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SPECIAL METRICS AND STABILITY
FOR HOLOMORPHIC BUNDLES

WITH GLOBAL SECTIONS

STEVEN B. BRADLOW

Abstract

In this paper we describe canonical metrics on holomorphic bundles in
which there are global holomorphic sections. Such metrics are defined
by a constraint on the curvature of the corresponding metric connec-
tion. The constraint is in the form of a P.D.E which looks like the
Hermitian-Yang-Mills equation with an extra zeroth order term. We
identify the necessary and sufficient condition for the existence of so-
lutions to this equation. This condition is given in terms of the slopes
of subsheaves of the bundle and defines a property similar to stability.
We show that if a holomorphic bundle meets this stability-like criterion,
then its Chern classes are constrained by an inequality similar to the
Bogomolov-Gieseker inequality for stable bundles.

0. Introduction

A fundamental feature of the geometry of holomorphic vector bundles
is the existence of so-called hermitian or metric connections. These are
the connections which are compatible both with the holomorphic struc-
ture of the bundle and with a hermitian bundle metric. In fact, given a
hermitian bundle metric on a holomorphic bundle, the metric connection
is uniquely determined. The correspondence thus obtained between met-
rics and connections is somewhat analogous to the relationship between
riemannian metrics on smooth manifolds and the Levi-Civita connections
on their tangent bundles. This relationship allows one (for example in the
Yamabe problem) to define special riemannian metrics in terms of con-
straints on the curvatures of the corresponding Levi-Civita connections.
The same can be done for holomorphic vector bundles; the Hermitian-
Einstein (or Hermitian-Yang-Mills) equation [11], [12] can be thought of
as a constraint on metrics in this way. It provides a criterion formulated
in terms of curvatures whereby the holomorphic structure of a complex
vector bundle determines a preferred hermitian bundle metric.
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In this paper we consider holomorphic vector bundles on which addi-
tional data in the form of a prescribed holomorphic global section is given.
We consider the question as to whether there is any sense in which these
two data (viz. the holomorphic structure and the holomorphic section)
determine a preferred hermitian metric and if so when such metrics exist.

The objects we will consider thus fall into the general category of bundles
whose description includes more than the specification of a holomorphic
structure. Another example from this category is the Higgs bundle. A
Higgs bundle is a holomorphic bundle, E, together with a given holomor-
phic linear map

θ: Ω°{X,E)->Ωι'°(X,E)

which satisfies θ2 = 0. These have been studied in a general setting by
Simpson [18], [19] and a special case has been investigated by Hitchin
[10]. Their results show that one can indeed identify preferred hermitian
metrics on a Higgs bundle. The criterion one uses is again in the form
of a constraint on the curvature of certain connections. The constraint
equation is in fact formally identical to the Hermitian-Einstein equation.
The difference is that whereas the Hermitian-Einstein equation constrains
the curvature of the metric connection, in the case of Higgs bundles, the
curvature is taken to be that of a connection constructed from the metric
and the map θ .

There is an important difference between the case which we will consider
and that of the Higgs bundles. It is the fact that while the Higgs field θ
can be used to construct a connection, there does not seem to be any way to
do the same using a section of E. Hence we cannot expect to formulate
a constraint on metrics which formally resembles the Hermitian-Yang-
Mills equation. Instead, we propose a criterion for selecting canonical
metrics in the form of an equation which we call the vortex equation.
Like the Hermitian-Einstein equation, this equation gives a constraint on
the curvature of the metric connection associated to a hermitian metric.
It novelty lies in the fact that the equation has a term coming from the
prescribed holomorphic section. To understand when a bundle can support
such special metrics we have studied the necessary and sufficient conditions
for the existence of solutions to the vortex equation.

It is now well known that existence of solutions to the Hermitian-
Einstein equation is governed by the stability properties of the holomorphic
bundle—or rather of the sheaf of germs of holomorphic sections (cf. [ 13],
[15], [3], [21]). Originally introduced by Mumford in connection with the
moduli space of holomorphic bundles over algebraic curves, stability is a
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property defined in terms of the slopes (or normalized degrees) of sub-
sheaves. In the case of the Higgs bundles, Simpson [18], [19] has shown
that here too existence of "canonical" metrics signifies "stability", except
now the appropriate notion of stability is that of stability of the bundle
as a Higgs bundle. This is still a condition on the slopes of reflexive sub-
sheaves of E but constrains only those subsheaves that have the structure
of Higgs subsheaves (i.e., on which θ can be made to act by restriction).

We have found that existence of solutions to the vortex equation is
governed by a similar property which we call 0-stability. The definition
of (^-stability is, as in the other two cases, a condition on the slopes of
subsheaves. It is however a somewhat more delicate notion than stability,
and one in which subsheaves containing the prescribed section play a spe-
cial role. Nevertheless, our results accord well with expectations based on
our understanding of Hermitian-Einstein metrics on holomorphic bundles
and of the analogous metrics on Higgs bundles. They provide a further in-
stance where an algebraic property of a holomorphic bundle is expressable
in terms of solutions to a partial differential equation and is indicated by
the existence of canonical bundle metrics.

We define ^-stability and the vortex equation in §2. The bulk of the
paper (§§2 and 3) is devoted to proving that 0-stability is a necessary and
sufficient condition for the existence of solutions to the vortex equation.
We conclude in §4 by showing that if a holomorphic bundle with prescribed
section satisfies the requirements of ^-stability, then the Chern classes of
the bundle satisfy an inequality similar to the Bogomolov-Gieseker in-
equality for stable bundles [1], [6].

1. Background and notation

The setting for the work in this paper is that of holomorphic vector
bundles over compact Kahler manifolds. There is a considerable amount
of machinery associated with such structures. It will be convenient to
collect together the various definitions and basic facts that we will need.
These are given in greater detail in [2], and good references for this material
include [22], [9], [12].

1.1. Let E be a rank R holomorphic vector bundle over X, a com-
pact Kahler manifold of complex dimension n . Let End E denote the
endomorphism bundle associated with £,i.e., End is is the bundle whose
global sections are bundle endomorphisms of E. Let ω e Ω 1 ' X{X, R) be
a (fixed) Kahler form on X. The bundles E and End£ carry various
geometric structures. We will be primarily concerned with hermitian met-
rics and connections. We denote the space of hermitian metrics by
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and the space of connections of si . If K is a fixed hermitian metric on
E, then any other such metric, H, is related to K by H = Kh where h
is a smooth section of End£ such that h*κ = h . Here h*κ denotes the
adjoint with respect to the metric K, and by H = Kh we mean that for
any sections s, t e Ω°(X, E)

(1.1) {s9t)H = (hs,t)κ.

We point out that the general linear gauge group GL(E) acts transitively
on Jkt by the action g(K) = Kg* g. In fact

Jke « GL{E)/\J{K),

where U(K) is the group of gauge transformations (i.e., bundle automor-
phisms) that are unitary with respect to K.

1.2. Given a Kahler form ω on X and an hermitian metric H on
£ , there are a variety of structures that can be erected. In particular, the
following sesquilinear pairings are defined in the obvious way:

(1.2) ( , ) ω : Ω / 7 ^ ( X , C ) x Ω p ^ ( ^ , C ) - C o o ( X , C ) ,

(1.3) ( , ) H : Ωk(X, E) x Ωι(X, E) ^ Ωk+ι(X, C),

(1.4) (( , )): Ωp'q(X, E) x ar-q(X,E) - C°°(X, C).

Here &'q(X9C) is the space of global sections of Ap'q(X9C)9 the
sheaf of germs of smooth complex-valued (p, q) forms on X. Simi-
larly, APt9(X, E) is the sheaf of germs of smooth (p, q) forms on X
with values in E and £tf'q(X, E) is the space of its global sections. We
can use ( , ) ω and (( , )) to define L2 inner products on Ω?'q(X,C)
and Ω?'q(X 9 E). These are given by

(a,β)= f (a,β)ωωln] for α, β E θP'q(X9 C),(1.5)

and

(1.6)

(«.

(A,

β)=L

B)= f
Jx

[n] for A9 B eCf'q(X 9 E).

In both cases ω[n] = ωn/n\ is the volume form on X.
1.3. The Kahler form on X gives rise to a linear map

where L is defined by

(1.7)
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We use the notation

(1.8) A = L*.

for the adjoint with respect to the L2 inner product defined above. If
aeΩι'ι{X,E),then

(1.9) Λα = ((α,ω)).

1.4. The space of connections is an affine space: if DQ is a fixed con-
nection on E, then

sf = DQ + Ωl(X,EndE).

Using the splitting Ω 1 ^ , E) = Ω 0 ' 1 ^ , E)®Ωι'*{X,E) coming from
the complex structure on X, we can split a connection D as

(1.11) D = D01 +DU0.

As the notation suggests,

and
DU°:Ω°(X,E)-+ΩUO(X,E).

B o t h Z > 0 ' ι a n d Z) 1 ° e x t e n d i n t h e u s u a l w a y t o a c t o n Ω?'q(X, E ) , a n d

(1 .12) FD = D2

is the curvature of D.

Definition 1.4.1. A connection D is called integrable if (Z>0 1)2 = 0.

We denote by six'ι the space of all integrable connections.
1.5. It is well known that the (0,1) part of an integrable connection

defines a holomorphic structure on E. The converse to this theorem is
also true, i.e., every holomorphic structure on E comes from a C-linear
Έ operator

d£:Ω°{X,E)->Ω°'ι(X,E)

which satisfies the following two properties:

(i) If_/ eC°°(X, C) and ζ e Ω°(X, E), then dE(fξ) = df®ξ +

fdE(ξ)9

(ii) (dE)2 = o.

By this we mean that given a holomorphic structure on E, there is a d

operator, dE, such that a section ζ e Ω°(X, E) is holomorphic if and

only if dEξ = 0.
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Definition 1.5.1. Suppose that the holomorphic structure on E comes
from a particular operator d E . A connection is called compatible with
this complex structure if

(1.13) D0J = dE.

