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RIGID REPRESENTATIONS
OF KAHLERIAN FUNDAMENTAL GROUPS

KEVIN CORLETTE

0. Introduction

In the early 1960s, Weil proved that cocompact lattices in a semisim-
ple Lie group had no deformations, provided the group had no local
three-dimensional factors. This result has been the point of departure
for many subsequent studies of local, strong, and super-rigidity of lattices
in semisimple Lie groups. The goal in the current paper is to show that
the local rigidity discovered by Weil in the context of locally symmetric
manifolds is actually a phenomenon which holds much more generally in
Kahler geometry.

Suppose M is a compact Kahler manifold, and GR is a simple real
algebraic group acting by isometries on the irreducible bounded symmetric
domain GR/K. If P is a principal GR-bundle over M, we may reduce
its structure group to K, and associate characteristic classes of the bundle
with reduced structure group to P . In particular, there is an invariant
connected with the volume form on GR/K, to be denoted by vol(P). It
is a power of the first Chern class, up to a constant factor. We prove the
following.

Theorem 0.1. Suppose that P is aflat principal GR-bundle with YOI(P)

Φ 0, and assume that GR/K is not of the form

U(n, l)/ί/(/i)xt/(l)

or

SO{2n + 1, 2)/S{O(2n + 1) x (9(2)).

Then the monodromy homomorphism of the fundamental group of M into
GR is locally rigid as a homomorphism into the complexification of GR.

An earlier result [4, Theorem 4.1] asserted the compactness of the space
of equivalence classes of representations with vol(/?) φ 0 under weaker
assumptions on the bounded symmetric domain. This result supersedes
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the earlier one in those situations where it applies. The author has no
examples which show that the exclusion of the two series of bounded sym-
metric domains listed is necessary, but the method of proof employed here
certainly does not apply in these cases.

In a sense, Theorem 0.1 says that the stated local rigidity property is
hereditary for surjective holomorphic maps. If TV is a compact quotient of
one of the bounded symmetric domains allowed in 0.1, then the representa-
tion of the fundamental group of M induced by a surjective holomorphic
map to N (e.g. a branched covering) satisfies the hypotheses of 0.1.

It should be mentioned that there is an interesting result which drives
in the converse direction, due to Carlos Simpson [14]. His result is the
following.

Theorem 0.2. Suppose p: πx(M) —• Gl{n, C) is a locally rigid repre-
sentation of the fundamental group of a compact Kάhler manifold. Then the
associated flat vector bundle is the underlying vector bundle of a variation
of Hodge structure.

The homomorphisms which enter into Theorem 0.1 are the monodromy
representations of variations of Hodge structure of principal type, as fol-
lows almost immediately from [3].

The method of the present paper was inspired by a reading of [1], as
well as discussions of it and related matters with Domingo Toledo. John
Millson told me of the relevance of Kostant's theorem [7] to the goals of §3
and, together with Bill Goldman, introduced the author to the philosophy
of looking for a differential graded Lie algebra which guides a deformation
theory. This philosophy plays a role in the proof of 3.3. The author would
like to thank all of them for their advice and encouragement, and also the
Mathematical Sciences Research Institute and the University of Maryland,
each of which provided shelter while part of this work was being done.

1. Families of representations

We shall require some basic facts about the algebraic geometry of the
representation and character varieties of finitely generated groups. Much
of what we need is taken from Johnson and Millson [6] and Morgan [10].

Let Γ be a finitely generated group, and G a simple algebraic group
defined over the real numbers. GR (resp. Gc) will represent the real (resp.
complex) points of G. Choose a finite generating set {γ{, , γn} for Γ
and a set of defining relations: Ri(yι, , γn) = I. The set Hom(Γ, Gc)
of homomorphisms from Γ to Gc is then the set of complex points of
an affine algebraic variety defined over R, since it coincides with the set
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of solutions of the polynomial equations Ri(γι, , γn) = 1 in G^ , and
these equations have integer coefficients.

