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UNIQUENESS OF THE COMPLEX
STRUCTURE ON KAHLER MANIFOLDS

OF CERTAIN HOMOTOPY TYPES

ANATOLY S. LIBGOBER & JOHN W. WOOD

1. Introduction

In this note we show that the homotopy types of certain complex pro-
jective spaces and quadrics support a unique complex structure of Kahler
type. Structures on complex projective space have attracted much atten-
tion. Hirzebruch and Kodaira [14], [11, p. 231] showed that a Kahler
manifold V with the homotopy type and Pontryagin classes of CPn is
analytically equivalent to CPn their additional assumption that cx(V) Φ
—(n — \)x for even n was later removed by Yau's work [31]. Here x
denotes the generator of H2(V Z) which is positive in the sense that it
is the fundamental class of some Kahler metric on V [13, §18.1]. On
the other hand it is known that for every n > 2 the homotopy type of
CPn supports infinitely many inequivalent differentiable structures distin-
guished by their Pontryagin classes (see Montgomery and Yang [25] or
Wall [30] for n - 3 and Hsiang [15] for n > 3). Moreover for n — 3 or
4 each of these smooth structures can be shown to support almost complex
structures. In §7 we prove this for the case n = 4 by applying results of
Brumfiel and Heaps. The main result of this paper is that for n < 6 these
other smoothings of a homotopy CPn do not support a Kahler structure.

Theorem 1. A Kahler manifold homotopy equivalent to CPn for n < 6
is analytically equivalent to CPn .

It follows from the Kodaira embedding theorem that any homotopy
complex projective space with a Kahler structure is projective algebraic,
i.e., is analytically equivalent to a nonsingular subvariety of a higher di-
mensional projective space [13, §18.1]. In [31], Yau applied a criterion of
Kodaira to show that a complex manifold homotopy equivalent to CP2 is
algebraic (hence Kahler) and showed moreover that it is analytically equiv-
alent to CP2. It is still an open question whether a complex manifold
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homotopy equivalent to CP3 is algebraic. If this were so it would settle

another open question by showing that S6 has no complex structure (cf.

[11, p. 223]).
Fujita [6], [7, Appendix 2] proved Theorem 1 for n < 5 under the addi-

tional assumption that cx{V) is positive; this paper extends his techniques.
In [20] Lanteri and Struppa studied algebraic manifolds with the homology
of CP3 and proved Theorem 1 for n = 3. The three-dimensional case
uses Iskovskih's results on the classification of Fano 3-folds; we return to
this in §3.

The result of Hirzebruch and Kodaira on CPn has been extended to
the quadric Xn(2) by Brieskorn [2] and Morrow [26] who showed that
for n > 2 a Kahler manifold V with the homotopy type and Pontryagin
classes of Xn{2) is analytically equivalent to Xn(2) provided cχ(V) φ
-nx when n is even. For dimension two, however, Hirzebruch [10]
exhibited infinitely many distinct complex algebraic structures on S2 x S2,
the smooth manifold underlying the quadric X2{2). For the quadric we
have the following result.

Theorem 2. // Vn is a Kahler manifold homotopy equivalent to Xn(2),
then

(a) for n = 3, V is analytically equivalent to X3(2),
(b) for n = 4, V is analytically equivalent to X4(2) provided c{(V) Φ

- 4 x .

For hypersurfaces of degree greater than two the space of deformations
of the complex structure has positive dimension, so there can be no an-
alytic uniqueness [18, §14]. The same fact for complete intersections of
degree greater than two can be deduced from the formula for the moduli
dimension in [23]. One can ask for conditions on a complex (or Kahler
or algebraic) manifold, which imply that any such manifold homotopy
equivalent to it lie in the same component of the moduli space of complex
structures or at least have a diffeomorphic underlying smooth manifold.
Complete intersections provide a class of algebraic spaces whose homo-
topy type is nearly as simple as projective space and the quadric [21]. But
they include homotopy equivalent 3-folds which are not diffeomorphic
[22, Example 9.2] and diffeomorphic 3-folds not related by deformation
[22, Example 9.3]. For algebraic surfaces the study of Donaldson's invari-
ants by Friedman, Moishezon, and Morgan [5] shows that for complete
intersections of even geometric genus p , the divisibility of c{ is a dif-
feomorphism invariant. Using the search procedure described in [22, §9]
one can find pairs of homeomorphic 2-dimensional complete intersections
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which are not diffeomorphic by this criterion. The pair with the smallest
values of cx has multidegrees ( 9 , 5 , 3 , 3 , 3 , 3 , 3 , 2 , 2 ) with cx = -21
and ( 1 0 , 7 , 7 , 6 , 6 , 3 , 3 ) with cx = - 2 7 .

