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THE HYPERBOLIC METRIC AND THE
GEOMETRY OF THE UNIVERSAL CURVE

SCOTT A. WOLPERT

0. Introduction

0.1. A basic deformation of a compact Riemann surface is pinching
a nontrivial loop. Understanding the limiting case, where the loop de-
generates to a point, is actually tantamount to understanding the Deligne-
Mumford stable curve compactification Jtg of the classical moduli space of
Riemann surfaces. Degenerating families of Riemann surfaces are readily
given by cut and paste constructions in the complex analytic category or
by hyperbolic geometry, following Fenchel and Nielsen. A basic question
is to relate the two approaches; to find the expansion for the hyperbolic
metric in terms of the complex parametrization. The motivation is two-
fold, we would like to be able to analyze the degeneration of an invariant
of hyperbolic metrics by simply writing out its expansion in complex co-
ordinates, and we would like to use the hyperbolic metric in the study of
the analytic geometry of Jtg.

The following example will play a central role in our investigation.
Consider in C3 the smooth germ of a variety V = {(z,w9t)\zw = t,
|z |, | iϋ|, |ί | < 1} with projection Π: V -> D, Π((z,w,ή) = t, to the unit
disc. The projection is almost a fibration: the to, fiber t0 φ 0, is an an-
nulus {|/o| < \A < 1> ΊV = to/fz}> while the 0-fiber is two transverse discs
{\z\ < 1} + {\w\ < 1}, intersecting only at the origin. V —• D is a degen-
erating family of annuli. Each fiber of Vo = F-{origin} has a complete
hyperbolic metric: the ί
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A simple observation is that the kernel of the differential dΠ: TVo —• TD
defines a line bundle on Vo, the vertical bundle of the fibration. Each
v e Ker dY\ is tangent to a fiber of Π and thus has a well-defined hyperbolic
length (ds}(v)){l2. The line bundle extends over V and the system {dsf}
defines a continuous metric, the hyperbolic metric (, ) h y p on the extension.
In particular for the complex parameters (z,t)

(0.1) dsf = ds$(l + \S2 + ^ θ 4 + )

with θ = n log \z\l log \t\\ (, ) h y p is real analytic in the quantities (1/ log \z\)
and (π log \z\/ log \t\). We would like to find the analog of the expansion for
a family with generic fiber a compact Riemann surface. This is a question
on the Uniformization Theorem. It will turn out that the behavior for the
compact fiber case is actually quite close to that of the example.

A degenerating family Π: M —• B of compact Riemann surfaces is a
proper holomorphic map Π of smooth complex manifolds with generic
fiber a compact genus g Riemann surface [8], [12], [13]. A fiber R may
have a finite number of nodes, points where the local model for the fibra-
tion is the above germ V. By hypothesis each component of R—{nodes}
will have negative Euler characteristic, i.e. R is a stable curve [10], [26].
Each fiber of Mo = Λf-{nodes} has a hyperbolic metric and KerrfΠ de-
fines a line bundle, extending to M, the vertical line bundle of the fibration
(the dual of the relative dualizing sheaf). The system of hyperbolic metrics
defines the hyperbolic metric ( , ) h y p on the vertical line bundle. We are
interested in the geometry of this metric and and in particular the analog
of expansion (0.1).

But first we would like to review the plumbing construction for giving a
degenerating family of Riemann surfaces. Let R be a surface with nodes
and i?o = i?-{nodes}. RQ has a pair of punctures aj9bj in place of the
jth node of R, j = 1, •• ,m. At the punctures take local coordinates
Zj,Zj(dj) = 0 and Wj,Wj(bj) - 0. A family is constructed as follows,
given t = (tu , tm), tj Φ 0, remove the discs \ZJ\ < \tj\ and \WJ\ < \tj\, tj
small, from Ro to obtain an open surface R*. Now form an identification
space Rt = R*/ ~ by identifying p to q if p and q lie in the domain of the
coordinates z7, Wj and Zj(p)Wj{q) = tj. The union U, s m a l l R t is a family
of surfaces over the product of the punctured ίy-polydiscs. In fact the
family extends to {Rt}, a degenerating family over the /-polydisc PD. By
the jth collar in the fiber Rt we shall mean the image of the coordinate
annulus {\tj\/c < \ZJ\ < c,Wj = tj/zj}. An important observation is that
the description of the collars in {Rt} coincides with that of the example
V. Rt has identifications ZjWj = tj, and the example has defining equation
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zw = t\ the fibers of {Rt} above {tk = 0}nPD have nodes in place of the
kth collar.

Our main result is an expansion in t for the hyperbolic metric of Rt.
To describe the expansion for the hyperbolic metric we start by choosing
Zj and Wj such that the i?o hyperbolic metric has the local expression
(I^CI/ICIloglCI)2, ζ = Zj, ζ = Wj, ζ small, at the punctures. As the first
approximation to the Rt hyperbolic metric, take the ί,-fiber metric of the
example

π πlog|z, |
— esc , ,', r

Z ί ) •

in the 7 th collar of Rt, the Ro hyperbolic metric away from the collars,
and interpolate between the choices at the collar boundaries. The result
is a grafted metric dg} for Rt. The grafted curvature is - 1 except at the
collar boundaries, where the interpolation leads to a deviation of magni-
tude (log|ί |)"2. By the maximum principle the Rt hyperbolic metric and
the grafted metric differ by the same magnitude. Now to proceed with the
expansion, the prescribed curvature equation can be solved to write the
Rt hyperbolic metric in terms of the grafted metric and a compensating
factor. The result is an expansion for the Rt hyperbolic metric dsf (see
Expansion 4.2)

where D is the dsf Laplace Beltrami operator, D has nonpositive spectrum,
(D - 2)" 1 exists and is uniformly bounded in C°° norm, Λ is an indicator
function for the collar boundary, Λ(C) = (a4ηa)a for a = log \ζ\, and η is a
unit step function with step at \ζ\ = c, the collar boundary. Two immediate
applications of (0.2) are an expansion for the length of the core geodesic
in a collar (Example 4.3) and that the hyperbolic metric is continuous on
the vertical line bundle for a degenerating family.

The general example of a degenerating family is the universal curve %
over ~Jt^9 the stable curve compactification of the classical universal curve
%?g. As above the tangents to the fibers define the vertical line bundle on
%?g and the hyperbolic metric is a continuous metric on the bundle. It is
natural to consider the curvature 2-form Ωh y p of the hyperbolic metric.
The universal curve 8^ can be considered as the moduli space of pairs
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(Riemann surface, point). A Beltrami differential defines a deformation
of a surface and thus also of a pair. In particular if R is smooth, p e R
and v a smooth Beltrami differential, we find the expansion (Lemma 5.7)

(0.3) Ωhyp(*/, u){p) = -2i(D - 2)~ι(\u\2)(p) + O(\\v\\2\\K{d)v\\2)

for the curvature in the ^-direction, where D is again the hyperbolic Lapla-
cian, || | |2 is the C2 norm on tensors, K(d) is the covariant form of d, and
the implied constant is absolute. An application is for v a harmonic ten-
sor with respect to the hyperbolic metric: for this case K(d)v = 0 and
(D - 2)~ι \u\2 is everywhere negative by the maximum principle. Thus the
curvature of the vertical line bundle restricted to Ψg is strictly negative. For
degenerating surfaces, it is not difficult to find Beltrami differentials corre-
sponding to geometric intuition with K(β)v small. Consequently formula
(0.3) can also be used to analyze the limiting behavior of the curvature at
the compactification divisor of Ψg. There are a number of consequences.

The hyperbolic metric on (KerdΠ) is good (see Theorems 1.4 and 5.8),
i.e., the nth power of the Chern form (ci,hyP)", Ci,hyp = 2^Ωhyp computed
on g^, defines by integration a current [(clhyp)"] on Ψg. [(cUhyp)

n] is a
closed (n9n) current that represents the nth power of the Chern class of
(Ker dΠ) in the rational-cohomology of ffg. In brief the hyperbolic metric
on the restriction of (Ker^IΊ) to &g already detects the extension of the
bundle to 8^. As an application Ωh y p can be used to compute the integral

κ{= f ci((Kerέ/Π))Λci((KerrfΠ))
./fibre

of the Chern class of (KerdΠ) along the fibers of Π: &g —• Jfg. The
integral was previously evaluated for Π: ^g —• Jίg and Ci?hyp [37]. The
result was simply ω w p /2π 2 , the Weil-Petersson Kahler form. Now since
the hyperbolic metric is good the calculation is valid for Jίg, in particular
the current [ωw p/2π2] represents the class K\ in the rational-cohomology of
Jtg. This observation, that the Kahler form is the pushdown of the square
of the curvature, also provides for a Weil-Petersson Kahler potential in
the form of a fiber integral. By our estimates it can be shown that the
potential is continuous on Jtg and that the Kahler form is bounded below
by a smooth positive (1,1) form. From a result of Richberg [29] it follows
that ω w p is the limit in the sense of currents on Jtg of smooth Kahler
forms in its cohomology class. Indeed, the current [ωw p/2π2] is positive
and rational, a result first found as a consequence of the sequence [33]-
[36]. That the class K\ is positive is actually an earlier result of Mumford
[26].



THE HYPERBOLIC METRIC 421

It is also interesting to consider the sign of the hyperbolic curvature on
^g. Arakelov has already shown that the vertical line bundle is negative
on cycles transverse to the compactification locus ?g - ^ c ?g [3]. It
is noted in [28] that the line bundle is nonpositive in general and that
the bundle has degree zero restrictions to special cycles. In comparison
we find that the hyperbolic curvature is essentially given by the Greens
function G(x,y) for (D - 2)" 1 . Specifically given a Beltrami differential
v, with K(d)v small and v supported near y9 then by (0.3) the hyperbolic
curvature Ci,hyp a t χ i n the ̂ -direction is comparable to G(x,y). In partic-
ular for a smooth fiber R of Wg, G(x,y) and Cihyp are everywhere negative
(a consequence of the maximum principle for (25-2)). By contrast the
Greens function Go(x,y) for a surface R with nodes is the direct sum
in the sense of operators of the Greens functions of the components of
RQ = R-{nodes}, each with hyperbolic metric, [18], [19]. In particular
for x and y in distinct components and v supported near y, then v repre-
sents a null curvature direction at x. Our complete result is as follows, if
p is a nonnodal point of 2?, a fiber with nodes, and R(p) the component of
Ro = 2?—{nodes} containing /?, then the negative curvature directions at p
are precisely the deformations of 2? inducing nontrivial deformations of
R(p) - {p} (including opening the nodes on R(p)). At a node the negative
directions are precisely the vectors with a nonzero component tangent to
the fiber 2?. The null curvature directions at a node are spanned by the
Beltrami differentials with compact support in 2?0 and the tangents for
opening any remaining nodes. As an application we obtain a geometric
description of the cycles on &g with negative vertical line bundle. A point
of &g is a pair (stable curve, point); a cycle is a parametrized pair. A cy-
cle is negative precisely when there is apparent motion of the point on its
algebraic component(s) in the stable curve: if either the point moves on
the component or if the component itself is deformed. A node is a special
location: if the point has the constant value node the vertical line bundle
will have degree zero. And finally we note that the hyperbolic curvature
is formally similar to the Weil-Petersson Riemann tensor [31], [38]. Our
approach should apply to this case as well.

The paper is organized as follows. §1 contains a detailed discussion
of the example V = {zw = t} and a review of the definition of good
metrics. As a model case we check that the hyperbolic metric for V is
good. §2 is expository; a self-contained description of the local structure
of ~Jfg and ^g is presented. The description is a hybrid: deformations
of a noded surface are given as combinations of classical deformations,
supported away from the nodes, and plumbing constructions at the nodes.
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§3 contains a discussion of grafting, constructing metrics by interpolat-
ing between hyperbolic metrics on overlapping subdomains. By standard
estimates we find that the geometric difference between the grafted and
hyperbolic metrics is bounded in Ck by the thickness of the overlaps and
the C° difference on the overlaps of the subdomain metrics. The focus of
the section is subsection four with three explicit grafting constructions and
the accompanying estimates. In §4 we present the expansion for the hy-
perbolic metric and consider an application to geodesic length functions.
§5 is devoted to the expansion for the derivatives of the hyperbolic metric;
the immediate goal is to analyze the curvature form of the vertical line
bundle. We start with an alternate organization for calculating perturba-
tions of a metric. Computing perturbations of solutions of the Beltrami
equation on the universal cover is replaced with a two-stage calculation.
The first stage is completely local (no potential theory), and for the second
stage the result is given in terms of the operator (D - 2)~1. As an instance
of the first stage, we find the exact perturbations of the Laplacian and the
Gauss curvature. The main application is the calculation in the second
subsection of the hyperbolic curvature. The formula is simplest for the
case of harmonic Beltrami differentials (K(d)v = 0), and still manageable
for the case K{d)v small. In the third subsection Beltrami differentials,
corresponding to geometric intuition, with K(d)u small are described. A
feature of the current approach is that harmonic differentials, which are
hard to write down, and the projection onto harmonic differentials, which
also degenerates, are both avoided. In the fourth subsection the method is
used to show that the hyperbolic metric is good and in the fifth subsection
the curvature nulls are analyzed. And finally, standard potential theoretic
estimates as well as a discussion of the operator (D - 2)~ι are given in the
appendices.

The author would like to thank the University of Helsinki, Finland,
University of Joensuu, Finland, Louis Pasteur University, France, and
Institut des Hautes Etudes Scientifiques for their hospitality and support.

0.2. As an aid to the reader we now provide statements of the main
results. The results will not be given in their complete generality.

The first item is the grafting construction (§3.3). Let {U, V} be an open
cover of a compact Riemann surface R, and η a smooth approximate
characteristic function of V, i.e. η is 0 on U - V and 1 on V - U. Given
ds\ a metric on U and ds\ a metric on V, both compatible with the R-
conformal structure, define
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the grafting of ds\ and ds\ relative to η. Note: the geometric interpolation
will simplify the computation of the grafted curvature.

Of special interest is the case ds\ and ds\ each hyperbolic (typically
not complete). We would like to estimate the difference between a grafted
and the hyperbolic metric for R. To this end let || \\k,B denote the Ck

norm for functions on the open set B c R\ the norm is defined relative
to the R hyperbolic metric (§3.2). Now for the estimate (§3.3): fix ε >
0, 1 > δ > 0 and an integer k > 0; assume that the grafting data is
chosen such that an ε-neighborhood of supp(dη) is contained in U Π V,
and \\ds\lds\ - 1||O,C/ΠF < δ- With these conditions and for R compact
there exists a constant c = c(ε,δ,k, \\η\\k+ι) such that

H^hyp/^έ aft ~ MIM - cWdsi/dsl - l\\otunv-

In practice UnV will be a cylinder and the Ch norm of η can be bounded
in terms of the injectivity radius of supp(rfτ/) c UnV, i.e. the thickness of
the overlap. Thus the difference of the grafted metric and the hyperbolic
metric is bounded in terms of the thickness of the overlap and the jump
in the component metrics on the overlap.

We will now describe how there is a clear choice of component metrics
for the case of pinching. Consider a surface R with a single node n and set
Ro = R-{n}. i?o has two punctures a and b in place of the node. Let z be
a local coordinate at a and w a local coordinate at b, chosen such that the
z and w local expression for the i?o complete hyperbolic metric is simply
(l^ίl/dίI log |C|))2 Our method is actually valid (see §4) for z, w arbitrary
local coordinates. Nevertheless the construction is simplest for the above
case; the key point is that a neighborhood of the node n in R is isometric
to a neighborhood of the origin in the 0-fiber of the zw = t example. Let
C\,c2 > 0 be chosen such that the annulus {c\ < \ζ\ < c2} is contained in
the image of the z and w coordinate charts. Pick η a function of \ζ\ such
that η = 0 for \ζ\ < c\ and η = 1 for \ζ\ > c2.

