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CASSON'S INVARIANT AND GAUGE THEORY

CLIFFORD HENRY TAUBES

Recently, Andrew Casson [7] (see [2] or [16]) defined an integer valued
invariant for closed 3-manifolds with the homology of S3. Casson gave a
topological definition of his invariant. An analytic definition of Casson's
invariant is the subject of this article. Roughly speaking, Casson's invariant
can be defined using gauge theory as an infinite dimensional generalization
of the classical Euler characteristic.

The article begins below with an introduction to the relevant geometry
of the space of connections on a homology 3-sphere. In §2, the definition
of an integer valued invariant of an oriented homology 3-sphere is given.
The construction of Casson's integer valued invariant is reviewed in §3
where the main theorem is stated: These two invariants are equal. §§4-8
are occupied with the proof of the main theorem. There is also a technical
appendix.

1. Gauge theory in 3 dimensions

The new definition of Casson's invariant requires some basic facts from
gauge theory (connections, curvature and covariant derivatives); the reader
is referred to [ 11 ] and [ 15] for these definitions. Related material is present
in the recent work of Andreas Floer [10].

Fix an oriented, closed 3-manifold, M, with the homology of S3. Every
principal SU(2) bundle over M is isomorphic to the trivial bundle, P =
M x SU(2). It is convenient (though not necessary) to fix a trivialization
of P and the associated product connection, Γ.

The space of smooth connections on P, si = sf{P\ is an affine space;
the choice of Γ gives an affine isomorphism of si with Ω1 x su(2). Here,
su(2) is the Lie algebra of SU(2), and OP {p = 0,1,2,3) is the space of
smooth /?-forms on M. Use the L\-inner product on Ω1 x su(2) to define
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as a smooth manifold, modelled on a (pre-) Hubert space (see, e.g.

)]
With the product structure fixed, the group 9 of smooth automorphisms

of P is identical to C°°(M;SU(2)). It acts on si in the usual way (as
(g,A) -> gA = g A g~ι + g dg~{); let 3S = si f& with the quotient
topology. Let f c i denote the space of reducible connections. The
space 31 has infinite codimension in si, and the group 9 acts on J / # =
j / \ ^ with stabilizer ±1. The stabilizer of 9 on ̂  is 1-dimensional
except for connections in the ̂ -orbit of Γ, where the stabilizer is SU(2).
Set ^ # = (j/#)/jf. Think of ̂ # as an infinite dimensional manifold
which is modeled on a pre-Hilbert space by using the Z^-theory in [17].
This manifold structure makes the projection from J / # —• 38* a principal
^-bundle. The reader is referred to [17] for the details.

The curvature of a connection A is the su(2)-valued 2-form FA = dA +
A A A. Because M is 3-dimensional, the assignment of a connection to its
curvature can be interpreted as defining a 1-form on si which has been
pulled up from 3S via the projection. Indeed, a 1-form on si assigns to a
connection, A, a homomorphism from Tsf\A (= Ω1 x su(2)) into the real
numbers. Define such a homomorphism by sending a e Ω1 x su(2) to

(1.1) A(a)= ί tr(aAFA).
JM

Here, tr( ) is a fixed, Ad-invariant trace on su(2).

The ^-invariance of the 1-form / is guaranteed by the ^-equivariance
of the curvature (FgA = g FA g~{). The Bianchi identity insures that
/A(') annihilates the tangent space to the 9 orbit through A. (This vector
subspace of Tsi\A is {dAφ = dφ + [A, φ\. φ e Ω°xsu(2)}, while the Bianchi
identity says that dAFA = dFA +AΛFA+FAΛA = 0.) Thus, one can think
o f / as being the pull-back of a 1-form (also denoted by / ) on 3S.

As an aside, note that / is the exterior derivative of the Chern-Simons
functional which assigns to A the real number

(1.2) *(A)= ί tr(AΛFA-2/3 AΛAΛA).
JM

(Atiyah-Patodi-Singer [5] make this observation.)

The Chern-Simons functional does not descend to 3S as a function. This
is because c{gA) = c{A) + a degree(g). Here, a > 0 is a real constant,
and degree(g) is the degree of the automorphism g as a map from M to
SU(2) = S3. Indeed πo(C°°(M;SU(2))) « Z, and c{gA) = c{A) only for g
in the connected component of the constant map.
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One can show that the projection from J / # to ^ # is a principal fibration
[17]. Thus, πx{β*) « Hx{β*) « Z, and *( )/α descends to ^ # as a map
into S{ which generates J71. This identifies the 1-form / as a generator

Note that the zeros of / on ^ are precisely the ^-orbits of the flat con-
nections o n ¥ x S U ( 2 ) . That is, /~l(0) = {[A]e^:FA = 0}. A classical
theorem in differential geometry asserts that this set is identical to the set
Hom(πi(Af);SU(2))/SU(2) where SU(2) acts on Hom( ) by conjugation.

For a 1-form defined on a compact, oriented manifold, there is a stan-
dard way to obtain an invariant from the set of zeros; this invariant is
the Euler characteristic of the manifold. Recall that to compute the Euler
characteristic in this situation, use a Riemannian metric to make the 1-
form into a vector field, υ. If necessary, perturb the vector field to a vector
field v1 with nondegenerate zeros. Then, the Euler characteristic is given
by the formula

(1.3) X= Έ sign(det(V?/|p).
p:υ'(p)=0

Here, Vυf is the covariant derivative of v' (its value at a zero of υ' is
apriori independent of the choice of the connection on the tangent bundle).

The preceding formula makes sense on a finite dimensional noncompact
manifold provided that the zero set of v is compact. On such a manifold,
χ = χ(y) depends on the vector field v\ but χ(v\) = x(vi) when \υ\\ >
\v\ — V21 on the complement of a compact set.

In the gauge theory situation, consider using (1.3) to define an Euler
characteristic χ{/). The first requirement is a derivative of /, and a
natural derivative can be defined by exploiting the affine structure of s/.
Indeed, for any connection A and su(2)-valued 1-forms (a,b), define

(1.4) ^

Here, dA is the covariant exterior derivative.
Notice that the assignment of (a,b) to db/\A{a) defines a bilinear and

symmetric form on Ω1 x su(2). The bilinear form is symmetric because
/ defines a closed 1-form on sf\ / = dc so d/ = 0.

Give M a Riemannian metric, and let *: /\p T* -• /\3~p T* denote the
associated Hodge star. The metric defines an L2 inner product on Ω^ x
su(2); the inner product of p-fovm a with p-form b is

(1.5) (a,b)L2 = - ί tr(aΛ*b).
JM
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This inner-product makes d/A a symmetric map from Tsf\A to itself:

(1.6) d/A a = *dAa,

which identifies d/A as a symmetric, lst-order differential operator on
Ω1 x su(2). This operator is ^-equivariant in the sense that *dgA = *g

dA g-ι

When A is a flat connection, d/A has a huge null space; it annihilates, in
particular, the tangents to the ^-orbit through A. This is because / on si
is the pull-back of a 1-form on 3B. But, consider d/ rightfully downstairs
as a section of the bundle of endomorphisms of the tangent bundle to ^ # ,
and the null space becomes finite dimensional.

The tangent space to 3S* at some orbit [A] (note necessarily flat) is
isomorphic to the orthogonal complement (with respect to the L2-metric
in (1.5)) of T(& - A) in Tsi\A. This is the vector space

(1.7) FA = {a e Ω1 x su(2): d^a = -*dA*a = 0}.

By composing with orthogonal projection onto ̂ , d/A defines an endo-
morphism of t7~A which will be denoted V/A since it is a covariant deriva-
tive oϊ / at the orbit [A]. Explicitly, V/A sends a e 3^ to

(1.8) V/A a = *dAa-dAu(a),

where u(a) is the unique solution in Ω° x su(2) of the equation

(1.9) *dA * dAu(a) = *(FAΛa-aΛ FA).

Lemma 1.1. Let A be a smooth connection on M x SU(2). As a linear
operator from Ϊ7~A to itself V/A has at most a finite dimensional kernel. The
operator V/A defines a closed, essentially selfadjoint, Fredholm operator on
the Li completion of£ΓAy and its eigenvectors form an L2-complete orthonor-
mal basis for £ΓΛ. The domain ofV/A is the L\-Sobolev space completion
of ^A. The eigenvalues form a discrete subset of the real line which has
no accumulation points, and which is unbounded in both directions. Each
eigenvalue has finite multiplicity.

The proof of this lemma involves standard elliptic theory on compact
manifolds; see Part 3 of the Appendix.

A nondegenerate zero of / on 38* is, by definition, the orbit of a flat
connection for which 0 is not in the spectrum of V/A.

Lemma 1.2. A nondegenerate zero of / on 38* is isolated.
This lemma is a straightforward consequence of the Sobolev inequalities

with Lemma 1.1; the proof is outlined in §8b.
As M has the homology of S3, the only zero of / on 31 is the orbit of

the product connection (there is only the trivial representations of τt\(M)
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in Sι). This representation is also isolated (see also [2]) in the following
sense:

Lemma 1.3. Let M have the homology ofS3. There exists ε > 0 with the
following significance: Let [Γ] denote the &-orbit of the product connection
on M x SU(2). Let [A] Φ [Γ] be the &-orbit of another flat connection.
Then

sup f {\VΓ(A - gdΓg'ι)\2 + \(A - gdτg-χ)\2} > ε.
g&JM

Lemma 1.3 has introduced the following notation: For a connection A,
VA is the covariant derivative on ΏP x su(2) (p = 0,1,2,3). The proof of
Lemma 1.3 is discussed at the end of §8b.

The zeros of / in 38* need not be isolated. However, since V/ has
index zero, a suitably generic perturbation of / will have isolated zeros

The class of perturbations must be constrained by the following consid-
erations: The class of perturbations must form an affine space. Then, the
perturbations must be of the form / + du for some function ^ so as not to
change the fact that / is a closed form on 38*. Also, the linearization of
the perturbation must differ from V/ at each orbit by a compact operator.
Finally, the zero set of a perturbation must be compact.

The construction of a reasonable class of perturbations follows an anal-
ogous construction in [8]. To begin, consider a smoothly embedded loop
γ in M. Use the Riemannian metric to construct a tubular neighborhood,
i/(y), for γ. Let D2 denote the unit disc in R2 and choose a diffeomorphism
from φγ:S

ι x D2 —• i/(y) which identifies Sι x {0} with γ. Fix a smooth,
rotationally symmetric bump function η:D2 —• [0,1], which is identically
1 on the ball of radius 1/2 and is identically zero on the complement of
the ball of radius 1/4.

Let A be a connection on M x SU(2). For each y e D2, the trace of
parallel transport around the loop φγ( ,y) using A yields a number pγ[y;A]
which depends only on the <^-orbit of A. Thus a function pγ[ ]:& —•
[-2π,2π] is defined by the formula

(1.10) pγ[A]= f py[y\A]η{y)d2y.

Definition 1.4. Let M be a compact, oriented, 3-dimensional Rieman-
nian manifold. An admissible function u on 3S is obtained by first fixing
a finite set of smoothly embedded loops in M, Λ = {γi}i=\N. Then, fix a
smooth function / : R^ —• R. Finally, set ^ = f({pγ}γeA)> wherepγ is given
in (1.10). A perturbation of / is a section / ' = / + rf* of Γ * ^ # where
a is an admissible function on 38.
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When a is an admissible function, define the covariant derivative of da
at an orbit [A] to be the symmetric, bilinear form on 3^A which assigns

d2

VdaA(a, b) = ^-(U([A + t a + s - b))\t=s=0

to a pair (a,b) E<9A. A nondegenerate perturbation of / is a perturbation
/' = / + da with the following additional property: Require that the
zeros in ^ # of / + da form a finite set and that the kernel of V(/ + da)
at each zero is empty.

Proposition 1.5. Let M be a compact, oriented, 3-dimensional Rieman-
nian manifold. There exist admissible functions a as described in Definition
1.4 such that the perturbation / + da of / is nondegenerate. In fact, there
exists εo > 0 which is such that for any given 0 < ε < βo, there is a nonde-
generate perturbation of /, / + da, which satisfies:

(1) The image of a lies in [-ε,ε].
(2) The closure of the support of a, supp^, is disjoint in & from the orbits

of the reducible connections, and from the set </#* c ^ # of orbits of flat
connections for which V/A has empty kernel. In fact, let Δ = supp^ x & c
3S x &. For each [A] eJ^*

sup f {\VA(A - A! - gdA,g-χ)\2 + (A-A'- gDA,g-χ)\2} > ε.
{[A'],g)eAJM

(3) The differential da obeys \da\ < ε when the metric in (1.5) is used to
measure norms.

(4) With the metric in (1.5), Vda is bounded everywhere by ε.
(5) For each zero, [A1], of/1 there is a zero, [A], of/ such that

sup / {\VA(A -A!- gdA,g-χ)\2 + \(A -A'- gdA,g-ι)\2\} < ε.
ge&JM

This proposition is proved in §8, where other properties of the pertur-
bations from Definition 1.4 are discussed.

2. Spectral flow and the Euler class

Take a nondegenerate perturbation / ' = / -h da of /, where a is
described in Definition 1.4. Since (1.3) is the model for the Euler class
of / , a sign must be defined for the determinant of V/7' where V/^7

is to be considered as an endomorphism of Γ*^ # |μ j = ZΓA. A problem
instantly arises: For any orbit [A] in ^ # , the spectrum of V/A on the
ZΛcompletion of !J~A is unbounded in both directions on the line, and
likewise, is the spectrum of V/A + VdaA. As a consequence, the existence
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of a determinant is problematical. (One can define various "regularized"
determinants, a complicated procedure.)

However, the present interests require only the sign of the determinant.
This sign is subtle, but the sign difference between the determinants at any
two zeros of /* is easy to define. Formally, the mod-2 spectral flow of
the family of Fredholm operators V/' along a path in 3§* between the
two zeros gives the relevant sign difference. The relative signs in the / '
version of (1.3) will be defined here directly via the mod-2 spectral flow.

The spectral flow for a continuous family of selfadjoint Fredholm oper-
ators was the subject of an intensive study by Atiyah-Patodi-Singer in [5].
Recall the basic idea: To say that an operator is selfadjoint and Fredholm
is to say that its spectrum near 0 is that of a finite dimensional, selfadjoint
matrix. Move on a continuously differentiable path in the space of such
operators, and the eigenvalues near 0 move in a continuously differentiable
manner. Suppose that the operators at the path's endpoints have empty
kernel. Then, the number of eigenvalues which cross zero with positive
slope minus the number which cross zero with negative slope is well de-
fined and finite along a suitably generic path. This number is the spectral
flow along the path.

When two such generic paths are homotopic (rel endpoints), the spectral
flows agree. Therefore, the spectral flow defines a locally constant function
on the space of continuous paths between the two endpoints.

Since the spectral flow is only a locally constant function, there can
be nonzero spectral flow around a noncontractible, closed curve in the
space of selfadjoint, Fredholm operators. Indeed, as remarked in [5], the
spectral flow around closed loops gives an isomorphism between Z and the
fundamental group of the Banach space of selfajdoint, Fredholm operators
on a real, infinite dimensional, separable Hubert space.

The relevance of spectral flow to (1.3) stems from the following obser-
vation: When considering a path of selfadjoint operators (matrices) on a
finite dimensional vector space, the mod(2) spectral flow gives the relative
sign between the determinants of the matrices at the two endpoints of the
path. (Assuming both endpoints parametrize nondegenerate matrices.)

In the present infinite dimensional context, spectral flow is a well-defined
concept (the precise statement is Proposition 2.1, below); it is used to
define the relative sign between two operator determinants.

Proposition 2.1. Let M be a compact, oriented 3-dimensional manifold
with a Riemannian metric. Take a perturbation of/1 = / + du ofT*&*,
where a is described in Definition 1.4 and Proposition 1.5. The assignment
to an orbit [A] of the operator V/% on the L1-completion of !7~A defines a
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smooth map from &* into the Banach space of real selfadjoint operators on
a separable Hilbert space. Let [Ax2] be a pair of orbits in 38* for which the
kernel ofV/^ 2 is empty. Then the spectral flow defines a locally constant
function on the space of continuous paths between [A\] and [A2]. This
function depends on the homotopy class of the path between \A{\ and [A2],
but its mod (8) reduction does not.

This proposition is proved in Part 3 of the Appendix.

Together, Propositions 1.5 and 2.1 define the absolute value of the Euler
number χ{/).