To prove Theorems 1 and 2 we use results of Kobayashi and Ochiai
who showed [17] that if V is an n-dimensional Kahler manifold with
cχ{V) > (n + l)x, where x is positive, then V is analytically equivalent
to CPn , and if cx{V) = nx, then V is analytically equivalent to Xn(2).
For a Kahler manifold, K, homotopy equivalent to CPn or Xn{2) the
Hodge numbers and hence the χy -genus of V are uniquely determined.
The Riemann-Roch theorem then yields equations satisfied by the Chern
numbers. The most striking of these is a formula, in Proposition 2.3 below,
for cn_ιcι which generalizes to higher dimensions Todd's formula for c2cx

[29, p. 215] and Hirzebruch's formula for c3cx [12, p. 124], [ 13, §0.6(8)],
and which implies the following.

Theorem 3. For a compact complex manifold V, the Chern number
cΛ2_1c1 [K] is determined by χ(V) and hence by the Hodge numbers.

This is proved in §2. Additional restrictions are imposed by various
integrality conditions such as the mod 2 invariance of the Chern classes
or the mod 24 invariance of Pontryagin classes and by Yau's inequality.
To complete the proof of Theorems 1 and 2 it remains to check that the
first Chern class is uniquely determined by these conditions. These ad hoc
methods work through complex dimension six. The authors hope more
general methods may give a more general result. §§3-6 treat dimensions
3-6 respectively. Almost complex structures are studied in §7. We thank
A. O. L. Atkin for suggesting the algorithm described at the end of §2 and
for recommending the use of quadratic residues in §6.

2. The generalized Todd genus

Let Q(x) = 1 + qχx + q2x
2 + be the characteristic power series

for the multiplicative sequence Kn , where Kn(c{, •- , cn) is a homoge-
neous polynomial of weight n in cχ, , cn where ci has weight /. The
identity

(l+cι+c2 + - - ) ( l + γ) = l + (γ + cι) + (ycx + c2) +

implies [13, §1.2]

(l+K^cJ + .-' + K^,..' , c n ) + - ) Q ( γ )

= l + K { ( γ + cχ) + K 2 ( γ + cχ, γcx + c 2 ) + .
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Hence Kχ(cχ) + qχy = Kι(cι + γ). Since Kχ has weight one, Kχ{cx) is
a multiple of cx, so we must have Kχ(cx) = qxcx. If Λ^ , , ΛΓΛ_1 are
known, the identity

*„(? + q , yq + <;2, • , yc Λ - 1 + cn) - ^ ( q , , cn)

= qny" + - + <lιyKn_ι(cl9 - ,cn_x)

uniquely determines Kn(c{, , cn), for example the coefficient of c"
must be qn . This uniqueness is a restatement of [13, Lemma 1.2.1]. At
the end of this section we describe a recursive procedure for computing

The χ -genus of an n-dimensional compact complex manifold Vn is
defined in terms of the Hodge numbers of V by

D ?ΛP > β, X,{V) =

By the Riemann-Roch theorem χ is given in terms of the Chern numbers

by the multiplicative sequence Tn(y cx, , cn) = Σ ^ = o Tζy? . Because

of the symmetry relations [13, 1.8(13)] the / -genus imposes [(n + 2)/2J

independent conditions on the Chern numbers of V:

XP(Vn) = TP

n(V) forO<p<[n/2\.

That these conditions are independent can be seen by noting that the poly-
nomials

are independent for 0 < j < [n/2\.
For our purpose it is easier to use the variable z - y + 1 we set

t n { z ; c l 9 ' ' 9 c n ) = T n { z - l ; c l 9 ' - , c n ) .