Given t, \t\ < c\ we wish to plumb i?o to obtain Rt and at the same
time describe a grafted metric for Rt. The plumbing: remove {\z\ < \t\}
and {\w\ < \t\} from Ro to obtain i?*; now identify p e Domain(z) Γ\R*
with q e Domain(w) Π R* if z(p)w{q) = t. The result is a compact
surface Rt with z, w coordinates on the pinching collar, i.e. pinching
collar={\t\/c2 < \z\ < c2}. The next step is to specify the component
metrics for the grafting. For the pinching collar take

^2 / * c s c*log|z|l^lV
*•( log |*|
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(the metric has a symmetry w = t/z; thus if z were replaced with w we
would have the same metric ds\ for the collar). For ds\ take the original
Ro hyperbolic metric restricted to Rt-{\t\/c\ < \z\ < C\] (the identification
to form Rt = R*/ ~ only involved points of {\t\/c\ < |z|, \w\ < C\} c R*,
thus Rt - {\t\/c\ < \z\ < c\} can be considered as a subdomain of RQ).
The intersection (pinching collar) n (Rt - {\t\/c\ < \z\ < c\}) has two
components, each a band; graft ds\ to ds\ relative to η to obtain dg}
(η = η(\z\) in the z-band and η = η(\w\) in the w-band).

Now from Expansion 4.2 if ds£ is the Rt hyperbolic metric and D the
associated Laplacian then there exists aδ = δ(cuCι) such that for |;| < δ

where Λ(C) = Λ(|C|) = (x4ηx)x for x = log|f|, and the O-term is for C°°
functions on Rt with the constant bounded solely in terms of c\ and cj.

Remarks. (D - 2)~ι exists and is bounded in C°°, constants indepen-
dent of R (see appendix A.4). Our technique applies for the case of open-
ing several nodes as well as to include deformations supported away from
the collars.

If l(t) is the length of the closed geodesic in the collar core for the Rt

hyperbolic metric then from the expansion we find (Example 4.3)

2π2
In1 ί 1 \

l 0 " l o g ( l / | ί | ) + £ ; V ( l o g | ί | ) V

for \t\<δ and the constant depends only on c\ and c^.
Now we turn to §5. There are two main results: the hyperbolic metric

is good for the vertical line bundle, and the classification of the curvature
nulls for the metric. We have already seen from the pinching expansion
that the metric is not smooth in t at t = 0. We expect the connection 1-
form and curvature 2-form to have a pole at t = 0. Recall for a line bundle
with metric ( , ) and σ a nonvanishing local section, that the connection
form is simply θ = d log(σ, σ) and the curvature is Ω = dθ. If a metric
is smooth, except on a subvariety, then there are two ways in which one
can try to interpret the differentiation: in the sense of distributions, or to
consider the current defined by integration, against the expression given
on the complement of the subvariety. For a good metric the two notions
agree. Mumford's good criterion is a growth condition for the connection
and curvature forms.
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The final application is the curvature nulls. The hyperbolic curvature
is to be considered as a measure on discs embedded in the local manifold
covers of ^ (note: £^ is a F-manifold). We analyze the growth rate of
the curvature for each possible embedded disc (§5.6). A consequence is
the following classification.

Case 1: the curvature is negative definite on g^.

Case 2: p a nonnodal point of a noded fiber R of &g and R(p) the
algebraic component of R containing p. For S a component of R denote
by B(S) the deformations of R given by Beltrami differentials compactly
supported on S-{nodes}. The tangent space Tp&g is a direct sum of five
subspaces: TPR Θ B(R(p))φ plumbing the nodes on R(p) θ B(R - R(p))Θ
plumbing the remaining nodes. A tangent vector at p is negative for the
hyperbolic curvature if and only if one of the first three components is
nonzero.

Case 3: p a node of a noded fiber R of ^g. Local coordinates for
a neighborhood of p are given as a combination of the plumbing at p,
plumbing any remaining nodes, and classical deformations of /?-{nodes}.
Let z, w be the variables for the zw — t plumbing at p and TV c TpΨg

the subspace spanned by the z and w tangents. A tangent vector at p is
negative for the hyperbolic curvature if and only if its TV component is
nonzero.

The operator (D - 2)" 1 plays an important role in the pinching expan-
sion. We give two estimates for the Greens function Gs(z, z0), the kernel
for the integral operator (D - s(s - I ) ) " 1 on L2(R). Let δ(z,z0) denote
the hyperbolic distance between points of R.

Lemma A.4.1. Given δo > 0 and s > 1 there exists a constant c0 such
that

for δ(z, zo) > 1 and provided the injectivity radius at z or z0 is at least δo.

Remark. There is no hypothesis for R and the constant is i?-indepen-

dent.

There is a lower estimate with the same order. A constant cx > 0 is
given; a short geodesic γ is a closed geodesic on R with length l{y) < c\.
The collar about γ is C(γ) = {z\δ(z,γ) < log(l//(y))}; this is essentially
the same as a pinching collar. For an integer g > 1 there exists a constant
c(g) such that if R is a compact surface of genus g, z lies on a short
geodesic, and zo is in the adjoining component of R - \Jγ s h o r t C(γ), then
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1. The model case: zw = t

1.1. The family V = {zw = t}n unit-polydisc, over the Mmit disc D, is
the standard example of degeneration. Since this is also the model for the
general case, we start in § 1.2 by reviewing the geometry of V. In particular,
V is smooth and Π: V —• D is a submersion on VQ, VO = V - {origin}.
The tangents to the fibers of the (almost) fibration Π: VQ —• D define a line
bundle (KevdΠ) on V. Each fiber of Vo has a complete hyperbolic metric
and thus we obtain a hyperbolic metric on KerdΠ (each v e KerdΠ is
a tangent vector to some fiber of VQ). The metric is continuous but not
smooth.

Mumford gave a C2 growth condition for such metrics; the curvature
form, considered as a current, of a good metric represents the Chern class
of the line bundle. We recall Mumford's discussion in §1.3 and check in
§1.4 that the hyperbolic metric for the example satisfies the criterion.

1.2. By zw = t we shall mean the specific variety V = {(z, w, t)\zw =
t, \z\,\w\,\t\ < 1}. The defining function zw - t has differential zdw +
wdz-dt. There are several simple consequences: zw = t is a smooth vari-
ety, (z,w) are global coordinates, while (z,t) and (w,t) are not. Consider
the projection Π: V —> D, onto the ί-unit disc. Π is a submersion, except
at (z9w) = (0,0); thus we can consider V ^ D as a family of Riemann sur-
faces. The /-fiber, t Φ 0, is the hyperbola zw = constant, or equivalently
theannulus{|ί| < \z\ < l,w = t/z} = {\t\ < \w\ < l,z = t/w}. TheO-fiber
is the intersection of the unit ball with the union of the coordinate axes in
C2, on removing the origin the union is {0 < \z\ < 1} U {0 < \w\ < 1}.

In as much as Π is a submersion on Vo = V- {origin} the kernel KerrfΠ,
the vertical line bundle (KerdΠ), defines a line bundle over Vo. A tangent
vector v to V, υ = af-z + b-^, is in the kernel of dU provided υ(t) =
υ(zw) = aw + bz = 0, thus σ = zf^ - w-^ is a section of (KerdΠ),
nonvanishing on Fo. Since the origin has codimension 2 in V, (Ker dΠ) has
a unique extension to a line bundle over V and σ extends to a nonvanishing
section (we shall use the same notation for the extensions).

Each fiber of Vo —• D has a complete hyperbolic metric

tφO, fiber={|ί|<|z|<l},

CSC
\ I n σ \t\

(1.1)

7tlog|z| dz

z

t = 0, fiber = {0 < \z\ < l } U { 0 < |w| < 1},
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A vector υ of (KerdΠ) over Vo is tangent to a particular /-fiber of the
family VQ —• D and thus we can consider the hyperbolic length dsf(v).
The system {dsf} defines the hyperbolic metric ( , ) on the line bundle
(KerύfΠ). Consider the squared-length of σ in a neighborhood of a point
p of Vo with z Φ 0 ((z, ί) are local coordinates at /?), a = zJ^ relative to
(z,0 and

2

More generally, observe that

π πloglzl
esc ' '

log|ί| log|ί|

depends real analytically on the parameter ε = 1/ log |/|.

We summarize: ( , ) is a continuous metric, degenerate only at the
origin-fiber for the line bundle (KerafΠ) over V. Since θ c s c θ , - π < θ <
π, is an even real analytic function of θ we see that ( , ) is real analytic
in the two quantities (π/log\t\)2 and (πlog|z|/log|ί |)2. Indeed

2

(θcscθ)2 forθ =N2 ^ Ω _ π l ° g | Z l
log|ί|

We would like to make two remarks about the first perturbation, the θ 2

term. In effect consider the universal cover of {0 < \z\ < 1} by substitut-
ing ζ = -Πogz. We obtain the upper half plane model: dsl becomes
(|ύ?C|/|ImC)2 and θ 2 becomes (πImC/log|ί |)2. The hyperbolic Lapla-
cian is Δ = (2ImC)2<92ldζδζ\ then Δ θ 2 = 2Θ2, θ 2 is a 2-eigenfunction
(see 4.2 for an explanation). A fundamental domain for the covering is
{0 < Re ζ < 2π}, a lift of a neighborhood of the cusp is TV = {0 < Re ζ <
2π,lmζ > c > 0}, the function θ 2 is in LP(N) (relative to the hyperbolic
area element) only for p < \. We will see that the L ( 1 / 2 )~ε estimate also
holds for the general case (§4).

1.3. Given a metric, an obvious issue is to consider its curvature. For
a smooth metric on a holomorphic vector bundle, the characteristic classes
of the bundle can be expressed in terms of curvature. Mumford has given
a criterion to generalize the result to metrics smooth, except on a subvari-
ety. We recall, and at times directly quote, Mumford's discussion of good
metrics for a vector bundle [27].
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Let X be a smooth variety with Ϊ - I a divisor of X with normal
crossings. Consider polycylinders Dr cΎ,r = dimX, D the unit disc, such
that Dr Γ\Ύ- X ={union of coordinate hyperplanes z\ = 0, ,z k = 0};
hence DrΓ\X = {D*)k x Dr~k

9 D* the punctured disc. On each D* take the
hyperbolic metric ds2 = (|flfz|/(|z|log|z|))2 and on each D the Euclidean
metric; we have the product metric on (D*)k x Dr~k

9 denoted by ω.
Definition 1.1. A complex-valued C°° p-form η on X is said to have

Poincare growth on X - X, provided there is a set of polycylinders Ua c X
covering Ύ - X such that for each UaΓ\X there is a constant Ca and

\Φw" ,Vp)\2 < CaωUa(vι9Vι) ωUa(υP9vp)

for all choices of p tangent vectors and \ZJ\ < j , all j .
The property is independent of covering and the first consequence is

that a /7-form η with Poincare growth defines, by integration against C°°
(r - p)-forms, a p-current [η] on X.

Definition 1.2. A complex-valued p-form η on X is ^oorf on X if both
7/ and dη have Poincare growth.

The set of all good forms is a differential graded algebra. In particular,
the wedge of good forms is a good form and also d([η]) = [dη]. Next let
E be a holomorphic rank n vector bundle over ~X9 let E be the restriction
of Έ to X and let A be a Hermitian metric on E.

Definition 1.3. A Hermitian metric A on E is good on X if for all

x E X - X, and all local frames e\9-- 9en of E on a neighborhood t/ of x

and for (X-X)nU given as above by Π;=i ̂ / = °> then for A/7 = A(e, , βj)9

(i) |A,7|, (det A)"1 < C(Σ$=i log|z ; | ) 2 " for some C > 0,Λ > 1,

(ii) the 1-forms (h~ιdh)ij are good onΎ Γ\U.
A key point is that given (E9 A), there is at most one extension E of E

to X for which A is good. In this way a good metric determines the bundle
extension. The main result is the following:

Theorem 1.4. IfE is a vector bundle on X, X compact, and A is a good
Hermitian metric on E = E\χ, then the Chern forms cp(E,h) are good
on X, and the current [cp(E,h)] represents the cohomology class cp(E) e

1.4. As an example and also a precursor of the general case, we now
check that the hyperbolic metric on the vertical line bundle is good. The
variety V = {zw = t} plays the role of X, the 0-fiber of Π: V -* D the role
of X - X and of course (KerdΠ) is a vector bundle over V with frame σ.
The Poincare comparison form is

\dz\
ω = \z\log\z
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We take (a, b), a = logz, b = log w, as local coordinates and a = log |z|,
β = log \w\. Start with the ω-norms of the a and b tangents:

d d d d ( d d\ _2 ί d d \ o_2W ω ) = a ω { ) = β

The squared-length of the defining section σ is

/ \ ( π πa \2

\a + p a + p

We shall estimate (σ,σ), <91og(cr,σ) and dd\og(σ,σ). Substituting θ =
a/(a + β) then (σ,σ) = (a"ιA(θ))2 for A(θ) = πθcscπθ; for |θ | < 1,
A(θ) is nonvanishing, real analytic. By symmetry it is enough to treat
0 < θ < c < 1; the Oth-order estimate (σ9σ) < ca~2 is immediate. For
the higher order estimates write \ log(σ, σ) = - log a + log^4(θ) and treat
the two terms separately. Now (-logα)fl = -(2a)" 1, (logα)^ = (2ά)~2,
and the 6-derivatives are 0; all are bounded by the ω-norms. For the
derivatives of A if we let u, v be generic tangents then

vu\ogA(θ) = B'{θ)θvθu + B{Θ)ΘVU.

Since A and B are bounded for | θ | < c < 1, it only remains to check the
derivatives of θ = a/(a + β):

e = β θ ^ -a ^ = ~β

<* _ a~β c _ a

and recall that ω(d/da,d/da) = a~2, ω{d/db,d/db) = β~2. The re-
striction θ < c implies β/a > Co > 0; the estimates follow for \z\ —• 0,
α, /? —• -oo. We record the result with the following:

Lemma 1.5. The hyperbolic metric on the vertical line bundle over zw -
t is good.

2. The description of Jtg and &g near the noded surfaces

2.1. Our purpose in this section is expository, to go over the construc-
tion of the local deformation space, as well as the associated family, for a
Riemann surface with nodes (a stable curve). The definition of a Riemann
surface with nodes and the deformation theory of a finitely punctured sur-
face are briefly reviewed in §§2.2 and 2.3. In the final subsection the local
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description of Jtg, the moduli space of stable curves, and ^ , the universal
curve over Jtg9 are given in detail. For references the reader should consult
[8], [10], [12], [13], [16], [22], [24], [26], [28].

2.2. A Riemann surface with nodes R is a connected complex space,
such that every point has a neighborhood isomorphic to either the unit
disc, {\z\ < 1} in C, or the germ of the intersection of the coordinate axes
in C2, {(z,w)\zw = 0, \z\, |tu| < 1}. Examples are given by the f-fibers of
zw - t. The special points of R are nodes; R-{nodes} is a union |J" = 1 Rj
of nonsingular Riemann surfaces, called the parts of R. Provided R is
compact, each Rj can be described as a compact surface minus a finite
number of points; we assume that the Euler characteristic of each Rj is
negative. There are two immediate consequences: R is a stable curve in
the sense of Mumford et al. ([10], [22], [26], [28]) and each Rj carries a
complete hyperbolic metric.