Definition 2.2: \χ(/)\. Choose a nondegenerate perturbation /' oϊ /
as described in Definition 1.4, and let Z denote the finite set of zeros of
/ ' in ^ # . Pick one such zero, [A]. To each zero, [A1] e Z, of / ' , let
A[A,Af] = ±1 denote the mod(2) spectral flow for V/7' along paths in 38*
between [A] and [A']. Finally, define

[A>]ez

The justification for this definition is provided by
Proposition 2.3. Let M be a homology 3-sphere. Then the number

\χ{/)\ depends only on the differential structure on M. In particular, it
is independent of the choice of the Riemannian metric on M, and of the
choice of nondegenerate perturbation, /', of /.

Proof of Proposition 2.3. The proof that the invariant is independent of
the choice of nondegenerate perturbation is an application of the theory
of nonlinear Fredholm maps in [9]. Details are given in §8b.

As for the metric dependence, note first that the set /'~ι{ΰ) is metric
independent as the definition of /' requires no metric. Furthermore, the
condition of nondegeneracy for /' is also metric independent: Indeed,
V/^ is defined as a quadratic form on Q}{M) x su(2) without the need
of a metric (see (8.3)). And, if /'{A) = 0, then this quadratic form
annihilates the image under dA of Ω°(Λf) x su(2); so it descends to define
a quadratic form on the quotient. Thus, V// is nondegenerate if and only
if the associated quadratic form on said quotient is nondegenerate.

Therefore, the metric can only affect \x(/)\ through the spectral flow
between two zeros of/ ' . But, since the space of metrics on M is path con-
nected (indeed, convex), the said spectral flow is also metric independent,
q.e.d.

To define the overall sign of χ{/), it is sufficient to associate a sign
to one particular flat connection orbit. And, Mother Nature blesses a
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homology 3-sphere with one fiducial flat connection orbit, the orbit [Γ] of
the product connection on M x SU(2). To exploit Nature's bounty, it is
necessary to consider the spectral flow along paths in & which are based
at [Γ].

The singularity of & at [Γ] can be avoided by working & equivariantly
on J / . Up on J / , one exploits the canonical sequence

(2.1) 0 -> T&\x -i Tsί -> π * Γ ^ -+ 0,

where d\A = dA, and 1 G 9 is the constant map to the identity in SU(2).
This sequence is not exact at a reducible connection, but it is exact at an
irreducible connection where one has

(2.2) 0 -> T&\χ -i Γ J / # -> π * Γ ^ # -> 0.

Here, π: j / —> ̂  is the projection.
The L2-metric on Γ J / in (1.5) defines d*: Tsf\A -+ Γ ^ which gives a

^-equivariant splitting of (1.9). Here, d*\A = ^ (= - * ^ * ) . O v e r ^ # this
splitting defines a connection on the principal ^/{±l}-bundle J / # —• ^ # .

This splitting can be exploited to extend an endomorphism of Γ ^ # to
a ^-equivariant one of Tsf Θ T8?\\. An endomorphism, L, of Γ ^ # is
extended to:

(2 3) L d

[Z'ό) d* 0

Here, L is thought of as a ^-equivariant endomorphism of Γ J / # which
annihilates Im(ύf) in (2.2).

(The physicists exploit this extension from T38* to Tstf ®T&\\. They
have introduced the term "ghost" to refer to the T&\\ Θ Im(ύf) summand
of Γ^Ίi Θ Γ J / « Γ^Ίi Θ lm(d) Θ Ker(rf ).)

Let / ' be a perturbation of / as described in Definition 1.4. The
covariant derivative V/' defines an endomorphism of T38* at each orbit,
and so extends according to (2.3) to define an endomorphism, K(/'), of
(Ω1 θ Ω°) x su(2). For example, take / ' = / . At a connection A e
the extension K(/)A sends ω = (a, φ) to

(2.4) K(/)Aω = (*dA(a - dAv(a)) - dAu(a) + dAφ, d\a\

where υ(a) c Ω° x su(2) obeys

(2.5)

and u(a) e Ω° x su(2) obeys

(2.6) d\dAu{a) = -*(FAΛ(a- dAυ(a)) -(a- dAv(a)) Λ FA).
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Both υ(a) and u(a) are uniquely defined when A is irreducible; when A is
irreducible, the covariant Laplacian d*AdA\ Ω° x su(2) —• Ω° x su(2) has no
kernel.

Lemma 2.4. Let M be a compact, oriented 3-manifold with a Rieman-
nian metric. Let /' be a perturbation of / as described in Definition 1.4.
For any connection A, the operator K{/')A extends to L2((T*MθR)xs\x(2))
as a closed, essentially selfadjoint, Fredholm operator. It has discrete spec-
trum with no accumulation points, and each eigenvalue has finite multiplic-
ity. The spectrum is unbounded from above and below. The assignment of A
to K(/')A gives a smooth map from J / # to the Banach space of selfadjoint
Fredholm operators on an infinite dimensional, separable Hilbert space.

Proof of Lemma 2.4. This lemma is a corollary to Lemma A.5. q.e.d.
The operator K{/')A is relevant for the spectral flow computations be-

cause it has, by construction, the same spectral flow as V/^. The next
lemma summarizes:

Lemma 2.5. Let M be a compact, oriented 3-manifold with a Rieman-
nian metric. Fix an irreducible connection A. Let S\ denote the spectrum
of the operator K(/')A on L2{(T*M® R) x su(2)). Let S2 denote the spec-
trum ofV/Jl on the L2 completion of ZΓA. Then S\ and Si agree on a
neighborhood ofO.

The preceding two lemmas have the following consequence: In comput-
ing the spectral flow of V/1 along a y e ^ # , one can lift the path to a
path γo c $f and compute the spectral flow of K{/'\.) along yo

For a flat connection A, the endomorphism *dA of Ω1 x su(2) extends
via (2.3) to define the endomorphism, KA, of (Ω1 0 Ω°) x su(2) which is
given by:

(2 7) *dλ dλ

( } d\ 0
(This is the (twisted) signature complex in [5].)

Note that KA makes sense for any connection A, flat or not, irreducible
or not. And, KA is ^-equivariant as KgA = g KA g~ι. The next lemma
describes KA.

Lemma 2.6. Let M be a compact, oriented 3-manifold with a Rie-
mannian metric. For any connection A, the operator KA extends to
L2((T*M θ R) x su(2)) as a closed, essentially selfadjoint, Fredholm op-
erator. It has pure point spectrum, all real. The multiplicity of any eigen-
value is finite, and there are no accumulation points. Furthermore, the
spectrum is unbounded in both directions. The assignment of A to KA gives
a smooth map from srf to the Banach space of selfadjoint Fredholm oper-
ators on an infinite dimensional, separable Hilbert space. If A is fiat, then
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KA = K{/)Λ. In general for any irreducible connection A and any pertur-
bation /' of / as described in Definition 1.5, the difference KA - K(/')A

defines a bounded operator from L2((T*MφR) x su(2)) which is a relatively
compact perturbation ofKA.

Proof of Lemma 2.6. This is a corollary to Lemma A.5. q.e.d.
As J£(.) - K{/'\.) is compact, a sign for the determinant of K^ defines

one for the determinant of K{/'\.y Just compute the mod(2) spectral
flow for the path of operators t e [0,1] -> K{.) - t (K^ - K{/'\.)).
The advantage K^ has over K(/')^ is that the former has continuous
variation over the whole of sf. This makes K^ easier to use near the
product connection.

At the product connection, Γ, the operator Ky has a 3-dimensional ker-
nel given by the Vp-covariantly constant elements in Ω° x su(2). Thus, the
sign of the determinant of KΓ is not well defined. However, a sign can be
given to the determinant of KΓ+a for a generic, small tangent vector to sf
a t Π

For the purpose of defining such a sign, introduce the Hodge decompo-
sition Ω1 x su(2) = Im(rfΓ) θker(rff). Let ΠΓ: Ω1 x su(2) -> Ω1 x su(2) de-
note the L2-orthogonal projection onto ker(dp). Note that *dγ\\&τ{dγ) —>
ker(rfp) is invertible when M is a (rational) homology sphere.

For a e Ω1 x su(2) (= Ts/\r)9 introduce the following symmetric bilin-
ear form on su(2):

(2.8) τβ(σo,σθ= / tr([σo,ΠΓ a] Λ [σu(*dΓ)-ιUΓ a]).
JM

The lemma below motivates the introduction of τα.

Lemma 2.7. Let M be an oriented homology ^-sphere with a Rieman-
nian metric. There exists εo > 0 with the following significance: Let a €
Ω1 x su(2). For all 0 <s < εo, the operator KΓ+s.a has exactly three eigen-
vectors with eigenvalue in (-βo>βo) Let {^1,̂ 2,̂ 3} be the three eigenvalues
ofτa. Then, to order s3, {s2 -λ\,s2 -λι,s2 /I3} are the eigenvalues ofKΓ+Sa
in (-εo,εo).

Proof of Lemma 2.7. The assertion is obtained using standard perturba-
tion theory techniques (see e.g. [13]). The application is straightforward,
so the details are left to the reader. q.e.d.

Think of τ(.) as a map from Ω1 x su(2) into the vector space of endo-
morphisms of su(2).

Definition 2.8. Let M be an oriented homology 3-sphere with Rieman-
nian metric. For a € Ω1 x su(2), suppose that τa is nondegenerate. Define

o sign(det(A:Γ+,.fl)) = sign(det(τfl)).



558 CLIFFORD HENRY TAUBES

The definition above is justified by the following remark.

Lemma 2.9. Let M be an oriented homology 3-sphere with a Rieman-
nian metric. There is a dense, open set in Ω1 x su(2) for which τ(.) is
nondegenerate. Let a\, a-i e Ω1 x su(2) be such that both τaχ2 are nondegen-
erate. Choose so > 0 such that KΓ+s.aι 2 has empty kernel for all 0 < s < %
For such s, let όχ denote the mod(2) spectral flow for K^ between Γ + s a\
and Γ + s a2. Then sign(det(τfll)) = δκ sign(det(τfl2)).

Proof of Lemma 2.9. The first assertion is an observation which is based
simply on linear algebra. The last assertion follows directly from Lemma
2.7. q.e.d.

As an aside, there is a geometric interpretation of Definition 2.8: On a
homology sphere, the tangent space to J / at Γ has the Hodge decomposi-
tion Ω1 xsu(2) ^ Im(ύfΓ)Θker(ύfp). The summand ker(dp) can be identified
with the tangent space at [Γ] to the quotient of srf by the pointed gauge
group ^o = {g £ &-g(xo) = 1}, where Xo £ M is a fixed point. This
quotient is a smooth manifold which defines a principal ^o-bundle.

The quotient &j% « SU(2). This SU(2) acts on j / / % ; the action has
stabilizer {±1} on ( J / \ ^ ) / ^ 0 , and the quotient {srf\9l)l% -* 38* defines
a principal SO(3) bundle.

Definition 2.8 is associating an SO(3) equivariant sign to an open, dense
set of points in the tangent space to [Γ] e sil%\ that is, an equivariant
sign is given to points in the "exceptional fiber" in the "blow up" ofs//S?o
at the point [Γ].

Definition 2.10: χ(f). Choose a nondegenerate perturbation /' of
/ as described in Definition 1.5. Choose a e. Ω1 x su(2) for which τa

is nondegenerate. Use Definition 2.8 to define sign(det(A^Γ+5.fl)) for all s
sufficiently small. Fix an irreducible connection A e /'~X(G). For small
s, use the spectral flow for t e [0,1] -• KΓ+s.a - t {KT+s.a - K(/')A) to
define sign(det(AΓ^)). Use Definition 2.2 to define A(A,Af) for each orbit
[A'] in Z = / L l ( 0 ) . Finally, set

Δ[A9A']
[A>]€Z

The next proposition summarizes the discussion up to this point.
Proposition 2.11. Let M be an oriented homology ^-sphere. The num-

ber χ{/) (= XM{/)) is an invariant of the differential structure of M.
Proof of Proposition 2.11. This is a direct corollary of Proposition 2.3

and Lemma 2.9 using the fact that the space of metrics on M is path
connected. q.e.d.



CASSON'S INVARIANT AND GAUGE THEORY 559

As a final remark, note that the invariant XM(/) does depend on the
choice of orientation. Changing the orientation will not change the relative
spectral flow, but for a e Ω1 x su(2), the change in orientation reverses the
sign of τ f l. Thus,

Lemma 2.12. Let M and -M denote the same underlying homology
3-sphere, but with reversed orientations. Then XM{/) = ~X-M(/)-

Proof of Lemma 2.12. Change the orienation of M, and the positive
spectrum of V/7 becomes negative, and vice-versa since the changed ori-
entation puts a factor of - 1 in front of the Hodge *.

3. The Casson invariant

In [7], Casson introduces his new invariant, λ(M), for an oriented ho-
mology 3-sphere. The reader is referred to [2] for a detailed exposition.
The purpose of this section is provide a brief description of Casson's con-
struction and to introduce some of the associated, gauge theory structure.

To define his invariant, Casson introduces a Heegard splitting of M.
This is an embedded Riemann surface, Σ c M, which divides M into
two handlebodies, Λ/+_. To obtain such a surface, take a self-
indexing Morse function, f:M -> [0,3], and take Σ = /~1(3/2), M+ =
/- !([3/2,3]) and M_ = /"1([0,3/2]). Note that M+ is diffeomorphic to
M- both are obtained from the 3-ball by adding g = genus(Σ) standard
1-handles.

It is convenient for the analysis to enlarge both M± to overlap. Define
Mi = /-'([0,7/4]) and M2 = f~ι{[5/4,3]). Since / has no critical values
in the interval (1,2), the gradient flow of / produces a diffeomorphism
between M\ and Λf_; and likewise, between M2 and Λ/+. The overlap,
M[Γ)M2 = Mo, is diffeomorphic to Σ x [5/4,7/4].

For a = 0,1,2, let ma = Hom(π1(Λ4);SU(2))/Ad(SU(2)) denote the
set of conjugacy classes of representations of π\(Ma) in SU(2). Let /n%
denote the subset of conjugacy clases of irreducible flat connections.

The ma as point sets are well understood. Both M^2 are handlebod-
ies, so their fundamental groups are free on g = genus(Σ) generators.
Hence, ^1,2 = X^SU(2)/Ad(SU(2)). The fundamental group of Mo is
the same as that of Σ. The fundamental group of Σo = Σ\{point} is free
on 2g generators, so Hom(πi(Σo);SU(2)) = X2^SU(2). The surface rela-
tion defines an Ad(SU(2))-equivariant map, θ: X2^SU(2) -> SU(2), and

Each /n\ is an open subset of the corresponding /*α, and each is naturally
a manifold. The manifold structure of /n\ 2 is obtained via its definition
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as a quotient of the open set in X^ SU(2) on which conjugation defines
an action SU(2) with stabilizer {±1}. The manifold structure of /*§ is
obtained in a similar way since the critical set of the map θ is the set of
reducible representations. The dimension of /κ°{ 2 is 3g - 3 and that of/*§
is 6g - 6.

The inclusions of Σ into M\^ as the boundary induce embeddings
J\2:/™°\2 ~~̂  m% The P° i n t s °f intersection of ]\^\ with ./2/w2

 a r e *n

1-1 correspondence with Hom(πi(M);SU(2))/ Ad(SU(2)).
Casson assigns an integer to Hom(πi (M); SU(2))/ Ad(SU(2)) by making

sense of an intersection number for the intersection of j\/n\ with j\/n\ in
**%. (See [2] for details.)

Definition 3.1 {Casson's invariant). Let M be an oriented homology
3-sphere. Choose a Heegard splitting, Σ c M , which splits M into handle-
bodies M\ and Mi. When the intersection of j\Jt^ with y'2^2 is transverse
in /wg, then Casson's invariant is

λ{M)=l- £ (±1),.
pej*{^\r\j*m\

Here, ( ± l ) p is a sign that is obtained by first orienting each /&% and then
comparing the orientations on Tj\/?t\ Θ Γ/ |/^ and T/κ% at the point p
(see below).

When the intersection of j \ ^ \ with 72^2 *s n o t transverse in /*§, take
generic, compactly supported, transversely intersection perturbations of
7*^? and y'2^2 t 0 d efin e λ(Af). The formula is given above with such
perturbations, ^ and /n'£ replacing 7*^1 a n ( ^ J'2^2 respectively.

Casson's orientation of m^a can be defined in the following way: An
orientation of Σ defines a symplectic form on Hι(Σ\R); send {a,b) to
(a U b)[Σ] e R with [Σ] e ^ ( Σ ) the generator which is defined by the
orientation.

