it follows easily Ύ.A B Πd^H2 consists

precisely of the fixed points A, B and A~ιB . A moment's consideration

shows that Δ extends continuously to d^H2 /{fixed points of A, B and

A~ιB} where it equals either π or - π .

The Main Lemma. Let A and B be two distinct hyperbolic elements

in Aut+(H 2). Then the following hold:

(1) ZA B is a smoothly embedded submanifold of H 2 .

(2) The sign of Δ(X) changes as X crosses ZA B .

(3) If A~ι B is also hyperbolic and the fixed points of A, B and A~ιB

are pairwise disjoint, then ZA B is exponentially close to the pencils of

geodesies emanating from the fixed points of A, B and A~ B.

Proof As remarked above, we deduce these properties from the fact
that ZA B is noncritical for Δ. Instead of studying Δ, we will introduce

a simpler function and work in the Lorentz model of H . Briefly, this is
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defined by putting an inner product of signature (2, 1) on R 3 :

(X,Y) = XιYι+X2Y2-X3Yy

Then H 2 is isometric to the submanifold:

with the induced inner product. Geodesies are the intersections of planes
through (0 ,0 ,0) with H+ and the group Aut+(H2) is identified with the
subgroup, SO+(2, 1) of the orthogonal group of ( , ) which preserves the
condition: X3 > 0. The action of SO+(2, 1) is the standard linear action
of Gl(3) on R 3 . Because geodesies in H 2 are given by intersections of
planes through (0 ,0 ,0) with H+ , one easily sees that:

ZA B = {XeH+: det(X,AX,BX) = 0};

we define F(X) = det(Λf, AX, BX). The signed area is a positive mul-

tiple of F(X). Thus ZA B is the intersection of the zero set of a ho-

mogeneous cubic with H+. We will let Z = {X e R3: F(X) = 0}. To

prove statements (1) and (2), it suffices to show that dF(X)(Y) Φ 0 for

X e ZA B and some Y e TχH
+ . If X e Z , then there are real numbers

a and b such that

TX = (/ + aA + bB)X = 0.

From this it follows easily that for I G Z ,

dF(X)(Y) = det(Γ7, AX, BX)

= Y-'TiAXxBX).

Hence dF{X) = 0 if and only if ιT{AX x BX) = 0. Suppose that
X eZA B. Then we can find a transformation C e SO+(2, 1), such that

C * = ( 0 , 0 , 1),

( cosflchΛ -sinθch/l shλy

sin θ cos θ 0

cos θ sh λ - sin θ sh λ ch λ J

/cos</>ch(-μ) - s in0ch(-μ) sh(-μV
CBC~l = sin θ cos0 0

Vcos0sh(-μ) -s in0sh(-μ) ch(-μ)
In the sequel we will simply write X for CX, A for CAC~ , and B
for CBC~ι as this should cause no confusion.

In light of the fact that A Φ B , we can assume without loss of generality
that the ordering of points along the line is AX, X, BX were this not
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the case we could simply replace the pair (A, B) with either (A~ι, A~ιB)
or (B~ι, B~ι A) and proceed as below. This implies that we can assume
that A and μ are both positive. With these normalizations we have:

τ= 11- s h μ A s h λ B ^
sh(A + μ)

and

(4) AXxBX = (0, -sh(A-hμ), 0).

It follows from (4) above that ιT(AX x BX) = 0, if and only if both
T2l and Γ22 are zero. An elementary calculation gives:

Γ21 = - (shμsinθ + shAsin0) / sh(A + μ),

Γ22 = 1 - (shμcosθ + shAcos(/>)/sh(A + μ).

In order for T2χ = 0 , it is necessary that (sin#, sinφ) = /(shA, -shμ)
for a / with \t\ < m i n ί ^ ,-j}-). Therefore

(cos(9, cos0) = ί ± \ / l - ί 2 s h 2 / l , ±\/\-t2sh2μ\ .

Using this in the formula for Γ22 , we see that if Γ22 = 0 for any t in the
allowable range, then it will vanish for some t with both cos θ and cos φ
positive, with these choices: Γ22 = 1 - g(t), where

g(t)= (shμyjl - t2sh2λ + shλyjl - t2 sh2μ\ /sh(λ + μ).

This function assumes its maximum value in the allowable range at t = 0,
where

g(0) = (sh μ + sh λ)/ sh(μ + A) < 1.

Thus if Γ21 = 0 , then Γ22 φ 0. This proves that for Λf e ZA B, there

is Y e TχR
3 such that dF(X)(Y) φ 0; since dF{X){X) = 0 and X

is transverse to Γγ/f+, it follows that there is a Y e TχH
+ such that

dF(X)(Y) φθ. From this, (1) and (2) follow immediately.
To complete the proof we need to examine the behavior of ZA B near

to d^H2 . The model in which the asymptotic boundary is most smoothly
attached is the Klein model. This is obtained by "stereographically" pro-
jecting H+ into the plane {X3 = 1}: a line through (0, 0, 0) which
lies inside (X, X) = 0 will intersect one point on H+ and one point on
{X3 = 1} this defines a projection of H+ onto

K = {{Xx, X2,X3): X2

{+X2 < 1 X3 = 1},

which is called the Klein model of hyperbolic space.
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FIGURE 1

FIGURE 2

Hyperbolic geodesies in the Klein model are segments of straight lines in
the plane {X3 = 1} . From this observation and the fact that the distance
between hyperbolic geodesies with a common endpoint on d^H2 tends
exponentially to zero, it follows that a smooth curve in K, which intersects
dK transversely at a point p, is exponentially close in the hyperbolic
metric, to the pencil of geodesies emanating from p .