On removing a node /?ei?we obtain two punctures a and b of R - {/?}.
We will associate the punctures a and b with the node /?, and refer to a and
b as being paired to form p. We saw in §1.2 the description of a section
σ of the vertical line bundle, near a node p: if U = {\z\ < 1, \w\ < 1,
zw = 0} is the neighborhood of/?, then on 0 < \z\ < 1, σ = zf^ and on
0 < \w\ < 1, σ = -w-^j. The reciprocal section σ~ι = ~ , σ" 1 = -^ξ-
of the reciprocal line bundle is the prototype of a regular \-differential (a
section of the relative dualizing sheaf). A regular q-differential on R is the
assignment of a meromorphic ^-differential θ ; for each part Rj of R such
that: (i) each θ* has poles only at the punctures of i?*, their order is at
most q, and (ii) if a is paired to b then Resα θ* = (-l)q Res/> θ*.

2.3. We briefly review the local deformation theory of a compact Rie-
mann surface minus a finite number of points. At a puncture the hy-
perbolic metric singles out special coordinate charts (rs coordinates); we
describe how these charts are affected by a deformation.

In the Kodaira-Spencer setup the infinitesimal deformation space of a
compact complex manifold M is Hι(M,<f(v.f.)) ([25], [11]). For example,
the infinitesimal deformation space of the pair (R, #)=(compact Riemann
surface, point) is Hι(R,{f(κ~ιζ~1)), K the Λ-canonical bundle, ζq the
point line bundle for q. By the Dolbeault isomorphism Hι(R,<f(κ~ιζ~1))
Ξ H%\R,g(κ-χζ-γ)), ^(κ-{ζ-{) the sheaf of germs of smooth vector
fields vanishing at q [25]. By definition a (0,1) form with values in smooth
vectors fields is a smooth Beltrami differential, a (-1,1) tensor. A Beltrami
differential v with support disjoint from q represents a trivial infinitesimal
deformation of (R, q) exactly when there exists a smooth vector field F on
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R, vanishing at q, such that Ί)F = v. Each class in lί±\R,% (κ~x ζ~x))
has a representative with support disjoint from q.

Associated to a Beltrami differential of absolute value less than 1 is a
finite deformation of R. Specifically given an atlas {Ua,za} and v, de-
fine new charts as follows: for z = za, the local coordinate on Ua c R
(za maps Ua into C), and i/(z), the local expression for v, let wa = w(z)
be a homeomorphism solution of the Beltrami equation wΊ = u(z)wz

on za(Ua). The new atlas {Ua,wa o zα} defines the new surface Rv.
In practice local holomorphic coordinates for the Teichmuller space of
R - {P\, ,Pk} a r e given as follows: choose vu , vn spanning the Dol-
beault group H^(R^((κζPι ζPk)-χ))\ for s = (su> ,sn) small, v(s) =
Σjsjuj> satisfies \v(s)\ < 1 and Rs = RU(S) is a Riemann surface. The
assignment s —• {i?5} is a local chart for Teichmuller space [1].

We shall emphasize the similarity for degeneration of hyperbolic metrics
between the model case and the compact case. The first step is to pick
appropriate local coordinates on the surface.

Definition 2.1. Let R be a surface with hyperbolic metric ds1. A local
coordinate z on U c R is rs (rotationally symmetric for the hyperbolic
metric) if either

(i) (simple closed geodesic case) z maps U to the annulus \t\ι/2/c <
\z\ < |/ | 1 / 2c, c, \t\ > 0, and the z-coordinate expression for ds2 is

/ π π l o g \ z \ d z 2

ViogMcsc log|;| z

(ii) (puncture case) z maps U to the punctured disc 0 < \z\ < c, c > 0,
and the z-coordinate expression for ds2 is (|dz|/(|z|log|z|))2.

Each simple closed geodesic and each puncture has a family of rs coor-
dinates parametrized by c and a rotation.

We wish to consider the effect of a deformation on the rs coordinates at a
puncture. Let q be a puncture of R and i/, |i/| < 1, a Beltrami differential,
and let (UQ,ZO) be a chart about q, zo(q) = 0, with supp(z/) n UQ = 0.
By definition (ί/o,zo) will also be a chart about q for i?^. If z0 is an rs
coordinate for R it will in general not be an rs coordinate for Ru, v φ 0.

To measure the deviation introduce the uniformization of R and Rv

by the upper half plane H. Conjugate both coverings such that the ideal
point q is represented by oc, and a loop once around q lifts to the deck
transformation z —• z + 1 , z e H. How lift the Beltrami differential v to H
and let w(z) be the solution of wΎ = vwz, that is a self-homeomorphism of
H fixing 0,1 and oc [2]. For our choice of coverings w commutes with the
translation, w(z+ 1) = w(z) + 1, thus for u = e2πiz, respectively υ = e2πιw
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(u an rs coordinate in the domain, v an rs coordinate in the range), the map
w(z) induces a map u —• v. Write w(u) = v for this map of punctured
discs (///translations); w represents the Rv hyperbolic metric in the R-
local-coordinate u. If supp(z^) c {Imz < c} then w is holomorphic on
\u\ < e~2πc. A simple construction shows that w on \u\ < e~2πc can
be an arbitrary holomorphic map; rs coordinates are not preserved by
deformations. Nevertheless it is a standard result of Teichmuller theory
that v G L°°(H) —• w G C°(disc) is a real analytic map of Banach spaces
[2]. Thus w is close to the identity for v small and there is an expansion
for w in terms of v. This is sufficient for our purposes.

2.4. We recall the description of the universal curve ^g over the com-
pactified moduli space ([8], [24], [28]). ^ and Jίg are examples of com-
plex F-manifolds. A complex F-manifold is a pair (Af, J / ) , where M is a
Hausdorff space and si = {Aa} is an open covering: associated to each Aa

is a triple (Aa,Γa,φa)9 where Aa is connected open in Cn, Γa c GL(AZ C)

is a finite group stabilizing Aa and φa: Aa —• ,4α is Γα-invariant, inducing
a homeomorphism of Aa/Γa to v4α. There is a compatibility condition for
triples when Aa c Aβ, and by hypothesis si is a basis for the topology of
Λ^ [4], [27]. We are interested in questions on the local differential geom-
etry of g^ and Jfg\ it will be sufficient to study the local manifold covers,
the Aa.

We start with the plumbing construction for R a surface with a pair
of punctures {a, b}. The data is (U, V,F, G, t): U and V are disjoint disc
coordinate neighborhoods of the punctures, aeU,beV,F:U-+C,
G: V —• C coordinate mappings, F(a) = 0, G(b) = 0 and t a sufficiently
small complex number. The plan is to construct a degenerating family
Ru analogous to the model family zw = t. Pick a constant c > 0 such
that F(U) and G(V) contain the disc {\ζ\ < c}. Assume \t\ < c2, remove
from R the discs {\F\ < \t\/c] c U and {|G| < \t\/c} C V to obtain an
open surface i?*. Form an identification space Rt, t Φ 0, by identifying
p G {\t\/c < \F\ < c} c /?; with ^ G {\t\/c < \G\ < c} c Λ? if and only if
F{p)G(q) — t. Rt is the plumbing for the prescribed data.

Remarks. F and G are holomorphic homeomorphisms, thus Rt is a
Riemann surface. The constant c specifies the size of the (image of the
annuli) {\t\/c < | F | , \G\ < c) in Rt\ for c > \t\ι/2 the surface Rt is indepen-
dent of c.

Now we describe the plumbing family, {Rt}, over the ί-disc. Let γ = c2,
Dγ = {\t\ < 7>5 M = R* xDγ and N = {(z,w,t)\zw = t, \z\,\w\ < c and

\t\ < c2}. M and Λ̂  are complex manifolds with holomorphic projection
to Dγ. There are two holomorphic maps of (appropriate) subsets of M to
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N:

{p,t)£(F(p)9t/F(p),t) and (q,t) £ {G(q),t/G{q),t).

The identification space M U N/{F + G equivalence} is a degenerating
family {Rt} with projection to Dγ (an analytic fiber space of Riemann
surfaces in the sense of Kodaira [23]). The t Φ 0 fiber is Rt, constructed
above; the 0-fiber is a noded Riemann surface. Finally for the sake of
latter consideration, note that N —• Dγ is a local model for {Rt} —• Dγ in
a neighborhood of the node.

2.4.M. Description of the local manifold covers ofJFg. R is a Riemann
surface with nodes p\9 9pm (m = 0 is allowed). First we discuss the
data for constructing a local manifold cover of a neighborhood of R e
Jtg. Ro = R - {nodes} is a union of Riemann surfaces with punctures.
Fix Uo C Ro, open, such that each component of Ro intersects Uo in a
nonempty relatively compact set. Pick plumbing data (Uj,Vj,Fj,Gj,tj)
for each of the j nodes of R; assume that the [/,-, Vj are mutually disjoint,
and that Uo and \Jj(Uj U Vj) are disjoint. The deformation space of Ro,
Def(i?o)> is the product of the Teichmϋller spaces of the components of
i?o Pick Beltrami differentials &Ί, , vn, supported in Uo, spanning the
tangent space at Ro of Def(i?o)

Now, using the data, we parametrize the small deformations of Ro.
Let v{s) = ΣΊc=ι Sk^n, s G C", \s\ small, and as in §2.3 let Rs = i?o,*Φ)
Since Uo is disjoint from the Uj, Vj, then the Fj9Gj are also holomor-
phic coordinates on Rs. Given t = (/i, ,tm), small, for each j form
the plumbing of Rs with data (£/,, VJ9Fj,Gj9tj) to obtain Rst. The tu-
ple (s, t) = (s\9 ,sn, t\9 , /m) are local coordinates for a /oα*/ manifold
cover oϊJίg in a neighborhood of R. The i?5>/ are precisely the small (stable
curve) deformations of R.

2.4.C. Description of the local manifold covers of ^g. For the plumbing
construction we described the family {Rt} over the ί-disc. Now we shall
construct the family {Rs,t} over the (s, ί)-polydisc.

We start with the family {Rs}, fiber=union of Riemann surfaces with
punctures, over the s-polydisc. Bers has given the global description of
the family over Teichmϋller space [7]. A local description is obtained
as follows. Set M = \JSRS, for small s, M is a complex manifold with
holomorphic projection to Ds. As a smooth manifold M is the product
RoxDs. A coordinate covering of M is obtained as follows: Let {(C/α, za)}
be an atlas for Ro, and for each a let wa(z9s) be a homeomorphism-
solution of wΊ = v{s)wz on zα(i7Q) c C, normalized such that wa(z,s) is
holomorphic in s. Then Wa = (wa o za9s) is a chart, mapping Ua x Ds c
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Ro x Ds = M to Cn+ι. The chart Wa is holomorphic: a function h on

Ua x Ds c M is holomorphic if and only if h o W "̂1 is holomorphic on

Wa{Ua x Z),) c C"+ 1. As a warning we remind the reader that JVa(z9s) is

not holomoφhic but rather quasiconformal in z; the distinction is simple,

wa is not holomorphic relative to the i?o-conformal structure but is, by

definition, relative to the i?5-conformal structure.

To summarize: {(Ua x A> Wa)} is a holomorphic atlas for M and the nat-

ural projection M ^ Ds is holomoφhic with fiber Rs (a proof is sketched

at the end of this section). This is the local description of the family.

As an application consider the coordinate description of the vertical line

bundle (KerrfΠ) of the projection. On a Wa chart, Wa(Ua xDs) c CΛ + 1, Π

is the projection onto the last n coordinates; j ^ is a holomoφhic section

ofKerrfΠ.

Now we give the construction of the family {Rs,t} over the Ds x Dt

polydisc. Let (£/,, Vj, Fj, Gj, tj) be the data for plumbing the nodes of i?o

Start with the first node, 7 = 1, and the above family M —• Ds: for each

s form the plumbing family of the s-fiber Rs. The result is a holomoφhic

family Mx i ' ΰ ^ x Dtχ with fiber RsΆ\ proceed by induction on j . The

result is a holomorphic family {Rs,t} -% DsxDt with fiber Rst. This is the

description which we shall use for the local manifold covers of Wg —> Jtg.

Remark. We sketch an argument that (i) {(Ua x Ds, Wa)} is a holo-

moφhic atlas for M and (ii) the fiber of M ^ Ds is Rs. {(UaxDs,Wa)}

is an atlas for a C°-structure; it is enough to show that the compositions

Wa o W^x are holomoφhic. The solutions wa(z,s) are holomoφhic in

s, thus the Wa o W^x are holomoφhic in s. On za(Ua Π Uβ), wa and

Wβ o Zβ o z~ι are solutions of the same Beltrami equation, wΊ = uwz, it

is then standard that wa o (Wβ o Zβ o z~ι)~ι and thus Wa o W7X are holo-

moφhic in z. Hence Wa o W "̂1 is separately holomoφhic in z and s\ and

therefore jointly holomoφhic. To see the structure of a fiber, fix an v ,

then by definition RSo and the So-fiber of M —• Ds are surfaces with the

same holomoφhic atlas {(Ua,wa(za,s0))}.

3. Grafting hyperbolic metrics

3.1. The goal is to give good approximations to the hyperbolic metric
of a compact surface R, particularly for the limiting case degeneration.
Our method is to choose hyperbolic metrics for each element Ua of an
open cover {Ua} of R, such that on the overlaps the jumps are small. An
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approximating metric is constructed by interpolating between the possi-
ble choices on the overlaps. Of course, the approach depends on having
good estimates for the difference between the approximating and the actual
hyperbolic metric. A maximum principle argument shows that the Ck+ι

difference is estimated by the Ck norm of the curvature of the approxi-
mating metric. A Schauder theory argument provides an estimate for the
Ck norm of the jumps, and also of the approximating curvature, in terms
of the C° norm of the jumps and the thickness of the overlap. In brief the
Ck+ι difference between the approximating and actual hyperbolic metric
is estimated by the C° norm of the jumps and the thickness of the overlap.

In §3.2 we review the definition of invariant differentiation and the as-
sociated norms. We describe the basic construction in §3.3 and recall the
two basic estimates, Lemma 3.5 and 3.6. Finally in the last subsection
we give three instances of the construction in detail, and derive the esti-
mates for the curvature. Lemma 3.5 and the three constructions are key
ingredients of the considerations in later sections.

3.2. We start with a setup for invariant differentiation and define a Ck

norm on the space of metrics, compatible with a fixed conformal structure.
Let R be an arbitrary Riemann surface, K its canonical bundle, S(p,q),

p, q G Z, the space of smooth sections of κpl2 ® κq/2 and S(r) = S(r, - r ) ,
smooth sections of (κ&κ~x)rl2. A section oϊS(r) will transform as follows:
if (t/α, za), (Uβ,Zβ) are charts for R with fa,fβ the local expressions for
/, and γ = Zβ o z~ι the change of coordinates, then γ*(fβ) = fa, where

In particular, / has a well-defined absolute value. Fix a conformal met-
ric ds2 for R; then for z a generic local coordinate, ds2 = p2{z)\dz\2.
Metric (essentially the covariant) derivatives are defined as follows: Kr =
nr-\ d n-r r>nA T _ n—r—\ d nrP ΈlP a n α Lr — P QJP

Basic Properties 3.1. For / e S(r) then / e S(-r) and
(i) for / e S(r) and γ a change of coordinates, Krγ*f = γ*+ιKrf

Lrγ;f = y;_xLrf, thus Kr: S(r) - S(r + 1) and Lr: S(r) - S(r - 1).
(ii) Kr = L-r.

(iii) For / e 5(p) and g e 5(r - p) then fg e S(r) and

*Γ(/S) = gKpf + fKr-pg, Lr{fg) = gLpf + fLr-pg.

