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Introduction

Let M be a compact connected C°° Riemannian ^-manifold with
diameter d(M) < D. We say that M has "almost nonpositive" curvature
if the sectional curvature K(M) satisfies K(M) < ε for a small ε > 0
depending on D and n . In this paper, we study the topology of manifolds
of almost nonpositive curvature under the condition K(M) > - 1 .

We denote by <£{n, D) the family of compact Riemannian «-mani-
folds M with d(M) < D and K(M) > - 1 . The main result of this paper
is the following.

Theorem 0.1. There exists a positive number εn(D) such that the fol-
lowing holds. If M G Jί{n , D) satisfies K(M) < εn(D), then the universal
covering space of M is diffeomorphic to R" .

Theorem 0.1 was conjectured by Gromov [14, §4], where it is stated that
the fundamental group nx{M) is infinite. One might hope to eliminate
the condition K(M) > - 1 . But, for n = 3, there is a counterexample due
to Gromov [13, 1.6], which has been verified in a recent paper by Buser
and Gromoll [3]: Namely, for given ε > 0, there exists a metric gε on
the sphere S3 such that d(gε) < ε and K(gε) < ε.

In fact, we can prove a more precise result than Theorem 0.1. To state
it we need several notation. For α, 0 < α < 1, a C 1 > α nonpositively
curved orbifolds stands for a metric space X/Γ, where X is a simply
connected complete C l α Riemannian manifold of nonpositive curvature
(in the sense of Definition 1.6), and Γ is a properly discontinuous group of
isometries of X . (Our terminology is a bit different from that in Thurston
[22]. The orbifold in our sense is denoted as the good orbifold there.) We
say that a map f:M-+ X/Γ is a fibration if / has a lift f:M-*X
which is a fiber bundle, where M is the universal covering space of M.
The fiber of / is the inverse image f~\p) of a nonsingular point p of
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X/Γ. In our case, this definition coincides with one in [10, §7]. We define
the structure group of the fibration as in [10, §7].

We consider a compact manifold H/A, where H is a nilpotent Lie

group, Λ is a discrete subgroup of HxA\xt{H), and [Λ: H Π A] < oo.

Put Λo = Λ Π H. We take a series of subgroups 1 = Λ(0) c Λ(1) c

••• C A{N) = Λo such that A{m)/A{m~ι) is contained in the center of

ΛQ/Λ*"1"1*. Let L be a subgroup of Aut(Λ0) containing Int(Λ0). We

assume that Λ ( w ) is preserved by the elements of L. Then we have a

homomorphism / : L -> Π A\x\{A{m) / A{m~x)) = Π SL(fcm Z). Remark

that our assumption on Λ ( w ) implies that /(Int(Λ0)) = 1.
Theorem 0.2. If M e Jt(n9 D) and KM < εn(D), then we have a

fibration H/A -> M -• X/Γ such that
(0.3.1) X/Γ is a nonpositively curved orbifold of Cι'"-class,
(0.3.2) H is a nilpotent Lie group, A c HxAuXH, and [A: AnH] < oo,
(0.3.3) the structure group of the fibration can be reduced to
C(H)/{C{H) nA)xL, where Int(Λ0) cLc Aut(Λ0), and

(0.3.4) we can choose Λ(m) so that J(L) is a finite group.
Conversely we have the following.
Theorem 0.4. Let H/A -> M -> X/Γ be a fibration satisfying (0.3.2)-

(0.3.4). Suppose that X/Γ is a Riemannian orbifold of C°°-class. Then,
for each ε > 0, there exists a Riemannian metric gε on M such that

(0.5.1) ε + Max{0, supΛ^} > K{M g) >Min{0, infΛ^j-ε,
(0.5.2) diam(M, gε) < diam(X/Γ) Vε,
(0.5.3) ]ime^odH((M9ge),X/Γ) = O.

Remark 0.6. We do not know if X/Γ in Theorem 0.2 admits a non-
positively curved metric of C°° -class.

Theorems 0.2 and 0.4 imply the following.
Corollary 0.7. If M e Jί(n , D) and K{M) < en{D), then, for each

ε > 0, there exists a metric gε on M such that (M, gε) e Jf{n, D) and
K(M,gε)<ε.

Corollary 0.8. Let M e Jt(n , D) and K(M) < εn{D). Suppose that
πx(M) is solvable. Then M is diffeomorphic to H/A, where H and A
are as in (0.3.2).

As an application of our argument to manifolds with almost nonnegative
curvature, we have the following.

Theorem 0.9. Let M e Jt(n, D) and -εn(D) < K{M) < 1. Suppose
that M is a K(π, \)-space. Then M is diffeomorphic to H/A, where H
and A are as in (0.3.2).
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For the proof of our results, we make use of the theory of convergence
and collapsing of Riemannian manifolds. Now we briefly sketch the idea
of the proof oϊ our theorems. We shall proceed by reduction to absurdity.

Let (M., gj), i = 1, 2, •• , be a sequence in Jt(n, D) with K(g.) <
Γ2 such that each Mt does not satisfy the conclusion of Theorem 0.1 or
0.2, and assume that (Mi, gt) converges to a metric space Y for the Haus-
dorff distance. Since the maximal rank radius of the exponential mapping
at a fixed point mi of Mt is greater than /, the ball B(i) of radius / in
R" around the origin inherits an induced metric gt. For a subsequence,
(B(i), g.) converges to a Cι'a Riemannian manifold Xo with respect
to the pointed HausdorfF distance. The space XQ has nonpositive curva-
ture. Let Gi be the fundamental pseudogroup of isometric imbeddings of
(B(i), g.) into (B(2i), gt) for the exponential mapping at mi such that
Mt is isometric to the quotient space B{i)jGi. In a sense, Gt converges
to a group G of isometries of Xo such that Y is isometric to XJG. The
identity component Go of G is a nilpotent Lie group, and contains no
compact subgroups. Hence Go acts freely on Xo . It will turn out that GQ

acts by translations and XQ splits isometrically as Xo = X xRk

 9 where the
R*-factor is generated by Go-orbits. Therefore, Y is isometric to a C l α

nonpositively curved orbifold X/Γ, where Γ = G/Go . By passing to the
orthonormal frame bundle of Mi, we shall overcome the difficulty in deal-
ing with singular points of X/Γ, and construct a fibration Mi -> X/Γ for
large /. We can use this fibration to prove Theorem 0.1. More detailed
study of our fibration implies Theorem 0.2.