Definition 1.1. A homomorphism p e Hom(Γ, Gc) is called stable if
the image of p is not contained in any proper parabolic subgroup of Gc .
In particular, homomorphisms with Zariski dense image in Gc are stable.

Proposition 1.2. The set of all stable p e Hom(Γ, Gc) is a Zariski
open subset of Hom(Γ, Gc).

For a proof, see Johnson and Millson [6, §1].
Let the subset of stable homomorphisms be denoted by Horn^Γ, Gc).

The character variety X(Γ, Gc) is, naively, the quotient

Hom(Γ, Gc)/Gc,

where Gc acts by conjugation on homomorphisms. However, this quo-
tient presents the usual array of pathologies, so one must use the more
sophisticated notions of geometric invariant theory to give the proper def-
inition of the character variety. We will only need to work in the Zariski
open subset of equivalence classes of stable homomorphisms, however,
and this obviates the need for subtleties in the definition of the character
variety. Thus, we define

Consult the paper of Johnson and Millson for verification of the fact that
X(Γ, Gc) is the set of complex points of a quasiprojective variety defined
over the real numbers.

Our main concern in this paper is with homomorphisms into the set of
real points of G, so define

X(Γ, GR) = Hom'(Γ, Gc) n Hom(Γ, GR)/GR.

The map π: X(Γ, GR) —• X(Γ, Gc) induced by the inclusion of GR in Gc

is a map into the set of real points of X{Y, Gc) [6]. The basic observation
which will be used in this paper is:

Lemma 1.3. Let x be any point in X(Γ, GR). If for any real ana-
lytic curve f: [-1, 1] -+ X(Γ, Gc) with /(0) = π(x), there is an open
neighborhood of zero with image contained in X(Γ, GR), then π(x) is an
isolated point in X{Γ, Gc).

Proof This is a direct consequence of the Curve Selection Lemma [9].
The set of nonreal points of X(Γ, Gc) is an open real semialgebraic subset
which contains x in its closure if x is not isolated. The Curve Selection
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Lemma then guarantees that there is a real analytic map / : [-1, 1] —•
X{Γ, Gc) with /(0) = x and / ( [ - 1 , 0) U (0, 1]) contained in the set of
nonreal points.

2. Harmonic maps, liftings, and horizontality

Let M be a compact Kahler manifold with fundamental group Γ. GR

will be as in the previous section, with the additional assumption that
X — GR/K is an irreducible bounded symmetric domain, where K is a
maximal compact subgroup of GR. We assign n to be dim c GRjK, and
assume n > 2.

Let p: Γ —> GR be a homomorphism. It determines a principal GR

bundle P with flat connection over M, and an associated fiber bundle
Y —• M with fiber Λ". As described in [3], we can manufacture topological
invariants of P from powers of the Kahler form ω on X, in the following
manner. Because ω is invariant under the action of GR, there is a closed
two-form on Y (again denoted by ω) which coincides with the Kahler
form along any fiber and vanishes when restricted to the leaves of the
horizontal foliation defined by the flat connection, obtained by pulling
back ω to the product of the universal cover of M with X and dividing
by the natural action of the fundamental group. Since X is contractible,
we can choose a section / of Y, and f*ωm is a closed 2m-form on M
for any m > 1. It therefore determines a class [f*ω2m] e H2m(M, R).
On the other hand, / determines a reduction of the structure group of
P to K. Our assumptions on GR imply that K has a one-dimensional
center, so there is a complex line bundle Lλ —• M determined by any
nontrivial character λ of the center. One can easily check that, up to
normalization, f*ω is the Chern-Weil representative of the first Chern
class of Lλ, hence a topological invariant of P . In particular, [f*ωm]
does not vary if p is allowed to roam over a component of Hom(Γ, GR).

Of particular interest is the invariant associated to the volume form
ωn jn\ we obtain from it an invariant which will be denoted by vol(/>) e
H2n(M,R).