As M\ is a handlebody, the inclusion X —• A/"i induces 0 —> Hι (M\ R) ->
^ ( Σ R). Likewise, one has 0 -+ Hι(M2;R) -+ Hι(Σ;R), and Stoke's
theorem implies that the symplective form on Hι{Σ\R) induces a perfect
pairing between Hι(M{ R) and H{(Af2; R).

Via the symplectic pairing, an orientation of ^(Afi R) induces an ori-
entation of Hι(M2;R) and also an orientation of Hι(Σ\R). (As a sym-
plectic vector space, Hι(Σ;R) has a canonical orientation—this is it.) The
induced orientation on Hι (Σ; R) is independent of the choice of orienta-
tion for Hl(Mx;R).

Introduce Σo = Σ\{pt.}. Fix a small disk about the missing point. The
orientation on Σ orients the boundary circle, γ.
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A choice of basis (consistent with the orientation) for Hι (Σ; R) identifies
Hom(πi(Σ0);SU(2)) with X2^SU(2). Introduce the map θ: X2^SU(2) -+
SU(2) which is defined by parallel transport around γ. Choose an orien-
tation for SU(2). This orients the nonsingular part of θ~ι(l), and also
/KQ C θ~1(l)/Ad(SU(2)). This orientation of/*§ is independent of the
initial choice of orientation of SU(2), but it does depend on the orienta-
tion of Σ through the sign of the symplectic form and the orientation of
γ. Change the orientation of Σ, and the orientation of /n\ changes by a
factor of ( - 1

A choice of basis (consistent with the orientation) for Hι(M\\R) identi-
fies Hom(πi(Afi);SU(2)) with X^ SU(2). The orientation of SU(2) orients
this space, and thus ^0

{c(Xg SU(2))/Ad(SU(2)). If g is even, the choice
of SU(2) orientation affects the orientation of /^°χ. Obviously, the orienta-
tion of Hι(M\'9R) affects the orientation of m\.

Then via the symplectic pairing in Hι(Σ;R), these orientations of
Hι{Mι\R) and of SU(2) also orient ™\.

The orientations of both /κ°ι2 change when the orientation of Hι (M\ R)
is changed; and, in the g even case, when the orientation of SU(2) is
changed. In both cases, the orientation of T/n\ θ T/n\\p at a point, p, of
intersection is insensitive to these choices. However, changing the orienta-
tion of Σ changes the orientation of T/n\ by a factor of (-1)*. Therefore,
change the orientation of Σ and the sign of λ(M) changes.

The handlebody called M\ played a special role above. Switching the
roles of M\ and Mi changes the orientation of Hι (Σ; IR) when g is odd but
not when g is even. Hence, this switch changes the orientation of T/n^ by
a factor of (-1)*. When g is even (but not odd), the switch of M\ and
Mi changes the orientation of T/κ0

{ θ T/n%\p at a point, p, or intersection.
Therefore, the switch of role, M\ «-» M2, changes the sign of λ(M).

Thus, the sign (±l)p in (3.12) is well defined given the orientation of Σ
and the specification of the handlebody to call M\. Changing both choices
leaves λ(M) invariant so it is only the induced orientation of M which must
be specified to avoid an ambiguity. (The specification of the handlebody
to call M\ specifies a normal vector to Σ—this, with an orientation of Σ,
orients M.)

Main Theorem. Let M be an oriented homology 3-sphere. Introduce
the invariant χ(/) from Definition 2.10 and introduce Casson's invariant,
λ{M) {see Definition 3.1). Then χ(/) = 2 λ(M).

The remainder of this paper is occupied with proving this theorem.
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4. Gauge theory and Heegard splittings

To prove the main theorem, it is necessary to consider the extra structure
that the Heegard splitting gives to the gauge theory. The introduction of
this extra structure occupies this section.

For a = 0,1,2, introduce the space s/a of smooth connections on the
principal SU(2)-bundle Ma x SU(2).

The inclusions Mo —• M{, M2 —• M induce by pull-back the maps
jl,2 ii,2

(4.1) j/-*j/iχy2-*^ox4
/ J

where / = i\ x i\ and J = j \ x j \ . (4.1) is "exact" in the following
sense: The map / is an embedding, and / is a submersion. Furthermore,
the image of / is equal to the inverse image under / of the diagonal,
A c 4 χ 4 Such is the case if the spaces in question are considered
as Frechet spaces using the C°°-topology, or if they are considered as pre-
Hilbert manifolds with the Lf-Sobolev structure (or with any L^-Sobolev
structure with p > 2 and k > 1).

Each of the arrows in (4.1) is naturally equivariant with respect to the
respective gauge group actions. (The gauge group stfa = Aut(Afα x SU(2)) =
C°°(Λ/α;SU(2)) acts on s/a in the usual way.)

To describe the invariant theory analytically, introduce the quotients
38,38a of J/,J^4 by the respective gauge groups. It proves useful to intro-
duce j / ° c i and srf® c sfa, as the subsets of connections which restrict
to irreducible connections on ([11/8,13/8] x Σ) x SU(2). In each case,
i ° C J / , <a?a° c J*fa is open and dense and the complement of a set of
infinite codimension. Introduce the quotients 3B*,3B% of J / ° , J ^ ° by the
respective gauge groups.

Proposition 4.1. With the L\-Hilbert space structure, each of 38^,38%
is naturally a manifold modelled on a pre-Hilbert space, and the defining
quotient is a principal bundle with structure group &/{±l}, respectively
8?a/{±\}. Indeed, 38® is an open dense set in 38* and the complement of a
set of infinite codimension. The tangent space to έ$% at an orbit [A] is the
vector space

^ A = {ae Ω 1 ^ ) x su(2): d^a = 0 and /*(*α) = 0},

where i: dMa —• Ma is the inclusion. Furthermore, for each [A] e 38®, there
exists ε > 0 such that the assignment of [A + a] to
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is a homeomorphism onto an open set and defines a smooth coordinate chart
for a neighborhood of [A].

This proposition is a straightforward modification of the results in [17].
The details are omitted.

The equivariant version of (4.1) is

(4.2a) J^JΊx^-^JΌx ô>
/ J

and

(4.2b) ^ ° -γ &* X ̂  y ̂  X ^0°.

On the level of tangent spaces, (4.2b) induces 7 * : ^ —• &[Aχ x ̂ {Al and
J*:&\Ai x ^2A2 —> ^OAO x ^OAo- These maps have the following explicit
descriptions: At [A] e &°,

(4.3) h a = (a- dAφ{(a),a - dAφ{a)),

where φ^ € Ω0(Mi52) x su(2) obeys

(4.4) dAdAφιa = 0 and i*dMl2(*{a - dAφU2) = 0.

Meanwhile, at {[A{], [A2]) G 3S% x °

(4.5) Λ -(fli,fl2)Ξ(αi -

where 1̂,2 € Ω0(M0) x su(2) obeys

(4.6) d^2dAl2ψιa = 0 and i*dMo(*(a{a-dAl2ψιa) = 0.

Lemma 4.2. ΓΛe sequence in (4.2b) w exαcί m that I is an embedding,
J is a submersion, and image(7) = / - 1 (Δ) .

On the tangent level, the assertion of Lemma 4.2 can be expressed in
terms of the sequence of linear maps

(4.7) o-^^^x^^^^O,

which is exact. Here {AUA2) = I {A), Ao = j*i*{A) = Jli\{A)\ in addition,

2

Lemma 4.3. The sequence in (4.7) defines an exact, acyclic, Fredholm
complex.

Proof of Lemmas 4.2 and 4.3. If A restricts irreducibly to Ma9 then the
covariant Laplacian dAdA:Ω°(Ma) x su(2) -+ Ω°(Afα) x su(2) is invertible
with specified Neumann data on the boundary, dMa. In fact, for any
k > 0, the inverse of d*AdA defines a bounded linear map from (L2

k(Ma) x
su(2)) x (L2

k(dMa) x su(2)) -> L2

k+2(Ma) x su(2). That is, for each (ω,i/)
in the former space, there exists a unique σ e L2

k^2(Ma) x su(2) which
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obeys d*AdAσ = ω and i*(*dAσ) = μ. Furthermore, the L^+2-norm of σ is

estimated by the Z^-norm of (ω, */).
The assertions of Lemma 4.2 and the asserted properties of the differ-

entials 7* and Λ are simple algebraic consequences of the facts from the
preceding paragraph. The assertions in Lemma 4.2 that 7 is 1-1 and that
J is surjective use the fact that the space of maps from a Riemann surface
to SU(2) is path connected. The details are left to the reader. q.e.d.

The orbits of irreducible flat connections on Ma x SU(2) are the zeros
of a section of a vector bundle, -S^, over 38%, but the bundle in question
is not the tangent bundle. The fiber of <S?a at an orbit [A] = 38% is defined
to be the vector space

(4.8) &aA = {/EΩ'(M a) x su(2):d\f = 0}.

This subspace is equivariantly defined because S?agA = g ^aA as subspaces
of Ω1 (Ma) x su(2). Give £?aA the structure of a (pre-)Hilbert space by using
the L2 inner product on Ω{(Ma) x su(2). Note that <SfaA is well defined
even when A is reducible.

Lemma 4.4. The assignment of A to the vector space 2*aA defines a
smooth vector bundle Jz^ —> 38%; in fact, J2^ is a sub-bundle of
(Al x (Ωι(Ma) x su(2)))/5α) when Ωι(Ma) x su(2) is given the structure
of a pre-Hilbert space with the L1-inner product For any connection A
on Ma x su(2), the inclusion maps i\^ and j \ ^ induce the following exact
sequence of Fredholm maps:

Φ ψ
0 —• S?A ^ ± <S?\A{ x - 2 ^ 2 ^* ^ - A 0 —> 0 ,

where Φ f = (/•/, /*/) and Ψ (/i, /2) Ξ j\fx - tifi
PROOF OF LEMMA 4.4. The first assertion of the lemma is a straight-

forward modification of results in [17] (see Part 1 of the Appendix). The
second assertion should be obvious. q.e.d.

The assignment of curvature to a connection on Ma x SU(2) defines a
section /n of J5ζ, which sends [A] to [A, *FA] e Jΐ?a.

It is crucial to observe that /&a c &a is the set of orbits of flat connec-
tions, and /n^ is the subset of orbits of irreducible flat connections. That
is, Ma = /oΓι(Q) and ^° = f~ι(0) f\38%\ this last equivalence is a conse-
quence of the fact that the inclusion of Σ into M induces an epimorphism
of fundamental groups.

The identifications mtx = / ' 1 (0) and *% = /~ι (0) ΐ\38% give these sets
added structure.

Proposition 4.5. Let M be a rational homology sphere, and assume that
the Riemannian metric on M is the product metric on Mo. Then the set /n\ 2
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as an open submanifold of(xg SU(2))/ Ad(SU(2)) is an embeddedsubman-
ifold of3S^v the set ^ as an open submanifold ofθ~ι(l)/ Ad(SU(2)) c
(X2g SU(2))/ Ad(SU(2)) is an embedded submanifold of&§, and the map
J of {A.I) restricts to sn\ x sn\ as an embedding into /»§ x /*§.

The proof of Proposition 4.5 is given at the end of this section.
The Fredholm properties of the section /a and its perturbations are of

critical importance; a digression to study these properties follows.
Since perturbations of / as described in § 1 are required to define the

invariant /, and since a Heegard splitting of M is required to define Cas-
son's invariant, it is necessary to study the behavior of the perturbations
given the choice of a Heegard splitting.

Definition 4.6. Let M be a homology 3-sphere with a choice of Heegard
splitting. An admissible function a in the sense of Definition 1.4 will be
said to be compatible when the loops of the set Λ and their associated
tubular neighborhoods lie in the interior of Mo.

Choose a set of loops, Λ, of size N < oo, and the loops to lie in the
interior of Afo I n defining the functions {pγ}γeA, make sure the tubular
neighborhood about each loop γ lies inside MQ. Set u = f{(pγ)), where
/ : RN —> R is a smooth function. Set / ' = f + da, which is a perturbation
o f / as described in Definition 1.4.

Note that da\A defines a section of Ω1 x su(2), which is denoted v[A]
and compactly supported on the union of the tubular neighborhoods about
the loops which comprise the set Λ.

To be explicit, for each such loop y, introduce the diffeomorphism φγ

between Sι x D2 and the tubular neighborhood about γ. Let dt denote the
unit, oriented tangent vector to S 1. Let ηγ denote the 1-form on M which
is metrically dual at each point to φγ*{η dt)\ this is a 1-form on M with
compact support in the tubular neighbohrood about y. The section v[A]
is given by the formula

(4.9) υ[A](x) = J / r - lm(Pr[φ-ι(x);A]) • ηγ,
γβA

where Im: SU(2) -• su(2) is defined by identifyiing SU(2) with the unit
quaternions, and su(2) with the imaginary quaternions. In (4.9), each fγ

is a smooth function on RN which is evaluated on the point {pγ} e RN.
The section υ[A] respects the decomposition of M by the Heegard split-

ting in that it depends only on the restriction of A to Mo. This means that
v[A] is well defined when [A] is only in 33§ or 3§x^. The assignment of
v[A] in (4.9) to [A] e ^0,1,2 defines a section, Λ*o,i,2> of the vector bundle
^,i,2 of (4.8).
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For a = 0,1,2, define /J = /a + d*aasz section of £?a -> «^α. Apropos
the discussion of the preceding paragraph, one has

Lemma 4.7. Introduce the maps I and J of (4.2) and the maps Φ and Ψ
of Lemma 4.4. Let /ά ΞΞ /a + dua as described above. Then the following
identities hold:

(i)φ / ' = (/',/2')°/.
(2) Ψ (/',0) xΨ (0,/2') Ξ (/o',/o') o /.

Lemma 4.8. For α = 0,1,2, the section /£ as defined above is a smooth
section of^a over 3§%.

Proof of Lemma 4.8. This is a consequence of (8.2), (8.3) and (8.7);
the details are straightforward applications of Sobolev inequalities and are
omitted. q.e.d.

A covariant derivative of /a or of a perturbation /£ is defined with the
help of the affine structure of s/a. In each case a = 0,1,2, or a = 0, the
covariant derivative of V/£' of /£ is defined over ^α°; it is the linear map

&ciA -* &aA which sends a to

(4.10)

where dv[A]a = £(vM+$.*]) | J =o (see (8.3)), and MQ(Λ) e Ω°(Ma) xsu(2)
obeys

(4.11) ^ X ( α ) - ( F , Λ α - β Λ F , ) ^ r f > M ] α = O, Γ(M

/

α(β)) = 0.

Here /: dMa ^ Ma is the inclusion.

Note that V/£Λ is a ̂ α-equivariant, linear map from ZΓaA to JZ^Λ.
As ^ varies through <̂ α° the vector spaces ^ ( . ) and J2£(.) fit together to

define smooth vector bundles ^ , - 2 ^ -> ^α°. Let ί/ = 3^ - 3 if a = 1,2,
and d = 6g - 6 if α = 0; if α = 0, let ύf = 0. A smooth fiber bundle
F r e d , / ^ , ^ ) -* ^α° is defined by taking the fiber over [A] to be the
Banach manifold of bounded, Fredholm operators from ^ to <5̂  of index
d. (These assertions are considered in Part 1 of the Appendix.)

Proposition 4.9. Let M be a homology ^-sphere with a Riemannian
metric. Suppose that M has a Heegard splitting, and define M0)i,2 cis above.
Let a be an admissible function on 3§ which is compatible in the sense
of Definition 4.6. For a = 0,1,2,0, let fj = /a + dua, where ua is the
restriction of* to 3Ba. Let A be an irreducible connection on Ma x SU(2).
Then the following hold:

(1) V/^4 defines a bounded operator from J^A to 3*aA when these spaces
are completed in the Sobolev L\ and L2 norms, respectively.
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(2) This operator is Fredholm with index Ofor a = 0, with index 3g - 3
for a = 1,2 and with index 6g - g for a = 0.

(3) The difference V / ^ - V/aA is a compact operator, in fact, bounded
when the L2-metric is used for ZΓaA.

(4) If/Jj Ξ 0, then V/^ a = £(/J([A + s a]))\s=0.

(5) The assignment ofV/^Λ to [A] € 38% defines a smooth section over

Proof of Proposition 4.9. Assertions (l)-(3), (5) are Lemma A.4 in the
Appendix. Assertion (4) can be verified by a direct calculation; it is the in-
finite dimensional analog of the following finite dimensional phenomenon:
The covariant derivative of a section of a vector bundle is independent of
the connection when such a derivative is taken at a point where the section
vanishes. q.e.d.