The organization of this paper is as follows. The constructions of Xo

and G are done in §1 and §2 respectively. §3 is devoted to the proof of
the properties of Go and the splitting of XQ . The proof of Theorem 0.1
is deferred to §4, where the deduction of Corollary 0.8 from Theorems
0.2 and 0.4 also appears. In §5, we shall rewrite the condition (0.3.4) in
Theorem 0.2 in terms of the homotopy exact sequence of the fibration
M —• X/Γ. After preliminary arguments in §6, we shall construct in §7
the subgroups Λ ^ c Λ in (0.3.4). The proof of Theorem 0.2 is completed
in §8. §9 is devoted to the proof of Theorem 0.4. In §10, we shall prove
Theorem 0.9.

1. Basic properties of the space Xo

For a positive number r and a point x in a metric space X, we denote

by Br(x, X) the metric r-ball around x. For X = Rn , we set B(r)

instead of 5 r (0, Rn) for simplicity.
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Let Aff., / = 1, 2, , be a sequence in the family Jί(n, D) such
that K(Mi) < Γ2. Let fr R" —• Afy be the composition of a linear
isometry of R" onto the tangent space Tm{Mi) and the exponential map
at a fixed point mi of M{. By the Rauch comparison theorem, f. has
maximal rank on the ball B(2i). Let gt be the induced metric f*gi on
B(2i), where gt is the metric of Mt. Remark that B(i) is a convex set
of {B(2i), gj). By [15, 8.23], passing to a subsequence if necessary, the
pointed space (B(2i), gn0) converges to a pointed C l α Riemannian
tf-manifold (Xo, xQ) with respect to the pointed Hausdorff distance.

In this section, we study basic geometric properties of XQ needed in
subsequent sections. To do this, we use the center of mass technique,
and obtain an imbedding φr. B(i) —• B(2i) such that the induced metric
Si = <P*gi converges to a C l α metric g^ of Xo on B(R) for each
i ? > 0 [11], [20].

First of all, we note that there is a unique ^-geodesic which satisfies
a given initial condition, and that at each point, the ^-exponential map
converges to that of Xo uniformly on each compact subset in the tangent
space. By d and di we denote the distance defined by using the metrics
g^ and gt respectively.

The space Xo has "nonpositive curvature" in the following sense.
Lemma 1.1. Let σ, τ: [0, 1] —• XQ be geodesic segments in XQ with

length a, b respectively such that σ(0) = τ(0), and let a be the angle
between them. Then, we have

d(σ(l)9 τ(l)) > a + b1 - 2abcosa.

Proof. Let σi and τ/ be ^-geodesies such that cr(0) = σ'(0) and
t .(0) = τ(0) for large /. Let 'σi and τi be geodesies on the sphere
of constant curvature Γ 2 such that σz(0) = τ ;(0), |σ (0)| = | ^ ( 0 ) | ,
|τ'.(0)| = |τ^(0)|, and that the angle between them is equal to α. Then
the Rauch comparison theorem implies d^σ^l), τ ;(l)) > rf(σf.(l), τ ^ l ) ) .
Taking the limit, we have the required inequality.

As immediate consequences of Lemma 1.1, we have the following lem-
mas.

Lemma 1.2. For any two points in Xo, there is a unique geodesic of Xo

joining them.
Lemma 1.3. The distance function d: XQ x Xo —> R is convex.
Proof We have only to show that for geodesies σ and τ of Xo defined

on a bounded interval / , the function t -» d{σ(t), τ(/)) is convex on / .
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Let aϊ and τi be £z-geodesies with ai —• a and τ.—>τ. We set

f{t) = d(σ(t), τ(0),

For every fixed tQ in /, set /z = £/z(σz(ί0), τz(ί0)). Let α^s, /) be a
variation such that for each t, the curve s —> a^s, t) (0 < s < /z) is a
£z-geodesic from σ^t) to τz (ί) By the second variation formula, we have

/O

where ^ = dajdt, 7) = dajds, and JC(̂ . Λ Γz) denotes the sectional
curvature of the plane section V. Λ Γz with respect to gt. The curvature
assumption and a standard estimate on Jacobi fields imply fl'{tγ) > -C/i2

for some constant C. This yields the inequality

for all / in /. Taking the limit, we obtain that f(t) > f(tQ) + β{t - t0),
where /? is the limit of //(/0) which exists certainly by the first variation
formula. This shows the convexity of / .

Lemma 1.4. Let A be a closed convex set of Xo. Then we have the
following:

(1.5.1) For each x in XQ, there exists a unique point p(x) in A satisfying

d(x,p(x)) = d(x,A).

(1.5.2) The mapping p: XQ-> A is distance-nonincreasing.

Proof (1.5.1) Suppose that for a point x there exist distinct points yχ

and y2 of A such that d(x, yt) - d(x, A), / = 1, 2. Let σt and τ be
geodesies joining x to yi and yx to y2 respectively. We note that, by
Lemma 1.1, the sum of interior angles of a geodesic triangle in XQ is less
than or equal to π. Since A is convex, σi and τ make obtuse angles.
This is a contradiction.

(1.5.2) For x{ and x2 in XQ, let σz: [0, 1] -• Xo, / = 1, 2, be the
geodesies from p(x) to xz. Since σi and the geodesic joining p(x{) and
p{x2) make obtuse angles, the argument in the proof of Lemma 1.3 applied
to the function f(t) = d(σ{(t), σ2(ή) yields d(xι, x2) > d(p(x{), p(x2)).

Definition 1.6. We say that a complete Riemannian manifold of C1 α-
class has nonpositive curvature, if its universal covering space satisfies the
conclusions of Lemmas 1.1-1.4.
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2. The construction of the group G

We consider the sequence of Riemannian manifolds (B(i), gt), con-
structed in §1. Put Di = </.(0, dB{i)), remark that l i m ^ ^ Z). = oo, and
set Bt(R) = {pe Λ(ι)|rf.(0, p) < R} . When D. > 2i?, we define

G'.(i?) = {ψ: Bt{R) -> BμR)\ψ is continuous and f.φ.ψ = f.φ.},

where /): Rπ -* Λ/. and ^.: £(/) -» 5(2/) are the maps defined in §1.

Remark that ψ* g. = g. for ψ e G'^R). Since B^IR) converges to

B2R(x0, ΛΓ0), we can regard B^IR) as a subset of Xo . For each R, there

exists i0 such that ^.(27?) D BR(xQ, X) for / > i0 . By G^JR) , we denote

the set of the restrictions of the elements of G\{2R) to BR(xQ, R). We

have

1 d(ψ(p),ψ(q))

d(p,q)

for p, q e BR(x0, Xo), and / > i(R), since {BR(x0, ΛΓ), rff.) converges to
(BR(xQ, X), d) with respect to the Lipschitz distance, and the elements
of G^R) are isometries for dt. In other words Gt(R) is contained in the
set

. BR(x0, X) -> B4R{x0, X)

We define a metric on L(R) by

d{ψ, ψ') = sup{d{ψ{p), ^'(/7))|p G 5 Λ (x 0 , X)}.