Suppose that H is a hermitian metric on the bundle E. A connection
D is unitary with respect to H, or is compatible with H, if for all ζ, η €

(1.14) H H H

The space of connections compatible with H is denoted by
1.6. It is an important fact that given dE and H, there is a unique

connection on E that is compatible with both. We will denote this so-
called metric connection by D^ ^ . Its (0,1) part is clearly dE , and we

will denote its (1 , 0) part by D'H . Hence

(1 .15) Jy-eE,H^E + D'H.

Proposition 1.6.1. Suppose that two hermitian metrics H and K are
related by H = Kh where h is a positive self adjoint section of End£\
Then

(1.16) D-dEH = D-dEK + h-XD'K{h).

The curvatures F^ κ and F$ H are related by

Proof This can be verified via a local calculation using a holomorphic
frame for E. See [2] for details.

Proposition 1.6.2. The components of D^ H satisfy the Kάhler identi-

ties

(1.18a)

(1.18b) H E

Proof Cf. [9].
1.7. These relations between the (0,1) and (1,0) pieces of a con-

nection hold more generally than just for metric connections. In fact, as
the next result shows, they constitute an alternative characterization of
unitary connections.
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Proposition 1.7.1. Let D = D 0 ' ι + D 1 ° be a connection on a holomor-

phic bundle E. D is compatible with an hermitian metric H if and only

if

(1.19a) yΓA[k,D*Λ] = {DU0)*H

and

(1.19b) - Λ / ^ U Λ , DU0] = (Z)0 '1)*".

Proof. Cf. Proposition 2.4(3) in [2].

1.8. If D = D 0 1 + Dι'° is an integrable unitary connection, we can
define the following Laplace operators.

Definition 1.8.1.

(1.20a) A = D*D + DD*,

(1.20b) A' = {Dι'0) Dι'0 + Dι 0(Dι'°)\

(1.20c) A" = (D°'ι)*D0-ι+D0'ι(D°'ι)\

The adjoints are all with respect to the given hermitian bundle metric.
These are all second order elliptic operators. The Kahler identities give

the following formulas.
Lemma 1.8.2.

(1.21a) A' = A"

(1.21b)

(1.21c) =2Δ"->/=T[Λ,F Z ) ] .

When acting on sections of E these formulas simplify to

(1.22a)

(1.22b)

(1.22c) Δ

Proof Use the Kahler identities (1.17) and the fact that if D is inte-

grable, then (Z)0' {f = (Dι'°)2 = 0.

2. Necessary conditions

We will assume that E has a fixed holomorphic structure, i.e., we will
take as given an operator
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as in §1.5. We assume further that E has nontrivial Γiolomorphic global
sections. Let φ e Ω°(X, E) be such a prescribed section of E. So φ
satisfies

(2.1) dEφ = 0.

Our goal is to look for a reasonable criterion whereby ~dE and φ together
might determine a preferred hermetian metric on E. We will then seek
to understand this criterion by studying the necessary and sufficient con-
ditions for it to be satisfied.

We approach the first problem, i.e., of finding hermitian metrics deter-
mined by φ and d E , as follows. We use the fact that hermitian metrics on
holomorphic bundles determine connections. Hence a criterion for picking
out a metric can be formulated in terms of an equation to be satisfied by
the curvature of the corresponding metric. This ties the data (viz. ~d E and
φ) directly to the geometry of E and, via the Chern-Weil homomorphism,
to its topology. The equation we propose is

(2.2) AFH - ^ΞLφ ® φ*H + const. I = 0.

Here FH is the curvature of the metric connection determined by dE and
a hermitian metric H, φ*H is the adjoint of φ with respect to H, and
I E Ω°(X, End£) « Ω°{X, E ® E*) is the identity section.

Without the term involving φ, (2.2) is the Hermitian-Einstein equa-
tion. In other words, if φ = 0 this equation is the criterion according to
which the holomorphic structure alone determines preferred bundle met-
rics. Equation (2.2) is thus, at the very least, a reasonable candidate for a
criterion by which to select preferred metrics on E. In fact, as the results
of the next few subsections show, (2.2) does indeed pick out an interesting
class of bundle metrics. We have called this equation the vortex equation.
The reason for the name has to do with the role of the equation as one of
the equations governing the minima of a functional in Gauge Theory (cf.
[2]). We will say more about this in §4. We will write the constant in (2.2)
as ̂ ψ-τ.

The problem is now that of understanding the necessary and sufficient
conditions for the existence of solutions to the vortex equation. We first
discuss the necessary conditions. We show that if the system (E, dE, φ),
i.e., the bundle E with holomorphic structure given by the operator dE

and with prescribed section φ, supports a solution to the vortex equation,
then a constraint is imposed on subsheaves of the sheaf of germs of holo-
morphic sections of E. The constraint is expressed in terms of the slopes,
or normalized degrees, of the subsheaves.
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2.1. Statement of result.
Definition 2.1.1. Let & be a rank R torsion free coherent analytic

sheaf over a compact Kahler manifold X. Let ω be the Kahler form on
X.

The first Chern class of & is defined to be the first Chern class of the
determinant line bundle det(^), i.e.,

(2.3)

We will use cx {&) to denote both the element in cohomology and a real
closed (1,1) form on X which represents it.

The degree of & depends on the Kahler form ω and is defined by

(2.4) deg(^, ω) = I cΛE) Λωι"~l],
Jx

where ω[m] = ωm/m\.
The slope, μ{^), is defined by

(2.5) μ{7) = d e % ; ω ) .

Definition 2.1.2. A reflexive sheaf % of rank R is called semistable
if for every subsheaf I?' such that the quotient g7/^7' is torsion free, we
have

(2.6) μ{%')

% is called stable if the inequality is strict whenever 0 < ran^l?7) < R.
Note. It is enough (cf. [16]) to consider reflexive subsheaves in the

definition of stability. This is because if %(%' is torsion free, then I?' is
reflexive.

As is the case for the Hermitian-Einstein equation, we can likewise
expect solutions of the vortex equation to be related to stability properties
of the system (E, ΈE, φ). This is in fact so, but the connection between
existence of solutions and stability of the bundle is somewhat more subtle
than in the former case. We need to define the following parameters on
(E9dE,φ):

Definitions 2.1.3. Let % be the sheaf of germs of holomorphic sections
of E, R its rank, and μ = μ(^) its slope. Let

μM = Sup{μ(<r')/< '̂ C <§* is a reflexive subsheaf

of rank Rf with 0 < Rf < R},

μM = max{/iM , μ} ,



178 S. B. BRADLOW

μjφ) = Inf I Rμ~ Rμψ ^ l& c f is a reflexive subsheaf
I R — R

of rank /?' with 0 < i?' < i? and φ e %' \ .

The next proposition shows that the parameters μM and μM(φ) can
indeed be interpreted as measures of stability properties. The parameter
μM carries information about the stability of the bundle E itself, while
the parameter μm{φ) measures the stability of the quotient of & by the
sheaf generated by the section φ. The section φ generates a renk one
subsheaf of I? via the injection

where O^ is the structure sheaf on X. The quotient %? fφ(&χ) is not
necessarily torsion free, however one can always extend φ(Oχ) to a rank
one torsion free subsheaf, [φ], such that the quotient 8?/[φ] is torsion
free. The subsheaf [φ] is called the saturation of φ{Oχ). The parameter
μm{Φ) is a measure of the stability of H?/[φ].

Proposition 2.1.4. (i) μM > μ, with equality occurring if and only if
the bundle E is semistable.

(ii) μm(Φ) < μiβ I\Φ\), with equality occurring if and only if &/[φ] is
semistable.

Proof (i) This follows straight from the definitions of stability and μM .
(ii) The inequality μm{φ) < μ{^/[Φ]) holds by definition. Furthermore,

having μm{φ) = μ(^/[φ]) is equivalent to having

whenever I?' is a reflexive subsheaf of % with 0 < Rf < R and φ e %'.
By using the fact that

(2.8)

inequality (2.7) can be rewritten as

μ y j R-\ - R'-l

That is,

(2.10) μ(&/[Φ])>μ(&'/[Φ]).

Since this is precisely the condition for the semistability of &/[φ], the
proposition is proved.
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Definition 2.1.5. A holomorphic bundle E with prescribed holomor-
phic section φ is ^-stable if and only if

(2.H) HM<l*mW)''

It is apparent that ^-stability is a property of a bundle endowed with a
holomorphic structure and a prescribed holomorphic section. We will thus
talk of ^-stability of the triple (E, ~d E , φ). If the holomorphic structure is
implied, we will sometimes omit the d operator and talk of the ^-stability
of the pair (E, φ).

The main result of this section can now be stated:
Theorem 2.1.6. Let E be a holomorphic bundle with a prescribed holo-

morphic section φ. Suppose that for a given value of the real parameter
τ > 0 there exists a hermitian metric H satisfying

(2.12) KFH - ^Ξλφ ® φ*H + ̂ Ξλτl = 0.

Then either
(a) (E, φ) is φ-stable and μM < τVol(X)/4π < μm{φ), or

(b) the bundle splits as E = Eφ® Ef into a direct sum of holomorphic
bundles, one of which contains the section φ.

In case (b), the part containing φ (denoted Eφ) is φ-stable and satisfies
the inequality in (a). The remaining summands ( which together comprise
E1) are all stable and each of slope τ Vol(ΛQ/(4π).

To prove this theorem we need to examine the slopes of subsheaves of
the sheaf of germs of holomorphic sections of E. We begin by considering
holomorphic subbundles of E. Later we will show that the conclusions
we draw for subbundles apply unchanged to reflexive subsheaves. First we
recall some general facts about the geometry of holomorphic subbundles
(cf. [9]).

2.2. Background. Suppose that the holomorphic structure on a bundle
E is given by the operator d E , that H is a metric on E, and that D^ H

is the corresponding metric connection. Denote the rank of E by R. Let
E' be a holomorphic subbundle of ranki?' < R. Let {e{, , eR} be
a local unitary frame chosen such that {e{, , eR>} is a local basis for
sections of E1. Let

(2-13) DΈEHea = θabeb.