This section ends with the
Proof of Proposition 4.5. To show that /*£ is an embedded submanifold

of 38%, it is sufficient to show that dim(ker(V/ζ/ί)) = i n d e x ( V ^ ) for
[A] e /w°. Suppose that ω e coker(V/^). Then dAω = 0, d^ω = 0, and
i*(ω) = 0 where i:dMa —• Ma is the inclusion. Thus, ω defines a class,
[ω], in the relative first cohomology, Hι(Ma,dMa;dA), of the (twisted)
DeRham complex, Ω* xsu(2), with differential dA. (Since A is flat, d\ = 0.)

Lemma 4.10. Let M\ be a smooth, ^-dimensional handlebody with
boundary Σ. That is, M\ is obtained from the standard 3-ball by attaching
some g > 0 one-handles. Let Mo = [0,1] x Σ be a (closed) product neighbor-
hood ofdM\. Let A be aflat connection on M\to x SU(2). Then the inclusion
Σ = dM\ —• MOji induces monomorphisms 0 —• Hι(Moy,dA) —• Hι(Σ;dA).

Proof of Lemma 4.10. For Mo, use the fact that Σ —• Mo is a strong
deformation retract. For M\, use the fact that M\ is a handlebody, so that
the relative cell complex (M\,Σ) has 1-dimensional cells. q.e.d.

As A is irreducible, H°(dM\\dA) = 0. Plug this fact plus Lemma 4.10
into the long exact homology sequence to find 0 = H{ (M\ ,dMχ\dA). Like-
wise, H{{M2,dM2;dA) = 0 and Hι(M0,dM0',dA) = 0. Thus, in all cases,
ω = dAμ with d*AdAμ = 0 and (as A is irreducible) μ = 0 on dMa. This
means that μ and hence ω vanish identically and coker(V/^) = 0 as
claimed.

The vanishing of coker(V/^) implies that *ι% c &% is an embedded
submanifold. Its tangent space at [A] is identified with kcv(V/a\A) =
Hι{Ma\dA). Since Mo is a product, Hι(M0',dA) « Hι(Σ;dA). Hence,
Lemma 4.8 implies that / is an embedding. (The epimorphism πi(Σ) -•

) —• 0 implies that / is 1-1.)
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The completed proof of Proposition 4.5 requires an identification of
the smooth structure on /*£. For this purpose, identify ker(V/£^) with
Hι(Ma;dA) The cohomology group Hx{Ma\dΛ) has a (twisted) Ceck-
cocycle interpretation. The identification of ma with Hom(τr(Afα);
SU(2))/Ad(SU(2)) has a Ceck-cocycle proof. The reader can compare
these Ceck descriptions to see that the smooth structure on /κ°a is the stan-
dard one.

5. y(/) and Casson's invariant

The comparison of the two invariants is based, ultimately, upon the
observation that /~{{0) is the set of conjugacy classes of irreducible rep-
resentations of π\(M) in SU(2), and that this set is in 1-1 correspondence
with the points of intersection of /n\ and /n\ in m%. This observation is
summarized by the identity

(5.1) ^ 0 = /- 1(0) = / - 1 ( ( / - 1 ( 0 ) x / 2 - 1 ( 0 ) ) n / " 1 ( Δ ) ) .

It is the Fredholm properties of the maps which appear in (5.1) which
allow for the comparison of spectral flow data on ^ ° with intersection
data on /n%.

Both invariants are defined, in general, only after perturbations are
made. Choosing compatible perturbations for the two cases simplifies the
comparison. The first proposition provides a useful set of perturbations.

Proposition 5.1. Let M be a homology ^-sphere with Heegard splitting.
Given ε > 0, there exist admissible {in the sense of Definition 1.4) and
compatible {in the sense of Definition 4.6) functions u on 38 which have the
following properties: For a = 0,1,2, introduce the section /£ = /a + daa of
&a, and introduce as notation, /&'£ = fa~

ι{0) n&®.

{1) The sets /^~x (0) and/~ι (0) are identical on an open neighborhood
of their intersections with &a\&®, that is, on the complement of compact
sets in /&'£ and / ^ .

(2) The set /π'® is a smoothly embedded submanifold of 3§^, which is
smoothly isotopic to /&% by an ambient isotopy which is the identity on an
open neighborhood of the intersection of/*'£ with &a\&®.

(3) The L\-distance moved by a point in /&'£ by the isotopy in (2) is less
than ε.

(4) The function a obeys all of the assertions of Proposition 1.5; in par-
ticular, the perturbation /' = / + du is nondegenerate in the sense of
Definition 1.4.

(5) The intersection of/κ\° with m^ in /κ£ is transverse.
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The first four assertions are direct corollaries of Proposition 8.7 to which
the reader is referred. The last assertion is proved below as Lemma 5.5
after some technical machinery is introduced. But, note that assertion (4)
insures that /'~ι{0) is a finite set, and Lemma 4.7 identifies this set with
/n^Γ[m^\ thus, the latter set is also finite. Transversality is the issue which
Lemma 5.5 settles.

To define Casson's invariant and χ(/)9a. sign is associated to each point
in the finite set /'~x(0). Comparing these signs is a two-step procedure.
One first proves

Proposition 5.2. Let M be a homology 3-sphere with Heegard splitting,
and let u be as given in Proposition 5.1. Use the same notation as in
Proposition 5.1. Let [A], [A1] c ^ ° be two points in /'~{{0), and let
[AQ] = j\i\[A\ and [Af

0] = j\i\[A'] denote the corresponding two points
in /n\° Π/̂ 2° c /WQ°. Then the mod(2) spectral flow for V/' between [A]
and [Af] vanishes if and only if the local intersection number at [Ao] for
/wj° Π /̂ 2° C /̂ o° aSrees with that for [A'o].

The proof of this proposition occupies the remainder of this section and
also §6.

Propositions 5.1 and 5.2 have the following immediate corollary:

Proposition 5.3. Let M be an oriented, homology 3-sphere. Then twice
the absolute value of Casson's invariant is equal to\χ{/)\.

In §7, the signs of the two invariants are compared.

The proofs of Proposition 5.2 and assertion (5) of Proposition 5.1 re-
quire the introduction of a new Fredholm operator which comes with the
Heegard splitting. This operator allows the finite dimensional intersec-
tion theory on /*° to be reinterpreted as a spectral invariant of an elliptic
operator. This reinterpretation occupies most of the present section. In
what follows, assume always that a function a on ^ ° has been given by
Proposition 5.1 and that this function is used to define the perturbationas
/0! = fa + daa for a = 0,1,2 and 0.

Let [A] e &° and set [AU2] = *7,2M] and [Ao] = j\i\[A\. Introduce the
(pre-)Hubert spaces

(5.2) ^=^A®^2A ®&0A, ^A =

and introduce the operator HA\ %% -• %} which sends ω = (aua2, u0) to

(5.3) / f 0

where, V/;'|( ) i s defined in (4.10). The adjoint, ( V / f U ) * : - ^ -> %*A, is
discussed in Part 2 of the Appendix. It is defined via integration by parts
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and the identification {9^A)* ~ %*A> which is provided by the metric ( ,-)A
in (A.I): For a e EΓ^A and u e ^faA,

(5.4) ({V/a\A)*u,a)L2= ί Xr(uΛa)- f ΐr(dAuΛa + *dυ[A]'UΛa)
JdMa JMQ

with dv[A]- defined in (4.10). The map Y in (5.3) is the composition of
three maps; the first is Ψ: T{Λ θ T2A -> T0A of (4.7). Follow Ψ by the map
from %A into {9QAY which is given by the L?-pairing. Finally, use the
metric ( , -)A in (A.I) to identify (%>A)* with ^aA.

As the connection A varies in J / # , the pre-Hilbert spaces <î 1'0 fit together
to define smooth vector bundles, g71'0 -> &°. Let F r e d o ^ 1 , ^ 0 ) -> ^ °
denote the fiber bundle whose fiber over [A] is the Banach manifold of
bounded, index 0, Fredholm operators from %\ to &%. (These bundles
are discussed in Part 1 of the Appendix.)

Proposition 5.4. Let M be a homology 3-sphere with Heegard splitting.
Let [A] G 3SQ. Then the operator HA defines a bounded, Fredholm operator
from <§̂° to %\, and the index of HA is zero. Furthermore, the assignment
ofHA: &A -> ̂ A t0 a n orbit [^] € ^ ° defines a smooth section, H,

Proof of Proposition 5.4. The assignment of (a{, α2, Wo)in ^° t 0 \
d\^/{\A2' #2, ~(V/o/Uo)*Wo) G %A defines a bounded, index 0, Fredholm
operator. This is a direct corollary to Lemma A.4. The assignment of
(#1,^2) £ 3Γ\A ®^iA to Y{a\,aι) € %A defines a compact operator, cour-
tesy of the Rellich lemma which insures that the forgetful map from L\
to L2 defines a compact operator. This proves the first two assertions
of Proposition 5.4. The last assertion follows from Lemma A.4 and the
differentiability over si of the metric ( , )A-

Lemma 5.5. Let M be a homology 3-sphere with Heegard splitting.
Let [A] G &°. Then the kernel of HA is isomorphic to the set of triples
{(aua2,u) e keriV^UJxkeriV^UJxcokeriV/^'UJ: theL2-projection
ofΨ{aua2) onto ke r (V/^ 0 ) vanishes}. In particular, if [A] e /'~ι(0),
then kev(HA) is in 1-1 correspondence with Vet(V/'\A). Thus, the intersec-
tion of j\/τι'\ with 7*2 ̂ ό° is transverse if and only if [A] is a nondegenerate
zero of /'.

Proof of Lemma 5.5. To say that there exists u e ^ a A (the completion
of^faA) such that Y(au a2)-(V/o'\Ao)*u = 0 is to say that the /^-projection
of Ψ(a\, a2) onto ker(V/o/|/ίo) is zero. This proves the first assertion of the
lemma. If /'(A) = 0, and (aua2) e ker iV/^,) x kcτ(V/2'\A2)9 then
Ψ(a\,a2) already lies in ker(V/^|Λ0); this is a consequence of assertion (5)
of Proposition 4.9 and assertion (3) of Lemma 4.7. A direct calculation
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can also verify the assertion. Therefore, if [A] e X'~ι(0), then ker(HA) =
{(01,02) e ker(V/ 'U) x kcτ(V/2

f\A2):Ψ(aua2) = 0}. (Remember that
a has been chosen so that /' has only nondegenerate zeros.) Lemma
4.3 provides a unique a e ^ such that (01,02) = Φ(fl) Furthermore,
a G kev{V/'\A) when [Λ] e /'~{(0) (an exercise for the reader). This
proves the second assertion of the lemma. To establish the third assertion,
use assertion (2) of Proposition 5.1. q.e.d.

Let ̂  denote the Banach manifold of real, bounded, index 0, Fredholm
operators on a separable Hubert space. It is a model for the classifying
space for real Λ>theory. There is a class, ω{ e Hι [9§\ Z/2), the first Stieffel-
Whitney class. The determinant line bundle over ^ is a real line bundle
which is classified by ω\.

Let 3? be a smooth manifold, and let h\%? —• &fc be a smooth map for
which h*ω\ = 0. Let X\y2 be two points of 3? for which the operator h(x\j)
is invertible. By transgression, ω\ defines a relative class, δh(x\,x2) £
H°({x2,x2}a/2).

This relative class is defined as follows: Pick a path φ: [0,1] —> 3? which
starts at X\ and ends at x2. The composition, h(φ), defines a path of
Fredholm operators. Let ^ c 9§ denote the subset of operators which
have nonempty kernel. Then ^ ! is a codimension 1 subvariety of «9ζ
which represents ω\ [14].

For a generic smooth homotopy (rel{0,1}) of the map h[φ], the image
is a smooth path in ^ which intersects ^ transversly in a finite set. The
mod(2) cardinality of this set is, by definition, the number δh{x\,xi)'

Standard transversality theory insures that this number is independent
of the chosen homotopy. For a closed loop in 3?, the number δh(xχ,x2)
computes the restriction to the loop of h*ω\. Since this is assumed to be
trivial, ^(^1^2) is independent of the chosen path between xx and x2 and
depends only on the endpoints and the map h.

More generally, let 3t —• 3? be a smooth Banach space bundle with
fiber ^ , and let H be a smooth section. Since the general linear group
of a Hubert space is contractible, there are trivializations of 3?'. With
respect to a chosen trivialization, h defines a smooth map (also denoted
by h) from Sf into %. The characteristic class A*ωi is independent of the
trivialization of 3£. If h*ω\ = 0, the secondary characteristic class δh( , •)
is well defined, and it is also independent of the chosen trivialization.

As a section over ^ ° of Fred o (3 ? 1 ,^ 0 ), H pulls back the first Stieffel-
Whitney class, ω\ e Hι(&°;l/2). In this case, ω{ = 0, a fact which fol-
lows from Proposition 6.1. Let [A], [A'] e&° be orbits where ker(//()) =
0. Then the relative class δH([A], [A']) e H°({[A], [A1]}) is well defined.
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The significance of δπ in the present context stems from the following
observation:

Proposition 5.6. Let [A], [A1] e ™°. Then δH([A]9[A']) gives the sign
difference between the intersection numbers ofj*/κ\0 with j'2^'2 ^n ^0 a t

the points j\i\[A] and )\i\\A!\.

An appropriate interpretation of the intersection number will yield the
proof of this proposition. Consider two smooth, oriented submanifolds
X\, X2 in a third oriented manifold, Xo. Suppose that dim(Xi )+dim(X2) =
dim(X0) = do. Let Po,P\ e X\ Π X2 be distinct points where the intersec-
tion is transverse. A calculation of the relative sign difference between
the intersection numbers of X\ Π X2 at points, Po,p\, can be made by
choosing a smooth triple (λ,V,h); here, λ: [0,1] —> X obeys λ(0) = po
and λ(l) - pi, while V —> [0,1] is a smooth, oriented vector bundle,
and h: V —• λ*TX0 is a bundle homomorphism. Require that (λ,V,h)
have the following two properties: (1) At t = 0 and t = 1, require that
h: V « λ*(7\Yi Θ ΓX2) is an orientation preserving isomorphism. (2) Con-
sider h: V —• λ*TXo. Let det(Λ) denote the corresponding section of the
real line bundle Ad°(λ*TX0) ®AdQV. Require that det(A) be transverse to
the zero section.

It is not hard to construct such a triple. If X2 is path connected, it
may be convenient to take λ to lie in X2. Then, take V = V φλ*TX2 and
h = A'θid, with hf\oy. V « λ*TX\ an orientation preserving isomorphism.

The two requirements on (λ, V,h) insure that det(/z)~1(O) is a finite set
and that the relative orientation of h(V) = λ*(TX{ θ TX2) and λ*TX0 at
t = {0,1} differ by the mod(2) cardinality of det(/z)"1(O).

One more result is required before the proof of Proposition 5.6 can be
presented. The lemma below summarizes results in [14]:

Lemma 5.7. Fix an integer n > 0, and let £Fn denote the space of real
bounded Fredholm operators of index n on a separable Hilbert space. Intro-
duce ^ c &n as the subspace of operators which have nonempty cokernel.
Then, 9~n is a subvariety of ^n whose nonsingular part has codimension
n + 1, and S?n\^n ^ n-connected. Furthermore, let X be a smooth com-
pact manifold of dimension < n with boundary, dX. Let φ\X —> 3^ be a
smooth map which maps dX into J ^ y ^ 1 . Then, given ε > 0, there exists a
homotopy of φ, xtXdX, to a map φ'\X —• SFn\^n w ^ sxχPx \ψ ~ ^Ίop < £
and with φ - φ' a smooth family of finite rank operators.

Proof of Proposition 5.6. Choose a path λo'. [0,1] —• /^Q° between j*i*[A]
and JZiϊίA']. Since ^ is path connected, there is no loss in generality by
assuming that λ0 = j\λi, with A2: [0,1] —> /n'£. Using a cut-off function, it
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is straightforward to construct a path λ: [0,1] —• 3§§ which covers λ^ i.e.,
such that λ2 = qλ, λ(0) = [A] and λ(l) = [A']. Set λ{ = i*λ.

The operators V/[r\i*χ define a section, #?, over [0,1] of λ*i*3Γι where
3ί\ —• ^ j 0 is the Banach space bundle whose fiber over [̂ 4] is the Banach
space of bounded, index 3g - 3, Fredholm maps from &[A to <2\Λ. At
{0,1}, Proposition 5.1 insures that the cokernels of φ(0) and φ(l) are
trivial. If the cokernel of some φ{t) is not trivial, use Lemma 5.7 to
construct a small homotopy of φ (rel{0,1}) to obtain a section φ' for
which the cokernel of each φ'(t) is trivial.