Ascoli-Arzela's Theorem implies the compactness of (L(R), d). There-
fore, we may assume, by taking a subsequence if necessary, that Gt(R)
converges to a subset G(R) with respect to the Hausdorff distance in
L(R). Set R < R'. Since f.φ. is of maximal rank on the ball of radius
Di, it follows that every element of G^R) is a restriction of an element
of Gt(R!) if / is sufficiently large. Hence we have an injective homomor-

phism /* ' : Gt(R) -> G^R1) such that IR{ψ) = ψ on BR(x0, X). These
maps induce an inclusion I: G(R) — G(Rf). We put \JR G(R) = G. It is
easy to see that G is a group of isometries of (X, d). We put a compact
open topology on G.

Lemma 2.1. X/G w isometric to Y, the limit of Mi.
The proof is a pseudogroup version of [6, Theorem 2-1] and is left to

the reader.
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Lemma 2.2. The connected component Go of G is a Lie group. The
quotient group G/Go equipped with the quotient topology is discrete.

Proof. Remark that G is a closed subgroup of the group of all isome-
tries of X. Hence, in the case when the metric g^ on X is of C°°-class,
the conclusion follows immediately from [18, Theorem 3.4]. In the gen-
eral case, we can use [2] in a way similar to [8, §1] to obtain a smooth
Riemannian G-manifold (Λ^, g^) such that (XQ9 G) and (X'o, g^) are
equivariantly diίfeomorphic. Therefore the lemma follows immediately
from the case where g^ is smooth.

Lemma 2.3. Go is nilpotent.
This is a consequence of Margulis' lemma. The proof is similar to [8,

§4], and hence is omitted.

3. Splitting Xo to a direct product

In this section, we shall prove that Xo/G is a Riemannian orbifold of
nonpositive curvature. We shall work under the following conditions.
(3.1.1) Xo is a complete and simply connected C 1 > α Riemannian mani-
fold satisfying Lemmas 1.1-1.4.
(3.1.2) G is a group of isometries of XQ, and XJG is compact.
(3.1.3) G/Go is discrete, where Go is the connected component of G.
(3.1.4) Go is a nilpotent Lie group.

For g e G and p e X we put δg{p) = d(p, g{p)). For A c G, we
define

)for

We take a sequence of subgroups G^ of Go such that

(3.1.5.1) G{0) is trivial and G{N) = Go ,

(3.1.5.2) G{i) is normal in G,and G{i+ι)/G{i) is the center of GJG{i).
Lemma 3.2. Assume (3.1.1)—(3.1.5). Then :

(3.2.1) CGQX0 = X0,

(3.2.2) Go is isomorphic to Rn~m,

(3.2.3) Xo is isometric to a direct product X x R"~w, where X is a CUa

Riemannian manifold,
(3.2.4) for (x,a)eXx Rn~m = Xo and b e Rn~m, we have b{x, a) =
(x,a + b).

Proof The proof is by induction on dim Xo .

Sublemma 3.3. For each g e G ( 1 \ the set Cr , Xo is nonempty.
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Proof. Put A = {h~ιgh\h e G} . Since G (1) is the center of Go , and
G/Go is discrete, it follows that ^ is discrete. Put

δ(p) = inf{d(p,f(p))\fGA}.

In view of the compactness of Xo/G and the G-invariance of A, the
function δ assumes its minimum at some point p . Then the discreteness
of A implies that there exists h eG such that p e C,h-ι hyXQ . Therefore
h(p) is contained in C\ ,XQ .

Let G' C GQ denote the set of all semisimple elements of GQ . (Here we
recall that the isometry γ is said to be semisimple if Cr ,X0 is nonempty.)

Sublemma 3.3 implies that G1 Φ {1}. On the other hand, [1, p. 88,
Lemma] implies that
(3.4.1) G' is a normal subgroup of Go ,
(3.4.2) CG'X0 is nonempty,

(3.4.3) CG,X0 splits as Xf xRs,

(3.4.4) G' is isomorphic to R* and it acts on CG>XQ as the translation of
the second factor.

Remark that the proof in [1] uses only the properties which we proved
in §1, and hence it can be applied to our case, where the metric is not
smooth.

It is easy to see that G1 is also a normal subgroup of G, so that CG> Xo

is a G-invariant subset. Since CG>X0 is convex and Xo/G is compact, it
follows that XQ = CG>X^. Hence XQ = X1 x R 5. Since G1 is a normal
subgroup of G and the R5 factor is generated by G1 -action, the splitting
of Xo is preserved by G-action. Therefore G/Gf acts on X' by isometry,
and this action satisfies (3.1.1)—(3.1.5). We apply the induction hypothesis
to this action and conclude:

(3.5.1) G 0 / G ' ^ R ' ,

(3.5.2) X' = X x R ' ,

(3.5.3) G0/Gf acts on X1 as translation of the second factor.

Therefore we have:

(3.6.1) XQ = XxRt+s,
(3.6.2) G preserves the splitting,
(3.6.3) the action of Go on the first factor, X, is trivial,

(3.6.4) the action of Go on the second factor is free.

(3.2.1)-(3.2.4) follow immediately.
Lemma 3.7. X is diffeomorphic to the Euclidean space.
Proof. Fix a point p0 on X. Take a neighborhood U of p0, which

is diffeomorphic to the Euclidean space. Take a smooth function on X,
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which is equal to 1 outside U and vanishes in a neighborhood of p0.
For each p e l , let V(p) e Tp(X) be the unit vector tangent to the
unique minimal geodesic connecting p and pQ . fV is a vector field of
C°-class. We take a smooth approximation of fV, and let Φt be the one-
parameter group of transformations associated to the vector field. Then,
for each compact subset K of X, there exists / such that Φ_t(U) D K.
The lemma follows immediately.

Finally we remark that the following lemma is proved in a way similar
to the C°°-case proved in [12], [19].

Lemma 3.8. Let X be a complete and simply connected C{'a manifold
with nonpositive curvature, and let T be a properly discontinuous group of
isometries of X. Assume that Γ is solvable and that, for each γ e Γ, the
set Cr, X is nonempty. Then we have a subgroup Γ7 of Γ such that

(3.8.1) [Γ:Γ /]<oc,
(3.8.2) Γ7 is a free abelian,
(3.8.3) there exists a totally geodesic flat Γ'-invariant subspace Z of X
such that ZjY1 is compact.