Then the characteristic power series for tn is

q{z x) = 1 + (l - iz) x + f^(-lf~lΛ-(χz)2k.
^ ^ k=\ ^ ''

Lemma 2.2. tn(z cx, , cn) is a polynomial in z of degree n with
initial terms

Cn \ΆCn +Cn ~ \ΆCnZ + 72 \\n^n - 5K + Cn-lCl

Proof. The sequence tn{z c t , , cn) is determined by (2.1). In par-
ticular tχ(z Cj) = (1 - ^zjcj. Assuming the formula is correct for n < k ,
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it is straightforward to check that the formula for tk(z cx, , ck) sat-
isfies (2.1) through terms of the second degree in z , i.e., to check that

tk(z;γ + cl9' tyc^+cj-t^z c^... , ck)

holds through terms of degree two in z .
A precise version of Theorem 3 is the following.
Proposition 2.3. For a compact complex manifold V,

p=2

Proof. Using the Riemann-Roch formula we have

tn(z)[V] = Tn(z - l)[V] = ΣχP{V){z - If
p=0

/7=0

2t(vp(pMv)-+
p=2

By the lemma, equating the coefficients of z 2 gives the proposition. The
identity for the Euler characteristic [13, Theorem 15.8.1],

is given by equating the constant terms.
Remark 2.4. It follows from the proposition and Milnor's result that

algebraic varieties generate the cobordism ring of almost complex mani-
folds [12, §6 and §7(1)], that the Chern numbers of any almost complex
2«-manifold satisfy the congruence

$Λ(3Λ - 5)cn + cn_xcx = 0 (mod 12).

Corollary 2.5. If V is a Kάhler manifold with the same Betti numbers
as CPn, then

2
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If the Betti numbers are the same as Xn(2) for n even, then cn_χcx[V] =

\n2(n + 2).
Proof In each case the relation between the Hodge numbers and the

Betti numbers of a Kahler manifold [13, §5.7], the relation hΓyS = hs'r,
and the inequality hr'r > 1 for 0 < r < n imply that the Hodge numbers
of V are the same as those of CPn or Xn{2) respectively. It follows
from the proposition that cn_xc{[V] is also the same as the corresponding
Chern numbers of CPn or Xn(2).

Remarks. Lemma 2.2 can be generalized in a qualitative way as fol-

lows. Set tn(z'9cl9- , cn) = Σ £ = 1 ζ(cι> ' ' 'n)
zP τ h e polynomials ζ

are homogeneous of weight n in the Chern classes. The initial terms, tn

and t\, involve only cn . For k > 1 and p < 2k + 1 each term of fn is

divisible by some c with j > n — 2k + 1.

The [(n + 2)/2J independent conditions on the Chern numbers are

given by the coefficients of even powers of z. For p odd, fn is a linear

combination of t\ , , f~x.

The coefficient of zn is fn = Γ" = (-l)"Γn°; the Todd polynomials,

Γrt°, are listed for 1 < n < 6 in Todd's paper [29] and in [13, p. 14].
A. O. L. Atkin has suggested a recursive technique for computing the

terms in a multiplicative sequence. As above let Q(t) = 1 + Σ™=1 Qnt
n be

the characteristic power series for the multiplicative sequence Kn and let

Then

where sΛ = X)J=1 x;

fc . Recall [13, p. 10] that

o r d e r t e r m s

7=1 j=0

Then

Hence
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The special case Q(t) = 1 +t gives the Newton formulas [13, p. 92] which
express the st in terms of the elementary symmetric polynomials c(:

m-\

sm = -^)m™cm-Σ{-l)icism_,

The coefficients ri are expressed in terms of the coefficients of Q by
m-l

Given the qt and using these relations it is easy to compute Km . For the
sequence tn(z c,, , cn) we obtain

h =cι + ^(-cι)z,

t2^c2-c2z + —(c2 + c2

ι)z2,

ti = c3+ 2^~3c^z + T 2 ( 6 C 3 + C 2 C l ) z 2 + 2 4 ( " c 2 c i ) z 3 '

t4 = c4- 2c4z + ^ ( 1 4 c 4 + czcχ)z2 + ^ ( - 2 c 4 - c3c{)z3

+ 0 ( ~ C 4 + C 3 C | + 3 C 2 + 4 C 2 C " C > ) Z ' '

^ 5 ^ + ( 2 5 + ) 2 + ( 5 ) 3

^ Q ( 3 O C 5 + 29c4c, + c3cf + 3c2

2c, - c 2 c j ) z 4

720720 (~6 C (> "

+ 10c2

3 + 1 \c\c\ - \2c2c\ + 2c*)z6.