(iv) Dr = 4Lr+iKr + r(r + 1) is the d-Laplacian on 5(r), in particular,

is the standard Laplacian on functions.
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(v) Lr+ϊKr = Kr-{Lr + jC, C the ds2 Gauss curvature.
(vi) For C = - 1 , Dr+xKr = KrDr and DrLr+ϊ = Lr+ιDr+ι.

Item (i) is verified for Lr as follows; the reader will check the remaining.
For / e S(r) the product (ds2)r/2f defines a section of κr, a holomorphic
line bundle. The exterior differential d is well defined for sections of κr\
thus d((dsψ2f) e S(2r,2) and (ds2γ-r-{^2d((dsψ2f) e S(r - 1), as
desired.

We write \P\ for the number of factors in a product P of operators L*
and K*. A Ck norm is defined on S(r) by

o = sup|/|,
R p

\P\<k
R p

\

Given a subset B c i?, we can localize the norm || \\ktB by restricting the
supremum to B. The norm || ||* involves fc-derivatives of the metric. To see
this we compare two metrics for R\ their ratio ds\jds\ is a nonvanishing
function.

Definition 3.2. The metric ds2 is ε Ck-close to ds\ provided the norm
|| \o%ds\jds\||jt, relative to rf.s|, is at most ε.

Lemma 3.3. Let \\ \\kJ be the Ck norm defined by ds2, j = 1,2. ΓΛ r̂e
« increasing function c(ε) such that ifds2 is ε Ck-close to ds2, then

kΛ<c{ε)\\f\\K2forfeS{r).

Proof. If Krj and Lrj are the ds2 derivatives and Φ = (ds2/ds2)1/2,
then KrΛ = Φr-χKr2Φ~r and LrΛ = φ-r-χLrwΦ

r. Thus a product of p
operators relative to ds\ can be written as a product of p operators relative
to ds\ and multiplications by Φ ± 1 . The conclusion follows.

Corollary 3.4. There exists a constant c(k,εo) such that ifds2 is ε Ck-
close to ds\, ε < ε0, then ds\ is c(k,εo)ε Ck-close to ds\.

3.3. Now we shall give the grafting construction as well as the basic
estimates. The estimates are based on the maximum principle; the argu-
ments are simplest if R is compact. And so for the construction R is a
general surface and for the estimates R is compact.

Let {U, V} be an open cover of R and ηo a smooth function on U n V
chosen such that for

i θ, on U - V,

ηo, unv,
i, v-u,

η will be smooth on all of R (U Π V need not be connected). Obviously
η is a smooth approximation of the characteristic function of V. Given
ds\ a metric on U and ds\ a metric on V (neither need be complete) then
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define

to be the grafting of ds\ and ds\ relative to η. On the overlap ds2

{x

interpolates between the two possible choices of metric. We shall refer to
ds2 and ds\ as the component metrics of the grafting. We check that the
definition is coordinate independent: if K is the R canonical bundle then
a metric ds2 for R is a section of |/c|2, an R+-bundle with defining cocycle
taking values in the multiplicative group of positive reals. Thus for a e R,
(ds2)a is a section of \κ\2a, and for example ds2

T2ίίx is a metric.

Of particular interest to us is the case of the ds2 hyperbolic. Just as
a piecewise linear function on IR" with small C1 jumps is close to a lin-
ear function, we shall see below that for a compact surface a piecewise
hyperbolic metric with small C1 jumps is even Ck close to the constant
curvature - 1 metric. As the general case consider graftings relative to any
finite open cover {Ua} of R, provided that the sets only intersect in pairs.
We write η for the collection of interpolation functions on the UaΓ)Uβ,
supp(graft) for the union of the overlaps, and finally Φ = ds^/dsj for the
collection of ratios.

Lemma 3.5. [17]. Let ds2 and K be a smooth metric and its Gauss
curvature for a compact surface R. Ifds^yp is the R hyperbolic metric and
Ψ = ds2Jds2

fthen

||Ψ-l||o<||tf+l||o,

and given an integer k > 0 and εo, 0 < εo < 1, there exists c = c(k, ε0) such
that for \\Ψ-l\\o<εo

\\Ψ-l\\k+ι<c\\K+l\\k.

Proof. In §4.2 we recall that / = logΨ satisfies the equation Df-K =
e2f, where D and K are for the smooth metric. The first inequality is a
simple application of the maximum principle Estimate A.2 (see appendix).
For the second inequality first note that | |Ψ-11| 0 < ̂ o provides a C° bound
for /, and that a Cp bound for / leads to a Cp bound for Ψ = e2f. The
inequality follows by induction using Estimate A.3 (see appendix); the
proof is complete.

Remarks. If K is somewhere positive then the first inequality provides
a lower bound, but no upper bound. We will only be interested in the case
ĝraft « - 1 . It is an important feature that the estimate is by local data,

the curvature. If the component metrics for a grafting are hyperbolic, all
that has to be checked is the curvature on the overlap.
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For the sake of reference we compute Λ r̂aft Let Ua, a = 1,2, be over-
lapping open sets with hyperbolic metrics ds\ and interpolation function
η (= 1 on Uι - U\). If z is a conformal coordinate on UaΠ Uβ, then

l = pl\dz\2 and

A\ogpa pl, A ^ = .

For Ψ = \ \o%(dsllds\), the grafted metric is ds2

τaft = (pιeηψ)2\dz\2 with
curvaturecurvature

for D = 4L\K0 the ds\ Laplacian. We find, on substituting Δlog/?α = p*9

the expansion

(3.1) K^ = -e~2^(l + 4ΨL{K0η + SReLoηKoΨ + η(e2Ψ - 1))

relative to the ds2 derivatives. Note that ^graft = - 1 on the complement
of supp(d?//).

From the expansion for K&2iίx we see that for its Ck norm it is enough
to estimate the Ck+{ norm of Ψ = \ \o%ds\jds2 and the Ck+2 norm of η
on the overlap. In fact, by the estimate below it is enough to estimate the
C° norm of Ψ provided the overlap is uniformly thick. We shall use this
criterion for the constructions: C°-close hyperbolic metrics on uniformly
thick overlaps.

Lemma 3.6. [17]. Given an integer k > 0 and Co, £o, ε\ > 0, 0 < ε\ < ε0,

there exists a constant c = c(k, Co, £o> Ci) such that if hyperbolic metrics ds2

and dsl a r e a t ^east co C^-close on the ds\ ball B(p, εo)> then

form =\\og{ds2 Ids2).
Note. It is not necessary that B(p, e0) be embedded.
Proof Again, consult §4.2 to find DΨ + 1 = e2ψ for D the ds\ Lapla-

cian. By hypothesis ||Ψ||o < CQ and again a Cp bound on Ψ provides a Cp

bound on e2Ψ. The proof is by induction using Estimate A.3; the proof is
complete.

3.4. Start with a surface R with a pair of punctures. We construct
a family Rt by plumbing, and a grafted metric by combining the model
metric in the plumbing collar and the R metric in the complement. There
are four possible situations: the plumbing functions F and G and the JR
metric may or may not be compatible (have the same rotational symmetry
in the collar) with the model metric. The possibilities are covered by the
primary grafting, the model grafting and the compound grafting.



THE HYPERBOLIC METRIC 439

3.4.PG. The primary grafting. The first step is to describe the data.
Let U, V be disjoint disc coordinate neighborhoods of a pair of punctures
p eU, q eV. Let ds\ be a hyperbolic metric on R which is complete near
p and q. Consider coordinate mappings: u and F{ύ) on U (maps of U into
C), both vanishing at p as well as υ and G(v) on V, both vanishing at q. Set
λ = (F'(0))~ ι and μ = ((/'(O))"1 and introduce the normalized functions
/ = λF, g = μG\ the reader should keep in mind that f(u) « u and g(v) «
v. Set τ = λμt and note that the plumbing for the FG = t identification
coincides with the plumbing for the fg = λμFG = τ identification.

Set for the entire discussion positive constants A, A < 1, and δ, δ small;
we allow a finite number of modifications to A and δ. Assume, decreasing
A if necessary, that A < \f\ < 2A defines a relatively compact annulus in U
and A < \g\ < 2A a relatively compact annulus in V. The inner boundaries
of the annuli are approximately \u\ = A and \v\ = A; with this in mind we
define η smooth on U and on V such that is vanishes on \u\ < (1 - δ)A
and \v\ < (l-δ)A and is identically 1 oir|w| > (1+<J),4 and \v\ > (l+δ)A.

Now we start the construction of the plumbed surface iff, fix t Φ 0
sufficiently small (τ = λμt). Consider / as a map to the z-plane and g as
a map to the w -plane. Use the charts f and g to pull back the plumbing
as well as the metric for the model case. The plumbing: remove the discs
I/I < |τ| and |# | < |τ| from R and define Rt by identifying |τ| < |/ | < 2A to
|τ| < |#i < 2A by the rule u = v if and only if f(u)g(v) = τ (see §2.4). The
metrics: first consider three annuli on Rt9 contained in the identification
locus,

(I) {A < I/I < 2A} = {\τ\/(2A) < \g\ < \τ\/A}9

(II) {\τ\/A < I/I <A} = {\τ\/A < \g\ < A},

(III) {\τ\/2A < I/I < \τ\/A} = {A < \g\ < 2A}.

Enlarge the annuli to obtain ls, Us and III^ by replacing A with e~2δA in the
definition of I and III and A with e2δA in the definition of II; {1 ,̂ IIj, III,?}
is an open cover of the ί-collar in Rt. As hyperbolic metric on 1̂  and Uls

we choose ds\ and on 11̂  we take the pullback by / of the τ-fiber model
metric (1.1), specifically

rdc2 ( » czcn log 1/1 W\ Ϋ
f ds* ~ W l log|τ| \f\) •\f\) •

The metrics ds\ on 1,5, \\\δ and f*ds\ on 11,$ are grafted relative to η to
obtain ds^Άίv the primary grafting. The data for the construction is the
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tuple {ds\, U9 V, F, G, η, t)\ henceforth we shall specify the construction by
the data.

Remark. The /-fiber model metric has a symmetry w = t/z. Since
fg = τ, it follows that f*ds2 = g*ds2 (simply replace the letter / by the
letter g). Thus the Is Π Us and Us Π Ills graftings are formally the same.
Therefore it is enough to analyze (or estimate) the former.

Introduce norms | | |/ | | | and || |g| | | to measure the deviation of f(u) and
g(v) from the identity map. We take ||| ||| as the C° deviation of f~ι

and g~ι on the disc of radius 2A; f, g are holomorphic, a C° estimate
automatically bounds the derivatives.

Lemma 3.7. With the above notation there exists a positive constant c*,
depending only on | | |/ | | | , | | |^ | | | , η,A,δ and an integer k > 0, such that for
Ψ=±log(ds2

R/f*ds2), |τ| < e~2δA, then

Ingraft+1 Ik <Q||Ψ||0,overlap.

Proof. As already noted using the Λ r̂aft expansion (3.1) and Lemma
3.6, the norm ||Λ^graft+11|^ is estimated by the C° norm of Ψ, the Ck+2 norm
of η and the injectivity radius of supp(dη), all considered on the overlap.
The overlap is e'2δA < \f\ < e2δA. On the overlap, f*ds\ is C°°-close
to f*dsl (this is the model case); it is enough to estimate the norm of η
and the injectivity radius of supp(rf^) in terms of f*dsQ. Simply take η
as a function of /, independent of τ, its Ck norm is bounded. Now if η
is chosen with support of dη in (1 - δ)A < |/ | < (1 + δ)A then certainly
the injectivity radius of supp(dτ/) in the overlap is bounded below. We
have estimated the norm and support of η; the curvature is bounded by
the remaining quantity ||Ψ||o,overiaP The argument is complete.

3.4.MG. The model grafting. We will now describe the grafting of the
fiber metrics for the model case. The 1̂  Π 11̂  and the 11̂  Π III^ grafting
will be formally the same (see the above remark); it is enough to consider
the Is Π Us overlap. The data for the model grafting is: U = {\u\ <
1}, ds2 = (\du\/(\u\log\u\))2, F(u) = u, η is a function of log|w| with

C (logA-δ, logA+δ) and t is small. As an example and also since
determines the hyperbolic metric (§4.1), we will start by computing

the first perturbation of KgTaft at t = 0. The estimate for the norm of
ĝraft + 1 is given afterwards.

Let Ψ = jlogdsf/dsQ. Then the ratio and A^graft are coordinate inde-
pendent, and we may change variables. Let

r i L Λ ^ 7Γ log IwI πa
ζ = logu = a + ib and θ = ' ' -log|ί|
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thus dsl = (\dζ\/a)2 and Ψ = -log(sinθ/θ) = ± θ 2 + <9(θ4). The func-
tions Ψ and η are invariant under rotations of the annulus, thus they
are functions of the single variable a = \og\u\ and in effect Ko = \aj^,
£o = jflflβ ^ o w by (3.1) the curvature is simply

*graft = -e'2^{\ + Va2ηaa + 2a2ηaΨa + η(e2ψ - 1)).

We expand, simplify, and write ε for (π/log|ί|) and = for calculations
modulo ε4. Then

= -(1 - \ηe2a2)(ί + \ε2a4ηaa

The α-term will appear in the expansions of §§4 and 5; for the sake of later
reference we have the following.

Definition 3.8. The model curvature perturbation is

Λ(M) = (a4ηa)a for a = log \u\, ueC.

Remarks. As set up, η = 1 on 11̂  - 1̂ , and of course ηa is an approxi-
mate Dirac delta for the overlap. The implicit O-terms are uniform in a,
given the uniform convergence of the ί-fiber model metrics on log \u\ com-
pacta. In fact for the same reason, given an integer k > 0 there exists a
constant c^ > 0, depending only on η, such that ||AΓgraftH-1 \\k < ck(log \t\)~2.

3.4.CG. The compound grafting. This is the general case, i.e., the R-
metric, the model metric and the plumbing are not compatible. Our solu-
tion is to introduce, as the correction, an additional grafting in the center
of the collar. For the new grafting # g r a f t = - 1 + 0(|ί | ( 1 / 2 )~ 2 ( 5), an exponen-
tially small term compared to l/[log(l/|ί|)].

As data for the compound grafting we have: U = {\u\ < 1}, ds\j =
(|rfM |/(|M |log|M |))2, V = {\v\ < 1}, ds2

v = (\dv\l(\v\\o%\v\))2, F,G, and
t small. As before / = λF, g = μG and τ = λμt. We subdivide Π^ by
setting

(II,) { | τ | 1 / 2 < | / | < ^ } = { | τ | M < | g | <

Enlarge the annuli to obtain II1($ and II2,<5 by replacing A with e2δA and
| τ | 1 / 2 with |τ | ( 1/ 2 ) + 2 < 5 for an inner boundary and with |τ| ( 1/2 )~2 < 5 for an outer
boundary.

The lδ Πϊlιts and H2,s ΠIΠ^ graftings are straightforward: take

C S CVlog|τ|C S C log|τ| \ζ\
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for u = ζ as the metric ds\ on 11^ and for υ = ζ as the metric ds\ on
Π2)<j and η = η(log\ζ\). In both cases these are precisely model graftings',
we already have the desired estimates.

All that remains is to discuss the grafting on OF = H1(j n Il2,<j. The
estimates are simplest if we introduce a third (comparison) metric ds2

ux.
The first step is a change of variables, u = e c i o g | τ | , ζ = a + ib, 0 < a < 1,

ds\ —

and now we define

We must give a C° estimate on OV for

Ψ = i log^/ί/5 a

2

u x = log(sinθ/sinπα)

where θ = πlog|/|/log|τ| and a — log |w|/log |τ|. Observe that since
/'(0) = 1 then

θ = ̂ i ψ ̂  π'μP; + π

l θyy/"l =πa + O (Jή
log|τ| log|τ| log|τ| \log|τ|

in consequence the sine term for Ψ is O(|w|/log|τ|) for ζ e OV, constant
depending on || |/ | | |. Now the second term for Ψ is \ Re log{f(u)/{uf{u))) =
Re(cu -\ ), which is clearly O(\u\), constant depending on | | |/ | | | . In con-
clusion on OV since \ψ^+2S < \u\ < \τ\^ι^-2δ then Ψ is O(\ψ^~2δ),
constant depending on | | |/ | | | .