With respect to this local frame, the matrix θ splits into four blocks as

(2.14) 0
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Here θ1 is the connection matrix for the metric connection coming from

the restriction of H and dE to E', and θx gives a connection on the

orthogonal complement of Ef. The matrix valued 1-form A is the second

fundamental form and A is its conjugate transpose (cf. [9]). If

π:Ω0(X,E)-+Ω0{X,E')

denotes projection onto the subbundle, then

(2.15) A = (l-π)DsE9H{π).

A is of type (1,0) since Ef is a holomorphic subbundle.

Let FH, F1, and F± be the curvatures of Σhj H, the metric connec-

tion on E1, and the connection on E± respectively. Then

(2.16) FH = dθ-θΛθ.

From (2.14) we see that

(2.17) FH=(F + A A l

 ± *-Ί V
H \ * F±+A AAJ

For future reference, we define

(2.18a) cΛ = Tr V^A(A ΛAT),

(2.18b) c\ = Tr y/^ΪA(AT A A),

(2.18c) CA= ί cAd vol = / Tr V^TΛ(^ Λ AT) d vol.

We will need the following result.
L e m m a 2 . 2 . 1 . (i) CA > 0 .

(ii) J j c* rf vol = fχ Tr v ^ T Λ μ T Λ ^) d vol = - C ^ .
Proof. Both results follow from the pointwise properties of the inte-

grands. Fix a point xQ in X and choose local coordinates {z^^ in
a neighborhood Ux of x0 such that at JC0, {dz^^ and {ύfz.}"=1 are
orthogonal with respect to the Kahler metric. Normalize so that

(2.19) | 2 2

Then at x0

(2.20) ω

(i) Since A is of type (1, 0), we can write

(2.21) A(xQ) = Aι(x0)dzι
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where A1 eΩ°(Uχ, EndE). A1 is thus a matrix-valued function on Ux .
We get

(2.22) ~A (x ) = A**(x ) d~z

and

z=l

(ii) This follows immediately from the fact that dz^dTj = -d"zjAdzi.
2.3 Calculations in local coordinates. Notice that with respect to the

basis {ea} , φ can be written

(2.23)

Let

(2.24) 0' = Σ ^ Λ a n d ^ ± = Σ

Then in local coordinates

has the form

( 2 2 5 )

\(φ'®φ
+ 2\ *

We thus get the following two equations:

(2.26a) V^ΪAF' + V^ΪA(AΛAT) + \{φ' 0 φ'*) - fIΛ, = 0 ,

(2.26b) V Γ T Λ F 1 + Λ / ^ T Λ ( 1 T Λ A) + ^(0 X 0 ^ * ) - §IΛ_Λ/ = 0.

Λ AΊ)

2.4. Proof of Theorem 2.1.6 for subbundles. If we take the trace of

equations (2.26) and let

(2.2?)
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then we get the equations

(2.28a) Tτ(V^ΪAF') + cA + \\φ'\2 - ^ = 0,

(2.28b) ΊviV^ΪAF^ + c* + ^ l 2 - (ϋ - ϋ ' ) ΐ = 0.

Furthermore, since Ef φ E± = E (topologically),

(2.28c) Tr(y/=IAF') + Tr(V^TΛFx) = ττy/^ΪAFH.

Recall that if ω is the Kahler form on X, then

deg(£', ω) = ί Ac, {E')dwo\ = ^- ί Tτ(\/=ΐAF')dv(A,
Jx 2 π Jx

with similar formulas for deg(£'"L, ω) and deg(£, ω). (2.28a) and part

(i) of Lemma 2.2.1 thus establish that either μ(E') < τVol(JΓ)/(4π), or

CA and Jχ l^^rfvol are both zero. In the latter case E splits holomor-

phically as E = Ef θ E± and φ is a section on E± .

It follows from (2.28b) and (2.28c) that if l*^ 2 = 0, i.e., φ is a section
of E1, then either

Rμ - R'μ(E') τVol(ΛΓ)

R-R' > 4π '

or CA = 0, in which case E splits holomorphically as E = E1 θ E± .
Finally, by taking the trace of the original vortex equation and integrat-

ing over X, we see that

μ < —j-L-^.
4π

This concludes the proof of part (a) of the theorem where μM and
μm{φ) are calculated using subbundles of E. Part (b) is now clear since if
E splits holomorphically as E = Eφ® Ef/, then the vortex equation splits
into a vortex equation with the same φ and τ on E, and a Hermitian-
Yang-Mills equation

(2.29) yfΛAFH = \ I

on E" . The result follows from the fact that a bundle which supports a
solution to (2.29) must be a direct sum of stable bundles, each of slope
τVol(X)/(4π) (cf. [13]).

2.5. Extension to subsheaves. We now show that the above calculations
(and therefore the conclusions) can be extended to reflexive subsheaves of
W . The basic reason is because off a set of complex codimension 2 in X,



SPECIAL METRICS FOR HOLOMORPHIC BUNDLES 183

a reflexive subsheaf is locally free, i.e., is a subbundle:
Lemma 2.5.1 [16]. Let %' c % be a reflexive subsheaf of % and let

Σ, X be the singularity set of &'. Then the (complex) codimension of
Σ is at least 2. If Ef = &\X_Σ, then E1 is locally free, i.e., is a subbundle
of E restricted to X - Σ.

Definitions 2.5.2. Let π: <£' —> % be projection of E onto E' where
Ef is defined (i.e., on X - Σ) and let

(2.30) χ E E

Lemma 2.5.3. (i) π2 = π, π* = π, and (I - π)dE(π) = 0.

(ii) If K is a metric on E and F'κ is the curvature of the metric connec-

tion on E' induced by K and dE, then y f A ' ^

(iii) V ^ ϊ ' ^'

(iv) πeL2

x(EndE).
Proof (i) This is clear since on X - Σ π is a projection onto a holo-

morphic subbundle.
(ii) On X - Σ, where E1 is defined, π is smooth and thus the result

follows directly from the formula for Tr(F^), viz;

(2.31) Tr(i^) = Tr(π Fκ π) + Ύr(dE{π) Λ D'κ{π)).

(iii)-(iv) are proved by Simpson in [19]. One shows that Cx(%') is a
closed current on X and that it represents the first Chern class of & in
H2{X, C). The fact that codim(Σ) > 2 is crucial here.

Remark. There is a converse to Lemma 2.5.3 which will be impor-
tant when we look at the sufficient conditions for solutions to the vortex
equation. The result, due to Uhlenbeck and Yau [21], gives an analytic
characterization of reflexive subsheaves in terms of " L2

χ projections, π "
which satisfy properties (i) and (iv) of Lemma 2.5.3 (cf. §3.11).

2.6. Proof of Theorem 2.1.6 for subsheaves. Let &' be a reflexive sub-
sheaf of % . By Lemma 2.5.1 E1 = ^'\X_Σ is a subbundle of E\χ_Σ . The
results of §2.4 apply to E', and by Lemma 2.5.3 the following conclusions
carry over to <§"':

(a) μ(^')<τVol(X)/4π.

(b) Suppose φ e %' (and therefore φ e Ω°(Ef)). Then

Rμ - R'μ(E') > τVol(ΛΓ)

R-R' ~ 4π

(c) The conditions for equality in (a) or (b) are the same as in §2.4, viz.

cA = 0 and φeΩ°{X,E±).
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Now cA = 0 implies that A = 0, i.e., (1 - π)D'H(π) = 0. It follows by
the Kahler identities and the fact that π* = π that τιdE{\ - π) = 0. In
fact Lemma 2.5.3 holds with π± = (1 - π) in place of π, and thus (cf.
Theorem 3.11.2) π± defines a reflexive subsheaf g?~L which is equal to
the orthogonal complement of Ef on X - Σ. Furthermore, Ί)E(π) = 0
and hence Δ"(π) = 0, where the d-Laplacian Δ" is ^E*^E on 0-forms.
Elliptic regularity for linear operators (cf. [7]) can now be used to show
that π is in fact smooth. This means that I?' and £?± correspond to
subbundles of E and that equality in (1) or (2) occurs only when E splits
as E = E' Θ .E"1 and φeE1-.

3. Sufficient conditions

In this section we will prove the following theorem.
Theorem 3.1.1. Let E be a holomorphic vector bundle over a closed

Kahler manifold X. Let φ be a prescribed holomorphic section of E
and suppose that (E, φ) is φ-stabley i.e., μM < μm(φ). Let τ be any real
number satisfying μM < τVol(ΛQ/4π < μm(φ). Then there exists a smooth
hermitian metric H such that the vortex equation (2.12) is satisfied, i.e.,

AEH - ^Ξλφ 0 φ*H + ̂ Ξ ϊ τ l = 0.

3.1 Outline of proof. Before presenting the details, we briefly describe
the structure of the proof. The proof of this theorem is very similar to
Simpson's proof in [18] (cf. also [19]) that a stable Higgs bundle sup-
ports a metric compatible with the holomorphic structure and the map
θ: Ω°(X, E) -> Ωiy0{X, E) which define the bundle. When appropriate
we will refer the reader to [18] for the details that carry over directly to
this proof.

Our goal is to find a Hermitian bundle metric which satisfies the vortex
equation (2.12). For this purpose we introduce a real valued functional
M, τ(K, H) defined on pairs of bundle metrics and with the following
two properties. With the first argument fixed, the functional M^ τ(K, -)
becomes a convex functional, and is minimum corresponds to a zero of
the vortex equation. We can thus study solutions of the vortex equation
by studying this functional. In particular we can understand the neces-
sary conditions for the existence of vortex solutions by investigating the
necessary conditions for M^ τ(K, -) to attain its minimum.

To facilitate the analysis, we choose p > 2n and fix a smooth back-
ground metric K. Recall; that any metric H can be related to K by a
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positive, self-adjoint bundle endomorphism. We define

(3.1) Jhf2 ={H = Kes\s e LP

2(S(K))},

where

(3.2) S(K) = {se Ω°(J*r, EndE)\s*κ = s},

and L2(S(K)) denotes those elements of S(K) with finite Sobolev L2

norm.
Initially we look for a minimum of M^ τ(K, -) (and therefore a zero of

the vortex equation) on Jfes% . We then use elliptic regularity to show that
the metric obtained is in fact smooth. An important tool is an estimate of
the C° norm for s e LP

2{S{K)). The estimate is given by the functional
M^ τ(K, -) and is of the form

(3.3) supWK^M+JICKe^ + Ci.