4. Proof of Theorem 0.1

In §§1-3, we proved that (A/., gt) converges to (Rm, J)/Γ for the
Hausdorff distance, where ~g is a C l α metric and Γ is a properly discon-
tinuous group of isometries. We recall the results of [8] here. Let FM. be
the set of all orthonormal frames of Mi. In an obvious way, g( induces a
metric hi on FMi. By taking a subsequence if necessary, we may assume
that (FM^hj) converges with respect to the Hausdorff distance. It is easy
to see that the limit is isometric to {FX, h^/G, where h^ is a metric
induced from the metric g^ on X. Since FX ~ R" x O(n), G/Go ~ Γ,
and Go ~ R"~w, it follows that FX/G is isometric to (Rm x O(n))/Γ.
By [8, §6], we see that the action of Γ o n f x O(n) is free. By [8, §10],
there exists the following commutative diagram:

Here the map πi is a fibration (in the usual sense). Moreover, πi is an
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O(«)-map. Now we put

FEi = {{q, y) E FM, x (Rm x Ofa)) !*^) = y mod Γ},

£, = FEJOin).

Remark that O(ή) acts freely on FEi. Then there exists the following
commutative diagram:

- ^ (Rm x O(/ι))/Γ
I

FE. •• R m x O(n)

Since πz is a fibration, so is the map FEέ —> Rw x θ ( « ) . Hence F ^ —• Rw

is a submersion, and E{ -> Rm is a fibration. Since F £ . -• Rw x O(n)

is also an O(«)-map, the fiber of E{ -* Rm is equal to that of FMι -•

(Rm x O(π))/Γ, and is therefore diffeomorphic to an infranilmanifold.

Thus that E. is diffeomorphic to the product of the Euclidean space and

an infranilmanifold.
Since Rm x O(n) -+ (Rm x O ( Λ ) ) / Γ is a covering map, so is the map

FEt -• FM(. Hence FEέ -• Mt is a submersion, and E( -+ M{ is a
covering map. Thus, we conclude that the universal covering space of M.
is diffeomoφhic to one of Eέ, which is the Euclidean space. The proof of
Theorem 0.1 is complete.

5. Preliminary discussion on fundamental groups

and structure groups

To prove Theorem 0.2, we rewrite condition (0.3.4) in terms of the ho-
motopy exact sequence of the fibration. For this purpose, we recall several
facts concerning reductions of the structure groups of fibrations. Let F
be a topological space and let H(F) be the group of homeomorphisms
equipped with compact open topology. We shall define a homomorphism
Φ: H(F)/H0{F) - Aut(π1(F))/Int(π1(F)), where HΌ(F) stands for the
connected component of H(F), and Aut(π{(F)) and Int(πx(F)) are the
groups of all automorphisms and all inner automorphisms of the funda-
mental group of F, respectively. Fix p0 e F and φ e H(F). Then
we have φ,\ π{{F,p0). -> πx(F, φ(p0)). Using a path connecting p0

and φ(pQ), we have an isomorphism πx(F, φ(pΌ)) -• πx(F,p0). If
we change the choice of the path, the isomorphism changes by an ele-
ment of lnl(π{(F,p0)). Thus we have a homomorphism Φ: H(F) -•
Aut(π1(F))/Int(π1(i7)). Clearly Φ induces a map Φ .
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Next, let F —• M Λ Y be a smooth fiber bundle with structure group
G, a Lie group. Then, using the holonomy of a (/-connection, we ob-
tain a homomorphism Ψ: π{(Y) —• G/Go, where Go is the connected
component of (7. Let /: G/Go —• H(F)/H0(F) be the homomorphism
induced by the action of G on F . Thus, we obtain a homomorphism
Φ/Ψ: 7^(7) -+ Aut(π1(F))/Int(7r1(/7)). We shall describe this homomor-
phism in terms of the homotopy exact sequence of the fibration. For
simplicity, we assume πo(F) = π2(Y) = {1} . Then we have a short exact
sequence

Let γ e πγ(Y). Choose γ e n{{M) satisfying πφ(y) = γ. We can define
an element conj(y) e Aut(πx(F)) by conj(y)(μ) = ?~V? The equiv-
alence class in Aut(7Γ1(/Γ))/Int(τr1(/Γ)) of the element conj(y) is inde-
pendent of the choice of γ and depends only on γ. Thus, we obtain a
homomorphism conj: πγ(Y) -> Aut(7Γ1(/Γ))/Int(7r1(i7)), and also have

Lemma 5.1. conj = Φ/Ψ.
We omit the proof.
Thirdly, we recall the following result (see [18, pp. 83-91]).
Lemma 5.2. Let G' be a subgroup of G such that Ψ(π{(Y)) = G'/Go.

Then the structure group of the fibration F —• M —• Y can be reduced to
G'.

Fourthly we remark that the preceding arguments can be applied also
to the singular fibration F —• M —• X/Y which we study in the preceding
sections. (We replace πx(Y) by Γ.) For example, the homotopy exact
sequence is obtained by applying the nine-lemma to the following com-
mutative diagram:

1 -*

1 -*

1 -> %

I
πχ(F) —• i

||

π\{F) —•

I
1

1
I

r,(O(n)) =

1
τλ{FM) —>

I
πχ{M) -•

I
1

1
I

π,(O(«))
i

i,pxO(«))/r
1
Γ
1
1

— 1

) -» i

- f 1

Now, we can rewrite (0.3.4) in terms of the fundamental groups. (Re-
mark that the result of §4 and [10] imply (0.3.1)-(3.3.3).) Let H/A ->
M -• X/Γ satisfy conditions (0.3.1), (0.3.2), and (0.3.3). Then, Λ is
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a normal subgroup of πχ(M). We define a homomorphism nχ{M) —•
Aut(Λ) by γ —> (μ —• y"1//)') I n the case when subgroups Λ ( m ), m =
1, 2, , are normal in πχ(M), we can compose this map and / : L —•
Π SL(fcw Z), to obtain a homomorphism π^Af) -+ fl SL(fc. Z). We
denote this map also by / . Then, Lemmas 5.1 and 5.2 imply the follow-
ing.

Lemma 5.3. (0.3.4) is equivalent to the following-.

(5.4) We can choose A{m) so that J(πχ(M)) finite.

6. Limit of universal covering spaces

Let M{, i = 1, 2, , be a sequence in Jί{n, D) with K(Mt) < Γ2.
We study the limit space of the universal covering space Mt of Mi. Fix a
point x. and Mi. By taking a subsequence if necessary, we may assume
that (M., xέ) converges to a pointed metric space (X, x) for the pointed
Hausdorff distance. In this section, we shall prove the following lemma
which is needed in the next section.