3. 3-folds

If V is a Kahler manifold which has the same Betti numbers as CT 3 ,
then c2c,[K] = 24 and cχ{V) > 0. The inequality is a consequence
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of Yau's result [31]. First, since HXΛ(V\Z) = H2{V\Z) = Z, the
positive integral classes are positive multiples of a generator x (cf. [13,
§18.1]). If -cχ(V) were positive, Yau's result would give the inequality
*c2cx[V] < 3c?[K]. But cx(V) < 0 implies c\[V] < 0 (since x3[V] > 0
by the Wirtinger theorem [8, p. 31]) which gives a contradiction.

By the result of Kobayashi and Ochiai, if cx (V) > 4x, then V is
analytically equivalent to CP3 and, if cx(V) = 3x, V is analytically
equivalent to X3(2). Since cx mod 2 is a homotopy invariant, it remains
to show that cχ(V) = 2x is impossible if V is homotopy equivalent to
CP3 and that cχ(V) = 1 is impossible if V is homotopy equivalent to
X3{2). We remark that there are smooth almost complex manifolds V
which do satisfy these conditions (see [22, §9], [30, §7]).

The condition cx (V) > 0 means that V is a Fano 3-fold. A proof of
the uniqueness result for CP3 has been given by Fujita [7] (assuming cχ

positive) and by Lanteri and Struppa [20, 2.1] using Iskovskih's work [16],
[27] on the classification of Fano 3-folds. This classification is complete
for 3-folds V with cχ (V) equivalent to two or more times an indivisible
class, the case of index greater than or equal to 2. The only Fano 3-fold
with cχ(V) = 2x and x3[V] = 1 has A1'2 = 21 (cf. [16, I.I and IV.3.5]).
Hence V homotopy equivalent to CP3 implies cχ(V) = 4.x, so V is
analytically equivalent to CP3.

For the three-dimensional case of Theorem 2, from the viewpoint of [20,
Theorem 1.5] it remains to show that V cannot be a so-called pathological
Fano 3-fold, a problem caused by the incompleteness of the classification
of Fano 3-folds of index 1. The following lemma is a consequence of
Iskovskih's results.

Lemma. // V is a Fano 3-fold with cx(V) = x and x3[V] = 2, then
V is a double cover of CP3 branched over a smooth hypersurface of degree
6.

For this V, A1 '2 = 52 [16, IV.3.5], and hence V is not homotopy
equivalent to X3{2).

Proof of Lemma. The hypotheses imply V is Fano of index r = 1 and
degree d = 2. Let H be the anticanonical line bundle, cχ (H) = x, and
consider the system of divisors H°(V, &V(H)) of dimension h°(<f(H)) =
4. (The dimension is computed in [16, I.4.2ii] using Riemann-Roch and
the Kodaira vanishing theorem.) It follows from [16,1.6.1b] that this sys-
tem is base point free since m = 1 + ̂ x 3[F] < 3 . Hence the corresponding
map, the anticanonical map φ: V —• CP3, has degree 2 and by [16, Π.2.2]
φ is branched over a smooth hypersurface of degree 6. A direct proof of
the Lemma has been given by Shepherd-Barron (unpublished).
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4.

If V is homotopy equivalent to CP4, then c4 = 5x4 and, by (2.5),
c3cχ = 50JC4 where x is the positive generator of H(V; Z ) . Also cχ

is odd since w2 φ 0, so the possible values of cχ are ±x, ±5JC , and
±25x . One more equation is given by the Riemann-Roch formula for the
arithmetic genus, χ°(V) = 1, hence [13, p. 14]

(4.1) 3c2 + 4c2c\ - c\ = 615x4.