Following Simpson [18] we show that either constants Cx, C2 can be
found such that an estimate of this sort holds or the bundle is not φ-
stable. If such an estimate does hold then M^ τ(K, -) is bounded below
and we can show that taking a minimizing sequence ί ^ } ^ leads to a
minimizing metric H = Kes°°.

3.2. Definition of M^ τ . Let MD( , ) denote the functional defined
by Donaldson [4, 5] on pairs of metrics. Fix a smooth background metric
K on E and let M^: J(etp

2 —> R be given by

(3.4) MD(H) = MD(K,H).

The functional M^ is defined in terms of Bott-Chern classes. Its most
important property is that it acts as a potential function for the vector field
-ly/^AF . By this we mean the following: If δH and δMD denote the
variation of H and M^ respectively, then

(3.5) δMD = 2v^T ί H~lδHAFH.
Jx

Definition 3.2.1. Let φ be a prescribed section of E and let τ be a
real parameter. Define Mφ τ(-, -) on pairs of metrics by

(3.6) MφtX(K, H) = MD(K, H) + \\φfH - \\φfκ - τ ί Tr(log;T'//),
J x

where \\φ\\2

H = Jχ{Φ, Φ)H . If K is a fixed smooth background metric on

(3.7)

E, let M ώ _: ̂ K?/f -^ R be given by



186 S. B. BRADLOW

There are explicit forms for MD(H) and M^ τ{H) when H = Kes and
s e L^iSiK)) (i.e., when H e Jίet1^). To describe these it is convenient
to make use of the following constructions on S(K) (cf. [18]).

Let / : R -+ R be a smooth function. Define / : S(K) -> S(K) as fol-
lows. Suppose that s e S(K). At each point x o n l chose an orthonor-
mal basis {efl}f=1 for local sections of E such that s(ea) = Σ*=χλaea .
So the λa are the eigenvalues of s. Set

(3.8) As){ea)
β=l

Let F R x R — > R be a smooth function of two variables. In a sim-

ilar way we can define the smooth map F: S(K) —> Sκ(EndE), where

Sκ{EndE) = {A e End(End£)|^* = A with respect to the metric in-

duced by K} . If {e*}f=1 is the dual bases for local sections of E*, then

A e Ω°(X, End 2?) can be written

Define

(3.10)
a,b=\

We will need to know how these constructions behave on Lp

k spaces.
The relevant properties are given in the next proposition (cf. [18], also
[17]).

Proposition 3.2.2. Let Lp

k b c Lp

k be the subset of sections s e Lp

k such
that \s\ < b almost everywhere. Let f: S{K) -• S(K) and F: S{K) -*
Sκ(EndE) be as above. These maps are smooth on S(K). Furthermore,
we have the following.

(i) The map f extends to a continuous map

for some b1.

(ii) The map F extends to a map

F: LP

ob{S(K)) - Hom(Z/(End£), Lq{EndE))

for q < p . For q < p the map is continuous in the operator norm topology.
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(iii) If L denotes a Sobolev space such that I c C ° , then the maps

F: L(S{K)) -+ Hom(L(Γ(End£)), L(Γ(EndE)))

are smooth.
(iv) Define df: R x R -• R by

df(x,y) = \
{ df/dx ifx = y.

Let D°'ιbethe (0, I) part of a connection on E. Then for s e L\ tb(S(K)),

D°'ιf(s) = df(s)(D°'1s).

In the next lemma and in the rest of the proof, p is chosen such that
p > 2n and p is even.

Lemma 3.2.3. Define a smooth function ψ: R x R —• R by

,3.11) Hx.y)-^'-*-?-1.

Let Ψ define a map Ψ: S(K) -» Sκ(EndE) as in (3.10). Then for any
seLp

2(S(K)),

(3.12) MD(Kes) = 2Λ/=T / ΎrsAFκ + 2 ί (Ψ(s)dEs, dEs)κ.
J X J X

Proof Essentially this result can be found in [5] and also as Lemma
5.2.1 in [18]. The only difference is that there s is constrained to be trace
free. However the trace of s does not enter into the proof in any way and
the conclusion is valid for any s € LP

2(S(K)).
The proof is a calculation based on the fact that along a path Ht = Kets

in Jΐet\ we have

Furthermore, using (1.17) we calculate that

(3.13) ^D(Ht) = 2Jχ\dEs\\.

If we define ^ R x R ^ R by ^(x, y) = et(x~y), then we can write

^ M o ( / / ( ) = 2 ί (^(s)dE(s), dE(s))κ.
at J x

Integrating this expression twice completes the proof.
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Remark. We point out that (3.13) shows that MD is a convex func-
tional, i.e., along any path Ht = Kets, it satisfies (d2/dt2)MD{Ht) > 0.

Lemma 3.2.4. // H = Kes with s e LP

2(S(K)), then

MφJ)

+

JH) = 2v^T ί ΊτsAFκ + 2 f (Ψ(s)dEs, dEs)κ
J X J X

ί(esφ,φ)κ-\\φ\\2

κ-τ ί Ύτs.
J x J xκ κ
x J x

Proof. This follows immediately since (φ,φ)H = (esφ,φ)κ and
1

3.3 Properties of M^ τ . For convenience we will make the following
definition.

Definition 3.3.1. Let φ be a prescribed section of E and let τ be a
real parameter. Define mφ τ : J(et -> Ω°(End£) by

(3.15) mφtτ(H) = AFH-^Ί

Lemma 3.3.2.

(i) ^ »

(ϋ) M

Φ

(iii) ±mφJHe'%=0 = AdED'H(s) - ^Lφ <g> φ'"s.

Proof, (i) Let Kt = Ke's. Since (cf. [18])

(3.16)

we see that

(ii) Write

(3.17) Mφτ](K,H) = MD(K,H) + Mφ(K,

where

(3.18a) Mφ(K,H) = \\φ\\2

H-\\φ\\2

κ,
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and

(3.18b) M(K, H) = -τ f Tr(logK~ιH).
Jx

The functional M o satisfies (ii) (cf. [18], [3]), and M^ clearly does too.
Furthermore,

Ίτ{\ogK~ιH) = \ogdet(K~ι H) = logdet(tf) - logdetί*).

Hence M r satisfies (ii) and so does the sum M D + M, + M τ .

(iii) If Ht = He's and Ft = FH , then by (1.17)

AFί = AFH + AdE(e-'sD'H(ets)).

So

(3.19) ±-t{AFt)\t^ = KdED'H{s).

Furthermore, if φ ® φ*' is calculated using the metric Hets, then

(3.20) ^φ ® φ*< \ί=0 = ̂ φ® φ*ets\t=0 = φ® φ*s.

Remark. The significance of (i) is clear—it is this property of M, τ

that allows us to find vortex solutions by minimizing IVΓ τ(K,-). The
significance of (ii) is the following: If M^ τ(K, -) has a minimum at H,

then &M+JK, Hets)\t=0 = 0 for all s e LP

2(S(H)). By (ii),

(3.21) ^Mφtτ(K9Hets)\tss0 = ̂ M^H, Hets)\ί=0.

P(Hence by (i), 2y/^ϊ JχΊr{smφτ(H)) = 0 for all s e LP

2(S{H)). The
importance of (iii) will be seen in the next subsection.

3.4, Minima of M^ τ . For technical reasons which will become clear

(cf. Lemma 3.7.2) we will want to minimize M^ τ(K, -) not over Jfetp

2

but over a constrained subset of such metrics. In particular, we chose a

real number B such that \\mφ τ(K)\\p

Lp κ < B, where \\mφ τ(K)\\p

LP κ =
fx\mφτ(K)\p

κdvol. Define

(3.22) Jh^S) = {H^JίetP

1\\\mφτ{H)fLPH < B}.

We need to understand the minima of Mφ^τ{K, -) on Jίet\{B), and to
this end we make the following definition.

Definition 3.4.1. For any metric H e ^^P(B) let

(3.23) K e r ( t f ) = {s e Lp

2(S(H))\dE(s) = 0,sφ = 0 } .
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Let

(3.24) Ker = ( J Keτ(H), where the union is over all H € Jk^(B).

Lemma 3.4.2. Suppose that H minimizes Mφ T(K, -) on
If Keτ{H) = {0}, then mφ τ{H) = 0.

Proof. By Lemma 3.3.2, if 5 e LP

2(S(H)) and Ht = Hets, then

where

(3.25) L(s) = AdED'H(s) - ^ΞLφ ® φ*Hs.

Hence

l-(-Ίr{mφτ{Ht))2)\t=, = -2Ίr(mφτ(H)L(s)) = 2(mφτ(H),L(s))H.

It follows, since p is chosen to be even, that

Suppose now that s e LP

2{S{H)) can be chosen such that

(3.26)

Then, with this particular 5 e L"2{S{H)), we get

(3-27) ^ t \ \ m φ t τ { H t ) \ \ P

U H \ t = Q = - \ \ \ m ^ x L H

Furthermore, with s as in (3.26), Lemma 3.3.2 implies that

^MφJH9 Hets)\t=0 = -

( 3 2 8 ) - / Ίr(sφ®φ*Hs)
Jx

In the last line we have used the Kahler identity >/-T[Λ, dE] - D1^ (cf.
Proposition 1.2) and the self-adjointness of s with respect to H. These
last two equations show that a minimum of M^ τ(K, -) could not occur
on the boundary of Jfet\(B) unless s = 0 is a solution to (3.26). In fact,
if s = 0 is a solution, then (3.26) yields mφ τ(H) = 0, while if (3.26) has
a nonzero solution, then at a minimizing metric H we must have

τtM^H>He's{__r°
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for all 5 € LP
2(S(H)). But by Lemma 3.3.2

ts, Hets) = 2(5, yΓϊmφ τ(H))H.
u ι t=0

The proof of the lemma is thus reduced to showing that if Keτ(H) = 0,
then (3.26) does indeed have a solution in LP

2(S(H)). Notice that we can
write

AdFD'(s) = -yf-ΪD'*D'(s) = -y/^ΪΔ'(s),

and that

A'H: LP(S(H))-+LP

2(S(H))

is a self-adjoint elliptic operator; so therefore is the operator

A'H + 10 Θ ^ : L^(5(//)) -, L5(S(/Γ)).