Lemma 6.1. X is isometric to the space Xo constructed in §1.
Since Mi is a K(π, l)-space by our Theorem 0.1, Lemma 3.2 in [9]

shows that X has dimension n. By [15, 8.39], the injectivity radius at
xt is uniformly bounded away from zero. Thus Lemma 4.2 of [9] implies
that X is contractible.

For the proof of Lemma 6.1, we need the following.
Lemma 6.2. For each point x in X, the exponential map exp^ of X

is bijective.
When the metric of X is of class C 2 , Lemma 6.2 is nothing but the

Cartan-Hadamard Theorem. But, since the metric of X is only of class
C l α , it is a priori nontrivial that the exponential map is even a local
homeomorphism.

For the point x e X, take yt e M{ so that (M., yt) converges to
(X, JC) for the pointed Hausdorff distance. To prove Lemma 6.2, we
use a center of mass technique to obtain an imbedding φ^. B3i(x, X) —•
B4i(yn Mt) such that the induced metric gi = φ*gi9 where g( is the
metric on Mi, converges to the metric g^ of X on compact subsets.

For simplicity, we identify R" with the vector space (TχX, g^). We

fix a positive number R and a large i0 with io> R. Let exp^.: B(2i0) —•

BXi (x, X) be the £f-exponential map. Passing to a subsequence if nec-

essary, we may assume that the sequence (B(2io)9 Af.), ht = e x p ^ ^ ) ,

converges to a C l α Riemannian ^-manifold for the Hausdorff distance.
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It should be remarked that ht does not converge in general. Hence we use

the center of mass technique again to obtain an imbedding ψ*: B(iQ) ->

B(2i0), so that the induced metric hi = ψ*hi converges to a C 1 α metric

h^ on B(i0). From the center of mass construction, ψ{ can be chosen

so as to satisfy the following conditions:

(6.3.1) e~δ{io)\V\h < Idψ^υ)^ < / ( / o ) | ι ; | Λ . for every tangent vector v ,|Λ

where l i m ^ ^ ί ζ , ) = 0.

(6.3.2) ψ(B(i0)) includes B{R).

If we set F( = exp̂ . ψi, we have the following diagram:

B(2i0)

Sublemma 6.4. The map ψ. uniformly converges to a homeomorphism
^oc ofB(i0) into B(2iQ) satisfying Ψoo(B(i0)) D B(R).

Proof By Rauch's comparison theorem and the convergence gi —• g^ ,
we have

C(io)~l\w\e<\w\h<C(io)\w\e

for every tangent vector w to B(2iQ), where | \e is the norm induced by
the inner product g^ on Rn . Hence (6.3.1) yields

C~ι\v\h <\dΨi(v)\e<C\v\h
Ό Ό

for a uniform constant C = C(/ o). It follows from Ascoli-Alzera's Theo-
rem that ψi uniformly converges to a bi-Lipschitz homeomoφhism ψ^ .
Property (6.3.2) of ψi passes to the limit.

If we set F = exp^° ψ , we have the following diagram:

(B3i(x,X),gJ
Jlo ^

Sublemma 6.5. The map F^ carries h^-geodesies to g^-geodesies in
the length-preserving way.

Proof For an Λ^-geodesic σ in 2?(;0), take an Λ-geodesic σi so that
limσz = σ. Since Ft: (B(i0), ht) -> (B3i(x, X), g() is a local isometry,
Fσi is a ^-geodesic. By taking a subsequence if necessary, we may assume
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that Fiσi converges to a g^-geodesic τ . Thus by the uniform convergence
of Fi to F^ , we have τ = F^σ), and

length τ = lim length Fiσi - limlength at = length σ,

length τ = lim length jFzσz = lim length ai = length σ.

Proof of Lemma 6.2. For any u in 2?(/0), put z = F^ύ). Take a
small <5 > 0 so that the ball ^ ( z , ΛΓ0) is convex. Then Sublemma 6.5
implies that F^ maps B^u^h^) onto 2ίj(z,ΛΓ0) homeomoφhically.
Together with Sublemma 6.4, this implies that exp^° is a local homeo-
morphism, because R is arbitrary. Since exp^° is surjective and X is
simply connected, this yields the injectivity of exp^° by a standard cov-
ering argument.

Sublemma 6.6. The injectivity radius of Mi goes to infinity as i —• oo.

Proof Suppose the contrary. Then, by the curvature assumption, for
large /, there is a geodesic loop γt in Mi with uniformly bounded length.
Since d(Mi) < D, we may assume that the distance between y. and the
base point of the geodesic loop is less than a constant independent of /.
Hence, the g-geodesic φ^iγ^ converges to a ^-geodesic loop. This
contradicts Lemma 6.2.

Lemma 6.1 is an immediate consequence of Sublemma 6.6.

7. Covering spaces along fibers

In this and the next sections, we shall prove Theorem 0.2. Let M{ be a

sequence of Riemannian manifolds such that MteJί{n, 1), KM < \ji,

and let X/Γ be the limit of Mt. It suffices to show that, for each suffi-

ciently large /, there exists n(: Mi —• X/Γ satisfying (0.3.1)-(0.3.4). In

§§1-4, we have constructed πt satisfying (0.3.1) and (0.3.2). [10] im-

plies that this map satisfies (0.3.3). Let Hi/Ai denote the fibers. We take

the upper central series ΛJ0) c c Λ^' } of Ai Π H.. In other words,

Λ ( ;+i)/ Λ ω i s t h e c e n t e r o f Λ ^ ' V Λ ^ = (Af. Π HJ/Af . We shall refine

this series so that (0.3.4) is satisfied. Fix m, and consider rath com-

ponent Jt m: n^MJ - AutίAJ^VAJ"1"0) = SL(fcz

(m), Z) . Hereafter we

shall omit the symbol ra and write Ji, Λz , and Λz in place of Jt m , ΛJ ,

and A z

m - 1 ) . By taking a subsequence if necessary, we may assume that

A:z

(m) does not depend on /. We put k = &z

(m). Let Έ denote the rank of

the nilpotent group (A/n// |.)/AJm), which, we assume, is also independent

of /. In this section, we shall prove the following.
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Lemma 7.1. There exist subgroups Λ. ., Λ'. ., j = 0, , N, of Af.,

Riemannian manifolds Y , and positive integers s , such that the following

holds (by Mi j and M[ j } we denote the covering spaces of M\ correspond-

ing to Ai . and Λ' ., respectively):

(7.2.1) Λ ; , 0 = ΛZ, Λ/)iV = Λ,, A ^ c A ^ c A , . ^

(7.2.2) Yj is isometric to the direct product of X xRk+s°+'+sJ-1 and an
s -dimensional flat torus.