Proposition 2.1. // p: Γ —• GR is a homomorphism with vol(/?) φ 0,

then p has Zariski dense image.
Proof. Suppose not. Then the Zariski closure of im(/?) has a reductive

Levi factor G1 which is a proper subgroup of GR . p may be deformed
to a representation p with image in Gf. Gf jG' ΠK is a submanifold of
positive codimension in X, and there is a section f of the flat Gf /G'nK
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bundle associated to p . However, the pullback of ωn/n\ by / ' vanishes,
so p must have had Zariski dense image, q.e.d.

Let D be the natural flat connection on P and let ad(P) be the natural
flat vector bundle associated to P by the adjoint representation of GR.
Once we have fixed a section / : M —> Y, a decomposition

ad(P) = V®W

is determined, according to the decomposition gR = k Θ p of the Lie
algebra under the action of K. There is a corresponding decomposition

where Z)+ is a connection which preserves the reduction of structure group
determined by / and θ is a one-form with values in W.

There are two invariant complex structures on X, and we may use
either one to give Y a complex structure. The complex structures on X
are reflected on the level of Lie algebras in the following manner. Let g
be the Lie algebra of GR . The choice of a maximal compact subgroup K
determines a direct sum decomposition

g = k θ p ,

where k is the Lie algebra of K. The vector space p c = p®C decomposes

under the action of the center of k into two maximal abelian subalgebras

of g ® C. Either one of these can be taken to define the (1, 0) directions

for an invariant complex structure on X, and one which is so chosen will

be denoted by p1 ° , while the other will be denoted by p 0 ' 1 .

Proposition 2.2. Suppose p:T —• GR is a homomorphism with vol(/?)

φθ. If d i m c X > 1, then there is a choice of complex structure on X such

that Y has a holomorphic section.

Proof The existence of a harmonic section / follows from Proposi-

tion 2.1 and [3] (cf. [5]). Let θ = 0 1 ' 0 + 0 0 ' 1 be the decomposition of θ

into (1,0) and (0,1) forms with values in W®C. By Theorem 5.1 of

[3] (or Proposition 2.4 below), the image of 0 1 0 is pointwise an abelian

subalgebra of p c . Since vol(/?) Φ 0, the image of 0 1 ' 0 has half the di-

mension of p c at a generic point. Thus, by Theorem 3.1 of [1], \m{βx'°)

coincides with p1 ° for some choice of invariant complex structure on X.

This is true on an open set in M, so / is holomorphic on an open subset

of M relative to the specified complex structure on Y. The argument

that / is holomorphic everywhere is given in [15]. q.e.d.

Now suppose we are presented with a real analytic curve χt: [-1, 1] —•

X(Γ, Gc) with χQ the character of p. Without loss of generality, we may

assume that each χ represents an equivalence class of representations
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with Zariski dense image in Gc, since the latter is an open condition on
characters. This family of characters determines a family of equivalence
classes of flat connections on PQ, the principal Gc-bundle obtained from
P by extending the structure group. Each χt corresponds to an equiv-
alence class of representations with Zariski dense image in Gc, so any
flat connection in the corresponding equivalence class admits a harmonic
metric, in the sense of [3]. The next result asserts that we can choose rep-
resentatives which vary smoothly with t. Let P c be the pullback of Pc

along the projection from M = ¥ x [ - 1 , 1] to M. Let Mt and Pc t be
the inverse images of t e [-1, 1] under the natural projections from M
and P c . Let H be a maximal compact subgroup of Gc, and define Xc

to be Gc/H. Yc and Yc t are the fiber bundles associated to P c and
PQ t by the action of Gc on Xc . Let T{ be the bundle of tangent vectors
to the fibers of the projection P c —• [-1, 1], and T2 the tangent bundle
to the fibers of the projection P c —• M . Define a vertical connection on
P c to be a projection Tχ —• T2 which is a connection in the usual sense
upon restriction to any Pc t .

Proposition 2.3. There is a vertical connection D on P c and a smooth
section f: M —• Yc such that the restriction of D to any Pc t is a flat con-
nection with holonomy representation in the equivalence class determined
by Xt, and f restricted to any Mt is a harmonic section of YQ t .