Use Proposition 5.1 to identify the vector bundle ker(V/oΊy i λ) with

X^Tm^ and to identify ker(V/S|/j;ι) with λ^j2*T^.

Set V -» [0,1] to be the vector bundle (ker(V/J;||.λ) θ ker(V/^|;*;0.
Let Π(.) denote the L2-orthogonal projection in AQ^O( ) o n t o ΛQΓ^O0. Note
that det(Π)~1(0) is supported away from {0,1}. If det(Π) is not transverse,
perturb Π (rel{0,1}) to IT with det(IT) being transverse. Then (λ0, V, IT) is
a triple from which the relative intersection numbers of /κ'^2 in /&'£ can be
computed, and it is apparent that this relative intersection number is equal
to δH{[A], [A']). Only the orientation of the vector bundle ker(p') -• [0,1]
remains unverified.

The said orientation may be verified by the following device: The space
^i ΞΞ AutM! x SU(2) is homotopy equivalent to C°°(AΓi;SU(2)) and the
latter is path connected. Therefore, the space 3S^ is simply connected.
Choose a homotopy, F, (rel{0,1}) of λ\ in 3S^ to a path, μu which lies in
y^Ί0. A smooth section, s, oΐF*^ is defined on d(X2[0,1]) by μ\V/J and
φ'. The cokernel of s is everywhere trivial. Use Lemma 5.7 to extend s over
X2[0,1] as a section, S, with trivial cokernel. Such an extension defines
a smooth vector bundle, ker(5) —> X2IΌ, 1]. However, ker(5)|[i]X[o,i] =
μ*{T/κ\° which shows that the orientation on ker(^') is consistent.

6. Operators on M and Heegard splittings

Proposition 5.6 has translated a relative intersection number on /&'£
into spectral data for a family of Fredholm operators. Proposition 5.2
requires a comparison of this data with the spectral flow data of §2. For
this purpose, the family of operators V/1 from §2 must be reconsidered
vis-a-vis the Heegard splitting. Such a reconsideration assigns to each
[A] e ^ ° a new operator,

(6.1) QA &A -*®A>
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to compare with HA in (4.3). The operator QA is constructed from oper-
ators Qιt2A'&ΪA®&2A -• -S1,2Λ and QOA'.^OA -• 3OA> With these operators
defined, QA sends ω = (#1,^2,^0) to

(6.2) QAω = (QlA(aι,a2)9Q2A(al9a2),Y(al9a2)-(QZAvo).

Proposition 6.1. Let a and /' = / + da be as described in Proposition
5.1. Then for each [A] e &°, there exist bounded operators Q\^A-^\A θ
&2A ~» &U2A and QOA'.^OA -> <2QA which are such that QA\%% -• %\ as
given in (6.2) is an index 0, Fredholm operator. Furthermore, the following
hold:

(1) QA - HA is a relatively compact operator.
(2) If/'(A) = 0, then QA = HA.
(3) The assignment of A to QA is naturally & -equivariant, and defines a

smooth section, Q, over&° of the Banach space bundle Fredo(lf *, S?0). This
section, and the section H of Proposition 5.4, are homotopic τs\(/'~ι{Q)).

(4) Use the maps I: &° -> 3S* x ^2° and j \ o i{: ^ ° -^ ̂ 0° of^4 to pull
the bundles 9[ θ ^2, ^0, and 3>x θ -2 ,̂ «5o έflcfc ov^r ^ ° . ί75e ίA^ ^αme
notation to denote the pulled back bundles. Then, the following diagram is
a commutative diagram of Fredholm bundle maps (over &°) :

the rows are exact, and the Fredholm indices for Q{ θ Q2 and Qo are
both equal to 6 - g - 6.

Observe that Proposition 6.1 has Proposition 5.2 as a corollary:
Proof of Proposition 5.2. It follows from assertions (2) and (3) and

Proposition 5.6 that the 1/21 characteristic classes SQ([A], [A']) and
δH([A],[A']) agree for any pair of orbits [A],[A'] G /'-ι{0)Π&°. As-
sertion (5) establishes that the 1/21 characteristic classes SQ([A], [A']) and
<*v/'(ML MΊ) agree for any pair of orbits [A], [A1] e / ' " ' ( O ) Π ^ ° ) . In-
deed, choose a splitting ®\% -• ^Tθ^2 with the property that Ψo θ = 1.
Likewise, choose a splitting θ : «So —• 2[ θ -25 with the property that
Ψ O Θ Ξ 1. Since the rows in (4) are exact, Φ θ Θ:<T θ % -+ ¥\ θ ^1
and Φ θ θ : Sf θ «5o —• -25 θ -25 are isomorphisms. Under these isomor-
phisms, (βi θ Q2) o Φ θ θ) = (Φ θ θ) o ( V / θ βo).

Choose a smooth path [Λ(0Le[0,i] from [A] to [^']. Due to assertion
(2), coker((2o) = {0} at the endpoints of this path. Lemma 5.7 provides a
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homotopy (rel{0,1}) of the path QoA(t) of index 6g-6, Fredholm operators
to a new path Qf

QA^ for which the cokernel is trivial for all t.

For each t, an index 0, Fredholm operator from JA^ Θ<%A(t) to 3Ά{t) ®
S§A{t) θ R6-~6 is given by V/' Θ Qo Θ Π, where Π is orthogonal projection
onto ker((?θΛ(θ) By construction, the δ invariant for this operator is the
same as that for V/\

A deformation (rel{0,1}) of the path of Fredholm operators C(t) =
Q\A(t) θ QiA{t) is defined by the operator C{t):J{Λ{t) Θ ^ ( 0 -> 2[A{t) θ
J?2A(t) which is given by the formula C(t) O ( Φ Θ Θ ) Ξ ( Φ Φ Θ ) O (V/^'(0 θ
QθA{t))- Then, a path of index 0, Fredholm operator with the same δ
invariant as V / is defined by C ' θ Π o ψ .

This last operator has the same δ invariant as the path of index 0,
Fredholm operators C" = {C"(t):^A{t)®^A{t)Θ^0A{t) - -2M(O ®-2L(0 ®
^OA(t)} which is given by the formula C"(t) {aua2,v^) = (C'(t) (aua2),
Y(a\,a2) - QoA{t)Vo). Finally, C" is homotopic (rel{0,1}) to the path QA{t)

which implies that they have the same δ invariants.
The proof of Proposition 5.2 is completed by the observation that

δV/s([A], [A']) and the mod(2) spectral flow for the V/ are the same.
Proof of Proposition 6.1. To define Q\,IA it is necessary to introduce a

cut-off function, β: [5/4,7/4] -* [0,1]. Require that β = 0 on [5/4,11/8]
and that β= 1 on [13/8,7/4].

To save notation, write A for /* 2A and also for j*i*A. Associate to each

pair (fli,02) € 9[A®^IA the unique θ(aua2) e Ω°(Λf) x su(2) which solves

(6.3) d A * d A θ - d A * d A ( β Ψ ι ( a x ) + ( l - β ) - ψ 2 ( a 2 ) ) = 0 .

Here, ψ\,2 are defined in (4.4). With θ defined, introduce

(6.4) θ x = θ - β { ψ x - ψ 2 ) 9 Θ2 = θ - ( l - β ) ( ψ 2 - ψ{)

as elements of Ω,°(M\f2) x su(2). (6.3) insures that θ\ and θ2 are harmonic
on M\ and M2 respectively.

Next, define W\ e Ω°(M\) x su(2) to be the unique solution to

(6.5)

with^il^Mj = 0 . Here, a = (a2 + dAθ2)-(a\+dAθ\) and dv[A]- Is defined
in (4.10).

Introduce w2 e ΩP(M2) x su(2) as the unique solution to

(6.6) d

with w2\dM2 - 0 .
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Finally, define w e Ω°(Λf) x su(2) as the unique solution to

dA.dAw = FAΛ(β- ( f l2 + dAθ2) + (1 - β) • (α, + dAθx))

-{β- (β2 + dAθ) + {\-β) (ay + dAθ)) A FA

+ β-dA*dυ[A]-(a2 + dAθ2)

+ (l-β)dA*dv[A](aι+dAθι).

At this point βi,2Λ can be defined:

(O.OJ

-dA(w + wU2).
The important features of Q\,2A are summarized in the following lemma.
Lemma 6.2. Let [A] e &°. Then the following hold:

(1) The operator Q\A® QIA' &XA ®^2A -* <&\A ®^IA defines a bounded,
Fredholm operator.

(2) The difference {Q\A®QIA)- ^/\A®^/IA) *S a compact perturbation
ofQiA θ Q2A.

(3) This difference vanishes when /'(A) = 0.
(4) Let Φ:3>A -+ ΉAΦ^A denote the restriction, Φ / = (f\Mι, f \ M l ) . Let

Φ:<STA^ &ΪA®ΉA be as defined in (4.7). Then, ΦV/;( ) = (β M θβ2^)Φ( )-
(5) The assignment (Q\A θ QιA) to A defines a smooth section over &°

of the fiber bundle /* Frec^-όG^T θ ^ί'^x θ -S2) whose fiber over \A\ is
the Banach manifold of bounded, index 6g - 6, Fredholm operators from

Proof of Lemma 6.2. With Lemma A.4 from the Appendix, assertions
(1), (2) and (5) are straightforward applications of the Sobolev inequalities
and the Rellich lemma. The details are left to the reader. Assertion (4)
requires the facts from Lemma 6.3, below. With Lemma 6.4, assertions
(3) and (4) are simple exercises for the reader.

Lemma 6.3. Let [A] e &° and let ae^A. Introduce <pU2 e Ω°(MU2) x
su(2) as defined in (4.3). Then θ\,2(Φ(a)) = <P\,2(a). In addition, Wιf2(Φ(a))
= 0 and w(Φ(a)) = uf(a) with u' defined in (4.11) using a = 0.

Proof of Lemma 6.3. If (a{,a2) = Φ(a), then a{ - dAψ{ = a2 - dAψ2

on Mo. It follows that a{ +dAθ{=a2 + dAθ2 on [11/8,13/8] x Σ. Define
a! e ^A by the following rule: On Mi\[ 13/8,7/4], set a! = ax + dAθu and
on M2\[5/4,11/8], set a! = a2 + dAθ2. Note that a! = a- dA(φ{ - θ{) on
Λ/i\[13/8,7/4], and that a1 = a - dA(φ2 - θ2) on M2\[5/4,11/8]. Since
A is irreducible on [11/8,13/8] x Σ, it follows that ψ\ - θ\ = φ2 - θ2 on
[11/8,13/8] x Σ. Thus a global, harmonic section of Ω°(Λf) x su(2) is
defined by the pair (<P\-Θ\,φ2-Θ2). As A is irreducible, this section must
vanish. This fact and the unique continuation theorem in [3] imply that
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ψ\ = θ\ on Mi and that φ2 = θ2 on M2. The final assertion of the lemma
is a direct consequence of the equality between 0 1 2 and φ\,2. q.e.d.

The inclusion of Mo in M\^ induces the restriction maps, j*2:*2[,2A —>
2QA and their difference Ψ:^f\A θ . S ^ —• 2^A which sends C/1,/2) to
|Ψ(/ l 5 / 2 ) = fγ - filMo- The operator QOΛ is constructed so that
ΊiQ\A θ β ^ ) = QOA ' Ψ, where Ψ is defined in (4.7).

Some auxiliary constructs are required for the definition of QoA. Fix
a e %A and define y\(a) e Ω°(M\) x su(2) to be the unique solution to
the equation

(6.9) dA*dAyι+β'{FAΛa-aΛFA + dA*dυ[A] a) = O with yx\dMl = 0.

Likewise, define yι(a) £ Ω2(Af2) x su(2) to be the unique solution to the
equation
(6.10)

dA*dAy2-{l-β)'(FAΛa-aΛFA + dA*dυ[A] a) = 0 with y2\dMl = 0.

The operator Q0A sends a to

(6.11) QOA a = (*dAa + dυ[A] α - dA(y2 - y{)9

The relevant properties of this operator are listed in
Lemma 6.4. Let [A] e &°. Then the following hold:
(1) The operator QoA:<9ζA -> 3§A defines a bounded, Fredholm operator.

(2) The difference QOA - V/OA ^ a compact perturbation ofQ0A.
(3) This difference vanishes when /'{A) = 0.

(4) LetV:3iA®&2A - &*A denote the restriction^ fuf2) = (/I-/ 2 ) |Λ/ 0 .

(5) The assignment ofQoA to A defines a smooth section over &° of the

fiber bundle i\j\ Fred6£-6(^,°2o)
Proof of Lemma 6 A. With Lemma A.4 from the Appendix, assertions

(1), (2) and (5) are straightforward applications of the Sobolev inequalities
and the Rellich lemma. The details are left to the reader. Assertion (3)
follows from the fact that Uo,y\,2 all vanish when /'{A) = 0. Assertion
(4) is a direct calculation which is left to the reader. q.e.d.

With QA defined by (6.2), assertions (l)-(4) of Proposition 6.1 are all
seen as immediate consequences of Lemmas 6.2, 6.3 and Lemma 4.3.

7. The signs of / ( / ) and λ(M)

A complete proof of the main theorem requires the comparison of the
signs of χ{/) and λ(M). The purpose of this section is to establish that
these signs agree.
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For this purpose, take a Heegard splitting of M with large genus, g, and
use this splitting to define λ(M).

The sign of χ{/) was defined by considering connections on M x SU(2)
of the form A = Γ -j- s a, where Γ is the product connection, 0 < s < 1
and a e Ω1 x su(2). No generality will be lost by assuming that d£a = 0.
Assume that τ 0 of Definition 2.7 is not zero and that [A] e &° for all
s. It follows from the discussion in §2 that for all small s, the operator
KA is nondegenerate. Such small values of s will henceforth be implicitly
assumed.

Proposition 7.1. Let M be an oriented homology 3-sphere with a Rie~
mannian metric and large genus Heegard splitting. Choose a e Ω1 x su(2)
for which d^a = 0. Introduce the 3 x 3 matrix τa and assume that it has
nonzero determinant. Let A = Γ + s a for s > 0, but small and define
the operators QaA using Proposition 6.1 with a = 0. Introduce the homo-
morphism Ψ of (4.4) and restrict it to Ψ: ker(Q1/4 Θ Q2A) -* ker(Q0A). Also,
define a homomorphismΨ'ikeriV/^ΘkeriV/,^) -+keτ(V/0\A) tobeΨ
followed by L2-orthogonal projection onto ker(V/oU). Then the following
hold:

(1) The su{2)-valued \-from, a, can be chosen so that for all t e [0,1],
the Fredholm operators (1 - t) • (V/\\A Θ V^ |^) + t [QXA θ Q2A) and
(1 - t) V/O|Λ + t QoA have kernel dimension equal to 6 g - 6.

(2) In addition, a can be chosen so that for all t e [0,1], (1 - t) HA +
t ' QA>&A -* %A is an isomorphism. In particular, both Ψ and Ψ' are
isomorphisms.

(3) This interpolation of operators induces orientations on ker(Q\A θ
Q2A) andker{Q0A) from those on ker(V/U) θker(V/^U) andkeτ(V/0\A)
respectively. These orientations have the property that Sign(det(Ψ)) =
sign(det^) = sign(τβ).

The preceding proposition will be proved shortly. It has the following
corollary:

Proposition 7.2. Let M be an oriented homology ^-sphere. Then
sign(Λ(M)) = signGf (/)) .

Proof of Proposition 7.2. This is now an automatic consequence of
Propositions 5.3 and 6.1. q.e.d.

Proposition 7.1 makes assertions about the kernels of certain elliptic
operators. For s small, the operators in question (functorally defined with
the connection Γ + s a) are perturbations of operators which are defined
using the connection Γ. Analytic perturbation theory gives an effective
method for computing Γ + s a data in terms of data for Γ. To simplify
the terminology for this perturbation theory, in the sequel, (?(s) will be
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used to signify an ^-dependent norm which is of the form s u(s) with u(s)
bounded for s in some neighborhood of 0. (The bound may depend on
the fixed 1-form a.)

Introduce the vector space of real-valued harmonic forms, /7 ι (Λ/o, 1,2) =

{ω G Ωι(Mot\t2):dω - 0,d*ω = 0 and ilM{)xl^
ω) = 0} There is a natural

isomorphism Ψ:Hι(M\) ® Hι(M2) -+ Hι(M0) which sends (v\,v2) to

(7.1) Ψ(vi,ϋ2) = V\ -dη{ -v2 + dη2,

where η\2 is harmonic on Λ/o for the scalar Laplacian, d * d, and obeys
*dM0(V\,2 - dη\>2)) = 0. The vector spaces Hι(Mo), Hx(M\ί2) have dimen-
sions 2g and g, respectively.