The auxiliary metric was intentionally chosen so that the change of vari-
ables g = τ/f provides the corresponding expression with / replaced by g
(see remark in 3.4.PG). And so we have the same estimate for logdsj/ds2^
and by the triangle inequality the same estimate for \ogds\lds\ on OV.

The grafting will be done in the ζ = a + ib variable with an interpolation
function η = η(a), where η1 has support {\ - δ < a < \ + δ}\ note that the
Ck norm of η is /-independent. By Lemma 3.6 ds2

ux is Ck-close to ds\ on
{\-\δ < a < \ + \δ) and by a second application ds\ is Ck -close to ds2

ux

on supp(f//). Given the expansion (3.1) for A ĝraft we have the following.
Lemma 3.9. With the above notation, there exists a positive constant

Ck, depending only on | | |/ | | | , | | |^ | | | , η,δ and an integer k > 0 such that

Example. The geometry of the compound metric in the collar. We shall
estimate the length of the core geodesic. First note that for a = 1,2,
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l and a^2

raft coincide on IIα - OV and by the above logds2

τah/dsl is
O(\t\{χl2)-lδ) on OV. Now the shortest closed curve for ds\ is \u\ = \ log |τ|
of length 2π2/log l/|τ|; by our estimates the same curve has comparable
^graft l e n g t h Thus the shortest ds2

TΆ{χ closed curve γ has length lγ -> 0.
This initial estimate forces γ to be contained entirely in OV. On OV,
ds2

mft and ds\ are comparable, lengths are comparable by the same factor:

logl/lτf

4. The pinching expansion

4.1. We give the expansion for the hyperbolic metrics of a degenerating
family of Riemann surfaces {Rs,t}- The expansion is similar to that for
the model metric dsf = ds$(l + %& + --). The first term will be the
grafting of the model metric and the RSto metric. The second term will
correspond to solving for the perturbation of the grafted metric from a
constant curvature - 1 metric. The remainder will be 0((l/log|ί |) 4) in the
C°° norm for functions on Rst. A special feature of our approach is that
no restriction is placed on the form of the plumbing functions.

§4.2 contains basic information on the prescribed curvature equation.
The pinching expansion is presented in §4.3. The section ends with an
example, the geodesic length function of a pinched geodesic.

4.2. Given a metric ds2 and a smooth function /, then e2fds2 is a
conformal metric. An invariant oϊe2fds2 is its Gauss curvature K{e2^ds2).
It is interesting to invert the process: given Ko, find a function /o such that
e2f°ds2 has curvature K$ ([6], [20], [21]). We would like to review a few
results on this question.

First the equation; let R be a compact surface with conformal met-
rics, dsl w ^ h curvature K$ and ds2 with curvature K. If z is a generic
conformal coordinate we write dsl = Wz)l^zl)2> ds2 = (p(z)\dz\)2 and
ds2 = e2fds\. The ds2 curvature equation is -p~2Alogp = K for Δ the
z-Euclidean Laplacian or equivalently -e~2ΛJ,~2Δlog(eΛl) = K or

(4.1) D0f-K0 = -e2fK

for Do the dsl Laplacian. Conversely given a putative curvature function
K < 0 and provided Ko < 0 then the equation (4.1) has a unique solution
h, the metric e2hds\ has curvature K ([6], [21]).
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A special case is the curvature correction equation to find the function
/ such that e2fdsl will have constant curvature - 1 ,

(4.2)

We shall approximate / by the solution of

(4.3)

The difference will be estimated by the following.
Lemma 4.1. Let R be a compact surface. Given ε, 0 < ε < 1, and

an integer k > 0 there exists a constant c = c(k, ε) such that for Ko, K\
satisfying ||AΓ0 + l||o, ||AΊ + l||o < ε, the solutions of (4.2) and (4.3) satisfy

\\e2f - (1 + 2/011*+! < c(\\K{ - Koh + ||*o + l\\2

k).

Proof First consider the C° estimates for /, f and (f - f \ ) . By Esti-
mate A.2 (see appendix) applied to (4.3) and (4.2), ||2/i||o <
||AΊ + 1||O < β (the C° estimate for f) and | | * ? v - l | | 0 < | |#o+l | |o < β. Two
consequences of the second inequality are ||/||o < c(ε) (the C° estimate
for /) and that there exists a constant C such that for E = e2f - 1 - 2/,
||£||o < C||AΓ0 + a\\l. To estimate (/ - f) consider the difference of (4.2)
and (4.3), D0(f-f{)+Kι-K0 = e2f-\-2f{. SetF = e2f-\-2fx and apply
Estimate A.2 to conclude Kx -Ko > F at max of (f-f\), and K\ -Ko < F
at min of (f-f\). Now to give the C° estimate for (f-f), 2f-2f = F-E
and thus 2\\f-f | |0 < | | F | | 0 + | |^| |o < ll^i -ΛΓollo + C\\K0 + 11|§, the desired
initial estimate.

Now to consider the C1 estimates: apply A.3 to the difference of (4.2)
and (4.3) to obtain the estimate for (f - f\)\ apply A.3 to (4.2) to obtain
the estimate for / and thus for E. The C1 estimate for F = 2(f - f) + E
now follows. To continue, proceed by finite induction using Estimate A. 3
to obtain the Cp estimate for (f - f\) and F. The proof is complete.

4.3. Consider a degenerating family {Rs,t}, as described in §2.4.C. We
present our expansion for the hyperbolic metric of Rs/, the initial term
is the compound grafted metric and the second term is the correction for
the model curvature perturbation. The specific features are: we do not
expand in the ^-variables (we assume the Rs hyperbolic metric is given),
nevertheless the O-term is ̂ -independent for small s, and there is no special
hypothesis for the plumbing functions F and G. In Example 5.5, §5.2, we
describe the first term for the expansion in the s-variables, the resulting
0-termis0((l/log | i | ) 4 + |s|2).

Return to 2.4.M and 2.4.C to review the description of a degenerat-
ing family. R is a Riemann surface with nodes pi, ,pm, Ro = R-
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{nodes}. Choose Uo C i?o to support the smooth Beltrami differentials
vw- >Vn, v(s) = Σnk=\SkVk> s e Cn, small, and choose plumbing data
(£//, Vj,Fj, Gj, tj) for each of the j nodes. The deformation Rs = Rv^ of
i?o is defined in terms of the Beltrami equation, and Rst is obtained by
plumbing Rs with the above data.

Now to review the description of the grafted metric (§3.4) for Rst. Let
Uj, Vj be the rs coordinates (Definition 2.1) for the yth pair of punctures of
Rs. For the remainder of the section we consider Fj, resp. Gj, as a function
of Uj, resp. Vj\ normalize the rs coordinates (by rotation) so that Fj, Gj
have positive derivative at the origin. As before, set λj = λj(s) = (Fj(0))~l,
fj = λjFj, μj = μj{s) = (Gfj(0))-\ gj = μjGj and tj = λjμjXj. The
data for the compound grafting is (ds\s, Uj, Vj, Fj, Gj, choice of η, tj) and
we write dg}tt for the grafted metric on Rst. Recall that the compound
grafting (3.4.CG) consists of a model grafting at the collar boundaries and
a compensating grafting at the collar core. Keeping our notation, we state
the main results of the section.

Expansion 4.2. Let dslyp be the Rst hyperbolic metric, D the associated

Laplacian and dg}t the Rst grafted metric. There exists aδ§>Q such that

for\t\,\s\<δ0,

(

where the O-term is for the C°° norm (§3.2) on functions on Rst and the con-

stant is bounded solely in terms of. δo, the norms (see 3A.PG) \\\fj\\\, \\\gj\\\

relative to the Ro rs coordinates, and the choice of interpolation function η.

Remarks. Λ is the model curvature perturbation of §3.4.MG. Replac-
ing (I/log |τ |) 2 with (l/ | log|ί |) 2 will produce a term of order (l/log|ί |) 3.

Proof The argument consists of combining the estimates of 3.4.MG,
3.4.CG, Lemmas 3.9 and 4.1. We start and consider again the curvature
Kst for the grafted metric in the j'th plumbing collar. By the considerations
of 3.4.MG and 3.4.CG the curvature in the jth collar is

= _i-IΛ ((log|τ,|j J'
where the O-term is for the dg}t C°° norm and the constant is bounded in
terms of δQ, choice of η and \\\fj\\\, \\\gj\\\. Next we consider the solution
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of equation (4.3) for the first perturbation of curvature. By Lemma 4.1
with Ko = Kst and

we find that the resulting metric is C°°-close to the actual Rst hyper-
bolic metric with magnitude X 7̂ (π/log|τy|)4. The constant depends on
(Jo, choice of η and |||.//|||, |||£) |||. This is almost the desired conclusion, ex-
cept for the s-dependence: the C°° norms are relative to dg]t, the norms
II I/)'II15 III £/III a r e relative to the Rs rs coordinates, and for inverting the
curvature perturbation the dg]t Laplacian has been used.

We will check these items in order. By Lemma 3.5 and the estimates
for Kst we have that the metrics ds£ and dg}t are 0(X^(π/log|τ ; | )

2)
C°°-close and thus by Lemma 3.3 and Corollary 3.4 the two norms can
be interchanged. The ^-dependence of the rs coordinates was discussed
in §2.3. The consequence, |||//|||, \\\gj\\\ vary continuously in s, and thus
are bounded by \s\ < δo and the norms of /} and gj relative to the i?o
rs coordinates. Finally to compare Laplacians set e1^ = dslyp/dglt,
thus Dst = e2^'Aiyp and note that there is a Neumann series expansion
for (DSJ - 2)" 1 in terms of (Aiyp - 2)" 1 . In particular (DSit - 2)" 1 =
(Z)hyp - 2)" 1 + O(Σj(π/l°&\τj\)2)> where the O-term is for the operator
norm on C°° functions. We can interchange Greens operators. The proof
is complete.

Remarks. We could write down the next term; it seems premature to
do this, the expansion already involves (D - 2)~ι whose ί-expansion we
do not completely understand. In applications it may only be necessary
to have an L°° approximation of metrics; in such cases the grafted metric
could simply be replaced by the component metrics for the grafting. In
the following example we will see that the curvature correction term is
actually one order of magnitude smaller in the collar core.

Example 4.3. Geodesic length functions. If lj is the length of the
geodesic y7 in the jίh collar of Rsί, then for \s\9 \t\ < δo

2π2

J logl/N+

where the constant depends on δo, \\\fj\\\, \\\gj\\\ and choice of η. The proof
is based on the Example of 3.4.CG and inequality (A.4.4) of appendix A.4.
Specifically since ds^/dg^ - 1 has order £ l/(log|τ|)2, the length lSJJ of
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the dgjt geodesic in the 7 th collar satisfies

1 ^ S-Ί X ^ A

•j,s,t (log|τ|)2

The initial estimate forces the dg}t geodesic to lie in a collar ^(y 7) of fixed
width about y;. Inequality (A.4.4) provides that on ^(y,) the magnitude
of (D - 2)- ' Σ ( Λ ( M ) + Λ ( υ ) ) is <?(l/log l/|τ, |). Thus in consequence, on

k=\

and since comparable metrics have comparable geodesic lengths,

m 1

/, 1̂1) Slog(l/|τy|)f-'(lQg|τjfc|)2

Substituting

from the example of 3.4.CG, gives the desired estimate.

5. The hyperbolic curvature

5.1. The focus of this section is the curvature 2-form for the hyper-
bolic metric on the vertical line bundle. In §5.2 we describe a procedure
for calculating the perturbations of a metric. Formulas are given for the
first two deformations of the Laplacian and Gauss curvature. As an appli-
cation we consider the s-dependence (see §4.3) of a degenerating metric.
A second application is the calculation in §5.3 of the connection 1-form
and curvature 2-form for the hyperbolic metric on the vertical line bun-
dle. In §5.4 we describe Beltrami differentials v with K-ΪV small. The
idea is to start with a quadratic differential holomorphic on a subdomain
and multiply by a cutoff function. The corresponding Beltrami differen-
tial will be smooth and have small ΛL2-derivative. These special Beltrami
differentials are used in §5.5 to show that the hyperbolic metric is good.
In the final subsection we analyze the limiting behavior of the curvature.
A consequence is the classification of the null curvature directions for the
vertical line bundle.

5.2. There are several procedures for calculating the perturbations of
a hyperbolic metric ([1], [2], [15], [31], [32], [37]). We now describe a
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slightly different organization for the calculation. In the first stage pertur-
bations of all orders are computed in terms of derivatives of the Beltrami
differential and the original metric. The calculation does not involve the
map, inducing the deformation, or any potential theory. The second stage
involves perturbations of the prescribed curvature equation. The proce-
dure is valid for arbitrary smooth Beltrami differentials and arbitrary met-
rics. For hyperbolic metrics perturbations are given solely in terms of: the
metric, derivatives of the Beltrami differential and the operator (D — 2)" 1 ,
for D the hyperbolic Laplacian.

We start by recalling the description of a Hermitian form. Let VR be an
R-vector space with almost complex structure J, J 2 = - 1 . Set Vc = VR ® C
and Vc = F ^ e F ^ the ±/ J-eigenspace splitting. We write V for
the C-vector space F ( 1 0 ) and recall the canonical geometric isomorphism
v e V —• geom(ΐ ) = υ +ϋ e VR. For h a Hermitian form on V there is
the associated metric k on VR,

fc(geom(v),geom(u;)) = 2 Re h(v,w)

and Kahler form

ω(geom(υ),geom(w)) = k(Jgeom(v ),geom(tu)) = -2lmh(v,w).

Any two of the three, k,w,J, determines the third.
As an example, let FR = C, J be multiplication by / and z = x + iy

the coordinate. A Hermitian form is given by h = \dz 0 d~z, for some
a > 0, the metric by a(dx2 + dy2) and the Kahler form by -llvah =
a{dx ®dy - dy® dx) = a(dx Λ dy) = fdz Λ d~z. Observe that given J,
passing from ω to k is coordinate independent, / : ( , ) = —ω(J, ). In the
complex coordinate z the net effect is to replace dx Λ dy with dx2 + dy2.
Also note that associated to an area form for FR is a (1,1) form for V. For
instance, given a diffeomorphism of Riemann surfaces, the pullback of an
area form is necessarily a Kahler form. We shall use these observations in
the following paragraphs.

Definition 5.1. Let / : R —• S be a diffeomorphism of Riemann sur-
faces, k a metric for S, and ω the Kahler form. The J-pullback metric for
i? is

kf = -(/*ω)(J*, )

for JR the R complex structure.
To continue with the example, let R with generic coordinate z, and S

with generic coordinate w, be Riemann surfaces and w(z) the map / in
coordinates. If k = (a(w)\dw\)2, then

f*ω = a(w(z))2(\wz\
2 - \wΊ\

2){dz Λ dΎ
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and the J-pullback metric is

kf = a(w(z))2(\wz\
2-\wΎ\2)\dz\2.

A simple property of the J-pullback metric is that the metric distortion
of a quasiconformal map is independent of the particular solution of the
Beltrami equation.

Lemma 5.2. Let Rbea Riemann surface with metric k and Kάhlerform
ω. If v is a smooth Beltrami differential and W\,w2 homeomorphism-
solutions of the Beltrami equation wΊ = vwz, then w*(kw-ή = ^(/c^-i).