Proof Let us recall the framework of [3], [4], ^ will be the space
of smooth connection on Pc, and 9 will be the group of smooth auto-
morphisms of Pc as a principal Gc -bundle covering the identity on M.
Let <8?/ be the subset of ^ consisting of flat connections with Zariski
dense holonomy. Fix a section / of Yc, and let % be the subgroup of
& which fixes / . As described in [3], [4], this data allows us to think
of ^ as an infinite-dimensional symplectic manifold where ^ acts in a
Hamiltonian fashion. A zero for the associated moment map Φ along a
<^-orbit representing an equivalence class of flat connections is simply a
flat connection for which / is harmonic. Φ~1(0) Π Ή1 is a principal %
bundle over & I& (we may assume without loss of generality that GQ

has trivial center, so & acts freely on &'). The family of representations
pt determines a family of equivalence classes of connections, i.e., a path
in W/&. This can be lifted to a smooth path in Φ'^O) n ff'. Pulling
back the universal vertical connection on Pc x ^ and the section / of
Yc gives the required smooth family, q.e.d.

We now recall the various consequences of the Bochner-Siu formula for
a harmonic section of Yc t from [1] (cf. [3], [12], [15]).
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Proposition 2.4. For any harmonic section ft of Yc t, we have

(i) d+ o d+ = 0

(ii) d+θι'° = 0;and
(iii) [θι'°,θι'°] = O.
Proof. Calculating as in [3] gives

This must vanish, since the left side integrates to zero while the right side
is nonnegative. (i) follows from the fact that Dt is flat, since the curvature
of D* must then be -\[θt, θt]. Taking the (2, 0)-components on both
sides yields d+ o d+ = - \ [θ]' °, θ]' °] = 0. q.e.d.

Let a d ^ ) be the Lie algebra bundle associated to Pc by the adjoint
representation of Gc . Each fiber is isomorphic to ^ , as a Lie algebra. As
noted in the proof of Proposition 2.4, (iii) implies that the image of θι

t'°
is, pointwise, an abelian subalgebra of the corresponding fiber of ad(P c ).
For t = 0 and a generic point of M, the image of θ\'° is p1 ° . For the
remainder of this section, we will operate under the following assumption:

Assumption 2.5. p1'° is locally rigid as an abelian subalgebra of ^ .
In other words, if a, is any smooth family of abelian subalgebras of ^

with a0 = p 1 ' 0 , then each a, is conjugate to p 1 ' 0 , for t in some open
neighborhood of zero. This assumption will be defended in certain cases
in the next section.

Granted this assumption, for t sufficiently small (e.g. less than ε in
absolute value), there is a nonempty open subset U of M such that the
pointwise image of 0 1 0 on U is an abelian subalgebra of the fiber of
ad(Pc) which is in the conjugacy class represented by p 1 0 . One can
interpret this as saying that the 1-jets of ft on U are those of holomorphic
maps from U into totally geodesically embedded copies of X in XQ , for
\t\ < ε. Our task is then to show that these totally geodesic copies of X
given by the various 1-jets of ft are all identical.

Furthermore, we can assume that M - U has real codimension at least
two, for the following reason. By Proposition 2.4(i), 9 + induces a holo-
morphic structure on ad(P c ). Relative to this structure, 2.4(ii) asserts that
θι'° is a holomorphic (1, 0)-form with values in ad(/>

c). Hence, the set
on which θι'° has rank smaller than dim c p

1 ° is a complex analytic sub-
set of M . In particular, it does not disconnect M. Thus, any point in
the set on which θι'° attains maximal rank can be joined to a point in
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U by a path in this set. Consequently, the image of θι'° at any point of
this set is a conjugate of p1 ° .

Define Z = Gc/K. Z fibers over Xc with fiber H/K. Points of Z
are in bijective correspondence with points of Xc together with a totally
geodesically embedded copy of X passing through the given point (this
observation seems to have been made first by Cartan [2]). Lift ft to a
map ft from the universal cover M of M to Xc, and let U be the
inverse image of U under the covering map. The claim of the previous
paragraph then implies that there is a natural lift of ft to a smooth map
Ft: U —• Z , determined by the image of θι'° at each point.