Solving for c2 , the discriminant is

4(7c4 + 2025*4)

which, for the possible values of cx, is a square only for cχ = ±5x. Thus
the only integer solutions of (4.1) have cx = ±5x and c2 = 10x2. But
if cx = -5x, Yau's result [31] implies that V is covered by the ball,
contradicting πx(V) = 0.

If V is homotopy equivalent to X4{2), the cohomology ring of V

is generated by x e H2{V\Z) and y e rf(V\ Z) with JC3 = 2xy,

x\V] = 2, x2y[V] = 1, and y2[V] = 1 (cf. [19, p. 253]). Since the total

Chern class c(X4{2)) = 1 + 4x + lx2 + 6JC3 + 3x4 , and since X4{2) and

V have the same Hodge numbers, c4(V) = 3x4 and c3Cj(F) = 24x4 (cf.

(2.5)). From the homotopy invariance of the Stiefel-Whitney classes we

have cχ=0 (mod 2), c2 = x2 (mod 2), and c3 = 0 (mod 2).

Since # ° = 1,
? 2 4 4

JLΛ ^ ^ ^L«Li t< — J J 7 Λ

Let Cj = αx and c2 = wx2 + vy. Then

(4.2) 6u2 + 6WΪ; -h 3ί;2 + Sa2u + 4α2t; - 2<z4 = 678.

Also a is even, a divides 24, u is odd, and υ is even.
Lemma. t> = 0 (mod 3) and aφQ (mod 3).
Proof. The Pontryagin class px mod 3 is an invariant of homotopy

type, hence

c\ - 2c2 = 2JC2 (mod 3).

This implies both a2 - 2u = 2 (mod 3) and -2v = 0 (mod 3). Now
if a = 0 (mod 3), then (4.2) implies 6u2 = 3 (mod 9) hence 2u2 = 1
(mod 3) which has no solution, hence a φ 0 (mod 3).
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Equation (4.2) is quadratic in u with discriminant 4(28α4-9t;2+4068).
For the possible values of a ±2, ±4, or ±8 this discriminant is a square
giving integer solutions only in the following cases:

a = ±2, u = -5, υ=li

a = ±2, w=13, ^ = — 18

a = ±4, u=Ί, υ =0

α = ± 4 , κ = - 3 5 , υ =30

Any prime /? = 3 (mod 4) appears to an even power in the prime decom-
position of a sum of two squares. Taking p = 11 shows that for a = ±8
there are no solutions since 28α +4068 is not a sum of two squares. The
other cases are done by looking through the list of possible values of υ .

There is a line bundle L over V with c{ (L) = x, hence

χ(V,L) = {exT}[V]

= X\V) + ^{xc 2q + χ 2(c 2 + c\) + 2x3c, + χ4}[V]

is an integer. This implies

2u(a + 1) + v(α + 1) + 2(α + I)2
 ΞΞ 0 (mod 24)

so, since a is an even integer,

2u + υ + 2(a + 1) = 0 (mod 8).

The only solution above which satisfies this condition is c{ = ±4x, c2 =

lx2.
Unfortunately, the inequality in Yau's theorem reduces to 35 > 32 and

so does not rule out the case cx = -4x .

5.

Assume V is homotopy equivalent to CP5. Then cs(V) = 6x5 and

c4cx = 90JC5 . Since χ°(V) = 1, we have

(5.1) c3c
2

{+3clc{ -c2c\= 1530χ5.

Lemma. cx = 6x or -2x.
Proof. Since c2 is odd and Cj and c3 are even, reducing (5.1) modulo

8 yields 3c{ = 2JC (mod 8), so c{ = 6x (mod 8) . Also cχ ψ 0 (mod 9)
since otherwise (5.1) mod 27 yields 0 = 1 8 (mod 27). The remaining
possible values for cχ are 30, 6, - 2 , and - 1 0 .
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If cχ ΞΞ 0 (mod 5), then (5.1) implies lc\cχ = 5 (mod 25). If c{ = 30,

then 15̂ 2 = 5 (mod 25) or c\ = 2 (mod 5) which is impossible. If

cx = -10 we find c\ = 4 (mod 5). Now recall that the characteristic class

p2 - 2p2 mod 5 is an invariant homotopy type [24, p. 229] and hence,

under the assumption c{ = 0 (mod 5), we have 2c\ - 4c4 = 1 (mod 5).