Hence to prove the lemma it is enough to show that Δ'H + ̂ Φ® Φ*H has
no kernel. Now

(A'H(s)+2-φ®φ*»s,s)H =

Furthermore, if s = s*H then D'H(s)τ = dE(s). Hence

So Ker(/7) = {0} does imply s = 0, and the proof of the lemma is
complete.

3.5. The condition Ker = 0. The definition of the set Ker depends
on B, the upper bound on \\mφ τ(H)\\p

Lp H for all H e Jfetp

2{B). This
will not be important since we are primarily interested in establishing that
Ker = 0. The next lemma shows that under the assumption of ^-stability,
Ker = 0 for any choice of B . We thus have complete freedom in choosing
the background metric K and can let this choice dictate the selection of
B.

Lemma 3.5.1. E splits (holomorphically) as Eφ Θ F, where φ e

Ω°(X, Eφ) if and only if Ker Φ {0} for some choice of B. In particular,

if μM <τ Vol(X)/4π < μm(φ), then Ker = {0} for any choice of B.
Proof If E = Eφθ F we can choose a background metric K which

respects this splitting, i.e., with respect to which F is the orthogonal com-
plement of Eώ. Projection onto F then clearly constitutes a nonzero
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element of Ker(K). Choosing B such that \\mφτ{K)\\p

LP κ < B, it fol-
lows that Ker ψ {0} .

Conversely, suppose that for some choice of B we can find s ^ 0 such
that dEs = sφ = 0 and 5* = s with respect to some metric H e JKftζ(B).
Then D'H(s) = 0 and so D(s) = 0. It follows that £ splits holomorphi-
cally into Ker(s) θ \m(s). (Actually we can say more: the eigenvalues of
s are constant, and E splits holomorphically into the eigenspaces corre-
sponding to distinct eigenvalues.) Clearly φ e Ker(s) and so this splitting
is of the type E = Eφ®F .

Suppose now that μM < τ Vo\(X)/4π < μm{φ). Suppose further that

E splits holomorphically as E = EφφF with 0 € Ω°(Z, £ 0 ) . Then

Rμ-Rφμ(Eφ)

4π
Ψ

and

(3.30) μ(F) < ^f™.

Here Rφ is the rank of Eφ, the first relation holds as φ e Ω°(JΓ, £^)
and the second is true since F is a holomorphic subbundle. However
μ(F) = (iϊμ - Rφμ{Eφ))/(R - Rφ) and so we get a contradiction. It thus
follows that regardless of the choice of B, Ker = {0} .

3.6. Statement of the main estimate (C° version). Thus far, we have
established that under the hypotheses of the theorem we can look for solu-
tions to AFH-*^φ®φ*H + *£ΞlτI = 0 by minimizing M^ τ on Jίetp

2{B).
Following Simpson we show that minima exist by proving an estimate of
the form (3.3) holds for all s such that Kes £ Jίetp

2{B). We do this by
assuming no such estimate holds and then by deriving a contradiction.

Proposition 3.6.1. Either positive constants Cx and C2 can be found
such that for all Kes e.

or (E, dE, φ) is not φ-stable.
The proof of this proposition occupies the next eight subsections. We

remind the reader that AT is a fixed (smooth) background metric on E,
B is a constant chosen such that \\mφ τ{K)\\p

Lp κ < B, and p > In .

3.7. Equivalence of C° and L1 bounds. We will need to use an l)
version of the estimate in Proposition 3.6.1 and thus need the following
technical result.
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Proposition 3.7.1. Let K and H be hermitian metrics on E with H =
Kes for some s e LP

2(S{K)). Then

(3.31) A\s\<2(\mφJK)\κ + \mφτ(H)\H)

where the norm on \s\ can be with respect to K or H.
Proof. We note first of all that

\s\2

H = (zd{es)s,s)κ = ( s , s ) κ = \s\2

K.

The norm on \s\ may thus be taken with respect to either H or K. If
Dκ = dE + D'κ is the metric connection determined by ~d E and K, and
Fκ is its curvature, then we have seen that FH = Fκ + dE(e~sD'κ(es)).
Hence

(3.32) (V=ΛAFH - V=ΪAFK, s)κ = (V^ΪA(dE(e-sDf

κ(es)), s))κ.

Here we are using the ad-invariant L2 inner product on End(2s) induced
by the metric on E.

We make a local calculation by choosing an orthonormal (with respect

to K) frame {v^f^ of eigenvectors of s. Let {λi}f={ denote the corre-

sponding eigenvectors. If {Vj}f=ι is the corresponding dual basis, then s

can be written as
R

(3.33) ί

Direct calculation yields
~sD'(3.34) e~sD'κ{es) = ^ dλft βv

where

(3.35) D'κ{υi) = Aj

Hence

(3.36) (e-sD'κ(es),s)κ - ^ 2 , . ^ / = ld\s\2-

Now since Dκ is compatible with ΛΓ, we have

(3.37) d(e-sD'κ(es), s)κ = {dE(e~sD'κ{e*)), s)κ - (e~sD'κ(es), D'κs)κ,

and hence

(3.38) _

(dE(e-sD'κ(es)), s)κ = ±dd\s\2 + (e sD'κ(es), D'κs)κ

= \s\dd\s\+ d\s\d\s\ + {e~sD'κ{es),D'κs)κ.
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Define

(3.39) Ad\s\ = iAdd\s\9

where Ad is the positive Laplacian. We then get

(3 40) MΔ
- V^ΪA{e~sD'κ(es), D'κs)κ

Another local calculation establishes that

(3.41) (e-sD'κ(es),D'κs)κ = Y/dλiAdλi+J2(λΓj

ί m

Recall that for any a e Λ1 0(M) it can be shown that v/^TΛα Λ ά > 0
(cf. Lemma 2.1). Thus

(3.42) V=ΪA{e~sD'κ(es), D'κs)κ > ]Γ yfAAdλi Λ dλr

i

Next we show that

(3.43)

Using the local orthonormal frame, we can write |s| = (J^A?)1^2 . Since
the calculation is purely local, we can think of λt as

with the coordinates on C" chosen such that the Kahler form on X is

given by ω = ^f± Σ"=ι dz{ Λ dΊi. Define

(3.44) λ\Cn-+CR by λ = (λ{, , λR).

Clearly |λ| = \s\. Furthermore y/-AA(dλ,dλ) = YJiyf:ΛAdλi Λ dλi,

where we have used the standard inner product on Ω*(C" , C ) and the

fact that λ • = 1i.

Using "polar coordinates" we can write λ = (\s\, χ{9 - , XR-\)
see that

R-\

(3.45) y/=ΪA(dλ, dλ) = V=ΪAd\s\d\s\ +

Hence

ld\s\d\s\ - Σ )
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as required. (3.40), (3.42), and (3.43) thus show that

\s\Ad\s\ < (y/=ϊmφtτ(H) - V=ϊmφτ(K),s)κ - {^Φ^λ^ - 1);

here {φ^ are the components of φ with respect to the local frame. From
this we obtain

But

which gives

The result now follows from the fact that on a Kahler manifold Δ^ = ^Δ.
The importance of this proposition stems from the following result.
Lemma 3.7.2. If X is compact n-manifold, then we can find a smooth

function a: [0, oo) —• [0, oo) with a(0) = 0 and a(x) = x for x > 1 such
that the following is true: Suppose f is a positive bounded function on X
and Af<b, where b is a function in LP(X) (p > n) with \\b\\Lp < B.
Then

where C(B) is a constant which depends on B.
Proof This is Proposition 2.1 in [19].
If we restrict our choice of metrics to Λfet^E), then we have proved
Proposition 3.7.3. Let H, K e Jkt^B) with H = Kes. Then there

is a constant C (depending on B) and a continuous function a as in
Lemma 3.7.2 such that

(3.46) s u p | j | L

where the norm can be calculated with respect to K or H.
Proof Apply Lemma 3.7.2 with / = |s| and

The result then follows from Proposition 3.7.1.
Suppose that it is not possible to find constants Cx and C2 such that

for all seLp

2(S(K))

By the above results it follows that no estimate of this type on ||s|
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3.8. Construction of an unbounded sequence.

Lemma 3.8.1. If no such estimate holds, then it is possible to find a
sequence ί ^ } ^ in LP

2(S(K)) and a sequence of positive constants {CJ^j
such that

(i) ς . - > o o f

(ϋ) lk, llLi -^oo, and
(iii) | |^ | |Li > CZ.M0 τ{Kes).

Proof Suppose that for a given Ci we can find C" and N( such that

\\s\\Lι < CέMφ τ{Kes) + C" whenever \\s\\Lι > N.. Let

SN = {s€Lp
2{S{K))\\\s\\Lι<Ni}.

We claim that M^ τ(K, -) is bounded below on SN . In fact M^ τ can
be written

(3.47) Φ'τ E r

+ 11011L - iwii - τ / T r ( 5 )
Hence if ||s||Lι , and therefore sup \s\, are bounded, then M^ τ is bounded

below. Say M^ τ > -λ on SN for some positive constant λ. Then

||s||Lι < Ni + ^.(M^ τ + A) when 5 G ^ . By replacing C" (e.g. with

max{C", Ni + CfA}) it would be possible to enforce the estimate for all

s G L,2(S(K)). The lemma is proved.
Choose sequences {Ci}^ι and {s,}^ as in Lemma 3.8.1 and let

(3.48) li = \\s\\Lι.

Define

(3.49) Uι = i;Xsr

Notice that HMJ^I = 1 and therefore sup|Mf.| < C(B).
3.9. Construction and properties of the limiting bundle endomorphism.

We now show that there is a subsequence in {MI-}^1 which converges
weakly in L*(S(K)) to some u^ . By examining the properties of this
limiting object we will arrive at a contradiction. Our analysis of u^ is
based largely on the next proposition, which is modelled on Proposition
6.3.3 in [18] and to which it should be compared.