Define a nondegenerate, symplectic pairing on Hι(M0) by

(7.2) (v,υ')= [ dtΛ(υ Av') = ±- [ {v Λvf).
JM0 JΣ

Let hi = Ψ(Hι(Mι) Θ 0) and h2 = Ψ(0 θ Hι(M2)). Then each of hu2 is
totally isotropic for the pairing above. (Use Stoke's theorem to prove this.)

To each v e Hι(M0), there exists a unique υ* e Hl(M0) with the
property that for any w e H1(MQ),

(7.3) {w,υ*}= f W Λ*V.

Note that υ —• v* is an isometry, and v** = -v. Since h\i2 are totally
isotropic, the symplectic dual, *, sends h\ to h2 and vice-versa. With the
product metric on Λ/o, the identity

(7.4) *v = -dtΛυ*

holds for any v G H1(MQ). Use this product metric in the sequel.
The pairing above extends naturally to H1(MQ) X SU(2) if it is defined

to send (v\,v2) to

(7.5) (v,v') = -tτ dtΛ(vΛv').
JM0

The minus sign in (7.5) is due to the fact that the trace on su(2) is negative
definite.

The 1-form a in Proposition 7.1 will be constructed after choosing ele-
ments ω\ G Ai®su(2) and ω2 G A2(8)su(2). Write Ψ - 1 ( ω i -ω2) = {a\,a2).
Thus, ai restricts to Mo as a>\ + drη\ with η\ harmonic; and a2 restricts
to Λ/o as ω2 + drη2 with η2 harmonic. Set

(7.6) a = *dΓ({l - β ) a ι + β ' a 2 ) = - * β ' {dtΛ ( a { - a 2 ) ) .
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To compute det(τfl), choose σ e su(2) with tr(σ2) = 1. Then,
(7.7)

τa(σ, σ) = - ί tr([σ, (1 - β) a{ + β α2] Λ jϊ' (dί Λ [σ, α^ - α2]))
7Λ/0

The last expression proves that τa is positive definite when ω2 = - ω * for
ωi chosen in general position.

Proposition 7.1 requires the consideration of certain families of elliptic
operators. For this purpose, introduce

E e Hom(Hι(M0) x su(2) ®Hι{M0) x su(2),su(2)*)

as the pairing which sends (v,v',σ) to

(7.8) E(υ9υ') σ = 2.([σ9υ]9υ').

Note that E(v,υ') = E(vf,v).

The following two lemmas will be proved at the end of this section.
Lemma 7.3. Let a be as described in (7.6). Define C, C : h\ x su(2) θ

hi x su(2) —> su(2)* by sending (^1,^2) to

C{υuυ2) = E(ω2,vι) + E{ωι9υ2),

C(vuv2) == -(E(ωlv{) + E(ω*2,v2)).

IfC and C are surjective, then for all s > 0, but sufficiently small, and for
all te [0,1],

ker((l - 0 V/o\r+s a + t - Qor+s.a) ~ ker(C;) Π ker(C)

cH\M0)xsu(2).

This isomorphism is obtained as follows: For each v e ker((l-ί) V/δ|r+s α+
t' Qor+s a))> there exists a unique ω e ker(C') n ker(C) with the property
that υ - ω is O(s) using the L\-norm on Ω1(MQ) X SU(2).

Lemma 7.4. Let a be as described in (7.6). Define C\,C2:h\,2x su(2) —•
su(2)* by sending υ 1 to C{(v\) = E{ω2,vχ) andv2 to C2(v2) = -E(ω\,v2).
For each t e [0,1], define a homomorphism θt:h\ x su(2) θ Λ 2 x su(2) θ
su(2)* -* φ 3 su(2) by sending (v\,v2,σ) to

(1 - 0 (Cxivx) + C2(v2), Q(vi) - C2(υ2),σ)

+ / (Cf(v{,v2),C(vuv2),Ta σ + Ci(vi)).

Ifθt is surjective for all t, then for all s > 0, but sufficiently small, and for
all tG [0,1],

ker((l - 0 V/o\Γ+s a + t Qor+S a) « ker(θ,) C ^!(A/o) x su(2).
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This isomorphism is obtained as follows: For each v e ker((l-ί) V/ζ|r+j.fl+
t' Qor+s a)> there exists a unique ω e ker(θ,) with the property that v - ω
is O(s) using the L\-norm on Ω{(MQ) x su(2).

These formulas simplify when the ω2 = - ω * . Restrict to this case, and

In this case, Lemma 7.4 specializes to
Lemma 7.5. Let a be as described in (7.6) with ω\ = ω and ω2 =

-ω*. Define a homomorphism θ* : h\ x su(2) θ h2 x su(2) —• 0 2 su(2) by
sending (v\,v2) to {C'(v\,v2),C(vι,v2)). For generic ω e H\ x su(2), θ *
is surjective. For all s > 0, but sufficiently small, and for all t e [0,1],

ker((l - 0 V/0\Γ+s.a + t βoΓ + J.β) « ker(θ*) = ker(C') n ker(C)

Ci/ 1 (M 0 )xsu(2).

This isomorphism is obtained as follows: For each υ e ker(( 1 -t
t Qor+s-a)> there exists a unique ω G ker(C) Π ker(C) with the property
that v - ω is &{s) using the L\-norm on Ωι(Mo) x su(2).

Proof of Lemma 7.5. But for the assertion that θ* is surjective for
generic ω, this is a direct consequence of Lemma 7.4. The proof of sur-
jectivity is simple linear algebra which is omitted. q.e.d.

Lemmas 7.3 and 7.5 imply assertions (1) and (2) of Proposition 7.1.
To prove assertion (3) of said proposition, the orientation on the vector
spaces ker(V/[|Γ+5.f l) θker(V/ζ|r+j.β) must compare favorably with that
on ker(V/6|r+5.tf). Here, one takes a as in Lemma 7.5. These vector
spaces are oriented in the following way: When a connection, A, restricts
to one or more of Λ/0,1,2 so that [Λ] e /&% { 2, then ker(V/osi52U) is naturally
identified with T/κ% {2|μj. Then, following a generic path from A to Γ+s-a
will orient keτ(V/oχ2\r+s a)

This method for computing the orientation of ker(V/6,i,2|r+5-a) is trac-
table because [Γ] is a limit point of each of /^^ 1 2 . Thus, one can find
connections A of the form Γ + s a', for small s, which restrict to one
of Λ/0,1,2 so that [A] e /n% { 2 . Near the trivial connection, Γ, such a con-
nection will have the form A = Γ + s a' + <f(s2) where the su(2) valued
1-form a! restricts to Af0fi,2 as υ + dΓη for υ e Hι(A/0,1,2) x su(2) and
η e Ω°{Moχ2) x su(2).

Calculations are clarified by first considering the general case where the
connection A = Γ + s a' with a' unrestricted. For fixed a', introduce the
homomorphisms Go,\,2'H

ι(Mo,\,2) x su(2) -+ su(2)* which are defined by

(7.9) Goχ2(v) σ = - ί tr([σ, a'] Λ *v).
•̂  Λ/0,1,2
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Also, introduce the homomorphism G':H1(MQ) X SU(2) -> su(2)* which is
defined by

(7.10) G'(v) σ = - [ dtMτ([σ,a']/\v).
J

Lemma 7.6. Let a' e Ωι(M) x su(2) be fixed. Suppose that Gb,i,2 and
G' are all surjective. Then, for all s sufficiently small

ker(V/ζ|Γ+,.fl/) « ker(G;) nker(Go) c Hι(M0) x su(2),

ker(V/> 2 |Γ + J. f l0 ~ ker(Gi>2) c Hι(Mιa) x su(2).

The isomorphisms are obtained as follows: For each v0 e ker(V/o|r+s α')>
there exists a unique ω 0 e ker(G') n ker(Go), and for each v{i2 £
ker(V/ί52|r+5 α')» there exists a unique ω\f2 £ ker(Gi,2); these are defined so
that ^0,1,2-̂ 0,1,2 isL2-orthogonalin Ω1 (M),^)xsu(2) toHι(M0ji?2)xsu(2).
Furthermore, 0̂,1,2 - 0*0,1,2 is &{s) using the Lj-norm on Ωι(M0) x su(2).

This lemma will also be proved at the end of this section.
Orient H{(M\) « h\ and su(2) so that when [Γ + s-a'] restricts to M\ to

lie in m\, then the orientation on ker(V/ίr+5.α') « Hι(M{)/ Im(G*) agrees
with the orientation which is obtained by identifying ker(V/\r+s a'

Via the pairing (, ), the orientation of Hι(M\) will induce orientations
on Hι(M2) and Hι(Mo). It is an exercise to check that this orientation
on HX(M2) has the property that when [Γ + s a'] restricts to M2 to lie
in /κ\9 then the orientation on ker(V/2r+5 a') « Hx (M2)I Ivcι(GD agrees
with the orientation which is obtained by identifying ker(V/ζr+j β')

Likewise, when [Γ+saf] restricts to Mo to lie in /̂ g, then the orientation
on ker(V/or+5.fl') « Hι(Mo)/Im(G'* Θ GQ) agrees with the orientation
which is obtained by identifying ker(V/or+j.β0 with T/κ^\Γ+s.a,.

As Λ' varies in Ωι(M) x su(2) keeping G' Θ Go and Gi52 surjective, the
orientations on ker(V/o,i,2Γ+j-a1) a r e determined by the linear maps G'θGo
and Gi?2 For a' = a as given by (7.6) with ω\ = ω and α>2 = —ω*, one
finds that GU2 = Ci,2, Go Ξ C O and G; = C.

The preceding paragraph and Lemmas 7.3 and 7.5 imply that the linear
map Ψ is orientation preserving when a is given by (7.6) using ω\ = ω
and with ω2 = —ω*. For such a, det(τfl) > 0. These last two facts give
assertion (3) of Proposition 7.1. (As a check, note that when a is given by
(7.6), using co\ = ω and with ω2 = +ω* then Ψ is orientation reversing,
but det(τΛ) < 0.)
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Proposition 7.1 is complete with the proofs of Lemmas 7.3, 7.4 and 7.6.
All of the assertions of Lemmas 7.3 and 7.6 are proved using standard
techniques from linear perturbation theory. Generally, suppose that Lo is
a linear, Fredholm operator from a Hubert space E{ to a Hubert space
E2, and suppose that u is a compact operator from E\ to E2. Define
a linear map h[u]:keτ(Lo) —• coker(Lo) by sending f to the orthogonal
projection of u v onto coker(Lo). Suppose that this projection is surjective.
Then, for all s sufficiently small, the kernel of Lo + s u is isomorphic
to h(u)~l(0) c Ker(Lo). (This is another way of stating the Fredholm
alternative.)

Proof of Lemma 7.6. Consider the situation for ker(V/o,i,2|r+s -a')'- De-
fine the Hubert spaces Ex = {(υ,φ) e L2(Ωι(M0Λ,2)) x su(2)φLf(Mo,i,2) x
su(2):/;M o i 2(*^) = 0 = i*dMoJ<P)} and E2 = L2(Ωf(M0Λ,2)) x su(2) Θ
L2(A/O)i>2) x su(2). In all three cases, take for Lo:

*rfΓ rfr
έ/f 0

Proof of Lemma 7.3. In this case, take 2?i, £2 and Lo as described above
for Mo. Both y{ and y2 of (5.9) and (5.10) have the form s y[2 + s2 • y'\,2

with y'/2 being <9{X) in L^ as 5 -• 0. Each / l j 2 obeys (5.9) or (5.10) with
the operator dγ+s.adτ+s.a replaced by dγdΓ and with Fτ+S.a replaced by da.
Using these facts, the lemma follows as an exercise in integrating by parts.

Proof of Lemma 7.4. The proof here requires a less trivial application
of perturbation theory. This is because neither [FA, θ\^] nor dAw in (5.8)
need be <f(s) as s —• 0. The following model applies: Let E\^ be Hubert
spaces and let L§\E\ —• E2 again be a Fredholm operator. Introduce
ΠLO £2 —• ^2 to be the projection onto the cokernel of Lo

Now, for s > 0, let u(s):E\ —• E2 be a compact operator with smooth
5-dependence, but suppose that u(s) is singular at s = 0 in the following
sense: Assume that there exist auxiliary Hubert spaces E3, E4 and bounded
maps W\o, W\\:Eι —• £3 and ^2: £*4 -^ £"2? and that there exists a bounded,
index 0, Fredholm operator H0.E4 —• £"3. Require that w io maps into the
orthogonal complement of the cokernel of Ho and that w2 maps the kernel
of HQ orthogonal to the cokernel of Lo. Introduce Π//o: £3 —• £3 to denote
the orthogonal projections onto the cokernel of HQ.

For all s > 0, let υo,v\:E4 —• £3 be compact operators with ^ 0 annihi-
lating ker(//b). Allow for a smooth 5 dependence of vi for s > 0. Require
that Ho + s VQ + s2υ\ (s) is invertible for all s > 0.

Finally, suppose that M(S) can be factored as

U(S) = W2 - (Ho +S VQ + S2V\(s))~l (W\o +S W\\) + U',
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where u'{s):E{ —• E2 is a compact operator which depends smoothly on
s>0.

Lemma 7.7. Under a proviso, orthogonal projection in E\ produces an
isomorphism {and, to zeroth order in s, an isometry) between the kernel of
L0+s u(s) and the subset of elements {ψ+w2σ:(ψ,σ) e ker(L0)θker(i/0)}
which obey the following constraints:

(l)nLo.r.(ψ + L-ι w2 σ) = 0.

(2) ΠHo (MO) σ - wn (ψ + L~ι w2 σ)) = 0.
Here, r is determined by the data Ho, w%,w^,w2,V\9VQ and u'. The pro-
viso requires the surjectivity of the linear map from ker(L0) θ ker(//b) to
coker(Lo) θ coker(//o) which sends (ψ, σ) to

(ΠLo r - (ψ + L^1 w2 σ), ΠHo (v σ - w{ (ψ 4- L" 1 w2 - σ))).

Proof of Lemma 7.7. This is a judicious application of the Fredholm
alternative. q.e.d.

Lemma 7.6 is a direct, though computationally intensive, application of
Lemma 7.7. The details are left as an exercise for the reader.

8. Perturbations

The purpose of this section is to study nondegenerate perturbations of
the section / of Γ ^ # .

8a. Properties. The class of admissible functions on 3S was intro-
duced in Definition 1.4. The purpose of this subsection is to explore the
properties of the admissible functions.

To begin, fix a smoothly embedded loop in M, γ, and consider the
function py. The differentiability with the Z^-Hilbert manifold structure
is not obvious. To consider this question, orient S{, and introduce the
matrix Py[t,y\A] e SU(2) which defines the parallel transport from φγ(t,y)
to φγ{t,y) around φγ{ ,y) in the positive direction using the connection A.

The differential of pγ[A] is the linear form on Ω1 x su(2) which assigns
to a e Ω1 x su(2) the number

(8.1) dpγ\[A](a) = ί tτ(Pγ[t,y;A] a[t,y]) η(y) dt d2y.
JSιxD2

Here, a[t,y] - dt = φ(-,y)*a\t.
Observe that

(8.2) |

so that pγ is at least Lipschitz for the L\-Hubert manifold structure.
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To define the nth derivatives of pγ, introduce, for ordered pairs of points
(s,t) e S{, the matrix Pγ[t,s,y;A] e SU(2) which gives the parallel trans-
port in the positive direction along φγ(-,y) from s to t using the connection
A. The nth derivatives of pγ define the ^-linear form on Ω1 x su(2) which
sends {tf/}"=1 to the number V(AZ)/?7|[/4]({<Z/}"=1) which is given by the for-
mula

γtn,y\A]' a[tn,y] Pγ[t2,tuy9A]> a[tΪ9y])
( π [ 0 , l ] ) x Z ) 2

(8.3)

which implies that

(8.4) ^n)Py\[A}({ai})U) < I (ί \a[s,y]\'ds)n.d2y.