Proof It is a standard calculation that the W-derivative of w2 o w" 1

vanishes identically, and thus W2 = gow{, g holomorphic. Next, consider
the composition R ^i S -^ T as a mapping of Riemann surfaces, S with
metric kw-\ and T with metric k^goW{y\. The map g is holomorphic, and
thus g*ojs = Jτ°g* for J the appropriate complex structure. Now starting
with the pullback metric (pullback by g of a symmetric 2-tensor)

g*9 g*) = -{(g o w{)-{

since (iΓ"1)*0^* = id, and finally applying w* gives the desired conclusion.

The purpose for the lemma is suggested by the following observation.
A differential invariant of a quasiconformal map, that is, independent of
the particular solution of the Beltrami equation, is necessarily expressible
in terms of the Beltrami differential and its derivatives. To see this let v
be the Beltrami differential, and w(z) a particular solution of Wj = vwz.
First note that the equation can be used to express z'-derivatives of w in
terms of z-derivatives of v and w. Thus the invariant can be given as an
expression in the z-derivatives of w and z,Ύ derivatives of v. The second
observation is that the first k, k > 0, z-derivatives at a fixed point z0

of a homeomorphism-solution of the Beltrami equation can be arbitrarily
specified. This is a simple consequence of a basic fact: if w(z) is a soli ion
and g is holomorphic, then g o w is also a solution. To summarize: the
invariant at z0 is independent of the quantities w,wz,wzz, and thus
can be expressed solely in terms of the derivatives of v.

We shall carry out this procedure for the pullback Laplacian and curva-
ture. It will be more convenient to use the inverse map, consider f:R-+S
a diffeomorphism of surfaces, k a metric on R and kf-ι the J-pullback met-
ric on S. Let v be the Beltrami differential of/, and A = {\-\v\2)~{. For
the complex local coordinates z on R, w on S, let w(z) be the map, and
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(a(z)\dz\)2 the metric on R, and define the operators

»<•"-(£-*£)•
Let C be the curvature of kf-ι, C* = C o /, and Z> the Laplacian, Z>* its
pullback by /, i.e., for h a function on S, (Dh) o f = D*(h o / ) .

Lemma 5.3. With notation as above,

C. = - i /
We write w{z) for / , z(w) for the inverse map, and / =

- \u>j\2)~ι, and recall the elementary formulas

zw = JvΓz, zw = -Jwj,

, , d
— = JWzd{v),

zwZw = -AJv, \zw\
2 ± \zw\

2 = AJ{\ ± \v\2),

( l l 2 + l l 2 f e + 2 R e ( z - a ¥ + ZwZ™drή •
We start by evaluating zWyj,

T—
 A

Zw = JWZ = —,

(wzγ wz

Now Wj = vwz and thus wzΊ = vzwz + vwzz. On substituting we obtain

-—v +—WΪA
wz

 z wz

and multiply by Jwz for the result

The metric kf-\ is α 2 ( |z^ | 2 ± \zw\
2)\dw\2 = a2J\dw\2, the Laplacian

4a~2J~ιd2/dwdw and the formula for Z>* now follows.
To start, the curvature is

C = -±Dloga2J = -±Dloga2A + ^ log | i ί ; z | 2 .

The first term, after composing with /, is the first term of the result. The
second term is

dwdw
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We start with

= Wzz -Vv

since wzΊ = vzwz + vwzz. Recalling the evaluation of (A/wz)w above, we
substitute and find for the second term

/ A \
Vv— = AJd(v)(vvz) + VvzJ(-Avz + d(v)A)

\ wz JΰF

= -AJV{yzf + J~d(y)(AVvz).

Finally we consider

{2wzz(wzΊ - vwzz) + wz(wzzΊ - vwzzz)) = Juz= γ^2{2wz

\wz)

where for the last step we have substituted wzΊ - vwzz = uzwz, wzzz -
vwzzz = vzzwz+2vzwzz. On collecting terms we have the desired formula,
and hence the proof is complete.

Example 5.4. The first two perturbations ofD and C. As above, /:/?—>
S is a diffeomorphism of surfaces, k the metric on R and /c/-i the J-
pullback metric on 5. We are interested in the ^-expansions of D* and
C*. Write /)(„), C^) and so on, for the term of homogeneity n in v, for
example A^) = ((1 - |^|2)~1)(2) = M 2 Now by inspection from Lemma
5.3,

= 4α 2 Re ( — v— logo:2 + vzz) ,

) logα — -Z)(0)(logyί)(2) - 4a
2 Kφ

The expression for C(2) is simplified upon substituting the expansions for
D(2) and A,

C(2) = 2M 2 C ( 0 ) - \D(0)\V\
2 - 4«- 2 Re(2| I 4(logα) z + (^z)j)

The formula can be stated in an intrinsic form using the invariant deriva-
tives of §3.2, Kr = ar-χ%-zor\ and Lr = a'1"1 §^ar. The reader can check
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the following formulas:

K-ι(vKoh) = oΓ2{yhz)z for an arbitrary function A,

K-XK-2v = a-2((u(\oga2)z)z + vzz\

The second and third formulas simplify the Zλη and Cm expressions,

and Z)(2) is easy,

Finally the reader can check that

and on substituting back into the C ^ expansion,

As a remark we note that if z/ is a harmonic tensor, i.e., v = a~2~φ, φ a
holomorphic quadratic differential, then K-2v — 0 and the formulas are
simpler.

Example 5.5. The s-t-expansion for a degenerating family. As an appli-
cation we find the first s-term for the expansion of the hyperbolic metric of
the degenerating family {Rs,t}> Return to the discussion of §4.3. Start with
the hyperbolic metric on the initial cusped surface i?o For each cusped
surface Rs = Rμ^ take the J-pullback metric of the i?o metric. Use this
new metric on Rs to do the grafting and obtain dg2

t. The J-pullback met-
ric is hyperbolic near the cusps, and thus the construction and estimates
are given by the previous discussion. Away from the cusps the J-pullback
metric has curvature - 1 + O(x). If we solve the curvature correction equa-
tion for the first s-term as well as the first grafting term then by Lemma
4.1 the resulting metric on Rst differs from the hyperbolic metric by mag-
nitude O(( 1/ log l^l)4 + \s\2). Writing dg2

t for the grafted metric, we have
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the initial s-ί-expansion for the Rst hyperbolic metric,

where K-\, ΛL2 are relative to the RQ hyperbolic metric.
In general our plan for the second stage of computing the perturbation of

a metric follows the example. Specifically let h: R —• S be a deformation of
Riemann surfaces, R now with hyperbolic metric k. Take kh-\ as the initial
approximation to the hyperbolic metric on S. On S solve the curvature
correction equation Df - C = e2f, where D and C are for the known
metric kh-\. The metric e2^kh-\ on S has constant curvature - 1 . In
fact by introducing the pullback Laplacian and curvature the correction
equation can also be given on R, as an equation for / = / o h,

(5.1) Dj-a = e2f.

The special feature of the setup is that if the deformation of R to S is
specified by a Beltrami differential v, then (5.1) does not explicitly involve
the map h. By Lemma 5.3, D* and C* can be expanded in v. Thus if
v depends on a parameter and we wish to solve to order n, we can start
with (5.1) and formally expand in the parameter to obtain the successive
perturbations. In particular, for generic parameters a and b the first two
perturbations are Daf + Dfa - Ca = 2e2ffa and Dabf + Dafb + Dbfa +
Dfab ~ Cab = 4e2ffafb + 2e2ffab. Now for a = b = 0, then C = - 1 , / = 0
and

(5.2) . A-W>-2Γ'<i. _ _.
/.„ - (D - 2)"'(C» - D,A - Dbfa + 4/.A),

where D is now the hyperbolic Laplacian on R, (D — 2)~ι is bounded in
C°° norm by A.3.1 and Ca, Cab,Da and Db are given by Example 5.4. We
shall use (5.2) in the following sections.

Remarks. It is not hard to see that the general perturbation fa...b is also
given in the form (D - 2)~ι(Ca...b+ lower order terms). Finally we note
that the method can be extended to the case of R with a finite number of
punctures. The current approach is based on the solution of the curvature
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equation (4.2), maximum principle arguments and Lemma 5.3. The new
hypothesis would be compact support for the Beltrami differentials. Thus
the J-pullback metric would be conformal and have curvature - 1 in a
neighborhood of the cusps. Existence of solutions of (4.2) is not difficult
for this situation. The maximum principle is extended to the puncture
case by first proving that all solutions for the curvature type equations
necessarily vanish at the punctures. This is done in A.4 for (D -2)~ιF,
F with compact support. And finally, Lemma 5.3 has already been given
without compactness or curvature assumptions.

5.3. As an application of the formalism of the preceding section, we
shall derive formulas for the connection 1-form and curvature 2-form of
the hyperbolic metric on the vertical line bundle. The formulas are sim-
pler for harmonic Beltrami differentials [37], but unfortunately these are
the most difficult to write down. One way to resolve the dilemma is as
follows. First write the connection and curvature in the form: principal
term + correction term bounded by ||UΓ_2^||A: Then in the next subsection
for certain infinitesimal deformations, such as varying t for zw = t, we
describe a corresponding Beltrami differential v with ||AL2Hk s m a l l τ h e

result is that the connection and curvature are given as a sum, a principal
term, whose order of magnitude and negativity is clear and a smaller error
term.

The connection is a 1-form and the curvature a (l,l)-form; each is
determined by its restriction to complex lines. All we need consider are
1-parameter families of smooth surfaces; such a family is specified by an
initial smooth surface R and a Beltrami differential v. As in §2.4.C, let
{((fβ,Zβ)} be an atlas for R and Wβ(z,s) a homeomorphism-solution of
wΊ = suwz on Zβ(#β), depending holomorphically on s with wz = 1 for
s = 0. Then, dropping the subscript from wβ and zβ, (w(z,s),s) is the
coordinate on ffβ x Ds c {Rsu}, where {RSv} is the family, Ds (the base)
is a small disc in the s-plane, and (w(z,s),s) is holomorphic in s with
Mangent field ws ^ + Jj. Recall that ^ is a holomorphic section over
&β x Ds of the vertical line bundle and that by 5.2 the hyperbolic length of
WHi i s (^J '^ j) = e2fa2Jac, where (a(z)\dz\)2 is the initial ^-hyperbolic
metric, / is the solution of the curvature correction equation (5.1) for
the J-pullback metric, and Jac = (\wz\

2 - l ^ l 2 ) " 1 for w = w(z,s). In
particular for

h = l Q g ( ΊJΓ7> 7Ϊ7Γ > = 2 / + 21ogα -
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then θ = dh is the connection 1-form, and Ω = ~ddh is the curvature
2-form for the hyperbolic metric.

Lemma 5.6. With the above notation, for s = 0 and for Jfe = ws -J^ + J^,
the connection \-form is given by

and the curvature 2-form by

Proof Start with (w(z,s),s) as coordinate on ffa x Ds and

= 2/ + 21ogα(z) - log(|wz|
2(l - \sv\2)).

In particular for 5 = 0 and h = 21ogα, the first equation is immediate, and
the third equation is a consequence of the curvature -1 equation. For the
second equation we simply note that θ ( ^ ) = §£ and that w(z,s) and sv
are holomorphic in s. The result is

and setting 5 = 0 gives the second equation. Again, since w(z,s) is holo-
morphic in s, we see for the last equation that

d2h

Now w(z,s) is not holomoφhic in z, and so for the fourth line we must
first solve for θ ( £ ) , θ ( ^ ) = ψσ - wsθ(£). Substituting for §£, setting
s = 0, using that θ(^j) = 2(logα)z, and wz = 1, we have the formula

θ ί — J =2/J-tί;Z5-2tί; s(logQ :)z.

The final step is the ^-derivative,

Ω {h ί) = ( θ {l)\=2f* ~ v> ~2(logΩ)z"
= 2fsΊ - K 2
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Recalling that ^ = wsj^ + ψs the fourth equation now follows, and hence
the calculation is complete.

We now write the connection and curvature in the form: principal term
4- correction term bounded by pΓ_2*Ίk

Lemma 5.7. With the above notation, given an integer k > 1

Ω (Jj, ^j = -2(D - 2)-'(k| 2 + 2Re{2LxVK_2v + Djfs) -

2 Γ > | 2 + O(\\v\\k+ι\\K-2V\\k+2)

= O(\\v\\l+3),

where the remainder terms are bounded in Ck norm over the surface, and
the constants depend only on the integer k.

Proof. The proof is essentially by inspection. Combining formulas
(5.2) with those of Example 5.3, we have

fs = ( D - 2)-{2K-XK-2v, Ds = -4K^0,

CsΊ = -^D\v\2 - 4Re(L1ϊ7Λ:_2*'),

fsΊ = (D- 2)-\CsΊ - 2Re(Djfs) + 4/ s/?).

The formula for line two of the lemma is immediate. Now to estimate
/„ use Lemma A.4.2, ||(D - 2)~XF\\M < ck\\F\\k and thus \\fs\\k <
ck\\K-\K-2v\\k-\ < ck\\K-2v\\k- The estimates in lines one and three fol-
low from the formulas of Lemma 5.6. The last three lines remain to be
considered. The principal term of f^ is the — ̂ Z)|i/|2, contributed by Qj,
the others will be remainder terms. Thus Ω = 2(D-2)-χ{-\D)\v\2 + \v\2+
remainder, and substituting D = (D - 2) + 2 gives the principal term as
well as the formula. The remainder estimates are clear, given A.4.2, except
possibly for the term Djfs = -4K-ιisK0fs = -4K~^L0fs - 4Ί7L_{L0fs,
which is also bounded since \\fs\\k < ^II^-2Z/IU Hence the argument is
complete.

5.4. It is essential to have a description of the tangent bundle of Jfg,
suited for calculation, in a neighborhood of a noded surface. Ideally
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one would want to use harmonic Beltrami differentials, constructed from
the hyperbolic metric and holomorphic quadratic differentials. Unfortu-
nately this is not an elementary approach, the distortion of the hyperbolic
metric in a collar is infinite, and the construction of quadratic differen-
tials involves residues of (3g — 2)-meromorphic forms along the fibers of
Π: ffg —> Jig [24]. As an alternative we now describe differentials v with
K-iv small, such that for varying t of uv = t, v is supported in the collar,
and for the remaining deformations the support is disjoint from the col-
lars. Essentially we have localized the situation to the model case and the
case, deformations of a punctured surface.

5.4.T. We start with a Beltrami differential describing the deforma-
tion, varying t for the family uv = t. The desired estimates are a matter
of inspection given the differential. The idea is to consider the differen-
tial λ~2χΰ~2 on {\t\ < \u\ < 1}, where ds£yp = (λ(u)\du\)2, and / is the
characteristic function of a collar.

The discussion is simpler if we use a vertical strip, the universal cover
of the annulus. Fix a value to of t, and define

logw \ogv 1 log/
Z - -•• W-\og\to\' +

(this is a new use of the letters z and w). The identification uv = t becomes
z + w = I + ε, and t = \to\ corresponds to ε = 0. The ίo-fiber of the model
case uv = t now has universal cover {0 < Rez < 1} with hyperbolic
metric ds2

xήp = (π esc πx\dz\)2, z = x + iy and deck translations z -+ z +
2π/7z/log|ίo|> nel. Choose φ(x)9 0 < x < 1, such that φ(0) = 0, φ(\) = 1
and φ' has compact support in (0,1). Define a mapping f(z) = z + εφ(x)
of the width 1 strip to the width 1 + Re e strip. Let ze, wε, zε + wε = 1 + ε,
be the coordinates on the width 1 + Re ε strip {0 < Re zε, Re wε < 1 +Re ε}.
Now if we express the map / in z* coordinates, zε = /(z 0 ), then for Re z0

small, zε = z0 and for w* coordinates, 1 + ε - wε = / (I - tu0). Thus for
Re Wo small, / ( I - wo) = I - wo + ε, hence wε = Wo Thus the map /,
expressed in z* coordinates, is the identity on the far left side of the strip
and, expressed in w* coordinates, is the identity on the far right side of
the strip. It follows that the map / and the plumbing induce the same
deformation of the strip.