(7.2.3) Λf. is a normal subgroup of nx(M.).

(7.2.5) [Ai9J:A'i9j] < oo. Furthermore A'.J/A^J^ = l ZsJ c & =
A. ./A. + 1 for some number I depending on i and j .
(7.2.6) We can find pi . e Λf. •, such that (M. ., pt .) converges to the

universal covering space I x R + s o+- + J 7-i of γ,_^ f w / ^ respect to the

pointed Hausdorjf distance.
(7.2.7) We can find p\ • so that M\ . converges to Y. with respect to the
pointed Hausdorjf distance.

Proof Let Mt 0 be the covering space of M{ corresponding to Λ/.
Then, in view of Lemma 6.1, we can prove the following.

Sublemma 7.3. We can take pitOe MiQ such that {Mt d,ρ. 0 ) con-

verges to (X xRk , p^ 0 ) with respect to the pointed Hausdorjf distance.
Therefore, by [7], there exists a submersion πi 0 : B2(p. 0 , Mi 0 ) - ^ I x

R^ for each sufficiently large /. Set Ήt 0 = (πz o ) " 1 ^ ^ o' x x R^))

By restricting πi 0 , we obtain a fibration πi 0 : Mi 0 —• B{ (p^ 0, XxRk).

We put ΫQ = XxRk and Ϋo c = B^p^Q, XxRk). Then, we can prove

Sublemma 7.4. π{ (M. 0) = Ar

Let Λ/ϊ0(/) be the subgroup satisfying A/>o(/)/A. = / Zk c Zk =

Λ//ΛJ., and denote by Mi 0(/) the covering space of ~Mi Q corresponding

to Λf. 0 (/) . Then we have a fibration πi 0(/): ~M\ Q(l) -+ ΫQ c. Put

Then

(7.5.1) af / + 1 / α / ι < C for some constant C independent of /,

(7.5.2) lim atJ = oo.
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Hence, we can choose /. so that 1 < aϊ, { < C. Put Λ'. 0 = Λ; Q ^ ) ,

and let M'{ O and M ' O denote the covering spaces of Mi and ~Mi Q

corresponding to Λ'. 0 , respectively. In other words ~Ή\ 0 = My 0 (/ / ). Let

*'i,O = πi,θ(Ii):Ή/i,O^ΫO,c' S i n C e

(7.6) l<diam((π; . ? 0 )- 1 ( J p o θ 5 θ ) )<C,

and π̂  0 is an almost Riemannian submersion, we have diam(M/ 0) <

2(4 + C) . Therefore, by taking a subsequence if necessary, we may assume

that Mi 0 converges to a metric space Yχ with respect to the Hausdorff

distance. We fix a point p\ 0 on {πi {))~X{poo 0 ) . We may assume that

{M\ O , p\ O ) converges to a metric space (Yχ, p^) with respect to the

pointed Hausdorff distance. Remark Y{ DT{ . Let G be as in §2. Then,

by construction, there exists a closed subgroup Gχ of G such that Yχ is

isometric to X/Gχ. By §§3 and 4, Yχ is therefore a nonpositively curved

orbifold of C l α-class. Using [7], we thus have the following.

Sublemma 7.7. After perturbing Ύ\ c Yχ and M\ O C M\ O in a small

neighborhood of their boundaries, we can construct fibrations πi 0 : M\ O —•

Ύx and Pχ: Ύχ -+ Ϋχ c, such that π̂  0 = Pxπ\ 0 .

Sublemma 7.8. The inclusion Yχ->Yχ induces isomorphisms on fun-
damental groups.

Sublemma 7.7 implies that nχ(Yχ) is nilpotent, so that so is πχ(Yχ).
Since Yχ is a nonpositively curved Riemannian orbifold and every element
of nχ{Yχ) is represented by a closed geodesic, Lemma 3.8 implies

Sublemma 7.9. πχ (Yχ) ~ Zs°. Furthermore Yχ is isometric to the direct

product of X xRk and an s^-dimensional flat torus.

Let Λ, 1 = πχ((πi 0)~l(p^)). Then we have an exact sequence

(7.10) 1 - > Λ M - > Λ ; > 0 - > Z * - > 1 .

(Recall that Λ' 0 = πχ(M'i0) and Z5° = πχ(Ϋχ), and that (7.10) is the
homotopy exact sequence associated to the fibration πi 0 .) Remark that
Λf. j D Λf.. If Λ/ j = Λ/ (or equivalently s0 = k), we finish the con-
struction. If not, we will continue by proving the following sublemma. By
Mi x, we denote the covering space of Λff. corresponding to Λz χ .



ALMOST NONPOSITIVELY CURVED MANIFOLDS 83

Sublemma 7.11. We can find p{ x^Mt χ such that (Mi x, p{ χ) con-

verges to (X x Rk+So, p^ {) with respect to the pointed Hausdorff distance.

Using Sublemma 7.11 in place of Sublemma 7.3, we obtain M. x c

Mu x and a fibration πiX\Ήiχ-+ΫXc. Define Λ M (/) by Λz 1(/)/Λ/ =

/ Zk~s> c Zk~s> = Λ^/Λ,., and denote by Miχ{l) and Λ/M(/) the

covering spaces of M x and ~Mi χ corresponding to Λf. x (/). We take

/f. j satisfying a condition similar to (7.6). Let Λ' χ = Λf. χ{lt χ), M\ χ =

Mt {(l. j), and Af' χ = Jϊi χ(li χ), and define the fibration π' t : Λ?' j —•

Ϋχ c similarly. Choose p\ x e (jti {)~X{poo x) c M\ χ c M\ χ. Then, by

taking a subsequence if necessary, we may assume that Mi χ converges to

a space T 2 with respect to the Hausdorff distance and that [M\ χ,p\ χ)

converges to (y2,/?(2)) with respect to the pointed Hausdorff distance.

Therefore, by proving sublemmas similar to 7.7-7.9, we can find Λz 2

and sx. Repeating this, we obtain Λz ., Λz ., s. and Y-. Remark that

1 < αi. [ implies sQ > 0. Similarly ^ > 0. Hence our construction

stops after finitely many repetitions. We omit the verification of properties

(7.2.1)—(7.2.7). The proof of Lemma 7.1 is now complete.