Z carries a natural foliation & whose leaves are horizontal relative to
the submersion onto Xc each leaf is the lift of a copy of X embedded
in Xc . We wish to show that the image of Ft on U lies in a single leaf
of &. Under the action of H, ^ decomposes (as a real vector space)
into a direct sum of the Lie algebra of H and a complement:

g c = h Θ q.

When restricted to K, the representation reduces further:

g c = k Θ h/k Θ p Θ q/p.

There is a corresponding decomposition of Dt, upon restriction to U,
determined by Ft:

The last term vanishes because the image of θ coincides with p, so θ —
θχ. On the other hand, the condition that the image of Ft be contained
in a leaf of & is equivalent to the vanishing of ρ + θ2, since the foliation
of Z is defined by the one-form corresponding to the projection from g c

to h/k θ q/p. By Proposition 2.4, we get

rθι °=tfθι'o+[Qo ι,θι °] = o.
The two terms in the middle take values in different subspaces of g c , so

each vanishes. In particular, since the image of θ{'° is a maximal abelian

subalgebra of g c , the vanishing of [ ρ 0 ' ι , θι'°] implies that the image of

ρ 0 ' 1 is contained in p 1 0 , so ρ 1 > 0 takes values in p 0 1 . From the fact

that Dt is flat, it follows that

D+θ = D*θ + [ ρ 9 0 ] = O.

Again, both terms vanish, and taking (2, 0)-components gives
r 1,0 n l , 0 , n

[ρ ,θ ] = o.
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Let V be the image at a point in U of ρι*° + θι'° . The projection of

g c onto p 1 ° restricts to a surjection on V. Choose a basis {va} u {^1}

of F* such that the dual of {υa} projects to a basis {pa} of p 1 0 , and

the dual of {υ'β} is in the kernel of the projection onto p 1 0 . For some

choice of Cartan subalgebra c, assume that each pa is a nonzero element

of a root space, and let {p-} be the conjugate basis of p 0 ' ι . We will take

{a} as a set of labels for roots. Let π± e H o m ( F , p ± ) be the elements

induced by the projections from g c . We need to show that the vanishing

of [π + , π_] G Hom(/\ 2 V, g c ) implies the vanishing of π_ . A basis for

H o m ( F , p l ϊ 0 ) is given by {va®pβ}U{υ'a®pβ} , while {va®Pp}\J{v'a®Pj}

is a basis for Hom(F, p 0 ' ι ) . In terms of these bases, we have

π - = Σ V α ® Pβ

\{ a Φ β, then we can show that π-^ = 0 by considering the coefficient

in g c of vQ Λ Vn in the expansion of [π+, π _ ] :

K , 7Γ_]^ = Σ πfiylPa ' Pyl + πay\Pβ ' Pyl

Each of these terms belongs to some nontrivial root space, with the excep-
tion oftion of

which lies in c. If both terms are nonzero, then they are linearly indepen-
dent. Thus, the vanishing of [π+ , π_] implies that π^ = 0 when aφ β .

The vanishing of n'aj for all a, β follows by an analogous argument.
For any a, let pγ be an element such that [pγ, p~] is a nonzero element

of a nontrivial root space. Consider the coefficient of v Λ va :

All of these terms lie in c or a root space other than that corresponding
to [pγ, /?-], except

where δ = 2a - γ . However, since a ψ γ , we have y Φ δ , so the second
term vanishes. Thus, πa- = 0.

As a consequence, π_ vanishes, so ρ 1 0 vanishes on ί7,and Ft maps

U to a single leaf of SF. Hence, ft maps U to a totally geodesically

embedded copy of X in Xc. By continuity, it must map all of M to
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that copy of X. The stabilizer in Gc of any leaf of ^ is a conjugate on

GR, and since ft is equivariant relative to pt, the character of pt must

be a real point of X(T, Gc) for all \t\ < ε .