The infinitesimal deformation of the strip is given by the Beltrami dif-
ferential v - §ι{hl'fz)ε=o ~\ψχ- We are interested in a special form for
φx, specifically \φx = ca~2χ, for ds2

tjip = (a(z)\dz\)2 and χ the approxi-
mate characteristic function of a subinterval in (0,1): χ is smooth, equal
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to 1 on
2 3 , i + 2 δ

) •
and vanishing on the complement of

loglfoΓ

δ > 0, δ small. We make a special assumption that for the u, v coordinates
χ(\u\), e~2δ < \u\ < 1, and /(M)? e~2δ < \v\ < l9 uv = to axe independent
of to. We must also normalize the constant c such that v = cα~2χ rep-
resents the unit ε deformation. The condition is that φ(\) = 1 and thus
1 = /Q1 φx dx = 2c JQ α~2χ dx. To find c, recall that α~2 = (£ sinπx)2 and
the description of χ\ thus c = π2 + O((log l/|ίo|)"3) or for our purposes c
is a constant. We would also like to find the multiple of v that represents
the Mangent for uv = t. This is a matter of scaling, for α = log&/log|ίo|,
then

d__ 1 d
db blog\to\dα'

and in particular
d = 1 d
dt ~ t0\og\t0\dε'

To summarize: φ is bounded independent of to and §-t is represented by

We require two estimates for the Beltrami differential ύ. The first is for
the absolute value \v\2 on a fixed width band in the collar B = {γ < R e z <
1 - 7} j y > 0, γ small. The quantities a and χ are ίo independent on B and
thus |ί>|2 « c/l^olog |/o||2 on B. The second estimate is for Â _2z>. Taking
u as the coordinate, z = logu/log|lo|, we find

- 2

N

for ί/ ŷp = (A(w)|ί/w|)2 the metric on the w-annulus. Now K-2 = ^~3JU^2

and on supp(/M) = {e~2δ < \u\,\v\ < e~δ}, the /0-fiber metric converges
C°° uniformly to the 0-fiber model metric. Since (χu~2)u is to independent
it follows that K^^v = λ~3(χti~2)u is bounded in Ck.
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To summarize: given k > 0, there exists a constant ck such that ||AL22>|U
< ck\to(log |/o|)3 |. We also require two simple estimates for the derivatives
of / = z + εφ: fε = φ and fzε = \φx are bounded independent of t$.

5.4.S. We want a Beltrami differential representing a deformation of
a surface R$ with punctures. Start with φ a holomorphic quadratic dif-
ferential on i?o and χ a smooth function, vanishing in a neighborhood of
the punctures and identically 1 outside a larger neighborhood. The idea
is to consider the Beltrami differential v = (ds^w)~xχφ. Provided φ has
at most simple poles at the punctures, then K^2v tends to zero in C°°
norm as the support of χ increases, and thus we can choose the support
to bound K-2V- A second feature of the choice is the following. For a
plumbing family Rt, constructed from RQ, there are inclusion maps of the
open surfaces R* = Ro - {ί-discs at punctures} to i?o and thus χφ also
defines a quadratic differential on R* and on Rt. Since by Expansion 4.2
the Rt hyperbolic metric on supp(^) converges C°° uniformly to the Ro
metric, our estimates for K-2v will apply in this case as well.

Consider a puncture of i?o with rs coordinate u and pass to the universal
cover by setting ζ = logκ/(2π/), then ds2

yp = (a(ζ)\dζ\)2 = (\dζ\/lmζ)2,
Kr = ar-ιfζa

r, L-r = Kr and φ = ΣZ\ ane
lπi^{dζ)\ where α0 = 0 is

the simple pole hypothesis. Choose χ{y) an approximate characteristic
function of {Im ζ < 0}: ζ = x + iy, χ = 1 for y < 0 and χ = 0 for
y > I. For a parameter γ write v = a~2χ(y - γ)ψ. Now K-ιv = a~3(χψ)ζ
and given the exponential vertical decay of φ, any invariant derivative of
K-2V is bounded by: (polynomial in γ) x e~2πγ. Given ε > 0 and an
integer k > 0 we can choose γ sufficiently large such that ||Λ^_2*Ί|A: < £, the
desired estimate.

5.5. We now show that the hyperbolic metric on the vertical line bundle
of Π: Wg -• ZFg (see §§1.2 and 2.4) is good (see §1.3). In particular, if Ωh y p

is the curvature 2-form, computed on Ψg, then c l h y p = 2^ΩhyP defines by
integration a closed (1,1) current on ^ that represents the Chern class in
rational cohomology. For the sake of reference Baily discusses the basics
of divisors, vector bundles and characteristic classes on F-manifolds in
[4], [5] and a review of currents on F-manifolds is given in [35].

Theorem 5.8. The hyperbolic metric on the vertical line bundle over the
universal curve is continuous and good.

Proof. Recall the description of 2.4.M and 2.4.C, R is a Riemann sur-
face with m nodes, Ro = R- {nodes} and {RSjt} is a degenerating fam-
ily. Choose J7o C RQ to support smooth Beltrami differentials, uu

 : ,vn,
v(s) = Σkskvk. As plumbing data we now specialize and take the Ro rs
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coordinates at each puncture, data = (Uj9Vj,Uj,Vj9tj). As always Uo n

(U/ UJ V vj) = 0 a n d w e fix a finite a t l a s {(^a>za)} of Λ^ such that
for ^ α n ί/o / 0 then ^ does not contain a puncture. Also fix on
each #a, @a n Uo Φ 0, a solution fa(z,s), depending holomorphically
on s of J j = v{s)fz. Similarly for each plumbing collar of Rsί, with
tj Φ 0, take the map f(z9e) described in 5.4.T. In brief, the small de-
formations of Rst, each tj Φ 0, are given by Beltrami differentials and
(s,t) = (s\,-- ,sn,t\, - 9tm) is a coordinate for the local manifold cover
at the point R in J?g. Let D be the polydisc in the s-ί-variables parametriz-
ing the neighborhood and finally let dg}t on Rst be the primary grafting
of the model metric and the Rs hyperbolic metric.

The first issue is to check that the hyperbolic metric is actually continu-
ous. We start by observing that the grafted metric dg}tt is continuous. This
is immediate away from the plumbing collars. On the collars the grafted
metric coincides with the model metric, which was found to be continu-
ous in §1.2. Now the hyperbolic metric is certainly continuous on (&g9 it
only remains to check continuity dX^-Ψg. Expansion 4.2 expresses the
hyperbolic metric in terms of the continuous metric dg]t and a quantity
tending to zero, the curvature correction. The conclusion is immediate,
the hyperbolic metric is continuous on the vertical line bundle.

As the preliminary step to obtaining the higher estimates for the plumb-
ing collars, we use the change of variables of 5.4.T. For the yth plumbing
collar (we now drop the subscript) {uv = t} c {Rs,t}> w e m u s t bound the
connection and curvature forms on the vectors ^ and ̂ . Recall the strip-
covering of section 5.4.T, z = logw/log|/o|, w = logv/log|ίo|, where to is
a fixed value of t. The estimates will be homogeneous in the vectors; we
can replace ^ , ~ by multiples or equivalently by ̂  and j ^ . The vectors
^ , -^ are relative to the local coordinate (z,w)9 z + w = 1 + ε, for the
family of strips. By comparison the discussion of 5.4.T is in terms of the
local coordinate (C,ε), with ζ = z. The change of basis is, ̂  = ̂  + ^
and -— = γε. We are almost in the context of Lemmas 5.6 and 5.7.
The lemmas are formulated in terms of ^ , a tangent to the surface and
Έσ = fslk + Έs> a n initial s-tangent to a family, where f{ζ9s) is a solution
of the Beltrami equation. To relate the two formulations take s = ε, ζ = z
and thus

_d__fd_ d_ _̂ __A JL-M-ni?- —
da ~ Jεdζ + de9 Jϊ~dζ + dε~{ Jε)~dζ + ~dϊ

a n d

dw " Jεdζ + dσ'
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Now for the first simplification, fε is bounded independent of to and
thus it will suffice to estimate for the vectors ^ and ^ . The second
simplification involves the comparison form ω of §1.4: for uv = t, dt =
udv + υdu, thus

\dt\ \du\ \dv\
•— I I I / Λ I I i I \ ~*

and since |w|, \v\ < 1 we have that

Thus for the change of variables 1 +ε = log t/ log |/0|, we have the inequality
\dε\2 < 2ω. The third simplification starts with the observation that the
section of the vertical line bundle given in 1.2 is realized as ^ on the strip.
On the strip the connection 1-form is simply d log(^, f ^ ) .

We are ready to estimate the connection and curvature forms; by Lem-
mas 5.6 and 5.7, with ^ corresponding to the Beltrami differential v,

Ω(έ4)=Kέ4)' Ω(l^> =

and considered as Hermitian forms

since Ω is negative-definite for smooth surfaces. We start with the evalua-
tions involving ^ , a tangent to a fiber of ̂ g. By the last inequality there is
no need to consider cross terms. For tangents to the fibers, by Expansion
4.2 we can replace the hyperbolic metric with the grafted metric. Now
in the collars the grafted metric coincides with the model metric, a case
treated in §1.4 and away from the collars the grafted metric converges C°°
uniformly to the hyperbolic metric of the fiber i?o The connection and
curvature are bounded for the ̂ -directions.

All that remains are the evaluations involving f^. We are to bound the
forms on 8^. Again we note that the estimates will be homogeneous in
the vectors. We can replace the vectors d/dtj by multiples or equivalently
change parameters, 1 + βj = logtj/log\tOj\, tOj a fixed value of tj. Coor-
dinates for a local manifold cover of 8^ are given: (i) on ( ^ Q x ΰ ) n ^ ,
&a Π C/o φ 0, by the chart (W9s,ε), W = f(z, s), a solution of the Beltrami
equation fΊ = v{s)fz on *fα, z a local coordinate on Ro and (ii) on the yth
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plumbing collar ({collar}xD) n ffg, by the chart (W,s,ε), W = f(zj,εj),
f the map of 5.4.T. By the above estimate for the comparison form,
\dβj\2 < 2o)j. It will suffice to bound the connection and curvature by
the comparison form ωp = \dW\2 + \ds\2 + \dε\2. As the first step, observe
that the Beltrami differentials for the unit s and ε tangents are bounded,
independent of t, in C°° norm on Rst (see 5.4.T and 5.4.S). As the sec-
ond step, note that the derivatives fzs,fzε are also bounded in C°° norm
independent of t. The conclusion follows from the expressions for θ and
Ω. The proof is complete.

5.6. As the final application we describe the null directions for the
curvature form. It is interesting to compare the present discussion with
that of Mumford [28, especially Theorem 4.1]. We shall assume that the
curvature form can be evaluated on analytic cycles in Wg by integration.
This would follow for instance from the hyperbolic metric being good on
the restriction of the line bundle to analytic cycles, a slight generalization
of Theorem 5.8. Given the assumption, the curvature is to be considered
as a measure on discs embedded in the local manifold covers of ^g.

We start by reviewing the argument for showing that the Chern form
cUyp = 2^Ω is strictly negative on (&g. Each tangent space T^g is the
direct sum of the tangents to the fiber of ^ -> Jtg9 and the harmonic
Beltrami differentials for the fiber. In fact by Lemma 5.7 a tangent to
the fiber is orthogonal, relative to the curvature form, to the harmonic
differentials. It suffices to examine the curvature for the two subspaces. For
the tangents to the fiber the curvature is negative by the classical equation
for the hyperbolic metric. By Lemma 5.7 the curvature for a harmonic
differential v is simply

since K-2v = 0. Recall that the Greens function for ( D - 2 ) " 1 is pointwise
negative for a smooth surface. In brief Cihyp is negative on ffg, and it
follows that Cihyp will be nonpositive on &g.

There are two basic cases for the local geometry at a point p on a noded
fiber R of Ψg\ pa smooth point of the fiber and p a node. We start by con-
sidering a smooth point and use the description of Tp^g from the previous
section. The tangent space is the direct sum of three subspaces: the tan-
gents to the fiber, the //-tangents (represented by Beltrami differentials for
tj Φ 0) and the s-tangents (represented by Beltrami differentials supported
away from the nodes). The first step is to adjust the choice of differentials
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such that the three subspaces are approximately orthogonal relative to the
curvature form Ci5hyp at p. It will be enough to adjust the s-tangents.

An s-tangent is given as v = (dsξw)~ιχφ for ds^ the Ro = R- {nodes}
hyperbolic metric, χ an approximate characteristic function of a compo-
nent of RQ, and φ a holomorphic quadratic differential on Ro (at most
simple poles at the punctures). As notation we write B(S) for the Bel-
trami differentials of the form (dslyp)~ιχφ supported on a component S
of i?o, and we write R(p) for the component of i?o containing p. We wish
to fix the cutoff function χ for the component R(p). The space of quadratic
differentials φ is finite dimensional, and the Greens operator -(D - 2)~ι

is positive on R(p)\ given ε > 0, by 5.4.S we can choose χ such that for
v e B(R(p))9 with {-(D-2)-χ\v\2)(p) > 1 then \\K_2v\\2 and ||z^||τ||^Γ_2^||2
are bounded by ε.

The sign of the curvature at a smooth point p is determined as follows.
A vector vp eTp&g can be expressed as a sum of five components: tangent
to R® element of B(R(p)) Θ Mangents for nodes on R(p)® element of
B(R0 - R(p)) Θ Mangents for remaining nodes. Then Vp is negative for
Ci,hyp if and only if one of the first three components is nonzero. We start
the proof by showing that if one of the first three components is nonzero
then the direction is negative. First consider the Mangent for a node on
R(p). The node will open for a disc in Wg with this initial tangent; the
tangent can be treated as in 5.4.T. As a technical artifice to obtain smooth
surfaces open the remaining nodes by a small amount, approximate, and
pass to the limit by closing the nodes. Now to check the magnitudes of
the components of the curvature. If ί>o represents the unit Mangent, then
by 5.4.T and Lemma 5.7

and |z>0|
2 has magnitude l/(|/|log|ί|)2 in the collar core. By (appendix

A.4.4) the z>0 curvature has magnitude l/|ί |2(log(l/|ί |))3 at p. This will
be the dominant term. Note that a priori Cihyp is nonpositive; to show
that vp is negative it is enough to show that a component of the vector
is negative, and that the component dominates the cross terms involving
the remaining components. We consider ύ0 to be the negative component
of vp and go through the list of possible cross terms. Start with OQ and a
tangent ^ to R, then by Lemma 5.7
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and by 5.4.T

The cross term is dominated by the 00 principal term. Next we consider
λ e B(RQ) arbitrary. Estimate the cross term Ω(X, z/0) by Lemma 5.7. The
support of \λί>o\ is contained in bands near the boundary of the collar for
z>o The differential \λ\ is bounded, while |z>01 restricted to the bands and
||^-2^ol|2 each have magnitude l/|ί|(log(l/|ί|))3. In brief the λ cross term
has the same magnitude and is thus dominated by the u0 term. The last ύ0

cross term is for the tangent ύ\ for opening a second node. Trivially the
Beltrami differentials have disjoint support, thus by 5.4.T and Lemma 5.7

where t\ is the parameter for the second node. On a disc thru υp the
parameter t\ is a function of t and thus the ύ\ cross term is also dominated
by the OQ term.