Proposition 3.9.1. {w,}^ contains a subsequence, which we again call
{u|.}^1, that converges weakly in L2

χ(S(K)) to u^. u^ is nontrivialand
satisfies the following-. Let / R x R ^ R be any smooth positive function
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which satisfies ^(x, y) < l/(x - y) whenever x > y. Let /: R —• R be
a smooth positive function such that /{x) = 0 whenever x < ε for some
ε > 0. Then

v^T ί ΎrUooAFκ+ ίV(«β

(3.50) Jχ Jχ

- 1 1 TrUoo<0.
Proof. We first show that for large enough /

(3.51)

y ^ ϊ / Tr UiAFκ + f (F(Ui)dEUi, dEu()K
J X J X

and then show that the expression on the left is well behaved in the limit
/ —• oc. The key is a comparison of this expression with (3.14), i.e.,

Mφτ(K, Kes ) -

+ ί {eSίφ,φ)κ + 2v/=T ( ΊχSiAFκ - x ί Trί,. - \\φfκ.
J X J X J X

Since the sup \ut\ are uniformly bounded, we can take & to be compactly
supported and hence (cf. Simpson [18]) for large enough /

(3.52) P(x,y)<W(lx9ly).

Furthermore / can similarly be taken to be compactly supported, in
which case we can show that for large enough /

(3.53) /(x) < elx/l.

It is clear that (3.53) holds for x < ε. Now choose l0 such that eι°ε/l0 >
sup(/O and IQ> l/ε. Then for x > ε and I > l0 we have

eι°ε elε elx

/(x) < sup(/) <

e — < e

τ <

e — .

We remark that the inequality eι°ε/l0 < elε/l follows from the fact that

eεt/t is increasing for t > l/ε . For large enough / we thus have

(3 54a)
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(3.54b) (es'φ, φ)κ = (e''u'φ, φ)κ > /,•(/(«,#, φ)κ.

It follows then that

/,. {v^T ί TrUiAFK + ί ^{u^dEu^dEu^κ
\ JX J X

That is,
(3.55)

Simpson's proof that the u. are bounded in L2 is unaffected by the

terms jχi/iu^φ, φ)κ and (\/^Λ fχΎτuiAFκ-τ fχΎru^ which are both
bounded. The trick is to use the fact that the sup|wz| are uniformly
bounded. This enables one to chose an & which satisfies the requirements
of the proposition and such that ^(w z ) = c for some small constant c.

z

Equation (3.55) can then be used to show that dE(ui) is in L . But ui

is self-adjoint and of type (0 ,0) . It follows that Vwz is in L2 and hence

that ut is bounded in L\ . We may conclude therefore that {M,-}^ has

a subsequence which converges weakly in L2

{ to u^ . Furthermore since

H^OJIL1 ~ 1 a n c * s u P l w o J - C C ) ' woo ^s nontrivial. (We note in passing

that we can see here the importance of using the L rather than the C

norm.)
Simpson has shown that in the limit / -> oo

(3.56)
x/̂ Γ / TΓ^ΛF^ + f

J X J X

Λ^T f τrUooAFκ + ί muJdEUoo, dEuJK.
J X J X

It is the second term that is the problematic one. One uses Proposition
3.2.2 and that fact that ui -> u^ in L] b(S(K)) to show that <$rl/2(w/) -^

Sr{'1{uoo) in Hom(L2, Lq) when q < 2. Recall that

L2

0b(S(K)) = {se L2

0(S(K))\ \s\ < b a.e.}.

The required convergence follows from this and the L2 bounds on dEur
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(3,

It is

.57)

and so

(3..58)

clear that

it remains

τ

to show that

)Φ, Φ)r -+ ί (/(««
Now \ut\ is uniformly bounded and L2 C LQ b is a compact embed-

ding. We thus have that ut —• u^ strongly in L2

0 b(S(K)) for some b.

But w -> /(u) is continuous on L2

 b{S(K)) (cf. Proposition 3.2.2) and

hence /{u^ —> /{u^) as / —• oo . Since the sup |wy| are bounded, this is

enough to ensure that Jχi/iu^φ, φ)κ -• fxi/iu^Φ, Φ)κ The propo-

sition is proved.
The next two lemmas now follow. They correspond to §§6.3.4 and 6.3.5

in [18].
Lemma 3.9.2. The eigenvalues of u^ are constant almost everywhere.
Lemma 3.9.3. Let the eigenvalues of u^ be λχ, , λr. If ^ : R x

R -• R satisfies 9Γ{λi ,λj) = O whenever λt> λjf 1 < /, j <r, then

(3-59) W{uJdEuJ^ = Q.

Proofs. Both proofs use the same device, namely the following observa-
tion: Given any smooth function &: R x R —• R and any N > 0, we can
find a smooth function ^ : R x R - > R such that

(i) 9[(X9X)=^(X9X)9

(ii) N^)2 satisfies the requirements of Proposition 3.9.1.

In the case of Lemma 3.9.2 we show that for any smooth function
/ : R —• R, Tri/iw^)) is constant almost everywhere. In particular, the
elementary symmetric functions of the eigenvalues (and hence the eigen-
values themselves) can be shown in this way to be constant almost every-
where. In fact we need only show that d Tτ^f^u^)) = 0, since ^ ( / ( M ^ ) )

is real valued. Furthermore by Proposition 3.2.2(iv),

(3.60) d Tv(f(uJ) = Ίr(df(uJdEuJ.

We now use the above device with & = df. This gives, with suitably
chosen ^ ,

|9T(/(O)|2 \^^MJdEuj\2
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Hence, by (3.50),

(3.61) \\dΎr(f(uJ)\\2

L2<C'/N.

Since this holds for all TV > 0, we get the required result.
To prove Lemma 3.9.3, notice that if Sr{λi, A.) = 0 whenever A- > λ.

then for any A e Ωl(X, EndE)

(3.62)

Here we have used a local frame for E with respect to which u^ is
diagonal. This expression is thus valid locally. If we replace & by a
suitably chose 5^ (as above), we then get

Proposition 3.9.1 then gives

(3.63) | | ^ ( 0 ^ « o o t < jf fχ(^2(»JdEUoo **««,)* * Jf '

which proves the result.

Lemma 3.9.4. / / / is as in Proposition 3.9.1 then | | / ( O 0 | | L 2 = 0.

Proof. Suppose /(x) = 0 whenever x < ε. Then the same is true of

N/2(x) for any N > 0. Equation (3.51) from Proposition 3.9.1—with

N/2 in place of /—leads to

for some suitable ^ . Since this holds for any N > 0, the result follows.
3.10. Construction of filtration of I? by subsheaves. We now show

that the limiting endomorphism u^ gives rise to a filtration of E. The
components in the filtration are defined initially by projection operators
in L2(S(K)). In the next subsection we will show that the filtration is in
fact by subsheaves of IP.

Definition 3.10.1. Let λ{, , λr denote the distinct eigenvalues of
u^ , listed in ascending order. For j < r define p.: R -+ R to be a
smooth positive function such that

( I if x <λi9
(3.64) p(x) = " /

J 10 ifx>λj+r
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Define

(3.65) πj=pj(uoo).

Proposition 3.10.2. Let π. be as above for j < r. Then

(i) πjeL2

x(S{K)),

(ii) π2j = π. = π*, and

(iii) (1 - τίj)dE{πj) = 0 almost everywhere.

Furthermore, if λp < 0 < λpv{ (i.e., λp is the largest nonpositive eigen-
value), then

(iv) | | ( l - ^ ) ( / > | | ^ = 0 and
(v) not all the eigenvalues of u^ are positive.

Proof (i)-(iϋ) are proved in §6.4.3 in [18]. The crucial ingrediant, viz.
Lemma 3.9.3, still holds, so no modifications in the proof are required
here. The proofs are as follows.

(i) The maps π are in Lχ since u^ is bounded in L{ .

(ii) The maps are projections,i.e., πj = π., since (pj)2 -p. = 0 at all
the eigenvalues of u^ . The maps are self-adjoint since the eigenvalues of
u^ are real.

(iii) Recall (Proposition 3.2.2) that

Define

(3.66) 9]{x,y) = {\ -Pj(y))dPj(x, y).

Then

and ^{λk, λ[) = 0 whenever λk > λ{, 1 < /, j < r. We can therefore
apply Lemma 3.9.3 and prove the result.

(iv) Chose ε such that 0 < ε < λp+ι and define a smooth positive
function k: R —• R such that

(I if x < ε,(3 67) ^ » { ;
Let / = 1 - k. Then / ( M ^ ) = (1 - np) and / satisfies the criteria of
Proposition 3.9.1. Hence (iv) follows by Lemma 3.10

(v) Suppose all the eigenvalues are positive. Then πp = 0, and by (iv)
= 0, which is not so.
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3.11. Weak subbundles.

Definition 3.11.1 [21]. An L2

χ subsystem is a section π e L2

{(s(K))

such that π2 = π = π* and (1 - π)dE(π) = 0.

Proposition (3.10.2) can be interpreted as saying that the projections
π define "weak" L2

χ subsystems in the sense of Uhlenbeck and Yau [21].
The next theorem elevates these to the status of reflexive subsheaves. We
can then get expressions for the slopes μ. of these sheaves and show that
one of them must violate the condition of (^-stability.

Theorem 3.11.2 [21]. If E is a holomorphic subbundle with background
metric K, and π is an L\ subsystem, then there is a reflexive subsheaf
<£' such that n is projection onto %', defined where &' is a subbundle.

Corollary 3.11.3. With π e L2

{(s(K)) as above, there are reflexive
subsheaves %• such that π. is projection onto %., defined where %• is a
subbundle.

Proof By Proposition 3.10.2(i)-(iii), π. define L2

χ subsystems. This
proves the theorem.

Let the degree and rank of the subsheaf If. corresponding to the pro-
jection π. be deg(l? , ω) and R. respectively. They are calculated by
means of the fact that off a set of codimension 2, %. is locally free. Off
this codimension 2 set the calculations are those for a subbundle.