3. Rigidity of abelian subalgebras

The completion of the proof of the main result for several of the Her-
mitian symmetric domains is provided by a theorem of Mai 'cev.

Theorem 3.1 (Mai 'cev [8]). Suppose G is Sp(2n, R), n > 2, SO"{In),
n > 2, or the automorphism group of either of the exceptional bounded sym-
metric domains. Then p 1 ' 0 is locally rigid as an abelian subalgebra of ^gc.

Schur [ 13] proved the analogous result for SU(n, n) and SU{n9n+l),
but we will not rely on his result, since the argument we give for SU(m, n)
will apply to these cases. Mai' cev actually characterizes the abelian subal-
gebras of maximal dimension in all the semisimple complex Lie algebras,
showing that there is a unique conjugacy class of such subalgebras in each
case. For many of the cases we must consider, p 1 ' 0 does not have maximal
dimension, so Mai' cev's result does not apply.

To treat the remaining cases, we recall the statement of a theorem of
Kostant [7], specialized to the case at hand. Let c be a Cartan subalgebra
of g c = g <g> C, and let Φ c c* be a system of positive roots for g c . Φ
is a union of a set of compact roots, corresponding to the roots of k ® C
and denoted by Φc, and a set of noncompact roots, corresponding to a
choice of p 1 ' 0 and denoted by Φ" . We may assume that each positive
noncompact root is larger than any compact root. We denote by λ the
largest root in Φ, and by η we will mean

Let W be the Weyl group of g c relative to this set of roots. Wx is

the subset of W containing any σ such that cr(-Φ) n Φ contains only

noncompact roots, while Wι(i) will be the subset of elements in Wx such

that σ ( - Φ ) n Φ has cardinality /. For σe Wι(l), aσ will be the unique

element of σ{-Φ) n Φ , and va will be any nonzero element of the dual

in g£ of the root space corresponding to aσ , under the identification of

g£ and g c given by the Killing form. For any σ e Wx{\), let ξσ =

σ{η + λ) - η. It turns out that ξσ is in the weight lattice for k.

Theorem 3.2 (Kostant [7]). Let Hι(pι'°, gc) be the first Lie algebra

cohomology group of p ' with coefficients in the complexified adjoint repre-

sentation of g, and, for any ξ in the weight lattice of k, let Hι (p1 ' °, gc)
('
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be the subspace which transforms under the natural action ofk as a direct
sum of representations of k with highest weight ζ.

Then Hι(pι'°, gc)
(' is irreducible as a k-module, and it is nontrivial if

and only if ξ = ξσ for some σ eWι(l). Furthermore, the highest weight

for the action of k on Hx (p 1 ' °, gc)^σ is represented by

where vσλ is a nonzero element of the root space for σλ.

We will interpret Hι (p1 ' °, gc) as infinitesimal deformations of the ho-

momorphism p1 '° -> ̂  given by the inclusion, and apply the information

from Kostant's theorem to show that, in the cases at hand, all of these in-

finitesimal deformations leave the image fixed.

Proposition 3.3. Suppose the inclusion i: p 1 ' 0 —> ̂  induces a surjec-

tion
τ τ \ , 1 , 0 l , 0 λ ΎΎ\, 1 , 0 v

K'H(p , P ) - > # ( P ,8c) .

Then p1 '° is locally rigid as an abelian subalgebra of ^ .

Proof We will construct a differential graded Lie algebra which governs

the deformation theory of Lie subalgebras, in the sense of Nijenhuis and

Richardson [11]. Let C' be the graded Lie algebra obtained by tensoring

g c with the graded algebra ΛV' 0 ' *> and d: C -> C" the differential

of degree one which computes the Lie algebra cohomology of p 1 0 with

coefficients in g c . Let L' be the graded Lie algebra obtained by taking the

semidirect product of g/(p 1 0 ) with C # , where gl(pι'°) acts on C" via

the natural representation on /\' p 1 ' ° ' *. Thus, Lk = Ck for k > 0, while

L° = C°Θ gl{puo). Extend d to L by defining dξ e p 1 ' 0 ' * ® p 1 ' 0 c

p 1 ) O ' * 0 g c to be the element representing ξ e ^/(p1 ί 0 ) . The verification

that (L* yd) is a differential graded Lie algebra is routine.