Since F(X) is homogeneous, the image of ZA B under the projection
to K is simply Z nK. To complete the proof of the lemma, all we need
to show is that dF{X){W) φ 0 for X e Z ΠdK and W a tangent vector
to d K at X. It is convenient to use a different normalization from that
used above, we will assume that X and A are normalized so that:

A =

= ( ± 1 , 0 , 0 ) ,

chλ 0 shλ
0 1 0 , λ φ 0.

shA 0 chλ

We see that

dF{X±){Y) = det(Γ±7, AX±,BX±),
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where T± = (I-eτλA)Y. With the above normalizations, W = (0, x, 0),
and

( A +

-x{e - 11+ 13) - ( 3 i + 3 3 ) ] - j

x{e~λ - 1)[(513 - Bn) - ( 5 3 3 - B3ι)] = Z .

Note that if Z ± = 0, then BX± = μX± for some μ. This follows be-

cause (BX±, BX*) = (X±,X±) = 0;if Z± = 0, t h e n {BX±, 5 X ± ) =

(B2l ± B23)
2 = 0. By assumption, the fixed points of A and 5 are dis-

joint; hence, dF(X±)(W) φ 0. This completes the proof of the main

lemma, q.e.d.

Figures 1 and 2 show ZA B in the Poincare model; the axes of A, B
and A~ιB are drawn as dashed lines, and ZA B is drawn as a solid line.
In Figure 1 the axes intersect; in Figure 2 the axes are disjoint.

4. Variable Curvature

In order to prove the density theorem, we first make a few definitions
and recall some basic facts.

An n-cross consists of a point on X and n unit tangent vectors at that
point. When an «-tuple point occurs (a point through which a geodesic
passes n times), the point and the tangents to the geodesic determine an
«-cross.

As in the hyperbolic cases, the universal cover X has a sphere at infinity
Sι, which can be constructed from the visual sphere at any point.

The geodesic flow is mixing relative to the invariant Liouville measure
on the unit tangent bundle [1].

A pencil of geodesies G(s) is determined by a smooth immersed path
T(s) in the unit tangent bundle, transverse to the geodesic flow; G{s)
denotes the geodesic through T(s). The geodesies in a pencil have the
following "sweeping" property: The positive (or if not, then the negative)
ends of the geodesies spread apart exponentially fast, so that:

(1) as s varies, the speed of motion of G(s) normal to its direction as a
geodesic on X tends to infinity as we travel toward the positive (negative)
end of G(s) and

(2) for any open set U in the unit tangent bundle to X, there are
arbitrarily small values of s for which the far positive (negative) end of
G(s) enters U. These conditions fail for the positive ends of G{s) only
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if these ends are focused at a single point on the sphere at infinity S ι in
that case, they hold for the negative ends of G(s).

Property (2) is an easy consequence of mixing. Consider a lift of G(s)
to X, and let / denote the interval of Sι traced by the positive endpoint
of G{s) as s ranges in (-ε, ε). The lifted pencil corresponds to a smooth
path T(s) in the unit tangent bundle to X. Let W denote an open neigh-
borhood of Γ(0) chosen small enough that on X, the geodesies through
W tend towards a subinterval of / and are therefore eventually contained
in the region swept out by G{s). By mixing, under the geodesic flow W
meets lifts of U infinitely often. But geodesies through W become nearly
parallel to those of G{s) as one tends towards / (looking backward, the
visual distance between W and Γ ( - ε , ε ) tends to 0). Therefore, the far
positive end of some G(s) also enters U .

Proposition 1. The double points of almost any geodesic are dense in
the space of2-crosses.

Proof. By mixing, almost any geodesic is dense in the unit tangent
bundle.

Proposition 2. The triple points are dense in the space of 3-crosses.
Proof Take a pencil of geodesies G{s) such that G(0) has a double

point at a given transverse 2-cross, and the positive ends are sweeping. By
transversality, the double point moves by a differentiable function b(s) for
s small. For large positive time, the geodesic G(s) sweeps by the original
double point with high normal velocity (much higher than db/ds) and
nearly parallel to an arbitrary third unit vector. Hence there is a triple
point near a given 3-cross (Figure 3).

Theorem 3. The quadruple points are dense in the space of4-crosses.
Proof Consider in the preceding construction the function f(s) =

dist(b(s), G(s)), where the distance is measured for the particular branch
of G(s) sweeping by nearly parallel to the third vector. Since G{s) is
moving rapidly, the derivative df Ids is nonzero at the small value of s
which achieves the triple point. Let Γ tr iple denote the unit tangent vector
on the path T(s) corresponding to this value of s .

Let U be a two-dimensional submanifold of the unit tangent bundle
transverse to the geodesic flow and containing Γ t r i p l e. The functions b(s)
and f(s) can be defined locally on a neighborhood of Γ tr iple in U (since
the double point is assumed transverse). By the above remarks, / gives
an immersion of U into the real line, covering 0; by the implicit function
theorem there is a smooth path T(t) in U such that Γ(0) = Tχή l e and
f{T(t)) = 0, i.e., such that the corresponding geodesic G{t) has a triple
point at b(t).
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FIGURE 3

Now reapply the proof of Proposition 2. We may assume the positive
ends of the geodesies G(t) come sweeping by the original triple point for
G(0), nearly parallel to a fourth unit tangent vector and moving much
faster than b(t). (If the positive ends happen to be focused, we use the
negative ends.) In any case the resulting collision produces a quadruple
point approximating a given 4-cross.
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