8. Finiteness of

Property (7.2.3) implies that the map Jt\ πι(Mi) —• SL(fc; Z) induces

a homomorphism j[\ πχ(Mi) —• Π SL(Sj•.; Z) . (Remark that Σ ^ =

k.) Let 7Z : n^M^ —> SL(57 Z) be the y'th component, and y be

an arbitrary element of Γ. Choose elements γ( e n^M^ such that

(π/)s|c(y/) = γ. It suffices to show that Jt ;(yz) is of finite order for suffi-

ciently large /. Let Λz .(γ) and Λ' .(y) denote the subgroups generated

by y. and Λz ., Λ' ., respectively. The covering spaces of Mi corre-

sponding to Λf. j(γ) and Λ' j(γ) are denoted by M{ .{y) and M\ .{y),

respectively. By definition, Z acts on M{ and M\ by isometry such

that the quotient spaces Mi j/Z and M^j/Z are isometric to Mt j(γ)

and M'{ .(γ), respectively. We can find a Z-action on Y. such that

(Af̂  j yZyp'j j) converges to (Yj, Z) with respect to the Z-pointed Haus-

dorff distance (see [8, 1.12]). We put Yj(γ) = Y./Z. We can replace Y.(γ)

by its homotopy equivalent compact subset, and construct a homomor-

phism Λ' .(γ) = itχ{M'i .) —• πχ(Yj(γ)) such that the following diagram is
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commutative and exact:

1 1 1

I I I
1 A A ' rψS 1

1 - Λ , -> Λ - Z> - 1

II fi I

1 ^ Z ~ Z -> 1

I I
1 1

Now, we consider the following commutative diagram:

T ' T ii
1 —»• Λ'. . -> Λ .̂ ( y ) —•• Z —• 1

i' Ί II
1 —• Λ;. . —> Λ(. ( y ) - + Z —• 1

Γ Ί ϊ
1 - Λ.. -» jt.ίΛ/. ) -* Γ -» 1

It follows from the commutativity of the diagram that 7( (y() coincides

with the action of 1 ε Z on ZSj induced from the exact sequence

l - Z ^ - π ^ O O J - Z - l .

On the other hand, since YAy) is complete and of nonpositive curva-

ture, and every element of π^Yjiγ)) is represented by a closed geodesic,

it follows from Lemma 3.8 that YAγ) has a finite covering y.(y) such

that π^fyy)) ~ Zs> x Z . Consequently 7, p) is of finite order. This

completes the proof of Theorem 0.2.

9. Construction of almost nonpositively curved metrics

In this section, we shall prove Theorem 0.4. First we assume that
X/Γ — N is a smooth Riemannian manifold. Our construction is a mod-
ification of one in [10, §6], but is not exactly the same because we need
a metric satsifying more restrictive curvature assumptions than those in
[10, §6]. We have a fibration H/A —• M —• ,/V whose structure group
is contained in T = C(H)/(C(H) Γ\ A)kL, where L is a group satisfy-
ing (0.3.4). We have a Γ-connection of π, which gives a decomposition
of T (M) to its horizontal subspace HIM) and its vertical subspace
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Tχ(π-ιπ(x)). Put

(9.1.1) ge(V,W) = gN(π.{V),πm(W)) if V, W e Hχ{M),

(9.1.2) ge(V,W) = 0 if VeHχ(M) and We Vχ(M).

We shall define ge{V, W) for V,W e Vχ{M). Let πx: Px-+N be the

principal Γ-bundle associated to π , and let π2: P2-> N be the principal

L-bundle induced from Pχ . (In other words, P2 = P{/(C{H)/C(H)nA)).

Let Λ ( w ) be as in (0.3.4), and denote by Hm the Zariski closure of

Λ(m) in H. Let \) and ίjm be the Lie algebras of H and Hm, re-

spectively. Since Λ ( w ) is L-invariant, so is ί) m . Hence, we can define

vector bundles & and %*m by JT = P2 x L ί> and <T ( m ) = P2 xL \)m.

We put £?{m) = ^{m)/^{m~ι). Since L is discrete, our vector bundles

•F, X ( m ) , and ^ are flat. Furthermore, (0.3.4) implies that the holon-

omy group of the flat bundle «£^m* is finite. Hence there exists a metric

hm on «5:7(m) compatible with its flat structure. In other words, for each

small open set U of N, there exist sections α,, , α, of S?^ such
1 Km

that hm(αi, α}) - δ{ . and Vα/ = 0, where V is the covariant derivative

associated to the flat structure of «5ί?(m), the symbol δi . is Kroneker's

delta, and km = rank»S ί?(m). We define a metric h on βf so that the

metric induced on «5? ( w ) from h is equal to hm . Then, we can easily

prove the following lemma. We set o\i) = m if km_ι < i < km. Put

k = r a n k ^ .

Lemma 9.2. i>ί p eN, and let U be a neighborhood of p. Then we
can find C°°-sections v{, v2, , vk, Ϊ J , , vk, of <%* such that
(9.3.1) Vv\ = 0, where V is the connection associated to the flat structure

(9.3.2) (v{, , υk) is an orthonormal base of 21? at each point of U,

(9.3.3) t;,.,^/1*,

(9.3.4) Vi-v\e^{0>{i)~x).

Now, we fix p and U. Let φ: π~x(U) —• ί/ x J//Λ be a local triv-
ialization of π . Since P2 is a fiber bundle induced from the associate
principal bundle P{ of π , it follows that φ determines a local trivializa-
tion φ1: %?\υ —• U x ί) of ^ . The trivialization p ; and the metric h
determine a quadratic form hχ on ί) for each x eU. Formula (9.3.1)
implies that the second component of fl/(v (x)) (which is contained in ΐ))
does not depend on x. We put φ'iυ^x)) = {x, ϋ^x)). Then by Lemma
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9.2 we have

(9.4.1) ?'(«,•) = (*, W ) ,

(9.4.2) «/(*,') = (*,«,'),

(9.4.3) βί-β/We^.,.!.