Since the map from Cι(M) to C°>ι{D2) which sends / to

(8.5) f f(φγ(t,y))-dt

extends to a bounded, linear map from L\(M) to L\(D2), one obtains the
uniform bound

(8.6) \x?Wpγ \[A] ({fl/}?=1)| < c o n s t - Π d l V ^ H b + | | ^ | | L 2 ) ,

where the constant is independent of the connection A.
(8.6) implies that pγ is infinitely differentiate with the Z^-Hubert man-

ifold structure.
One last fact: For n = 2, (8.6) can be bettered:

(8.7) Vdpγ \[A] (a,b) < c o n s t - M b ||6||L2,

with the constant being independent of A.
Select a base point xo in M and a finite set, Λ, of closed, embedded loops

based at Xo Require that a subset of Λ generate π\(M). For example, if
M is furnished with a Heegard splitting along a genus g surface Σ, one
could take for Λ a basis of loops on Σ which generated H\(Σ).

The set Λ of loops indexes the set of functions {pγ: γ e Λ} on SB.
Lemma 8.1. The set Λ can be chosen so that all of the following hold:
(1) (φγeA ker(dpγ\[A])) Πker(V/| M ] ) = {0} whenever [A] e /~ι(0).

(2) The set of functions {pγ: γ e Λ} separate the points in /~ι{0).
(3) Given a Heegard splitting of M, Λ contains only loops which lie in

Mo.



586 CLIFFORD HENRY TAUBES

(4) Given the Heegard splitting, the functions {pγ:γ G Λ} separate the
points of/no c 3B§ and embed m% in Xy€Λ R.

(5) The image of the reducible connections under {pγ: γ e Λ} is disjoint
from the image of/-{{0)n&*.

Proof of Lemma iΛ. Consider assertion (1): Let [A] be a flat connection,
and let v e ker(V/^). Suppose that dpγ\A v = 0 for all loops γ in M. Fix
a loop γ. Since A is flat, and dAυ = 0, the following integral is independent
of the point y e D2:

(8.8) sγ[A](y) v = [ 1x(Pγ[t,y;A] υ[t,y]) dt.

Thus, dpγ\[A](υ) = 0 if and only if sγ[A] v = sγ[A](0) • v = 0.
If sγ[A] - v = 0 for all loops γ in M, it is not hard to construct φ e

Ω° x su(2) so that v = dAφ. As A is irreducible, v = 0.
This argument shows that for each orbit of a flat connection [A] e ^ # ,

there exists a finite set of loops, Λ[̂ 4], such that the second assertion of the
lemma holds for [̂ 4] using the set A[A]. But, then this second assertion
holds for all connections [A'] is an open neighborhood of [A] in 3§*. The
first assertion of the lemma follows now because /~x{ϋ) is compact.

To prove the second assertion of the lemma, consider distinct orbits,
[Λ], [̂ 4'], of flat connections. Each is determined by its holonomy; it is the
holonomy which identifies /~l(0) with Hom(πi(M);SU(2))/Ad(SU(2)).
Thus, one can find a loop, γ = γ[A,A'], with the property that pγ dis-
tinguishes [A] and [^']. By the continuity of pγ, there will be an open
neighborhood of {[A], [A1]) in X 2 ^ # on which pγ xpγ misses the diagonal
in R x R. Therefore, once a compact subset in the complement of the
diagonal in X2//~1(0) is fixed, there is a finite set Λ of loops with the
property that for any ([A], [Af]) in the said compact set, there is a loop in
Λ for which the resulting p function takes distinct values on [̂ 4] and [A1].
This fact and the first assertion of the lemma imply the second assertion.

The third assertion of the lemma follows from the fact that the inclusion
of MQ in M induces a surjective group homomorphism 7Γi(Λfo) —• πi(Af).
The fourth assertion of the lemma has a proof which mimics the arguments
for assertions (1) and (2). The details are left to the reader.

The fifth assertion of the lemma is satisfied because n\{M) is equal to
its own commutator subgroup. Thus, assertions (1), (2) and (5) can be
satisfied with loops of the form y = γx - γ2 yf1 γ^1, where y~x (t) = y, (-ί)
(for t e Sι), and is the composition law on the space of loops. On such
a loop, the function pγ has value 2 on any reducible connection. q.e.d.

To construct a perturbation of/*7, introduce the vector bundle 3* —• ̂ #

of §4. Since the Z^-Hubert space structure on ^ # is used, 3* differs from
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in that the L2-Hilbert space structure is used on the fibers. As S? is
fiberwise its own dual, the forgetful functors give the continuous, injective
bundle maps T38* -+ S? -> ( Γ ^ # ) * . As in §4, the bundle 3> is introduced
because the section / of ( Γ ^ # ) * is actually a smooth section of 2?. And,
it is a Fredholm section of S* in that V/: T&# —> 3* defines a continuous
family of bounded, Fredholm maps.

Now, use Lemma 8.1 to provide the set Λ of loops; let N denote the
number of loops in Λ. Choose a smooth function / : R^ —• R, and define a
function on 3S by a = f{{py}yeκ)^ a n d a section of S? —• 38* by sending
[A]to/'\[A] = (/ + d*)\[A].

The next three lemmas summarize important facts about /'.
Lemma 8.2. The section /' as defined above is a smooth section of

Sf over &t* which extends continuously to 38. Furthermore, the covariant
derivative V/'\ T&* —> 2? defines a smoothly varying family of Fredholm
operators, and V/f - V/ defines a smoothly varying family of compact
operators.

The next lemma describes /'~x(ΰ).
Lemma 8.3. (1) Suppose that [A] is an L\-connection on M x SU(2)

which obeys f{A] = 0. Then [A] is a smooth connection whose derivatives to
any finite order obey a priori estimates which depend solely on the Rieman-
nian structure on M and on certain norms of the derivatives of the function

f
(2) For any /, /'~{{Q) is compact.
(3) Given δ > 0, there exists ε > 0 such that when the function f on UN

obeys \df\ < ε, then /'~ι(0) lies within an L\-distance δ of/~ι(0).
Consider a specific choice for a. Use the functions {py}γ^κ to identity

f~ι{0) with its range in R^. Introduce the set ^ * as defined in Propo-
sition 1.5. Let q be a smooth function on RN which is identically 1 on a
neighborhood of /-l(0)\Jt*.

Define a section of 3* —• ^ # x RN by sending ([A], {sγ}γeA) to

(8.9) _
[A]

Let B(ε) denote the ball of radius ε > 0 about the origin in R^.
Lemma 8.4. There exists ε > 0 {which depends on the choice ofq) such

that the section * as defined above is transverse to the zero section of S?
when restricted 38* x B(ε).

Proof of Lemma 8.2. The smoothness of/7' is a consequence of (8.6).
The behavior of V / ' - V / is a consequence of (8.7).
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Proof of Lemma 8.3. The third assertion is a consequence of K. Uhlen-
beck's compactness theorems in [18]. Indeed, if [A] c /'~ι(0), then (8.2)
insures that \\FA\\Li < const ε. The second assertion of the lemma follows
from the first. The first assertion is proved by standard elliptic techniques.
In fact, the equation / ^ = 0 is an equation of the form FA = v[A]. If A
is an Lj-connection, then (8.2) asserts that υ[A] is uniformly bounded in
L°°. Thus, FA is uniformly bounded in L°°. Using Uhlenbeck's results in
[18], this puts the connection in L\ for all p. Then, so is v[A]. But now
bootstrapping, this puts FA in L\ for all p and hence, the connection is in
Lp

2 for all p. Continuing in this vein completes the proof.

Proof of Lemma 8.4. Lemma 8.1 insures that d is transverse to the zero
section at the points /~x(0) x {0} c 38* x B(ε). Therefore, by continuity,
there exist δ, ε > 0 such that this assertion holds for all points of the form
[A] x {sγ} with [A] of Z^-distance less than δ from /~ι{ϋ) and with {sγ}
in B(ε). Now appeal to Lemma 8.3. q.e.d.

Together, these three results have the following corollary:

Proposition 8.5. Let q be a smooth function on RN, which is identically
1 on a neighborhood of /~x{ϋ)\£*. Then there exists ε > 0 such that

for {sγ} in the complement of a set of measure zero in B(ε), the section
/' = f + d(q(p) ΣγeAsγ' Py) °f & has a finite set of transverse zeros on
3§*, each the orbit of a smooth connection. Furthermore, given δ > 0, one
can take ε sufficiently small so that every zero of /' is within an L\-ball of
radius δ of a zero of /.

Proof of Proposition 8.5. The first assertion is an application of the
Smale-Sard theorem using Lemma 8.4. The second assertion was estab-
lished in 8.3. q.e.d.

Proposition 8.5 establishes the existence of a nondegenerate perturba-
tion of / as defined in § 1.

Proof of Proposition 1.5. This is an immediate corollary of Lemma 8.1
and Proposition 8.5.

8b. Invariance under perturbations. The number χ{/) was defined in
§2 after choosing a nondegenerate perturbation of / to /' as specified
in Proposition 1.5. The number was asserted to be independent of the
perturbation; the proof of this fact will be given here.

Let ^o,i be admissible functions on £$ as given in Definition 1.4. Con-
sider the 1-parameter family of perturbations of/7 which sends f E R to
/t = / + dtέQ + / du\.

Suppose that /±\ are nondegenerate perturbations of / in the sense
of Definition 1.4. Propositions 2.3 and 2.11 assert that χ{/\) and χ{/-\)
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agree. This fact is a straightforward consequence of the theory of nonlinear
Fredholm maps (see [9]). The maps in question being / ± i , thought of as
maps from 38* to Sf which commute with the vector bundle projection.
Lemmas 1.2 and 1.3 also follow readily once this nonlinear Fredholm
theory is set up.

The application of the abstract Fredholm theory to this gauge theoretic
context is not complicated. There is a basic construction to reduce the
problem to finite dimensions. Since all of the perturbations in question
have compact zero sets (courtesy of Lemma 8.3), standard, finite dimen-
sional degree theory then applies. The following is an outline of the re-
duction to finite dimensions.

To begin, fix attention on a zero [A] of /t in ^ # , and for notational con-
venience t = 0 will be taken. There exists δ > 0 such that a neighborhood
[A] in 38* is diffeomorphic (by construction) to

JT{δ) = {ae L2(Ωι x su(2)): d\a = 0 and

\\\\2

For δ > 0, but sufficiently small, a trivialization of S* —> J^{δ) is
defined by a map l.Sf U^)—• JV(β) x -% which sends (a,f) to

(8.11) l(a).f = f

where χ = χ(a,f) e Lf(Ω° x su(2)) is the unique solution to the equation

(8.12) dA * dAχ = *(a Λ */ - */ Λ a).

The Sobolev inequalities and Kato's inequality insure that \\χ\\A <
C[A] - \\a\\L4 | |/| |L2 < Cf[A] \\a\\A | |/| |L2 where c and c' are constants
which depend on [A] through the first eigenvalue of the operator d*AdA on
L2(Ω° x su(2)).

Note that χ, being jointly linear in a and in /, has uniform estimates
on the norms of its derivatives.

Let Π denote the L2-orthogonal projection in ZΓA onto the kernel of
V/OΛ Let υ e ker(V/o^). There exists δ0 > 0 such that if v e Jf(δo)
and \t\ < δ0, then there exists a unique af(υ,t) e JV(δ) which solves the
equation

(8.13) (1 - Π) l{v + a1) (/0A+y+a< + t d*lA+4+a') = 0 € (1 - Π) ^ .

This assertion is proved using the inverse function theorem applied to a
map from (1 - Π) -SfA to itself. The inverse function theorem insures that
a'(') depends smoothly on its arguments.
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Note that A + υ + a'(υ91) is a zero of /6 + t - du if and only if v is a
zero of the smooth map Sike^V/ζ^) -> ker(V/o^) which sends v to

(8.14) S(v) = n-l(v + a'(v, ή)

The finite dimensional map S is the local reduction of the original infi-
nite dimensional system. Having constructed S, the proof of Proposition
2.3 is reduced to finite dimensional degree theory for the map S (see [9]).
Note also that (8.14) establishes Lemma 1.2.

Lemma 1.3 is established by a similar argument, but one must deal with
the singularity in the manifold structure on 3S which occurs at the trivial
connection. To do this, fix a base point Xo in M and introduce the group
S?o as in §2. Then, construct an SO(3) equivariant version of S by working
SO(3) equivariantly on stf /%.

8c. Perturbations and Heegard splittings. Choose a set Λ of loops of
size N < oo. As allowed by Lemma 8.1, choose the loops to lie in the
interior of Mo. In defining the functions {pγ}γeA, make sure the tubular
neighborhood about each loop γ lies inside MQ. Set u = f({pγ})9 where
/ : R N —• R is a smooth function. Set /' = / -\-d^. This is a perturbation
of / as described in Definition 1.4; one which is compatible with the
Heegard splitting in the sense of Definition 4.6.

Note that du\A defines, via (8.1), an L2 and L°° section of Ω1 x su(2);
this section is denoted v[A]. A formula for v[A] is provided in (4.9).

The assignment of v[A] to [A] e ^0,1,2 defines a section, rf*o,i,2> of
the vector bundle -2δ,u °f (4.8). For a = 0,1,2, introduce the section
/£' = /£ + daa of the vector bundle ^ -• 38a.

In each case a = 0,1,2, the section /£ is a relatively mild deformation

of /n. Of particular interest is the behavior of /ά~{{^)-
Lemma 8.6. Let M be a homology 2>-sphere with Heegard splitting. Let

a be admissible in the sense of Definition 1.4, and compatible with the
Heegard splitting in the sense of Definition 4.6. For a = 0,1,2, introduce
the perturbation /£ = /a + dua.

(1) Suppose that [A] is an L\-connection on Ma x SU(2) which obeys
X'\[A] = 0. Then [A] is a smooth connection whose derivatives to any
finite order obey a priori estimates which depend solely on the Riemannian
structure on Ma and certain norms of the derivatives of the function f.

(2) For any f/ά~ι(O) is compact.
(3) Given δ > 0, there exists ε > 0 such that when the function f on RN

obeys \df\ < ε, then /ύ~ι{0) lies within an L]-distance δ of/~ι{0).
Proof of Lemma 8.6. Except for potential complications due to the

boundary of A/α, this lemma has virtually the same proof as Lemma 8.3.
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However, for any connection A, the support of v[A] is disjoint from dM0,
so any connection A which is a zero of /£ restricts to a neighborhood of
ΘMQ as a flat connection. Thus, the boundary question is moot.

The set / ζ ' " 1 (0) c 3Sa is a deformation of /a~x (0); the next lemma and
proposition describe this set. To state the result, introduce the notation

Proposition 8.7. The set of loops A, a function q:UN -> R, and, given
δ > 0, a number ε > 0 can be chosen so that for {sγ} c B(ε) C R^, the
function a = q({pγ}) ΣyeΛ fy ' ^ ^ the following properties:

(1) ΓAe sete X ~ ! (0) and /~1 (0) are identical on an open neighborhood
of their intersections with &a\&®, that is, on the complement of compact
sets in /&'£ and /n?a.

(2) The set /&'£ is a smoothly embedded submanifold of £%%> which is
smoothly isotopic to /*£ by an ambient isotopy which is the identity on an
open neighborhood of the intersection of/κ'® with &a\&®.

(3) The L\-distance moved by a point in /&'£ by the isotopy in (2) is less
than δ.

(4) For an open, dense set {sγ} c B(ε), the conditions of Proposition 1.5
are met.

Proof of Proposition 8.7. Use Lemma 8.1 to choose some N <oo loops
Λ in the interior of Mo, so that the set of functions {Pγ}γ^A separates the
points of /^o, and defines an embedding of ^ into R^.

Except for the orbit of the trivial connection, m\ intersects ^2 in a
compact subset of *&§. This allows the function q to be chosen so that q
vanishes on an open neighborhood of RN of the points in ^o\>»o It also
allows for q to be chosen so that, vis-a-vis assertion (4), the requirements
of Proposition 1.5 are satisfied for a dense set in B(ε).

Assertions (1) and (2) are direct consequences of the implicit function
theorem and Proposition 4.5 provided that (8.2), (8.6) and (8.7) are used
to control the perturbation daa. The proofs are straightforward modifica-
tions of the proofs of Lemmas 8.2-8.4 and Proposition 8.5. See also the
discussion is §8b, above. The details are left to the reader. Assertion (3)
follows from Lemma 8.6.

Appendix

The purpose of this Appendix is to summarize the Fredholm properties
of the various operators and families of operators which are needed for the
proof of the equivalence of Casson's invariant and \ / ( / ) . The proofs of
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the assertions below will be mostly brief, as they amount to straightforward
applications of the Sobolev inequalities, the Rellich lemma and Kato's
inequality (see [1], or in the gauge theory context, see the appendix in [12]
and [17]). Proposition 2.1 is proved at the end of the Appendix.