Elements φ of L1 satisfying the deformation equation

R(φ):=dφ+±[φ,φ] = 0

are in bijective correspondence with Lie algebra homomorphisms from

P 1 ' 0 to g c ; φ simply represents the difference between / and another

homomorphism. One has a natural action of Gl(p ' ) x Gc on L , and

this action preserves R~ι (0). Subalgebras of ^ which can be represented

as images of homomorphisms from p 1 0 are in bijective correspondence

with i?"1(0)/G/(p1 '0 x Gc). Thus, by Theorem 23.4 of [11], there is a
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locally complete family of deformations of p ' as a subalgebra of g c ,
and p1 '° is locally rigid if H{(L', d) = 0, by Theorem 22.1 of the same
paper. But the one-cocycles are given by ZX{L\ d) = ZX(C\ d), since L'

and C coincide as complexes in positive degrees, while the coboundaries
are given by

r » l / r * J \ r » l / χ V J \ 1 , 0 , * 1 , 0 r > l / ^ J \ ri-1/ 1 . 0 l , 0 N

B {L , d) = B (C , d) + p 0 p = 5 (C , rf) + H (p , p ).

Hence,
r r l / r ' j \ r r 1 / ^ ' J \ / r r 1 / 1 > ° 1 > ° \ r r 1 / l ' ° \/ r r 1 / 1 > ° 1 , 0 λ

// {L,d) = H (C , </)//„// (p , p ) = // (p , gc)/ι*H (p , p ).
q.e.d.

We now verify the assumption of the lemma for the remaining bounded
symmetric domains.

Case 1. GR = SU{m, n), m, n > 2.
Identify c* with {(^ , , α w + r t ) | £ α z = 0, αf. e C} . For / φ j , let

α/ 7 € c* be the element with α.r = 1, α ; = - 1 , and α^ = 0 for k Φ i, j .
Then

φ c = {α r| 1 < / < < m or m + 1 < / < j < m + ;:] ,

φ Λ = { Q | 7 | \ < i < m 9 m + l < j < m + n } .

The Weyl group W is the symmetric group on m + π letters, acting
by permutation of the ^ . For any σ e W, one has σ(-Φ) Π Φ c Φn

if and only if σ~la £ -Φ for all a e Φc. Hence, if 1 < / < j < m
or m + 1 <i<j<m + n,iwe must have σ~ (/) < σ~ (7). Thus,
elements of Wι are in bijective correspondence with increasing functions
/ : {1, , m} —• {1, , m -h n} / extends canonically to give σ""1

by assigning σ~ι(m + k) to be the klh value not in the image of / .
Furthermore, the cardinality of σ(-Φ) Π Φ is the number of pairs / < j
such that σ~ι(i) > σ~ι(j). Thus, Wι(l) consists of a single element
σ, namely, the permutation which exchanges m and m + 1 and leaves
all other values fixed. Then aσ = am m+{ , while λ = a{ m+n . Since
m, n > 2, we have σλ = λ, so vo ® vσ;ι is in the image of the map from
// (p ' , p ' ). Since this map is a morphism of k-modules, it must be
sarjective.

Note that, in case GR = SU{1, n), we get that σλ <£ p 1 0 , so that

the map from Hι(pι'°, p 1 ' 0 ) is not surjective. In this case, there are

nontrivial deformations of p1 ° as an abelian subalgebra of g c .