To summarize: if vp has a nonzero component for opening a node on
R{p) then c^hyp is negative.

Now consider that such components are zero. Assume that vp has a
nonzero component μo in B(R(p)). This will be the new dominant term.
Given ε > 0 by Lemma 5.7 and the above remarks we can adjust the cutoff
function such that

for f-z an l?o-tangent. Thus the μo term dominates the i?0-tangent cross
term. Now, for λ e B(R0 - R(p)) or for λ representing opening a node not
on R(p), λ and μo have disjoint support. By Lemma 5.7 each nonzero term
of Ω(μo,>l) involves a factor of the form ( D - 2 ) " 1 (derivative of A). Recall
that the nodes on R(p) have been opened for the sake of approximation.
The support of λ is separated from R(p) by a collar and thus the uniform
damping (A.4.2) provides that Ω(μo,λ) tends to zero as the nodes are
closed. In particular the μo term dominates any λ cross term.

To summarize: if vp has a nonzero component in B(R(p)) then Cih y p is
negative.

Now consider that vp has zero components for opening the nodes on
R(p) and a zero component in B(R(p)). Assume that υp has a nonzero
component ^ tangent to R. By assumption every other component of
vp is represented by a Beltrami differential λ with support separated from
p by a collar. As with the above case Ω(^,A) at p is given in the form
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(D - 2)~ι (derivative of λ) and the uniform damping provides that the
term tends to zero as the nodes are closed. The conclusion follows: if υp

has a nonzero component tangent to the fiber of R then c l h y p is negative.
We wish to show that for the remaining case υp is a null curvature vector.

By hypothesis υp is represented by a Beltrami differential λ with support
separated from p by a collar. By Lemma 5.7 Ω(I,λ) is given in the form
( D - 2 ) " 1 (expression in λ). The uniform damping (A.4.2) provides that as
we close the nodes on R(p), to complete the approximation, then Ω(λ,λ)
tends to zero.

To summarize: vp is a null vector for c1 ) h y p if its first three components
are zero.

This completes the discussion for p a smooth point of a noded fiber.
Now we consider the curvature at a node p of a noded fiber of Wg. Again

we approximate and open any other nodes by a small amount. As local
coordinates on &g we take the variables z, w for the zw = t plumbing
at p and Beltrami differentials representing the remaining deformations.
As notation write TV for the span of the z and w tangents, and BD for
the span of the Beltrami differentials. A vector υp £ Tp

(&g is negative for
Ci,hyp if and only if its TV component is nonzero. We start by considering a
disc D with parameter ε, mapping into &g with a nonzero z-w-component.
Specifically it will suffice to consider the map z = ε, w = cεn, n e Z+, and
thus t = zw = cεn+{. We shall treat the general case c Φ 0; the special case
c = 0 is treated in a similar fashion. Since the z coordinate on D is in
general nonzero we can change coordinates for ε nonzero: replace (z,w)
by {z,ή. In particular modulo BD-components,

d__d£d_ ^i^__^_ \) » —

By the classical curvature equation c1>hyp in the ^ direction is simply the
hyperbolic length. By Expansion 4.2 the length is comparable to that of
the model metric:

d d \ ( n ( π l o g l ε l \ \ 2 cn

^ z ' a z / h y p ~ \|fi|log|cε"+'| VlQg|cβ»+1|// (|e|log|e|)2*

The next step is to check that the cross terms are smaller. For the §j
cross term we refer to 5.4.T and Lemma 5.7. The Beltrami differential v
for §j has norm ||AΓ_2i>Ίli bounded by l/|ί|(log(l/|/|))3. The cross term is

d_ d \ 1 / 2

dz'dz/
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We have already evaluated the norm and t = εn+ι. The final bound is
l/[|ε|2(log |ε|)4] and the cross term is dominated. We estimate the BD cross
terms by Lemma 5.7. For λ the BD-component of the disc tangent field the
cross term is bounded by ( ^ , ^)1/2||Λ^_2/I||i, and as above the hyperbolic
length has magnitude l/[|β|log(l/|β|)]. For a 2?(i?0)-component of λ the
ΛL2-norm is bounded and thus the B(Ro) cross term is dominated. Finally
consider a component of λ for opening a second node. If the parameter
is t\ then t{ = cεm, m e 2+. The ^-component of §-ε is mcε m " 1 ^- . If vx

represents ± then | | A L 2 I Ί | | I has magnitude l/[|*i|(log(l/|ίi|))3]; em~1^
is represented by εm~xv\ with ΛΓ_2-norm of magnitude l/[|ε|(log(l/|ε|))3].
In brief the t\ cross term is dominated.

To summarize: if the TV component of υp is nonzero then Ci5hyp is
negative. In fact by our analysis Cih y p is negative on a disc with z-w-
component, z = εn, w = cεm.

The final case is to check that a disc at p with trivial (to all orders)
z-w-component is null for the curvature. Open all nodes to approximate
by smooth surfaces, and estimate as above. By the uniform damping the
contribution near p tends to zero as the node at p is closed. The disc is
null.

Remarks. The curvature nullity at a smooth point p of a noded fiber
R. From the discussion the dimension of a complement for the null space
is: 1+number of distinct nodes on R(p)+ dimension of B(R(p)), for R(p)
the component of R containing p. In particular the nullity is determined
by the topology of R(p) c R. The conullity is at least three for a smooth
point of a noded fiber, and has full rank for a smooth point of a fiber with
exactly one nonseparating node.

Appendices

A.I. The interior Schauder estimate (ISE) is essential for bounding
solutions of Laplaces equations. We only need the following result, a
consequence of the Lp approach [9, Chapter 5]. Given B c R2, a bounded
domain, and Bo c c B, there exists a constant c = c(B,B0) such that for
AP = Q on B, A the Euclidean Laplacian, then

where | {^ is the Ck norm for the domain A.

A.2. The following is the elementary maximum principle argument
[17].
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Estimate A.2. Let R be a compact surface with metric ds2 and Lapla-
cian D. For DP + S = Q ifp is a maximum and q a minimum ofP, then
S(p)>Q(p)andS(q)<Q(q).

Proof, Evaluate at p and at q. Note that DP(p) < 0 and DP(q) > 0.
Remark. In practice Q is a monotone increasing function of P and

thus βmax = Q(P(p)) < Sm a x and Qmϊn = Q(P(q)) > Smin.
A.3. For a metric ds2 with Laplacian D and the equation DP = Q, we

recall the standard estimate for the Ck+{ norm of P in terms of the C°
norm of P and Ck norm of Q. Write || ||Γ for the ds2 Cr norm, || \\ryB for
its restriction to B and B(q, ε) for a metric ball.

Estimate A.3. Let Rbea surface with complete hyperbolic metric. Given
an integer k > 0, c$ > 0, εo > 0 and e\, 0 < εi < So, there exists a constant
c = c(k,Co,So,e\) such that ifds2 is c0 C

k-close to the hyperbolic metric on
B(p,εo) and DP = Q on B(p,eo), then

LBip*) < C(\\P\\θ,B(P,eo + \\Q\\ktBU>*>)).

Note, It is not necessary that B(p,βo)be embedded.
Proof Fix k, lift to the upper half plane H such that p becomes / and

write B{q,ε) for the ds2 neighborhoods in H. The metric ds1 is c$ Ck-
close to the hyperbolic metric and since B(l,βo) C H is relatively compact
the hyperbolic metric is Ck -close to the Euclidean metric. Thus we may
interchange the ds2 Ck norm and the Euclidean norm | \k. The goal is to
estimate in terms of |P|o,5(/,eo) and |Glo,*(i,eo)- On B(i,ε0), ds2 = (λ(z)\dz\)2

and the equation is AP = λ2Q for Δ the z-Euclidean Laplacian. By the ISE
(and since ds2 is Ck-close to the Euclidean metric) given ε\, 0 < ε\ < εo,
there exists C\ such that

|^|l,£(ι,ei) < C\(\P\θ,B(i,εo) + |β|θ,£(ι,eo))>

the first estimate. Proceed by finite induction. Assume given εn, 0 < εn <
εo; there exists a constant cn such that

\P\n,B(i,εn) < Cn(\P\θ,B(i,εo) + IQU-l,B(/,eo))

If An = dn/dxpdyn~p is a derivative of order n, then AAnP = AnAP =
Δ«(A2β). By the induction hypothesis and since ds2 is Ck-close to the
Euclidean metric, both AnP and An(λ2Q) are C° bounded on B(i,εn). Now
by the ISE given εn + 1, 0 < εn+\ < εn, there exists a cn+\ such that

\ΔnP\\,B(i,eH+ι) < Cn+l(\P\θ,B(i,eo) + |Qlθ,J?(i,eo))

Since An is arbitrary of order n, we have the desired (n + l)st estimate,
completing the argument.
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A.4. We would like to collect certain standard estimates for the Greens
operator (D - a)~ι, a > 0 (we will also write a = s(s - 1), note for a = 2
then s = 2). We start with a very specific estimate, since this will then allow
us to treat the compact and noncompact case together. The first argument
is a variant of that in [14, Chapter 1] and is very close to the considerations
of [19, Chapter 3]. We recall Fay's discussion and use similar notation.

Let H be the hyperbolic plane, δ(z,z0) the distance, Δ(z r) the disc
of hyperbolic radius r about z, dA the area form and D the Laplacian.
Given r,s, r > 0, there exists a positive constant m(r,s) such that an
eigenfunction / of D on A(z r) with eigenvalue s(s — 1) has the mean
value property: f(z) = m(r,s) fA,zr)fdA. The rotationally invariant po-
tential for (D - s(s - 1)) is given by an associated Legendre function,
Qs(z, ZQ) = Qs(δ(z,zo)) [14, Example, p. 155]; Qs is negative and its be-
havior for large δ is Qs{δ) = -(sech(<5/2))2ίx analytic function of (s,e~δ).
The sum of the translates of Qs by a discontinuous group Γ (isometries
of H) Gs(z,z0) = ΣγerQs(z>ϊzo) is the Greens function for Γ-invariant
functions. We wish to derive uniform bounds (independent of Γ) for
-Gs(z, ZQ). The first is the trivial estimate —Gs(z9 ZQ) > -Qs(z, z0), valid
since the sum is termwise positive.

Lemma A.4.1. Given δo > 0 and s > 1 there exists a constant Co such
that for Γ a Fuchsian group the Greens function satisfies

for δ(z, zo) > 1 and provided the injectivity radius at z or ZQ is at least δo.
Proof Assume zo has injectivity radius at least δo < 1. Then for Δ =

o)

-Gs(z,z0) = -m(δo,s) / Gs(z,w)dA{w).
JA

The sum for -Gs has positive terms and the orbit Γ(Δ) consists of disjoint
discs, thus

- [ Gs(z,w)dA(w) = -Σ [ Qs(z,γw)dA(w)
JA γ JA

= - ί Qs{z,w)dA(w).
Juγγ(A)

Each point γz0 is at distance at least δ(z, z0) to z, thus each y(Δ), as well
as (Jyy(Δ), is in the complement of A(z,δ\), δ\ = δ(z,zo) - δo, and in
particular

-Gs(z,z0) < -m(δo,s) ί Qs(z,w)dA(w).
JH-A{Z A)
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§ ) 2 s
We can use polar coordinates to integrate; noting that -Qs(δ) < c(sech §)
< ce~δs for δ = δ(z, w), dA π ceδdδ dθ for large δ, we find

-G,(z ,z0) < c
δϊ

 s ~ ι

The estimate is complete.
We now derive the same lower bound for a special case where Γ is

infinite cyclic. Start with H the upper half plane and a hyperbolic trans-
formation z »-• λz (representing a geodesic of length / = log/I). Let z = /,
z0 = eiθ and consider

-G,{z,z0) = -

The hyperbolic distance is given by

t. s/ L\ 1 \ a ~coshδ(a,b) = I + '
2 Im a Im b'

and thus
/ - - .2 \ - 1

e~δ>PP{a,b)= 12 + J -L-)
\ Im^ImZ?/

We substitute to find
- σ , ( i , ^ ) >

Evaluating

PP(i,aeiθ) = -,—- - ^ — —v } a2 + 1 2coshα

for α = log α and in particular for / = logλ the sum is ]>
We can bound the sum below by an integral:

iθ _ aήnθ _ 1 sin0

/ sin θ V (sin0)* u l x _ ϊ l x—r—7 = -—7—^((cosh «/) 5/)
V cosh ft// /\ cosh ft/ 7

and

(coshx)~s dx.
/o

Gathering the estimates, we have a constant c, depending on s, such that
for an infinite cyclic group Γ, stabilizing the imaginary axis

Now we are ready to start the general discussion of (D - a)"1. Let R
be a compact surface minus a finite number (possibly zero) of points, a
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punctured surface with complete hyperbolic metric. For a > 0, -(D-a)~ι

is a bounded, positive operator that is self adjoint on a dense subspace of
L\R) [14].

Lemma A.4.2. Given an integer k > 0 and a > 0 there exists a constant
Ck{a) such that if f has compact support in R {a vacuous condition ifR is
compact) then

\\(D-a)-ιf\\M<ck(a)\\f\\k.

Proof. The argument is in two parts. The first is essentially the maxi-
mum principle. Since supp(/) is compact, the injectivity radius is bounded
below on the support and by Lemma A.4.1 (D-a)~ ιf vanishes at the punc-
tures. Thus (D-a)~ιf has an interior maximum and minimum. The argu-
ment of Estimate A.2 can be used, conclusion \\(D-a)~ιf\\o < ||/||o Now
the higher estimates follow from Estimate A. 3. The proof is complete.

Now let us recall the thick-thin decomposition of R. Fix δo and let
R be the subset of points of injectivity radius at least δo, Rmn =

Λthin is a disjoint union of collars about short geodesic and
horoball neighborhoods of cusps. The components of i?thick have diameter
bounded by the genus of R. The core geodesic γ of a collar has length
lγ < δo, the width of the collar is « 2\ogc'/lγ and each boundary has
length « c". If γ corresponds to the deck transformation z —• λz on H
then the collar boundaries lift to the rays θ = l/c", π - lc", for z = rew.

We now describe the estimates for -Gs(z, ZQ) in terms of the thick-thin
decomposition. Lemma A.4.1 gives an upper bound if at least one of the
pair z, zo is in the thick component. A lower bound for one point lying
on the geodesic in a collar is obtained as follows: -Gs is estimated below
by the Greens function of any subgroup of π\(R), for instance the infinite
cyclic subgroup corresponding to a geodesic. Thus for z on the geodesic in
the center of the collar and zo on the collar boundary (for this case 0(zo) «
lγ/c") then δ(z,z0) « logc'//y and -Gs(z,zΌ) > ce^-s)S(<z'Zo) (same order
as the upper bound). More generally the component of i?thick adjoining the
y-collar has diameter bounded by the genus and so we have the estimate
-Gs(z9zo) > Cgls

y~
x for zo in this component. Now by Example 4.3 if

t, \t\ < 1, is the plumbing coordinate for a degenerating collar then lγ «
2π2/ log 1/|/| and thus for s > 1, z on the geodesic, zo in the adjoining
component,

(A.4.2) cg(lσg(l/\t\))ι-° < -Gs(z,z0) < c{lσg(l/\t\))ι->

and more generally for z\,Z2 separated by the collar width
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We see that there is a uniform damping for the propagation of a signal
through a collar.

In brief our technique for estimating a degenerating Greens function is
as follows. First use a combination of the trivial estimate, Lemma A.4.1
and (A.4.1) to estimate Gs(x9y) in terms of the hyperbolic distance δ(x,y)
and then use Expansion 4.2 to analyze the distance.
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