To begin, let X be an oriented, Riemannian 3-manifold with boundary,
dX. Introduce si to denote the space of smooth connections on X x SU(2).
Using the product connection, identify si with Ωι{X) x su(2) and use the
L\-inner product on the latter space to give si the structure of a manifold,
modelled on a pre-Hilbert space.

Part 1. The operators. Introduce Wι = {a e Ωι x su(2): i*dX{*a) = 0}
and W° = {λ e Ω° x su(2): i*dX{λ) = 0}. Use the Lj-inner product to define
a pre-Hilbert space structure on W = Wι ®W°. Le\fx = Ω1 x su(2) and
^° = Ω° x su(2); use the L2-inner product to define a pre-Hilbert space
structure on f = fx θ ^ 0 .

Introduce % to denote C°°(X;SU(2)). Let 9 act on W and on / by
conjugation, and let 9 act on si in the usual way. The products si xW
and si x / then define smooth vector bundles over si to which the &-
action on si lifts. Since the ZΛinner product is being used to define the
pre-Hilbert space structure o n ^ , this metric defines a smooth, ^-invariant
fiber metric for the vector bundle si x f .

To make a ^-invariant metric o n j / x 2Γ, define, for each connection
A e si, the metric ( , ) A on W for which the inner product of ψ, ψ' e W
is given by

(A.I) (ψ, ψ')A = (VAψ,VAψ')L2 + (ψ, ψ')Li.

It is a standard exercise with the Sobolev inequalities to show that as A
varies in si, the metric above varies smoothly to define a ίf-equivariant
fiber metric on the vector bundle si x W. That is, the metric on the fiber
W of si x W over a connection A is the metric that is given in (A.I).

Let A be a connection on P = X x SU(2). (2.7) defines a bounded
operator from W to f , which will be denoted by KA.

Lemma A.I. Let X be a compact, connected, oriented, Riemannian 3-
manifold with boundary. Let A be a smooth connection on X x SU(2).
Then KA\W —• J" defines a bounded, Fredholm operator on the respective
completions. The index ofKA is equal to -\- χdX, where XQX is the Euler
characteristic ofdX. By varying the connection, a smooth, &-equivariant
map, K(.)9 is defined from si into the space of bounded, real Fredholm
operators from W to f .

Proof of Lemma A.I. The assertion that KA is Fredholm is a standard
calculation (see [6] and [5]); KA is the twisted signature operator on the
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3-manifold with boundary. A change A —• A + a in A changes K by a
zeroth order term which is linear (over C°°(ΛΓ)) in the components of
the su(2) valued 1-form a. Thus, the index of KA is independent of the
connection A. For this reason, the index calculation reduces to DeRham
theory; choose A to be the trivial connection and one is calculating Betti
numbers of X. The last assertion of the lemma follows readily from the
fact that KA differs from KA+a by a multiplication operator which is linear
over C°°(X) in the components of a. This is an application of the Sobolev
inequalities. q.e.d.

Fix an irreducible connection A on P and fix a e Wx. Define v =
vA(a) e Ω°(X) x su(2) to be the unique solution to the equation

(A.2) d\dAv = d*Aa, i*dX(*dAv) = 0.

Define u = uA(a) € Ω° x su(2) to be the unique solution to the equation

(A.3) d\dAu = -*(FAΛ(a- dAυ) -(a- dAυ) Λ FA), ΓdX(u) = 0.

For k = 0,1,2, use Ω°k to denote the pre-Hilbert space whose point set is
Ω°(X) xsu(2) and whose inner product is the L\-inner product. Remember
that J / has its L\-Hubert space structure, and give Ωι(X) x su(2) the L\-
Hilbert space structure. Then, the Sobolev inequalities insure that the
assignment of (υ,u) to (A, a) defines a smooth map from J / x W{ to
Ω^ x Ω{. In addition, when A is fixed, this becomes a bounded, linear
map from W{ into Ω^ x Ω°.

Fix the irreducible connection A on X x SU(2) and define K_A: W —> J"
by sending (a,φ) to

(A.4) KAω = (*dA(a - dAυA(a)) - dAuA{a) + dAφ,dAa).

Lemma A.2. Let X be a compact, connected, oriented, Riemannian 3-
manifold with boundary. Let A be a smooth, irreducible connection on
X x SU(2). Then KA ^ -• / defines a bounded, Fredholm operator on
the respective completions. The difference KA - KA is a compact operator.
By varying the connection, a smooth, &-equivariant map, K^.)f is defined
from stf* into the space of bounded, real Fredholm operators from W to f'.

Proof of Lemma A.2. Since the assignment of a to (υA(a),uA(a)) is
smooth, K.A is bounded. The Rellich lemma insures that K_A - KA is a
compact operator. Thus, K_A is also a Fredholm operator. Since the as-
signment of (A,a) to (υA(a)) is smooth, £ ( ) defines a smooth map from
j / # into the space of real, bounded Fredholm operators from W to / .
This map is ^-equivariant by inspection. q.e.d.
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The operator Λ ^ is useful because it commutes with a natural Hodge-
type decomposition of s/ xWx. To construct this decomposition, intro-
duce the map Δ\\sf x 2Γ1 -• Ωg by sending (A,a) to

(A.5) Ax{A\a) = d*Aa.

Let J / # denote the set of irreducible connections on X x SU(2). Re-
stricted to A e J / # , dAdA:Ω\ -> Ω§ has bounded inverse with Neumann
type boundary conditions. In fact, for each a e Ω(j, there exists a unique
σ' e Ω^ which obeys dAdAσ

f = σ and ΪQX(*dAσ
f) = 0. The inverse func-

tion theorem insures that Δj = Δf1 (0) Π ( J / # x Wι) is a smooth manifold
with projection πi Δj —• J / # defining a smooth vector bundle. The group
*§ acts naturally on Δ1? and π is an equivariant map.

The fiber of this vector bundle over a connection A is the vector space

(A.6) JA = {aeWl:d*Aa = 0}.

Let Ω^ denote the linear subspace {φ e ΩP{: i*(φ) = 0}. Note that the
L^-inner product defines a pre-Hilbert space structure on Ω^. Define a
map Δ 0 : J / X fx -• (Ω^) by sending (A, a) to the linear functional on
Ω°lc which sends ^ to

(A.7) AQ(A, a)-φ = - tr(a Λ *dAφ).
Jx

Essentially a repeat of the preceding argument shows Δo = Δ^^O) Π
( j / # x <f{) is a smooth manifold with projection π:Δ0 —• J / # defining
a smooth vector bundle. The fiber over a connection A is the vector space

(A.8) ^A = {

The group S? acts naturally on A{, and π is again an equivariant map.
It is convenient to exhibit a cover of J / # over which the bundles Δ0

have trivializations. A set ^(A; ε) in this cover is indexed by A e srf* and
ε > 0, but small:

(A.9) &(A;e) = {A + a:aeΩι x su(2) obeys \\a\\A < e}.

Define l{:Δj|^ -^ ^ x ^ and / 0 :ΔQI^ -• ̂  x ^ by sending (A + a,υ)
to (A + a,v - dAK\$), where κ:iso = K\fo(a,v) obeys the equation

(A.10) dAdAκU0 - *(a Λ v + v Λ a) = 0, i*dX(*dAκx) = 0 = /^(/c0).

The Sobolev inequalities insure that the /i,o are smooth vector bundle maps
with smooth inverses as long as ε is small enough. Neither map is an
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isometry, but it is a straightforward exercise to establish the existence of
a constant z[A] such that ε is sufficiently small and A + a e 2f(A\ε), then

(A I D \(vo>v\)A+a-(vo-dAKi(a9vo),vi - dAκ{(a,v0))A\ <z ε9

\(wo,Wι)L2- (wo-dAκo(a,wo),w{ - dAκ0(a,w0))L2\ < z • ε,

for all (A + a9VQtι,wOίι) eA
The vector bundle Hom(Δ1, ΔQ) —> stf* is defined by taking the fiber over

a connection A to be the Banach space of bounded, linear operators from
^A to 3*A. For each integer n, let Fred«(Δ l5Δ0) c Hom(Δ1?Δ0) denote the
fiber bundle whose fiber over a connection A is the Banach manifold of
bounded, linear, Fredholm operators from U~A and 2"A. The reader can use
the trivializations in (A. 9) and (A. 10) and the Rellich lemma to check that
these fiber bundles are well defined.

Let TA\W -> JA and LA\f^>&A denote the ZΛorthogonal projec-
tions. As the connection A is varied, Γ(.) defines a smooth vector bundle
map between the trivial bundle over j / # , J / # x 2F1 and the bundle Δ l β

Likewise, L(.) defines a smooth vector bundle map between J / # x fx and
the bundle Δo.

By construction, the operator K_A obeys

(A. 12) KAoTA = LAoKA.

(A. 12) and Lemma A.2 have the following immediate corollary:
Lemma A.3. Let X be a compact, connected, oriented, Riemannian

3-manifold with boundary. Let A be a smooth, irreducible connection
on X x SU(2). Then LAoKAoTA:<TA -* 3>A defines a bounded, Fred-
holm operator on the respective completions. By varying the connection A,
LA o K,A o TA:^4 —• 3*A defines a smooth, ^-equivariant section, V/, over
J / # of the fiber bundle Fred^iA^Ao) with d = -\- χ(ΘX).

A word about perturbations is in order: Let Λ be a finite set of embedded
curves lying in the interior of X with parametrized tubular neighborhoods,
also in the interior of X.

A section of Freely(Δ^ΔQ), V/ ' , is defined by assigning to a connection
A the linear map which sends a e ^A to

(A. 13) V/Ji - a = *dAa + dυ[A] a - dAu'A(a).

Here, v[A] is defined in (4.9), and u'A(a) is defined in (4.11).
Lemma A.4. Let X be a compact, connected, oriented, Riemannian 3-

manifold with boundary. Let A be a smooth, irreducible connection on
X x SU(2). Then V/A:^A -• &A defines a bounded, Fredholm operator on
the respective completions. By varying the connection A, V/A.ίTA -+ 3*A
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defines a smooth, ^-equivariant section, V/', over stf* of the fiber bundle
Fred^Δ^Δo) with d = -3/2 χdX.

Proof of Lemma A.4. The Rellich lemma and the Sobolev inequalities
insure that the difference V/A - V/A is a compact operator. Smoothness
as A varies is left as an exercise with the Sobolev inequalities.

Part 2. Adjoints. The adjoint V/^* defines a bounded, linear map
from the completion of SfA to the dual, ^ * , of the completion of ZΓA.
This operator assigns to v e S?A the linear functional which sends a e^A

to the real number

(A. 14) V/A*(v) a = I tr(vAa)- / Xτ(dAv A a + *dv[A] uΛa).
Jdx Jx

As ^ is a pre-Hilbert space with the inner product in (A.I), its comple-
tion and the dual to its completion are isomorphic. Using the Hubert space
metric ( , -)A, the operator V/^* defines a bounded, Fredholm operator
from $?A to the completion of ^ [13]. As A varies in J / # , V/^'*:^ -> ^
defines a smooth, ^-equivariant section, V/7'*, over J / # of the fiber bun-
dle Fred^Δo,^) with d = \ χdX.

Part 3. ZΛtheory. For formally selfadjoint operators, an L2-theory
is useful. Begin again with the operator KA and consider only the case
dX = 0. Let W_ denote the ZΛcompletion of both W and f . Lemma
A.I implies that KA defines a closed, unbounded, essentially selfadjoint
operator on W_ with W as dense domain. The Weitzenboch formula for
KA shows that the norm on W which sends ψ to \\KA - ψ\\Li + | | ^ | | L 2 is
equivalent to the Lf-norm ( , ) A on W'. Since the forgetful map from L\
into L2 is compact, this fact implies that the resolvent of KA is compact.
Thus, KA has discrete spectrum without accumulation points.

Let w\W_ —• W_ be a linear operator with dense domain W which is
relatively compact with respect to KA. Standard stability theorems [13]
imply that KA + w has compact resolvent also. Lemma A. 2 insures that
K_A is such a perturbation of KA. Thus KA defines a closed, essentially self-
adjoint operator on W_ which has discrete spectrum without accumulation
points.

Let !J^A denote the ZΛcompletion of ZΓA and of S?A. Then, the pre-
ceding comments and (A. 8) insure that V/A defines a closed, essentially
selfadjoint operator on J^A which has discrete spectrum without accumu-
lation points. Lemma A.4 asserts that V/A and V/Λ differ by a compact
operator, so V/A likewise defines a closed, essentially selfadjoint operator
on !J_A which has discrete spectrum without accumulation points. These
results are summarized by
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Lemma A.5. Let X be an oriented, compact, connected 3-manifold with-
out boundary.

(1) The assignments of the operator KA and K_A to a connection A on
X x SU(2) define smooth maps from srf ands/* respectively into the space
of closed, essentially selfadjoint Fredholm operators on the Hubert space
W; the difference, KA — K_A, defines a smooth map from J / # into the space
of KA-relatively compact operators on the Hubert space W_.

(2) There is a smooth fiber bundle overs/* whose fiber over a connection
A is the space of closed, essentially selfadjoint, Fredholm operators on ^iA

which restrict as bounded, Fredholm maps from £ΓA to £?A.

(3) For each irreducible connection A, define the operator V/^ by (A. 13).
The assignment of V/^ to A defines smooth, &-equivariant sections over
J / # of the fiber bundle in (2). The difference V// - V/A is V/^relatively
compact.

Proof of Lemma A.5. Assertion (1) concerning K^ just summarizes the
preceding discussion and Lemma A.I. For assertion (2), the existence of
the asserted fiber bundle is proved by directly constructing it using the
trivializations of Δ l 9 which are given in (A.9) and (A. 10). It suffices to
remark that for ε > 0, but small, and for fixed A + a € JV(A\ε), the
assignment of υ e Ω1 x su(2) to dAχ(a,υ) e Ω1 x su(2) extends to define
a compact map from L\ (Ω1 x su(2)) to itself, and to a compact map from
L2(Ωι x su(2)) to itself (use Weitzenboch formulas, and the Rellich lemma
to show this). Assertion (3) follows from Lemma A.4. q.e.d.

Lemmas 2.4 and 2.6 are corollaries to Lemma A.5, and Lemma A.5
provides the framework for the proof of Proposition 2.1.

Proof of Proposition 2.1. The first assertion of the proposition is a stan-
dard consequence of assertion (3) of Lemma A.5. For the second as-
sertion of the lemma, let A(t), t e [0,1], denote a path of connection
with Λ(O) = Ai and A(l) = A2. As t varies, the eigenvalues of V/^(ί)

vary. If the zero crossings are not transverse, the family of operators
V/A{t) (t e [0,1]) can be perturbed (rel{0,1}) by adding to V//(>) a smooth
family, s(t) (t e [0,1]), of selfadjoint, relatively compact (with respect to
VΛ.j) operators so that the perturbed family has its eigenvalues crossing
zero transversely. This perturbation can be arbitrarily small in the follow-
ing sense: Let T be a closed, linear operator between two Hubert spaces.
If an operator S has the same domain as T, there is the notion of the
Γ-bound of the operator S (see [13]): this is the number
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The perturbation family, s(-), above, may be taken to have arbitrarily
small Γ-bound for T = V / ^ . The spectral flow for the perturbed family
is well defined, and the discussion in [5] shows that this spectral flow is
independent of the perturbation if the perturbation is sufficiently small.
Use such a small perturbation to define the spectral flow along the path
A(ή.

Change the path from A(t) to a new path, A'(t) = A(t) + a(t), and a new
family of operators, V / ^ , is defined which differs from the old one by
a relatively compact family of operators whose Γ-bound (for T = V/^ ( ))
is uniformly bounded by a constant multiple of the Lj-norm of a(t). Use
the trivializations of ΔQ in (A.9) and (A. 10) to show this. This latest fact
implies that the spectral flow along a path from A i to A2 is a constant
function on the space of paths from A\ to Ai. (The fact that J / # is simply
connected is implicit in this statement.)

The group 9 is not path connected. Let g e & be a gauge transforma-
tion which is not homotopic to the identity. Let A\ = g A\. The spectral
flow along a path from A\ to A\ will not be the same as that from A\ to A\.
The difference of the spectral flows along two paths is equal to the spectral
flow around the closed loop in ^ # based at \A\\ which, after lifting to J / # ,
is defined by going out on the first path, and coming back on the second.

The spectral flow around a closed loop of operators, V/^(/), is equal to
the index of an operator on MxS1 [5]. The relevant operator on MxS1 has
index divisible by 8. (This operator comes from the self dual deformation
complex for the mapping torus of the automorphism g, a principal SU(2)
bundle over MxS1. The index is computed in [4].)
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