But c4 = - 9 so c2

2 = 0 (mod 5), a contradiction. This establishes the

lemma.
It remains to show that cx = -2x leads to a contradiction. First, if

cx = -2x, then (5.1) implies

2c3x - 3c2

2 + 4c2χ
2 = 765.x4,

so, since c2 is odd, 2c3+4c2x = 0 (mod 8) and hence c3 = 2x3 (mod 4).
Second, since the homology of V is torsion free, p{ mod 24 is a ho-

motopy invariant [1, p. 207]. With c{ = -2x this implies c2 = -x2

(mod 4).

Finally we apply an integrality result for continuous vector bundles over
CPn [13, Theorem 22.4.1] to the bundles f*τV ® Hr where f:CP5^
V is a homotopy equivalence. By composing with complex conjuga-
tion if necessary we may assume f*x = h, the positive generator of
H2(CP5 Z ) . If the total Chern class c(V) factors formally as

{\+xδx) ' (\+xδ5),

then T(CP5, f*τV <g> Hr) is given by the symmetric function

which therefore is integer valued. We can write

T(CP5,f*τV®H) - T(CP5,f*τV) =
ι = l ^

in terms of the Chern classes of V (the elementary symmetric functions

of δ{, ,δ5) as

M~4C4 + 4C3Cl + 2C2 "

Then c{ = -2x and c4 = -45.x imply

120JC4}.

+ xc% - χ2c, = 2χ4 (mod 4).
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This contradicts the results for c2 and c3 above. Hence cx(V) = 6x and
V is analytically equivalent to CP5.

6.

The case of V homotopy equivalent to CP6 involves rather more com-
putation than the previous cases. Writing the χy-genus of V in terms of
z —y + 1 we have

χy(V) = 7-2lz + 35z2 - 35z3 + 21z4 - 7z5 + / = t6(V),

where t6 is the polynomial in z introduced in §2. Equating coefficients of

z gives equations satisfied by the Chern numbers of V the coefficients of

even powers of z give a maximal independent set of equations. The con-

stant term gives c6 = 7x6 and, using this, the quadratic term gives c5cγ =

147.x6 (cf. (2.5)). We pass from equations in H*(V; Z) = Z[x]/(xΊ = 0)

to equations over the integers by replacing ci by ctx
ι and then equating

coefficients of x6. Setting

e4 = - 3c4c2 - c4c
2

{ + lc\ - 3c3c2c{ + c3c\ + 3675,

e6 = - 9c4c2 - 5c4c\ - c\ + 1 lc3c2cx + 5c3c\ \

+ 1 \c\c\ - \2c2c\ + 2c\ - 60760,

the remaining two equations can be written as

By the remark following the proof of (2.2), the equation e6 = 0 is equiv-
alent to the formula for the arithmetic genus of V in terms of the Todd
polynomial Tβ. In the presence of the other equations, e4 = 0 is equiva-
lent to the condition imposed by the signature formula:

L3(V)[V]=L

(The polynomials L3 and Γ6 are given in [13, pp. 12 and 14].)
Lemma. For the only integer solutions to these equations we have cχ =

±1 and c2 = 21.
But if cx = -1 and c2 = 21, it follows from Yau's result that V is

covered by the unit ball which contradicts the assumption that V is simply
connected. Therefore the lemma implies V is analytically equivalent to
CP

Proof of Lemma. Write
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and set

to eliminate c4 . We compute

ax = - 4c2c{(l5c2 + 8c?),

a0 = - 30c2 - 43c2c? + 25c\c\ + 6c2c\ + 215355c2 - 2cJ + 79135c?.

Given an integer solution to ex = 0, it follows that 15c2 + 8c? divides
aQ . By division we may write

0 = (15c2 + 8cJ)(-2250c2

3 - 2025c2cJ + 2955c2cf - 1126cf

+ 16151625) + c?(675βc? - 40186125).

Therefore 15c2 + %c\ divides

- 40186125).