RIGID REPRESENTATIONS OF KAHLERIAN FUNDAMENTAL GROUPS 251

Case 2. GR = SO{2, In), n > 1. Identify c* with {(a{, , an+x)\ai

C}. For i Φ j , let α /. be as above, wl
a. = a. = 1 and a, = 0 for k Φ i, j . Then
G C}. For i Φ j , let α /. be as above, while /^. is the element with

The Weyl group W is generated by permutations and changes in the
signs of any pair of entries. Thus, any σ eW factors as σ = σsσp , where
σp is a permutation, and σs is a change in the sign of an even number

of entries. Hence, σ e Wx implies that, for 1 < / < j , we always have

o~x{i) < o~x{j), since otherwise σ~ι will convert either atj or βtj into

a negative root. Furthermore, for 1 < / < n + 1, σ^1 cannot change the

sign of ai, since otherwise σ~x will convert any α /. to a negative root.

Thus, σ~ι is order-preserving when restricted to {2, ••• , «+l} ,and σ^1

is either the identity or changes the signs of the first and last entries since

it must change an even number. If σs is the identity, then the cardinality

of σ(-Φ) ΠΦ is the number of pairs / < j such that σ~ι(i) > σ~\j).

If o~x(\) = k , then this is k - 1, so the only contribution of this sort to

Wx(\) is the element which exchanges ax and a2. In the second case,

the cardinality of σ(-Φ) n Φ is 2n + 1 - k , where σ~x(l) = k . We find

that 2/2 + 1 - k = 1 only when k = 2n, which is possible only when

n = 1. Take σ to be the unique element of Wx{\). Then aσ = α 1 2 ,

while λ = βn. Again, σλ = A e p1 '° , so vσ ® i ^ is in the image of the

map from //^p 1 °, p1 °), and this map is surjective.
When n = 1, GR is locally isomorphic to a product of two three-

dimensional factors, so representations in GR do not in general enjoy the
local rigidity property under discussion.

For GR = SO{2, 2n + 1), the methods above can be used to show that

p1 ° does admit nontrivial deformations as an abelian subalgebra of ^ ,

but we refrain from giving the details.

References

[1] J. Carlson & D. Toledo, Harmonic mappings of Kάhler manifolds to locally symmetric
spaces, preprint.

[2] E. Cartan, Les espaces riemanniens symetriques, Oeuvres Completes, Editions du CNRS,
1984, 1247-1256.



252 KEVIN CORLETTE

[3] K. Corlette, Flat G-bundles with canonical metrics, J. Differential Geometry 28 (1988)
361-382.

[4] , Gauge theory and representations of Kάhler groups, Geometry of Group Repre-
sentations (W. M. Goldman and A. R. Magid, eds.), Contemporary Math., Vol. 74,
1988, 107-124.

[5] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London
Math. Soc. 55(1987) 127-131.

[6] D. Johnson & J. Millson, Deformation spaces associated to compact hyperbolic manifolds,
Discrete Groups in Geometry and Analysis: Papers in Honor of G. D. Mostow on
his Sixtieth Birthday (R. Howe, ed.), Progress in Math., Vol. 67, Birk-
hauser, Boston, 1987, pp. 48-106.

[7] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of
Math. (2)74(1961) 329-387.

[8] A. I. Mai 'cev, Commutative subalgebras of semisimple Lie algebras, Amer. Math. Soc.
Transl. 40(1951).

[9] J. Milnor, Singular points of complex hyper surfaces, Annals of Math. Studies, No. 61,
Princeton Univ. Press, Princeton, NJ, 1968.

[10] J. Morgan, Group actions on trees and the compactification of the space of classes of
SO{n, 1)-representations, Topology 25 (1986) 1-33.

[11] A. Nijenhuis & R. W. Richardson, Jr., Cohomology and deformations in graded Lie
algebras, Bull Amer. Math. Soc. 72 (1966) 1-29.

[12] J. Sampson, Applications of harmonic maps to Kάhler geometry, Contemporary Math.,
Vol.49, 1986, 125-133.

[13] I. Schur, Zur Theorie der vertauschbaren Matrizen, J. Reine Angew. Math. 130 (1905)
66-76.

[14] C. Simpson, Higgs bundles and local systems, preprint.
[15] Y.-T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact

Kάhler manifolds, Ann. of Math. (2) 112 (1980) 73-112.

UNIVERSITY OF CHICAGO