Lemma 3.11.4. The rank and degree of %• are given by

(3.68a) R. = Tr(π.),

where the trace is taken at a regular point of π ; , and by

(3.68b) deg(g-., ω) = / ί T r ^ Λ ^ ) - ί \dEπj\2

κ,
J X J X

where K is a metric on the bundle E.
Proof The formula for Rj follows from the fact that π- is a projection

onto <§* , where I? is a subbundle, and the degree formula follows from
Lemma 2.3.

We are now in a position to display the contradiction that will prove
Proposition 3.6.1. We do this in the next two subsections by means of
Lemmas 3.12.2 and 3.13.1.

3.12. Consequence of no estimate holding.

Definition 3.12.1. Let μ. = deg(g}, ω)/Rj be the slope of %., and for
j < r - 1 set a. = λj+{ - λ.. Define

r-\

(3.69) Q(τ) = λrR(μ - τ) - £ a]Rj{μj - τ),

7 = 1
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where R and μ are the rank and slope of E respectively, and

(3.70) ^ τ V o l W

Lemma 3.12.1. Suppose that no estimate of the form in Proposition
3.6.1 holds. Then

(3.71) Q(τ)<0.

Proof. By Lemma 3.11.4 we calculate

2πQ(τ) = ̂ ϊλr ί ΎrAFκ - £ [ ^ Tr(π .AFK)
Jx j=ι Jx

j = ι

TrUooAF ί
X κ + ί Σ("?B*J '

J X : i
J— ι

Here we have used the fact that

(3.72) Uoo=K*-

By Proposition 3.2.2(iv), and with p. as in (3.64), Y^~}χ{aβEπ., ~dEKj)κ

can now be written as

This is an expression of the form (^(u^dgU^ , d^w^)^ where ^ sat-
isfies the requirements of Proposition 3.9.1 (cf. [18, §6.4.6]). It follows by
that proposition (with / = 0) that Q(τ) < 0.

3.13. Consequence of ^-stability.

Lemma 3.13.1. If μM <τ < μm(φ), then Q > 0.
Proof Using all the notation of the above, let λp be the largest nonpos-

itive eigenvalue of u^ . By Proposition 3.10.2(v), p > 1. There are two
cases to consider.

Case 1. Suppose p = r, i.e., all the eigenvalues are nonpositive. In
this case μ - τ < 0, and μj; - τ < 0 for j = 1, , r - 1. It follows
immediately that

β(τ) = λrR(μ - τ) -ΣajRjiμj - τ) > 0.
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Case 2. Suppose p < r. Since ? c ^ _ j D θ <8 +̂1 D ^ and
</»E?,we have 0 e <ζ for j >p. Hence

Rμ-Rjμj>(R-Rj)τ

for j =p,p+ I, •- , r - 1. Thus

r - 1

which gives

β(τ) > λpR(μ -τ)-Σ ajRjiβj - ί) > 0.

The lemma is proved.
This concludes the proof of Proposition 3.10.2.1.
3.14. Conclusion to the proof of Theorem 3.1.1. To conclude the proof

of the theorem we need the following lemma (which corresponds to the
results in §6.6 in [18]).

Lemma 3.14.1. (a) If Mφ τ{Kes) is bounded above, then \\s\\Lp is

bounded.

(b) Suppose {st} is a minimizing sequence for Mφ τ(K, -). Then by

(a) Sj —• s weakly in Lp

2 and hence H = Kes is a solution to AFH —

^ψ-φ (8) φ*H + ^Ξlτl = 0. Furthermore H is smooth.

Proof of 3.14.1 (a). The idea is to show that a contradiction results

from assuming that a sequence {s/}° 1̂ can be found with M, τ(Kesι)

bounded but ||^||L/> —• oo. One proves this by means of the following two

lemmas.
Lemma 3.14.2. Let {s^ be such that for each i, Kesi e J£et\{B)

and

Suppose that U^H^ —• oo. Then the ||^||L2 are uniformly bounded and,

after passing to a subsequence, si —• s in C norm.

Proof We show that the ||^||L2 are uniformly bounded by the method

used to show the same for ||wz||L2 in the proof of Proposition 3.9.1. By

(3.14) we have

)dEsi, ΘESJK = %Mφ (K, KeSi) - P(5f ),
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where

(3.73) /»(*,.) = U (es'φ, ψ)κ + v^T / Tr5 ; Λ^ - \ ί TrM<χ) - i\\φ\\2

κ.

If supl^ l < C3 then \P(s^\ is bounded. Furthermore, we can find ^\ Rx
R —• R such that «^'(J/) = c, with c chosen to be positive but small enough
to ensure that

f (cdESi, dESi)κ < ί

which gives a bound on ||V5||£2 and therefore on ||s( | |L2.

Itfc

(3.74)

It follows that ί( —>• s in L2 . Let

Then 5f.. —• 0 in L2 for i, j -^ oo. Also (cf. Proposition 3.7.1)

We can now apply Proposition 3.7.3 and conclude that sup |5- |
5 | | L i ) . Notice that since sup 1̂ 1̂  is bounded, the norms can

be taken with respect to K. It follows that stj —> 0 in C° norm. The

sequence {s^ is therefore Cauchy in C° and it follows that s( —• s in

°
Lemma 3.14.3. L /̂ {H^^ be a sequence of metrics in Jfetp

2(B) such

that Hi -> H in C° norm. Then the Hi are bounded in L\.

Proof. The difference between this lemma and Lemma 6.6.3 in [18] is
that here the metrics are constrained by a bound on ||m, τ ( / / / ) | | ^ H ,
whereas the metrics considered by Simpson are constrained by a bound on
IIΛF^ H^ . These two bounds are in fact equivalent if there is a uniform
bound on sup|5 z | . Recall (from (3.15)) that

AFH = mφ ^

Hence if H = Kes and sup \s\ < Bf, then

(3.75) \\*FH\\LPtH < \\mφJH)\\Ljί

The constant C(B') depends on Bf and other fixed parameters like φ
and τ , but does not depend on s or H. The bound on \\mφ τ(Hi)\\p

LP H

therefore gives a bound on ^ ^
We may thus apply the proof given in [18] (which is an adaptation of

Donaldson's proof in [5]) to the present case.
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Proof of 3.14.1(b). If {KeSi}^{ is a minimizing sequence for
ML τ(K, - ) , then by (a) | | ^ | | L P are uniformly bounded. After passing

to a subsequence, ί ^ } ^ therefore converges weakly in Lp

2 . Let the weak

limit be s. Now L j c C 1 as p > 2n , and M^ τ is continuous on Cι(S).

Hence M^ τ is continuous in the weak topology on J£etP(B), and we

can conclude that M^ τ(KeSi) -> M^ τ(Kes). So // = ίfe5 minimizes

M^ τ(A', -) on jr<?tP(B). By Lemma 3.5.1, Ker = {0} and therefore

= 0' That is,

To see that the solution is smooth we use the formula

(3.76) A'κ(h) = yf^h{AFH - AFK) + y/^ΪAdE(h)h~lD'κ(h),

where h - es. This equation follows from (1.17) and the expression
(1.22a) for Δ^.

Hence if mφ τ{H) = 0, then h satisfies

(3.77) Af

κ(h) = \f^iAdE(h)h~lD'K(h) - V^ϊhAFκ - \hφ ® φ*κh + \l.

Elliptic regularity can thus be used to show that h—and therefore H—is
smooth. Lemma 3.14 is proved.

The uniqueness of the solution follows from the form (and in particular
the convexity) of the functional M^ τ(K, - ) . Suppose that Hf = Hes also
minimizes M^ τ(K, -) for some smooth self-adjoint s e S(H). From
(3.10.2) and (3.13) we can calculate that

(3-78) Jt2MφJH> H * S ) = 2 (Jχ \dEs\2Ht + j χ \SΦ\

It follows that dEs = 0 and sφ = 0. Hence s e Kετ(H). But Ker = {0} ,

and therefore H1 = H. This concludes the proof of Theorem 3.1.1.

4. Properties of 0-stability

In this section we discuss some properties of 0-stable bundles. We start
by giving a source of examples of such structures.

Proposition 4.1. Let E be a holomorphic bundle over a closed Kάhler
manifold X. Suppose that X is algebraic and that E is stable. Then the
Kάhler form on X can be chosen such that given any holomorphic section
φ of E of the condition μM < μm{φ) is satisfied, i.e., the pair (E, φ) is
φ-stable.
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The proof of this will follow from the following lemma.
Lemma 4.1. Suppose that X is algebraic. Let ? ' c ^ be a reflexive

subsheaf with slope μ{<£'). If μ{&') < μ (where μ is the slope of E),
then

(4.1) μ(g?')<μ-l/R(R-l),

where R is the rank of E.
Proof of Lemma 4.1. Since X is algebraic, the Kahler form can be

chosen to represent a class in the integral cohomology H2(X, Z ) . With
the Kahler form thus chosen, μ and μ(l? ) can be written μ = p/R and
μ(%') = p/R', where p and p are integers. Since E is stable, μ(i?') is
less than μ and therefore R'p - Rp' > 0. Now suppose that μ - μ{%') <
l/(RR'). Then R'p - Rp' < 1. That is, we get 0 < R'p - Rp' < 1, which
is impossible. Hence μ - μ(%') > l/{RRf) > l/[R(R - 1)] as required.

Proof of Proposition 4.1. E is stable and therefore μ{β') < μ for every
reflexive subsheaf If' c £? . Thus it follows from Lemma 4.1 that

Rμ - R'μ(g') R'
R-R' ~μ+ R(R-l)

for every reflexive subsheaf £?' c £?. Hence if φ is any holomorphic
section of E, then

But if E is stable, then μM = μ and hence μM < μm{φ). The proposition
is proved.

Finally, we look at restrictions on the characteristic classes of 0-stable
bundles. It is well known that in a stable bundle over a compact Kahler
manifold the first and second Chern classes are constrained by the Bogomo-
lov-Gieseker inequality [1], [6]. In fact, if [ω] e H2(X, R) represents the
cohomology class of the Kahler form on the base manifold X, and the
rank of the bundle is R, then

(4.3) (c2{E) - ( ^ ! ) c{(E)ή U [ωΓ2 > 0.