Putting o(i) = o'(/c) - o'(/), we define a quadratic form hχ ε on f) by

(9.5) Λ^ f̂xJ^ W)^,../"1.
Since Λ/(//nΛ) is finite, we may assume that Λ̂  is Λ/(//nΛ) (c Aut(Λ))
invariant, so that so is /zχ ε . Therefore, /^ ε induces a Riemannian
metric on H/A. Using this metric on the vertical direction and using
(9.1.1) and (9.1.2) on other directions, we obtain a Riemannian metric
on U x H/A ~ π~~ι(U). It is straightforward to show that these metrics
can be patched together to give a metric ^ on M . Clearly gε satisfies
(0.5.2) and (0.5.3). Thus we need only to show (0.5.1). To see this, since
the problem is local, it suffices to estimate the curvature on U x H. By
e[, , e\, we denote the orthonormal frame of the tangent bundle on U ,
and by eχ, , et we denote their horizontal lifts to UxH. The elements
v (x) define vector fields on {x} x H. Hence we get vector fields f{ on
UxH. The element v\ of \) induces a vector field f[ on UxH. By defi-
nition, (ex, , eι, / j , ,7^) is an orthonormal frame of the Rieman-

nian manifold (U x //, g{), and (^ , , eι, ε / j , , ε fk)
is one of (UxH, gε). We shall calculate the commutators of ei and /J.
Since π is a Γ-connection, it follows that

(9-6.1) [^] = Σ<,Λ + ί>L Λ'
tf=l q=\

where α^ . and b] . are functions on ί7. (In other words, they do not
depend on H factors.) Since [(), ϊ)k] c \)k_{, we have

(9-6.2) [fitfj]= Σ c'j f,,
o{q)>o{i)

o(q)>o{j)

where cj . is a function on t/. We shall calulate [ei, / ]. First remark

that fj is a vector field generated by an element of f). On the other hand,

since our connection of π is a Γ-connection, it follows that the horizontal

lifts et are //-invariant. Therefore

(9.7.1) [en/j] = 0.
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Second, (9.4.3) implies that there exists a function at on U such that

We can regard U as an open subset of R" . We put

Hence, by (9.7.1) and (9.7.2) we have

das

Consequently,

(9.7.3)

Γ

we have

f 1
Jjl

l*n f]= Y^
Jj* Z^

<J

J >Q.

dxι

where d*} . is a function on U. (Compare [10, formula (6.4.3)], where the

right-hand side was ΣO(q)>oϋ)dlj' Λ •) N o w ' w e p u t A.e = e~3°' ft L e t

{ e \ e \ " ,e\fε\f*,... , f ε

k ) b e t h e d u a l b a s e t o ( e l 9 - - ' 9en9f{ e,

• , f k ε ) . Formulas (9.6.1), (9.6.2), and (9.7.3) imply

(9.8.1) </*'" X V

^ = Σ

(9-8.2) +

p

We remark that all the coefficients in formula (9.8.2) tend to 0 when ε goes
to 0. On the other hand, we can calculate the curvatures of (U x //, gε)
by symmetrizing the coefficients of (9.8.1) and (9.8.2). Hence, when ε
goes to 0, the sectional curvatures of gε tend to 0 except those coming
from the symmetrization of a] .. Since \e\, e'j\ = Σtf j ' e'q

 a n ( 3 e\»
/ = 1, 2, , is an orthonormal frame of the Riemannian manifold U,
the symmetrization of aq

{ gives the curvature of U. Inequality (0.5.3)
follows immediately.
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Thus, we have verified Theorem 0.4 in the case when X/Γ is nonsin-
gular. We shall deal with the general case. Let S c X/Γ be the set of the
singular points. Vector bundles SIT, β?{m), and £?{m) on X/Γ - S can
be constructed in a similar way. Let p eS, and let U be a neighborhood
of p in X/Γ. There exist a finite group Θ and a Riemannian manifold
V on which θ acts by isometry such that V/θ = U. Let P: V -> U
be the natural projection. Vector bundles %*, ^ F ( m ) , and £f{m) and the
metric A can be lifted to &, βt{m), ^ { m ) , and A on K - P " 1 ^ ) re-
spectively. By construction, they can be uniquely extended to V, which
are denoted by the same symbols. We have a fibration π: W —• V such
that the following diagram commutes:

H/A -+ W -> F

H/A - π~\U) -> U

Here θ acts on W such that W/Θ ~ F , and P is a covering map. Using
%?, ^ ( m ) , i ? ( w ) , and A in a similar way, we can construct Riemannian
metrics on Ff. By construction, these metrics are θ-invariant. Hence
they induce Riemannian metrics on π~ι(U). It is straightforward to see
that these metrics can be patched together to give Riemannian metrics
satisfying (0.5.1), (0.5.2), and (0.5.3). The proof of Theorem 0.4 is now
complete:

Finally, we shall prove Corollary 0.7. By assumption and Theorem 0.2,
the C 1 > α metric on X can be approximated by Γ-invariant C°° metrics
~gε such that - 1 < K(gε) < ε. This fact combined with Theorem 0.4
implies the conclusion.

10. Aspherical manifolds with almost nonnegative curvature

In this section, we shall prove Corollary 0.9. Let M., / = 1, 2, ,
be K(π, l)-spaces in Jί(n, D) satisfying -\/i < Â (Λ/Z) < 1. By taking
a subsequence if necessary, we may assume that M{ converges to a metric
space with respect to the Hausdorff distance. As was discussed in §6, the
universal covering Mz of Mt converges to a contractible C l α Rieman-
nian ^-manifold X with respect to the pointed Hausdorff distance.

Lemma 10.1. X is isometric to the flat Euclidean space R" .
We assume the lemma for the moment. Let G( be the deck transforma-

tion group of the covering Mi -+.Af.., and let G be the limit of Gt, which
is a subgroup of isometries of X. The argument in §§2 and 3 shows that
the identity component GQ of G is nilpotent and acts freely on X (see
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also [9, §4]). Lemma 10.1 implies that GQ consists of translations, and
that the quotient X/G, the limit of M{, is a flat orbifold. Lemma 10.1
also enables us to use the technique developed in §§7 and 8 to construct
a fibration π.\ M -> X/G satisfying (0.3.1)-(0.3.4). Therefore, Theo-
rem 0.4 shows that Mi admits almost flat metrics. By [13], [21], Mt is
diffeomoφhic to an infranilmanifold H/A.

To prove Lemma 10.1, let c: [0, oo) —• I be a geodesic ray, and
let δ be the Busemann function associated with c: δ(x) = limί_¥QOt -
d(c(t), JC) . Although the metric of X is only of class C 1 α , using the cur-
vature assumption K{Mt) > -\/i, we can develop the basic construction
of [4] on X (see [4, Theorems 1.2 and 1.10]) to prove the following.

Sublemma 10.2. δ is convex.
Since X/G is compact, there is a line c in X. Let δ+ and δ_ be the

Busemann functions associated with rays c| [ 0 , and c~ι\[0 , respec-
tively. By the triangle inequality, δ+ + δ_ < 0. It follows from Sublemma
10.2 that <J = -δ_ is linear. Thus X splits isometrically as X = XχxR.
Using the action of G, we can easily show that Xχ has a line. Repeating
this process finitely many times completes the proof of Lemma 10.1.

Remark 10.3. The authors are certain that Corollary 0.9 is still valid
for manifolds of almost nonnegative Ricci curvature. The proof is not yet
complete.
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