Now since cx divides 147 = 3 7 2 , there are six possible values of \cx\.
For each we compute and factor R{cχ). Then for each divisor of R{cx),
positive or negative, we check whether the resulting c2 is an integer and,
if it is, whether the discriminant of eχ = 0 is a perfect square. This
discriminant is

D = aχ- 4a2a0

= 8(15c2 + 8q)(30c2 + ΊΊ>c2c\ - 9c\c\ - 6c2c\ - 215355c2

+ 2cf-79135c?).

The only cases giving rise to a square discriminant have cx = ±7 and

The computations indicated above were done with the aid of a com-
puter. The algebraic programming system REDUCE was used for the ma-
nipulation of polynomials and to compute and factor the integers R(cx). A
program written in PL/I was used to complete the test. Potential discrimi-
nants were computed modulo 3-5-7-11-13-17 and modulo 19 23 29 31
and then reduced modulo each of these primes and checked against a com-
puted table of quadratic residues. Two cases which pass these tests are
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ruled out modulo 37 or modulo 47. We thank A. O. L. Atkin for recom-
mending this method to us.

7. Almost complex structures

Theorem 7.1. Each smooth manifold M homotopy equivalent to CP4

supports a (nonzero) finite number of almost complex structures. The Pon-
tryagin class px{M) = (5 + 24m)x2 for some m = 0 or 6 (mod 14).
Almost complex structures on M correspond to integers a dividing 25 +
|(24 2 m 2 + 10 24m) under the correspondence c{(M) = ax.

For the standard smooth CP4, m = 0 and almost complex structures
correspond to integers a dividing 25, a result of Thomas [28, Theorem
3.2]. For a fixed divisor a, the two complex structures on the tangent
bundle of M with cχ equal to +ax and -ax are conjugate bundles (cf.
[24, p. 167]).

Proof, By surgery theory and work of Brumfiel [4, 1.4], [3, 8.2] we

have τM = τCP4 + ξ in KO°(CP4), where ξ = mξ{ + nξ2 is a linear

combination of the generators ξχ = 24ω + 98ω2 and ξ2 = 240ω2 of

im{[CT4, G/O] -+ [CP 4, BSO]}.

Here ω = r(H-l) generates KO°(CP4) as a ring. Computing the surgery
obstruction, index M- index CP4, in terms of Pontryagin classes yields
the relation [3, p. 58]

14/2 = 2m — 5m.

Hence m = 0 or 6 (mod 14). Brumfiel shows that for each such m there
corresponds four distinct smoothings of CP4 . The Pontryagin classes of
M are

(7 2)
P2(M) = {10 + i(24 2m 2 + 10 24m)}x\

Almost complex structures on 8-manifolds have been studied by Thomas
[28] and Heaps [9]. If M has the homotopy type of CP4, then [9, Theo-
rem 1] implies there is an almost complex structure on M with

Cj = ax and c3 = bx

if and only if the following two conditions hold:

(7.3) a is odd and b = 2 (mod 4).
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(Hence 2χ(M) + qb = 0 (mod 4). The necessity of this condition follows
from (2.4).)

(7.4) 40JC4 = 4p2 + Sabx4 - α V + 2a2x2px - p\

(i.e., χ(M) = c4[M], where c4 is determined by p2, p{, c3, and cx).
Substituting (7.2) in (7.4) yields

(7.5) 3 242m2 + 30 24m + 7 25 = Ίa(%b - a + 10a + 2a 24m).

It follows that a is a divisor of the left-hand side of (7.5) which is
nonzero. Also a determines the Chern classes which determine the com-
plex bundle over M. Thus the number of almost complex structures on
a given smooth M is finite.

Moreover, since m = 0 or 6 (mod 14), the left-hand side is congruent
to 7 modulo 14. Choose any integer a dividing

and then solve (7.5) for b. It follows that a is odd so a2 = 1 (mod 8).
Since m is even, (7.5) implies

24 = Sab -a*+ ίθa2 (mod 32)

and therefore

Sab = (a2 - 5)2 = 16 (mod 32).

Hence ab = 2 (mod 4) so condition (7.3) is satisfied. Thus divisors do
yield almost complex structures on M.
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