The Chern classes of a 0-stable structure are constrained by a similar
inequality.

Definition 4.1. Let cx{E) e H2(X, R) and ch2(E) e H4(X, R) be the
first Chern class and second Chern character of E respectively. Define

(4.4a) Cx (E, ω) = ί c{ (E) Λ ω[n~1]

Jx
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and

(4.4b) Ch2(E, ω) = ί ch2{E) Λ ω[n~2],
J x

where ω[m] = ωm/m\.
Theorem 4.1. Let (E,Ί)E9φ) be a φ-stable structure over X. Let τ

be any real number satisfying μM < τ Vόl(X)/4π < μm(φ) - Then

(4.5) •^Cι(E,ω)-Ch2(E,ω)>0.

This result follows from the fact that the pair of equations

AEH - ^ΞLφ ® φ*» + ̂ Ξλτl = 0

come from a variational problem. Before proving the theorem we therefore
need to describe the functional with which these equations are associated.
As before, we let si and Ω (X, E) denote the space of connections on
E and the space of sections of E respectively.

Suppose that we fix a hermitian bundle metric K on E. The Kahler
metric on the base X induces an inner product on Ω*(Λr, C). This in-
ner product, combined with the metric K on E give rise to metrics on
Ω*(Λf, E) and Ω*{X, EndE) (cf. §1) The metric K gives an identifica-
tion E « E* and also E®E* « End 2?. Using these metric constructions
we can thus define the following real valued functional.

Definition 4.2. Define YMHτ: sf x Ω0(^ί, E) -» R by

(4.6) YMHτ{D, φ) = \\FDfL2 + ||Zλ/>||2L2 + \ | |0® Φ* - T I | £ 2 .

Here FD G Ω2(X, End.E') is the curvature of the connection Z), Dφ e
Ω ! (X, £) is the covariant derivative, I e Ω°{X, EndE) « Ω°(X, E®E*)

is the identity section, and τ is a real parameter.

This same functional, when defined over Rd and with τ = 1, is known
as the Yang-Mills-Higgs functional (cf. [11]). Notice that when φ is the
zero section this functional is essentially the Yang-Mills functional. In the
special case where d = 2 and E is a line bundle, the critical points are
called vortices. The equations which define the vortices turn out to be a
special case of (2.1) and (2.2). It is for this reason that we have called
(2.2) the vortex equation.

Clearly YMHτ( , ) is nonnegative. Furthermore, when restricted to

a suitable subspace of si x Ω°(X, E), the functional has a lower bound
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coming from the topology of E. To see this we restrict this functional
to the set of connections on E that are both integrable and unitary with
respect to K. We denote this subset of si by s i ι ' ι (K). We then get the
following result.

Theorem 4.2. // (D, φ) e s i ι ' ι (K) x Ω°(X, E), then

YMHτ(D,φ) = 2\\D"φ\\2

L2
(4.7)

,ΛFn Λι

Here D" is the (0, 1) part of the connection D.
Proof. This follows from the Kahler identities (1.17) for unitary con-

nections and the fact that for a connection D e sf1'1 (K),

{{FD, FD))ω [ Λ ] = |ΛFJ V 1 + TrF^ Λ f . Λ ω [ l 1" 2 1.

Here (( , )) is the inner product defined in § 1, and ω is the Kahler form
on X . The theorem is proved.

The first two terms in (4.7) are nonnegative, and the last two are in-
dependent of the connection D. In fact the Chern-Weil homomorphism
gives the following formulas:

Lemma 4.2. Let D be a connection on E with curvature FD. Let

cx(E) e H2(X, R) and ch2(E) e H4(X, R) be the first Chern class and

second Chern character of E respectively. Then

(i) [y/=ϊTr(FD)/2π]eH2(X,R) represents c{{E),

(ii) [-Tr(FDΛ/^)/8π2]G//4(^,R) represents ch2{E).
Proof. See, for example, [8].
On s/lil(K)xΩ°{X, E) the functional can thus be written as

YMHτ(D, φ) = 2\\D"φ\\2

L2

+ 2πτC{(E, ω) - Sπ2Ch2{E, ω).

Here we have made use of Definitions 4.1. Notice that this formula dis-
plays both the topological lower bound of the functional, and the condi-
tions required to achieve it, viz.

• * "

(4.9a) D φ = 0,
(4.9b) \^AFD + \φ ® φ* - \I = 0.

If D is the metric connection compatible with K and the holomorphic
structure on E, then (4.9a) says that φ is a holomorphic section. Equation
(4.9b) becomes the vortex equation.
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We can now prove Theorem 4.1.
Proof of Theorem 4.1. Suppose that we fix τ e (μM, μm{Φ)) . By Theo-

rem 3.1 we can find a smooth hermitian metric H on E such that with
the given τ , d E , and 0, // satisfies the vortex equation

H + ± 0 0 </>*" - £ τ l = 0.

We can use // and the Kahler form ω on X to define the functional

YMHτ\sz? xΩ°(ΛΓ,£)->R

as above. The metric connection DH = D^ H is a unitary, integrable

connection on £ , i.e., is in sfι'ι(H). The expression for YMHτ(D, φ)
given in (4.8) thus applies. But φ is holomorphic, and H is a solution to
the vortex equation. The first two terms are thus both zero and we get

YMHτ{DH, φ) = 2πτC 1 (£, ω) - Sπ2{Ch2{E, ω).

Inequality (4.5) now follows directly from the nonnegativity of YMHχ.
The theorem is proved.

Discussion. It is natural to ask how the inequality (4.5) compares to
the Bogomolov-Gieseker inequality (4.3). Of course the only case in which
a direct comparison is possible is the case in which (E, ~dE) is a stable
bundle, and φ E Ω (X, E) is a holomorphic section. By Proposition 4.1,
(E9dE, φ) is then 0-stable, and thus both inequalities are applicable to
the Chern classes of E. Suppose then that we are in this situation, i.e.,
that (E, dE, φ) represents a stable bundle with a prescribed holomorphic
section. In order to compare the two inequalities, we use the relation (cf.
[8])

(4.10) Ch2{E) = \c]{E) - c2{E).

We can then write (4.5) as

This must hold for all τ Vo\(X)/4π in the interval {μM, μm(Φ)). In par-
ticular it will be true for τVo\(X)/4π = μM In general μM > μ(E),
but since (E, dE) is stable, we have equality between μM and μ(E).
Rewriting (4.11) with τ = 4πC 1 (£, ω)/[RVol{X)] gives

(4.12) C2(E,ω)-
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The left-hand side of (4.12) is the same as that in (4.3). Hence if

(413) CJ(E1ω1_C1iE1ωl

then inequality (4.12) is stronger than the Bogomolov-Gieseker inequality.
The quantity on the left-hand side of (4.13) is however always negative.
The calculation is as follows.

Using the Lefschetz decomposition of H2(X, C) with respect to the

Kahler form ω we may write cχ (E) = aω + β, where β is a (real)

primitive (1,1) form. So fχ β Λ ωn~x = 0, which gives

(4.14) C{(E9 ω) = J^a-^jy = naVol(X).

Notice that C{ (E, ω) is nonnegative (since E is assumed to have a holo-
morphic section) and that therefore a > 0. Furthermore, using the fact
that β is primitive we get

(4.15) \
= n{n-\)a2Vo\{X) + jjhβA-^-^.

Hence

(4.16)

Cί(E,ω) Cx{E,ωγ _ «(n + l) 2 _ 1 / v x , f o . o Λ ω"
β Λ β

But, by the Hodge-Riemann bilinear relations for real primitive ( 1 , 1 )

forms, fχβAβAωn~2/(n-2)\ < 0 (cf. [22, p. 207]). Hence c f ( £ , ω ) / 2 -

Cι(E,ω)2/Vol(X)<0.
At first sight this result might appear puzzling. One feels that as the pa-

rameter τ approaches the value (4π/Vo\(X))μ(E) one ought to recover
results for stable systems. This is because when τ has this value the only
possible solutions to (4.9a) and (4.9b) consist of the zero section and a
Hermitian-Yang-Mills metric. It is in this sense that, as τ approaches
(4π/Vol(X))μ(E), the notion of ^-stability degenerates into that of or-
dinary stability. Why then do we not recover the Bogomolov-Gieseker
inequality when τ = (4π/Vol(X))μ(E) ? The reason, roughly speaking, is
that the functional YMHτ(D, φ) is not perfectly adapted to the task at
hand.

We obtained the inequality (4.5) from the observation that YMHτ(D, φ)
> 0. This would yield the best possible inequality if the infimum of the
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functional were in fact zero. However to achieve YMHτ(D, φ) = 0 re-

quires FD = 0, Dφ = 0, and φ®φ* = τ l . These three equations cannot

be satisfied unless τ = 0 and Cx {E, ω) = 0. Indeed in this special case

our inequality (4.5) does reduce to the one for stable bundles. In all other

cases the functional YMHτ(D, φ) is strictly positive. It is thus impossible

to achieve equality in the inequality for 0-stable bundles.

This is in contrast to the case of the Bogomolov-Gieseker inequality

where equality is achieved precisely when the bundle is projectively flat

(cf. [12, p. 114]). In fact the Bogomolov-Gieseker inequality can be de-

rived by considering the nonnegative functional given by | |iΓ # | |^2. Here

F denotes the trace free part of the curvature. One shows that for con-

nections whose curvature is of type (1, 1),

(4.17) | |F# |£2 = ||ΛF#||2L2 + 4κ2 jf (lc2{E) - ( ^ - ! ) c2(£)) A / ' 2 ' .

It follows from this that a stable bundle satisfies

when it supports a metric connection for which F# = 0. This last condi-
tion is attainable.

Since zero is merely a lower bound for YMHτ(D, φ) but is an infimum
for | |iΓ # | |^2, we cannot expect the inequality arising from the positivity
of the former to be as sharp as that arising from the nonnegativity of the
latter. This raises the question as to whether it is possible to "improve" the
functional YMHχ{D, φ) and thereby to get a better inequality, perhaps
even one that will merge correctly with the Bogomolov-Gieseker inequality.
We hope to pursue such questions in future research.
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